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Abstract

To date, algorithms designed to recognize 3-d objects from intensity images have either employed global featurcs or local
features based on straight line segments. Global features limit recognition to objccts that are completely visible and segmented
from the background; these are often unrealistic conditions in machine vision domains. Local features bascd on line segments
arc somewhat more flexible since partially visible objects may be recognized, however, the rcquirement that objects will
have sufficient straight lines to ensure robust recognition is also limiting. In this paper, we discuss a sct of fcatures, called
scale-invariant critical point neighborhoods, or SICPN’s, which are more gencrally applicable to 3-d object rccognition.
SICPN’s efficiently encode the local shape of edge segments near points of high curvature. To within variations causcd by
image noise and discretization, SICPN’s are invariant to image plane translations, rotations, and scaling. These invariant
properties cnhance the utility of these features in 3-d recognition algorithms. Furthcermore, we show that SICPN’s have
many other desirable characteristics including informativeness, ease of detcction, and compact representation. In addition,
we cmpirically demonstrate that SICPN’s are insensitive to noise. The above characteristics are essential if a feature is to
be useful for 3-d object recognition.

1 Introduction

Recognition of 3-d objects in 2-d intensity images is an important problem in computer vision which has a large number of
practical applications. In order to recognize objects, properties of the objccts that allow one object to be distinguished from
another, as well as from the background, must be identified. In some domains, such as automatic intcrpretation of acrial
photographs, spectral and textural characteristics are most important. In many other domains, particularly those where the
objects to be recognized arc man-made, shape is the best distinguishing characteristic. In this paper we describe a class of
features called scale-invariant critical point neighborhoods, or SICPN's, that cfficiently encode the shape of cdge contours.

2 Requirements of Features for 3-d Object Recognition

The process of 3-d object recognition from intensity images can be viewed as a scarch through the space of all possible
instantiations of object models for those instantiations which, when graphically rendered, best agree with the image data.
The size of this space is immense. For example, considering only rigid objects (i.e., not articulated or deformable objccts),
and ignoring the degrees of freedom inherent in the lighting of the scene and in the camera, there are seven axes of variation
that can change how the object appears in an image. The first is the discrete axis of model identity, i.c., whether the objcct
is a plane, car, tin can, etc. The next six constitute the continuous space of viewing paramcters, and describe the modecl’s
position and orientation in 3-d space, which, in turn, affect the image intensity function. It is clear that any search of this
space that is not highly efficient will be unlikely to succeed.

Many practical object recognition algorithms can be divided into two types of processcs. The first process gencrates modcl-
transform hypothcses based on the image data. A model-transform hypothesis is a conjecture as to the identity of the modcl
and the viewing parameters that instantiate it in the scene. The second process gathers positive and negative cvidence which
is used to make a decision about whether the hypothesis is consistent or inconsistent with the image. The simplest form of
the second process takes the form of Aypothesis verification where a detailed comparison of the obscrved image data and the
rendered model instance is performed in the image domain in order to verify that the instance of the model cxplains what
has been obscrved in the image. This lcads to the commonly used hypothesize and verify paradigm for rccognition.

Practical object recognition algorithms employ appropriate features to improve their efficiency. A feature is an entity with an
associated vector of property attributes. For example, a line segment has associated with it a location attribute, an oricntation
attribute, and a length autribute. In order to satisfy our goals, good features for shape-based 3-d object recognition must be
spatially local or consist of configurations spatially local subparts. There are two rcasons for this:
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1. Noise and encroachment of the background may cause parts of the object to be distorted or to be missing in the image.
Spatially local features will have a smaller chance of being distorted since a small fcature stands a good chance of
being on a portion of the object that is undistorted.

2. We have the goal of rccognizing objects that may be partially obscured by others. As in 1, spatially local features
minimize the possibility that the feature will be missing or distorted due to occlusion by another object.

The features that we seck should possess a number of properties in addition to spatial locality They should should:
e bc noisc resistant
¢ bc informative
o be inscnsitive or invariant to unimportant viewing paramcters
e be casily scgmented
¢ havc a compact representation

e minimize the number of image-fcature to model-feature correspondences that must be madc during the rccognition
process.

The importance of the property of noisc resistance is obvious. The other properties, however, require further explanation.

A featurc is informative if its presence in the image data allows a large part of the space of possible objcct model instantiations
10 be eliminated from consideration. For example, a single point (such as an edgc point) is as spatially local as possible,
nevertheless it is an uninformative featurc because its presence in the image (by itsclf) gives no cluc as to which objcct’s
presence in the scene may have gencrated it, and only eliminates two degrees of freedom in the space of possible viewing
paramcters. On the other hand, a pair of directed points (a point with an associatcd dircction is a dirccted point, such as
an cdge point with the intensity gradient at that point) is a much more informative fcature since such a fcaturc could only
be generated by the (far fewer) object model instantiations that can place edge points at the right locations and with the
proper angles between the gradient vectors and the vector connecting the two points. In practice, cven pointlike features
require that a neighborhood of the imagce array be examined to detect them, and therefore are not truly pointlike. In general,
there is a tradeoff between the degree of spatial locality that a feature exhibits, and its information content. Given a vision
systcm’s constraints on the spatial locality of the features (which, in turn, is driven primarily by requircments on the system’s
immunity to missing and distorted features), good features will provide the most information possiblec.

The property of inscnsitivity or invariance to unimportant viewing paramcters is closcly related to informativencss. Vision
rescarchers have sought fcatures that are invariant to variations in various viewing parameters such as image plane rotation,
translation, and scaling, among others. Insensitivity to variations in lighting conditions is another sought-after property of
{caturcs. Invariance and inscnsitivity of features is most desirable in the hypothesis generation phasc of of the recognition
process. The reason for this is best illustratcd by example. Return to shape-bascd recognition of rigid 3-d objects from single
intensity images. In this domain, an idcal (and non-existent) feature would be one that gives a local description of the shape
of the surfacc of the object (in 3-d spacc) based only upon a portion of the data in the image array. If certain assumptions ar
made it is possible to do this, as dcmonstrated by the work on shape from shading, texture, shadows, ctc. Since objects in
this domain are distinguished entircly by their shape, such f{caturcs would allow a rccognition system to immediately retricve
(using an appropriatc indexing scheme) all objects that have parts of their surfaccs with the shape indicated by the image
data. Such a feature would allow six degrees of freedom to be climinated in the scarch for possible hypothescs, reducing the
process to scarching the spacc of object identitics alone. In practice, without making overly restrictive assumptions about
the naturc of the imaging domain, such idcal fcaturcs are not available when the image scnsor measurcs intensity. Range
sensors, on the other hand, can provide such information dircctly. This is why range scnsors are gaining much attention for
usc in object rccognition: they simplify the matching process considerably. The relationship between informativeness and
invariance can now be scen clearly. An invariant fcature drastically cuts the amount of scarch nccessary for an important
part of the recognition process, and hence tends to be more informative than non-invariant fcatures.

Easc of scgmentation has often been ignored in choosing features in the past, yct is an important property. No matter
how informative a featurc is, if it cannot be not rcliably detected {rom the image, then it is not uscful for rccognition.
Pcrhaps the best example of such features are the perfect junction classes of blocksworld and its derivatives. Such fcaturcs
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allow powerful matching algorithms to be employed to solve difficult problems. However, in practice, it is not known how
to reliably detect such features in a real image. Another example is the early approach of using global fcatures. Such
methods compute a global feature from an object that is assumed to be totally visible and in some¢ way segmented from
the background. The problem of segmentation of the objects from the background has been assumed to have been solved,
leaving only the problem of identifying the objects. In practical domains, this assumption is usually far too restrictive.
Therefore, the ease of detecting, or segmenting, features is an important consideration.

A compact representation means that the feature has only the information that is important for recognition, with no redundant
or useless information. An example of a non-compact representation is enumerating the z-y position of ten sample points
on a line as opposed to the much more compact representation of just listing the endpoints. Compactness of the feature’s
representation ensures that no more data than is necessary is used to store the feature, as well as reducing the amount of
data that must be processed by the system.

The final desirable property of good features, that of minimizing the number of image-feature to model-feature correspondence
hypotheses, is closely tied to the matching process. Generally, all object recognition methods must perform some kind of
explicit or implicit hypothesis generation, during their exccution. Generating hypotheses is a data driven or bottom-up
process. When hypotheses are first being generated, there are no hypotheses, and therefore no model-directed expectations
about what features are likely to be present in the image. In the absence of such expectations, all image featurcs must
be considered equally; none can be rejected as spurious. Under these conditions features that consist of a configuration of
spatially local subparts may cause a combinatoric explosion in the hypothesis gencration portion of the matching process.
To illustrate, return to the example of a feature consisting of a pair of directed points. Assume that the points are detected
in some manncr indcpendent of each other. This is rcasonable since, again, there are no top-down expectations from modcls
at this point. There may be modcl-independent heuristics, but we will not consider these in this simple cxample. Then, all
possible pairs of these directed edge points must be considered as potentially valid featurcs, though, in fact, many of them
will be invalid since they are composed of primitives that belong to distinct objects. If there are N dirccted cdge points
detected, then N2 feature pairs will be generated. In a slightly more general situation where each composite feature consists
of k spatially local primitives of a single type of feature detected, then there will be N* possible composite featurcs. The
number of composite features that must be considered by the hypothesis generation process explodcs combinatorically if k
is too large. There are two ways that the complexity can be reduced without reducing the informativeness of the compound
features:

1. Minimize the number of primitive components by making the primitives as informative as possible.

2. Choose primitive components for which there are model-independent guidelines for determining which primitive
features are more likely to belong to the same object.

In the previous paragraphs, we have discussed what properties should be possessed by a good feature for 3-d object rccog-
nition. In the remainder of the paper, we present a new type of feature we call scale-invariant critical point neighborhoods.
We will also show that these feature have many of the desirable propertics we have just cnumcrated.

3 Features Employed Previously for 3-d Object Recognition

Features that have been employed in previous systems whose goal is to recognize partially visible 3-d objects based on
their shape have been compound features composed of primitives that are line scgments, or pointlike fcatures. Lowe [12]
uscd clusters of line segments called perceptual groupings. Perceptual groupings were formed based on a model-independent
argument of the likelihood that the scgments belonged to a single object. ACRONYM (2] was also based on lincar primitivcs,
although the system worked only with compound configurations of line scgments that formed trapezoidal, hexagonal, and
cllipsoidal groupings. Lamdan and Wolfson [11] describe a recognition systcm that is also based on scts of linc scgment
features, as do Thompson et al. [14,4], Horaud [8], and Goad (6].

We argue that, by themsclvcs, line scgment features are not good features for the recognition of general 3-d objects. We
have several rcasons for this belief:

o Objects consisting of many curved surfaces will not have many lincar features.

e Line scgments are relatively uninformative features. Typically, therefore, compound features must be comprised of
scveral line segments in order to be informative enough for the application. This, in turn, increases the combinatorics
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of matching.

¢ Polygonal approximations of curves are not stable.

Pointlike features have the advantage that they are very local (although a neighborhood of pixels must still have been examincd
in the image in order to detect them). However, pointlike features are even more uninformative than line segments, having
only the attributes of location. A small improvement on the simple point is the directed point, which consists of a point and
an associated direction. Huttenlocher et al. [9] use compound features consisting of both points and dirccted points. These
points are inflection points (points of zero curvature) in the edge contours. Chien and Aggarwal [3] use configurations of
high curvature points, similar to the critical point that form the centers of our SICPN features. However they do not use the
local shape as we do. Lamdan el al. [10] use lines and points to recognize objects. The points are of two types, one type,
which they call “interest points” are points of high or infinite curvature, and so are also related to critical points. The second
type are the constituents of a triplet that marks the entrance and deepest point of a concavity on the curve. The methods we
mentioned above, are concerned with the recognition of 3-d objects in intensity images. In addition, there many methods
concerned with recognition of 2-d objects from intensity images that use pointlike features, however we will not concern
ourselves with them here. '

Our philosophy is that the primitive elements of features should be as descriptive as possible. The reasons for this are
twofold. First, as discussed previously, descriptiveness, if exploited, will tend to reduce the combinatorics of the recognition
process. Second, with spatially local primitives, the property of continuity can be exploited. That is, if a feature is detected
from a local neighborhood in the image, then it is likely that the feature belongs to a single object. Such a guarantee cannot
be made as strongly of the elements of a compound feature. Furthermore, descriptive features make it possible to reduce
the combinatorics of recognition without making the set of features too sparse, thus making the recognition process more
resistant to occlusion, missing features, and spurious features. Curiously, scveral 2-d recognition mcthods have employed
featurcs that are composed of highly informative spatially local, shape-based primitive features [7,1], but no 3-d methods
that we know of have done so.

4 Scale Invariant Critical Point Neighborhoods

In this section we describe new features for 3-d object recognition called scale invariant critical point neighborhoods
(SICPN’s). SICPN’s encode the local shape about critical points. While there are several interpretations in the literature
of the term critical points, we will use the common interpretation as points of locally maximum or minimum curvaturc
on the edge contours of objects. SICPN’s allow complete control over its informativeness by varying the amount of the
boundary that is used to compute the feature; indeed, the tradeoff between informativencss and spatial locality is explicit
with SICPN’s. The ability to control the SICPN’s informativeness makes them good primitives for compound fcatures.

A SICPN is computed in a sequence of six steps:
1. Find connected edge contours.

. Compute the slope-angle versus arclength representation of the edge contours.

2
3. Detect critical points from the §-s representation of the contours.
4. Estimate the curvature of the contour at the critical point.

5

. Sample the 8-s contour at M equally spaced points in an interval of arclength with the critical point as its center. The
sample values are shifted in 4 so that the value of the center sample (where the critical point is located) is zero. The
length of the interval is chosen to be inversely proportional to the curvature estimate, resulting in a vector of samples
that, ideally, is invariant to rotation, translation, and scaling in the image planc.

6. Project the vectors obtained above onto a set of orthogonal vectors that perform the function of filtering noisc and
data compression.

We now describe each of the six steps in greater detail,

The first step, finding linked edge contours, is straight forward. Any edge detector can be used to find an edge map,
followed by a linking process that groups edge elements into sets of contiguous scts, or contours. We usc an implementation
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of Canny’s edge detector that produces, in addition to the edge map, an intensity gradient map. Our linker searchcs for

a contiguous pixel first in the direction indicated by the gradient, and then searches pixels progressively further from the

gradient direction. If a contiguous pixel is found, the process is repeated at the new pixel. If none are found, the process

stops. We allow only two-connected contours. The linker stores both the z-y location of each edge element in the contour,
- as well as the value of the gradient there.

After the edge contours in the image are found, we compute their slope-angle versus arclength representation, which we will
call the @ versus s or §-s representation. The ordinate, or 4, in the §-s representation is the slope angle of the tangent at the
point of interest on the contour, measured relative to the horizontal. Similarly,the abscissa, or s, is the arclength measurcd
from some arbitrary point of reference on the contour to the point of interest. The contour is resampled at uniform arclength
intervals. The values of § and the z-y coordinates at the resampling points are computed by linearly intcrpolating between
the nearest points on the contour.

The next step is the detection of the critical points on the contours. As mentioned earlier, critical points are points of
maximum absolute curvature on the edge contours of objects. From calculus, the definition of curvature is simply the
derivative of the §-s curve with respect to arclength. In practice, differentiating the 6-s curve and searching for locally
maximal absolute values is not robust since the derivative operator amplifies high frequency noise. Instead, we use a
multiscale version of a 1-d derivative of a Gaussian edge detector to detect the critical points. This scheme is related to the
2-d edge detector described by Schunck [13]. The use of multiple scales has two major advantages:

o The critical points are stable over a wider range of scale than with a single scale dctector.

e With a single scale detcctor, the localization of the critical point degrades as the ¢ of the Gaussian increascs, while
the signal to noise ratio degrades with decreasing o. With our multiscale method, the localization of the edge detector
is nearly as good as the smallest scale, but has the noise immunity of the largest.

A major source of error in the following steps is the error in the localization of the critical points. This is why we chosc to
use the multiscale critical point detector.

Our multiscale critical point dctector detects critical points in the following manner. First, the original 8-s curve is convolved
with a progression of / Gaussian derivatives, each having a ¢; such that o; = po;_,, where p is the ratio between two scalcs.
The resulting set of curves, «;(s),i = 0...[, have maxima where the rate of change of the slope angle is large at the scale of
the particular Gaussian derivative that was used to obtain it. The ! curves are then multiplicd point by point to yield a curve
B(s) = 1'I£.=1 ai(s) whose local maxima we will define as critical points. Peaks that appear in a few of the a;(s) will be
amplified in 3(s) with respect to noise, since it is unlikely that noise peaks will appear in more than onc of the a;(s). In
addition, the smaller scale curves will define the width of the peaks in the §(s) curve, providing the best localization of the
critical points. For more details on the advantages of this method, see Schunck [13]. As an illustration of the above method,
Fig. 1 shows the result of applying the multiscale critical point detector to an actual object, a baby’s rattle. The results of
using three scales and a single scale are shown. The advantages arc most apparcnt in the nature of the 3(s) curve. There is
much more noise in the single scale detector.

As mentioned previously, onc of the properties of a good feature is inscnsitivity or invariance to changes in the viewing
parameters. Since the §-s contours are derived from the results of detecting edges, they already have a degree of insensitivity
1o changes in lighting. An additional virtue of the #-s rcpresentation of edge contours is that it can be made invariant to
rotations and translations of the image plane. To sce this, first assume that there exists a reference point on the contour
that can be reliably detected, a critical point for example, from which the arclength measurements will be made. Since all
measurcments are relative to the point of reference, translation invariance is automatic. As a contour is rotated in the image
plane, the ordinate, @, of the §-s representation experiences a shift that is proportional to the rotation. More precisely, let
0(s) be the -s representation that has been parameterized by the arclength from the reference point (at s = 0). If the contour
is rotated by v, then the new contour will have the §-s representation 6'(s) = 6(s) + v. We can normalize the curve with
respect to the rotation by subtracting the value of theta at the reference point from 6'(s), i.e., ¢’(s) — 0’(0). If the contour is
rotated now, the result is (8(s) + ) — (6(0) + v) which is identical to the original. Thus, assuming a refcrence point can be
located on a -5 curve, the representation can be normalized so that it is invariant to image plane rotation and translation.

The above discussion indicatcs that it is possible to compute a shape-bascd local feature that is invariant to image planc
rotations and translations. This can be done in the following manncr. Given a contour and a critical point that has been
detected on it, as before paramcterize the §-s representation of the contour so that the critical point is at the point wherce
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Figure 1: Shown above is the result of applying our multiscale critical point detector to an image of a baby’s rattle. On the left is the

sequence of curves that 1.sults from using three scales, with ¢ = 4, 6 and 10 samples respectively. On the right is the result of applying
a single scale detector to the same edge contour. The sequnce of curves, from top to bottom, are: the z-y representation of the conlour
with detected critical points shown; 8(s) with detected critical points shown; §(s). Note the considerably larger amount of noisc present
in the single-scale (s) curve which results in many spurious critical points being detected.

s = 0. Normalize the contours as indicated in the previous paragraph, using the critical point as the reference point. For
simplicity of notation, we will hereafter assume that 6(s) refers to a representation that has becn normalized with respect
to rotation so that (0) = 0. Now, sample the at a fixed number of samples, say A, over the intcrval {—4, 8] to yicld an
M dimensional vector. Since 6(s) is invariant with respect to rotation and translation, the vector will be as well. Thus, the
local shape of edge contours about critical points can be compared directly using some metric over RM,

Invariance to image plane rotation and translation is certainly helpful, but it is also possible compute a feature which
characterizes the local shape of a contour and that is invariant to scale changes as wcll. As was previously argued, fcaturcs
that possess additional invariant properties help to reduce the size of the search space during the rccognition process. An
object is not precisely scaled when it is translated to a point nearcr or farther from the camecra. In reality, perspective
projection introduces distortions in the shape. However, if the distance to the object is large in comparison to its depth, then
the perspective projection can be approximated by a parallel projection followed by a scaling opcration. We will assume
that this is a rcasonable approximation in any system that will employ SICPN’s as fcatures.

Features that are invariant to scale can be constructed as a variation on the theme of the vector fcaturc described two
paragraphs previously. To see how to accomplish this, let 6(s) be the §-s representation of the original contour, paramcterized
such that a critical point is at s = 0, normalizing it with respect to rotation as described above. Similarly, let 04(s) be the
g-s representation of the contour after scaling the contour by a factor of a. Then,

04(as) = 8(s). (1)

The final SICPN feature is obtained by sampling the §-s representation at Af equally spaced points in an interval about the
critical point at s = 0. In order to normalize out the effects of scaling the contour, we must scale interval proportionatcly,
i.c., if the interval [—§, 6] is used to sample 4(s), then the intcrval that should be used for 04(s) is {—aé, aé]. In order to
demonstrate the invariance to scale, let s;, i = 1...Af be the sample points on the unscaled contour and therefore the feature
vector will have the components 0(s;), i = 1...M. The points on the scaled contour arc then as;, 1 = 1...M, implying that
the scaled feature vector will have components 8,4 (as;), i = 1...A7. Using Eq. 1 yiclds 84(as;) = 0(s:), showing that the
componcnts of the scaled and unscaled feature vectors will be identical.

The rotation, translation and scale-invariant feature vector that we have described above is not yet a true SICPN, as there
remain further computations to perform on it. In the remainder of the paper, we will refer to these featurc vectors as shape
vectors since they describe the shape of the neighborhood of a contour surrounding a critical point.

We have shown, in theory, how to compute the shape vectors upon which the computation of SICPN’s themselves rests.
However, in practice, there remains the problem of how to reliably obtain the size of the sampling intcrval. We do this by
estimating the slope of the 0(s) curve at s = 0. To estimate the slope of the curve, a line must be fitted to 8(s) in the
neighborhood of s = 0 where the curve is approximately linear. A simple least-squares fit using a fixcd number of sample
points to compute the fit is not suitable because, at some scales, the sample points may include portions of the curve that
are not approximately linear, and therefore the fit will cease to provide a good estimate of the slope at the critical point. We
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Figure 2: This figure illustrates the process of computing a shape vector. In (a) is shown an unscaled 8-s contour, and in (b) the same
contour is sciled. In cach case, the values of § where the dotted vertical lines intersect the §-s curve form the components of the shape
vector. The tampling intcrval is determined by the points where the fitted line intersects the lines § = £T.

Figure 3: Each pair of shape vectors is comprised of elements from corresponding critical points from two images of objccts. Of cach
pair, the shape vecte:s on the top is from the image of the larger version of the objects, while that on the bottom is from the image of
the smaller. The objects differed in scale by about a factor of 2. The scaling was accomplished by simply changing the distance of the
camera to the objects.

have overcome this problem by setting a maximum allowable average residual squarcd error per sample and growing the
region that is included in the fit symmetrically out from the critical point until the error per sample excceds the limit. The
algorithm then uscs the last fit that did not exceed the limit. This yields a fit that uses only the approximatcly lincar portion
of the 6-s curve regardless of the scale. The strictness of the criterion of “approximate linearity” can be controlled by the
size of the limit on the maximum allowable error per sample.

Once the slope of 8(s) at the critical point, i.e., at s = 0, has been estimated by above procedure, the halfwidth of the
sampling interval [—$6, 8], 6, is given by § = T/m, where m is the slope, and T is a parameter that controls how much of
the §-s curve is included in the sampling interval, independent of scale. Fig. 2 illustrates the preceding discussion of the
computation of shape vectors.

The constant T above gives precise control over the degree of spatial locality exhibited by the shape vector. As described
earlier, it also gives control over how informative the shape vectors, and therefore SICPN’s, on average, will be for a
particular sct of objects. If T is made very small, then the shape vector will essentially be a sampling of a constant slopc
line, and, while being very spatially compact, it will contain essentially no information. T can be made progressively larger
until the shape vector becomes a sampling the shape of a large part of the contour of an object, and is therefore very
informative. Unfortunately, such a featurc would be too global to be of use in a robust 3-d object recognition algorithm,
Other factors make it inadvisable to make T too large, primarily the increased sensitivity to crrors in the location of the
critical point, thus reducing the noise resistance and effective informativeness of the feature.

The M-dimensional shape vector we have obtained above is itself a good feature possessing many of the propertics that
we enumerated above. However, it can be further improved. The vector has been degraded by a number of distortions
and noise, most of which are high-frequency in nature. Thus, keeping the informative low-frequency part while discarding
the noisy high-frequency part will improve the feature. In addition, the sample points contain much rcdundant information
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Figure 4: A hypothetical 3-d feature space is shown in (a) whose elements are highly corrclated among themselves (dots represent
features in the space). The correlation can be seen from the degree to which the features cluster near the plane. Shown in (b) is a different
view of (a) looking with b, going into the paper. The vectors by and b, span the plane while b3 is orthogonal to it. When represented
in terms of the basis b,, b,, and bj, the by component of the vectors will be near zero and may be ignored, achieving a degree of data
reduction. The K-L expansion allows such a basis to be computed.

due to the continuity of the §-s curve from which they were derived. In order to improve the compactness and the noise
properties of the shape vector, it is projected onto a set of orthogonal vectors, much like a Fouricr decomposition. This
set of orthogonal vectors is found by applying the Karhunen-Logve (K-L) expansion to a large sct of representative fcature
vectors. A complete description of the theory behind the K-L expansion can be found in many texts on probability, statistics,
and random processes, such as [16]. We will give a geometric explanation of what it accomplishes. Given a sct of Af-
dimensional feature vectors, such as the local shape vectors described above, the K-L expansion yiclds a sct of orthonormal
M -d vectors which are ordered in the following manner: the first vector is chosen to lie in the dircction of the largest variance
in the set of feature vectors. The second will lie in the direction of the largest data variance in the (Af — 1)-dimensional
subspace that is orthogonal to the first, and so on. Directions that contain little of the variance in the data can contain littlc
information. Thus, only the components of the feature vector in the high-variance directions arc important, whilc the others
can be discarded without significantly degrading the informativencss of the feature. This leads to featurcs that arc morc
compact. The dimensionality of the subspace of R/ onto which the features are projected is chosen to give a desired degree
of information content versus compaction. If the subspace has dimensionality A, then no information is lost, but there is
no compaction (and no reason to perform the K-L expansion). Typically, as will shown experimentally in the following
section, the dimensionality of the subspace can be much smaller than A and still have most (95% or more) of the variance
of in the data. Fig. 4 illustrates geometrically how the directions are chosen in a hypothetical 3-d fcature space, and how
the data compression results.

We have now described how a SICPN is computed. We still have not shown explicitly that SICPN features possess the
properties that we have argued are necessary for a feature to be useful for 3-d recognition. That SICPN’s possess some of
these properties can be inferred from the algorithm for computing the SICPN’s. These properties include:

1. Invariance to certain viewing parameters, namely rotation, translation, and scaling; insensitivity to scene lighting
parameters;

2. Ease of segmentation, amounting to an edge detection followed by critical point detection;

3. Possession of a compact representation (as will be shown in the following section, applying the K-L expansion to the
shape vectors typically compresses the amount of data needed to represent them by an order of magnitudc).

Of the remaining properties that we have argued are desirable for a feature to possess, specifically:
(a) noise resistance;

(b) informativeness;
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Figure 5: Shown are SICPN shape vectors. These shape vectors were computed from images of the plastic bottle whose edge contours
are shown on the left hand side in Fig. 6. The shape vectors in each block are derived from the neighborhoods of corresponding critical
points. The top left shape vector the column is computed from the smallest contour, the one below it from a contour that is a factor of

2% larger, and so on to the largest in the right bottom of each block. The value of the paramcter T' was sct at 2.5 radians per sample.
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(c) minimization of the number of image-feature to model-feature correspondences that must be made during the recog-
nition proccss;

the first two, (a) and (b), would be difficult or impossible to prove using realistic assumptions. We will therefore demonstratc
them empirically. The last property, property (c), is only applicable to compound features that are constructed out of spatially
local primitives. This criterion is not directly applicable to SICPN’s. However, compound featurcs using SICPN’s as subparts
will possess this property if the SICPN’s themselves are informative.

5 Experimental Characterization of SICPN’s

In this section, we will accomplish three tasks: ,
e Empirically demonstrate the invariance properties of SICPN’s via plots of sets of shape vectors. i

o Give an example of the rcsult of applying the K-L expansion to a set of featurcs from imagcs of four objects at scveral
scales.

¢ Most importantly, quantify the informativeness of SICPN’s on a set of real objects.

The images that were used in these experiments were 480 x 480 x 8 bits. Canny’s edge detector was applied using o = 3.0
pixels. Samples on the §-s curve were chosen to be approximately the width of one pixel (in image coordinatcs) of arclength
apart. The critical points were detected with the multi-scale method described above. Three scales were used with ratios of
1.5 between them. The width of the smallest Gaussian was o = 4.0 samples (of the 8-s curve).

Fig. 5 empirically demonstrates the invariance properties of the shape vectors. Shown there are 51-dimensional shape vectors
computed from images of a plastic bottle (shown on the left of Fig. 6). The bottle appeared at random translations and
orientations, while the scaling of the bottle differed by factors of 2%. The scaling of the images was achicved by adjusting
a zoom lens on the camera. From the figure, the similarity of corresponding shape vectors, cven at widely varying scales,
is evident. Since real data is being used, clearly the invariance is not perfect; noise and other distortions dcgrade the idcal
performance. Later in this section, we will attempt to more precisely measure the degradation.
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Next, in Fig 7, we show tcn orthonormal vectors resulting from application of the K-L exgansion a large set of shape vectors
derived from edge contours taken at 4 or 5 scales (each again differing by a factor of 2% from cach other) of four objects:
the plastic bottle, a baby’s rattle, and two jigsaw puzzle pieces, shown in Fig. 6. These tcn vectors are those which contain
the largest fraction of the variance in the set of shape vectors. In this example, the shape vectors were again computed using
a value of T = 2.5 radians per sample. From the figure, it can be seen that only the first four of the orthonormal vectors
need to be kept in order to retain more that 95% of the variance in the shape vectors. In the case of this example, the shape
vectors consisted of 51 elements, but we need only to project them onto four directions, yielding a new vector of only four
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Figure 6: A plastic bottle, baby’s rattle, and two jigsaw puzzle pieces used in experiments.
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Figure 7: Shown are ten orthomormal vectors computed from a large set of shape vectors which included images four different objects at
several different scales. The value of the parameter T was set to be 2.5 in this example. The shape vectors had 51 elements apicce. From
left to right, the following figures are the percentage of the total variance in the set of shape vectors that was contained in the direction of
that particular vector: 68.9%, 18.8%, 4.6%, 4.2%, 1.5%, 74%, 31%, .16%. .15%, .13%. Note that the first four vectors contain 96.7%
of the variance. Therefore, the projection of a feature onto these four vectors will yield an encoding of the shape that has lost very little
of the shape information contained in the original 51 element shape vector.

elements that has lost very little of the shape information in the original 51 element shape vector. This is a compression of
more than an order of magnitude.

The set of vectors in Fig 7 also has the property that the high-variance directions tend to be lower frequency than the lesser
variance directions. Since most of the noise and distortion in the shape vectors is high-frequency in nature, the projection
operation performs a useful filtering operation in addition to data compression.

Finally, we turn to the problem of characterizing the informativeness and noise resistance of SICPN features.

We first propose a method of quantifying the informativeness of a set of feature vectors over a sct of 2-d objects. We have
restricted our attention to 2-d objects for the following reason. SICPN’s are based only on the local shape of an object, and
the local shape, in tum, may vary if an object is rotated about an axis that is not perpendicular to the image plane. This
is an unavoidable phenomenon that has two causes. The first is projective distortion. It is possible, using the thcory of
differential and algebraic invariants [15], to arrive at invariants of arbitrary space curves with respect to all of the viewing
parameters involved in projection, be it parallel projection or perspective projection. However, such invariants are not very
useful due to the second phenomenon responsible for shape variations: object self-occlusion. This phenomenon makes it
impossible to compute features that are invariant to such rotations for general 3-d objects.

Let F be the sct of all SICPN features of dimension N. Define the equivalence class C; to bc the set of all featurcs ferF
such that they have the ! critical point at their centers. Ideally, the features f € C; will be identical regardless of translation,
rotation and scale. In practice, of course, there will be noise. A measure of how informative our features are is how litue,
on average, they vary within the classes C; versus how distinctive they are between classes C; and C; where i/neqj. A
measure of how the feature vectors vary within their class is simply the vector of standard deviations of the components.
Call this vector d, with components d;, i = 1...N. A measure of how distinctive the features are is the vector of standard
deviations computed over all f € F. Call this vector D, with components D; i = 1...N. Finally, taking the element by
element ratios of d and D, we obtain the vector I with components [; = 3 i i=1..N. This vector measurcs the interclass
distinctiveness versus intraclass variation for each component of a feature. If the classes C; arc viewed as subclusters in a
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Figure 8: Plotted are the components of the vector I for PN vectors. A value of T = 2.5 was used. Images

of the objects shown in Fig. 6 were used. The scale of the objects varied over a range of 2%:2%,

800 -
600
H
*
H
-é 400 4
£ 2004
ﬂ
0 . : : v
0 1 2 3 4

T

Figure 9: The effect of increasing the value of the parameter T on the informativeness I for five element SICPN’s is plotted in the
graph. These SICPN's were computed only from images of the plastic bottle.

larger blob of features situated in ®¥, then it is of the components of I is the ratio of the volume of the entire blob of
features to the volume of an average single-class subcluster. This number, Z = Hﬁ__l I;, is the measure of informativeness
that we will use. The larger 7 is, the easier it will be to distinguish the classes from each other. This also corresponds to
our intuitive notion of informativeness.

Fig. 8 plots the components of I for the case of 10-d SICPN’s. The SICPN’s were again computed from the four objects
shown in Fig. 6. The shape vectors are computed again using the value T' = 2.5. The shape vectors were then projected
onto the orthonormal set depicted in Fig. 7. The images were taken over a range in scale of a factor of 215, Two images
of each object were taken at intervals of scale that had ratios of 2-25. The translation and orientation parameters of each
object at each scale were random. As expected, the ratios tend to decrease as the index of the component increases. This is
an effect of the K-L decomposition.

Fig. 9 plots Z for five component SICPN’s as a function of 7. As can be seen, the informativeness increases as the T is
increased. As mentioned earlier, this is not free since as T increases, the spatial locality of the feature is made proportionately
less.

6 Summary and Future work

In the course of this work, we had one primary goal: to find good features for shape-based, recognition of objects from
3-d intensity images. We found that features used in other research for this task were not general cnough to be uscd to
recognize completely general objects. Therefore, we searched for better set of features that could augment or replace features
used in previous 3-d recognition systems. In particular, we searched for spatially local features that are informative, easily
segmented, and robust. The results of the search are the scale-invariant critical point neighborhood (SICPN) fcaturcs we
have described here. We have argued that SICPN’s possess many of the propertics that good features for 3-d shape-based
recognition should have, In addition, we have attempted to quantify and measure the informativencss of SICPN’s, arguably
the most important property of a good feature.
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For all of their advantages, SICPN’s are not ideally suited to all types of objects, in particular, objects that have few corners
and many lines. We feel that using both types of features, linear segments and SICPN’s, will provide robustness in a 3-d
recognition system.

In the future, we are interested in alternatives to the multi-scale critical point detector. While it is a vast improvement over
a single-scale detector, we feel that other methods may work even better and provide a more sound theoretical foundation.
In particular, a method based on the work of Fischler and Bolles ez al. [5] is of interest.
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