Ada on a Hypercube

Russell M. Clapp and Trevor Mudge *

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2110

Abstract

The widespread use of paralle) machines. and hypercubes in partic-
ular. 15 being held back by the lack of high-order paralic] program-
ming languages. In this paper we discuss the issucs involved in
establishing an existing language that supports paralic) processing.,
that i< 10 say Ada. on a hypercube multiprocessor An overview of
the language is given, but the majority of the paper addresses the
requuements and implementation of the run-time system, which
is the key to establishing any parallcl language First, the re-
quirements of the run-time system for Ada are described from a
machine-independent point of view. Next. the approach 1aken to-
ward implementing this system on a hypercube is discussed. with
considerations given for language tevel program partitioning and
interprocessor communication performance Finally, the status of
our current implementation is discussed and some concluding re-
marks are made about parallel languages in general, based on our
experiences.

1 Introduction and Motivation

The widespread use of parallel machines is being held back by
the slow rate at which high-order parallel programming lan-
guages and appropriate software development environments
are being established for parallel machines The availabitity
of such languages will allow users of parallel systems to de-
velop machine-independent concurrent software. This step to
machine independence is critical if wasteful duplication of ef-
fort is to be avoided whenever application software is ported
t0 a2 new parallel machine. Machine independent software
will hasten the day when reusable software becomes a real-
ity for parallel machines, as it presently is for conventional
vniprocessors. It will also facilitate the development of truly
parallel algorithms that can unlock the performance poten-

“This work was supported in pant by Depanment of Defense grant
number DOD-MDAS04-87-C-4136

Permission 1o copy without fee all or part of this material is granted
provided that the copies are not made or distributed for ditect commercial
advantage. the ACM copyright notice and the title of the publication and
its date appcar. and nmotice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwisc. of to
republish. requires a fee and/or specific permission

'(e,frm‘l’ Qm ﬂ/\\ﬂi Caq(fo\—w-e en H\W@fcvbt’/ Conc,u(r(m\'\’ Cowf(’eﬁ “M«j APP‘

tial of parallel machines This paper examines the problem
of supporting an existing parallel language. Ada. on a large
scale distributed-memory parallel computer, specifically a hy-
percube multiprocessor.

The programming of these distributed memory parallel ma-
chines is normally done by writing a separate program to run
on each processor. These programs communicate using low-
level message passing operations provided by the operating
system and made available to the programmer through exten-
sion< to a sequential language (usually C or FORTRAN) Tvp-
ically, these separate programs are copies of a single program
that is written to allow different execution paths based on the
program’s location in the hypercube array of processors and
on the data the program receives during its execution This
form of programming is referred to as the Single Code Multi-
ple Data (SCMD) style [BuzR&). In the tase where different
programs are written for each processor, the programming
style is referred to as Multiple Code Multiple Data (MCMD)
Even in the MCMD case. though. the number of different
programs written for a large scale multiprocessor is relatively
small, since few applications require a lasge number of dif-
ferent interacting programs

There are several problems with the above style of pro-
gramming. and they are related to the separate program con-
cept. Twa major problems are the lack of type checking in
communications between processors and the machine depen-
dence of the code. These problems are can be solved by using
a suitable parallel language. By parallel language we mean
a programming language with units of concurrency that may
be distributed across the processors of a multiprocessor and
executed simultaneously. Such a language should provide
strong type checking across processor boundaries, ahstract
interprocessor communications as interprocess communica-
tions, allow data sharing between processes to be specified at
the language level, and provide for synchronous creation and
termination of processes within a program. These features
should all be implemented while still supporting SCMD style
algorithms by providing a mechanism for procesces 1o be
replicated a lasge number of times This suppon would allow
a large class of algorithms to benefit from the other features
mentioned earlier. and would provide a machine-independent
language for programming parallel processors with single,
coherent programs.

k:-“»cxs,

Jowwa

1R S

]2

There are a number of languages that are being de-
veloped for parallel programming [BCG88,Dal88 FMOS8S,
RecRR . Sha88). The approach described here is based on
Ada, an existing programming language that fits the above
sequirements. Ada is a procedural {anguage. which supports
paratielism The key to establishing a parallel language on a
multiprocessor is the run-time system Before discussing this,
a brief introduction to the Ada language is given. Then, the
run-time System components necessary to support an imple-
mentation are discussed Following that, the approach taken
to distributing these components across the processors of a
hypercube is described. The status of our current implemen-
tation on an NCUBE/ten is then presented as well as some
concluding remarks regarding parallel languages and Ada in
particular.

2 Ohzerview of Ada

Ada is a general purpose procedural concurrent language that
is also intended for use in real-time systems h also includes
features designed to suppont object oriented programming
such as encapsulation, information hiding. generic units, and
strong type cheching. The real-time aspects of the language
include suppon for timing and multitasking Other language
features include exception handling, dynamic memory allo-
cation and object pointers.

Ada has a Pascal-like syntax and is block structured in a
way similar to Algol. This block structuring allows for blocks
to be declared and nested as well as procedures and functions
(known collectively as subprograms) and tasks (which are
the unit of concurrency). This structuring provides a shared
memory model in that nested units can access variables de-
clared in an enclosing scope. In the case of tasks, a task
nested within a block, subprogram, or another task is said to
be a dependent of that unit. A unit may not be exited until
all tasks dependent upon it have terminated

Encapsulation in Ada is provided by packages. Packages
have a specification part and a body. The specification may
comain type definitions and variables as well as subprogram
and task specifications. The specification serves as the inter-
face to the package. The body of the package may comain
additional types and variables as well as subprogram and task
bodies Package specifications and bodies may be compiled
separately and may also be used as library units. These pack-
ages may be imported by subprograms and other packages
that serve as compilation units. This makes the imported
package available for access through the interface defined in
the specification.

Communication between tasks in Ada can be synchronous
through the rendezvous mechanism or asynchronous through
shared memory. Although memory sharing is provided for
through block structuring and package specifications, it is
the responsibility of the programmer to assure mutual exclu-
sion in access to shared objects. A mechanism to protect
shared data that clesely resembles monitors can be easily im-
plemented a1 the fanguage level using tasks. One task can

communicate directly with another by calling an entry of a
task. The task receiving the call executes an accepl state-
ment on one of its entries to receive the call. The calling
task names the entry it wants and the task possessing it The
receiving task accepts the next call on a FIFO queve of tasks
all waiting on that entry (the receiver does not name a par-
ticular calling task in the accept statement) Pasameters can
be exchanged in both directions during a rendezvous, and the
receiving task can execute an arbitrary number of statements
while the two tasks are synchronized Thus, from the caller’s
point of view, an entry call appears much like a procedure
call.

There are variations of the entry call and accept statement
that allow for logical conditions and time bounds to be in-
cluded An entry call may be conditional. so that the call is
executed only if the called task is waiting on that entry An
entry call may also be timed. so that the call is canceled if
it cannot be started within a specified time period A time
bound may also be placed on a group of one or more accept
statements, so that a task can proceed with its execution if
no call on any of its possible entries is received within the
given duration. The entries and time bound are grouped as
pan of a select statement. The entries are said to form the
aliemnatives of the select statement, because only one of them
can be accepted each time the select statement is executed
The time bound for a select may also be replaced with the
reserved word else, which indicates that a call is accepted on
one of the entries only if it is already pending A third case
for the altemative to a group of accept statements is for the
task to terminate. This action is taken if all sibling tasks are
cither terminated or waiting to terminate at their own termi-
nate statements. This mechanism is used to synchronize task
termination within the hierarchical structure Orderls termi-
nation is further enforced by the rule requiring child tasks to
be terminated in order for a parent task 10 terminate The
delay, else. and terminate altematives of the select state-
ment are mutually exclusive, i.e, only one of the three types
may appear along with accept statements Accept statements
and select altematives may also be guarded. boolean expres-
sions must first be evaluated to determine whether an accept
statement or select altemnative should be considered

Further discussion of Ada may be found in [BarR4]. and
the complete language definition appears in [LRMS§3]

21 Ada Example

To provide a concrete illustration of some of the above fea-
tures, in particular using tasks to obtain parallelism. consider
the sieve of Erastosthenes to sclect all of the prime num-
bers less than some inmeger Af. Although many approaches
to solving this problem are possible. a straightforward solu-
tion can be programmed using a “bucket brigade™ of tasks to
form a pipeline. The main program generates a stream of odd
numbers which are input 1o the pipeline of tasks. The stream
threads through the tasks and each task, 7;. picks off the i-th
prime number, I, prints it, and then “filters™ the remainder

of the stream so that all multiples of F, are removed.' The
resulting data stream is then passed to the next task in the
pipeline. At each task. a number in the stream is received,
processed, and then pacced on after which the next input num-
ber is read The entire pipeline of tasks are doing these steps
simultaneously resulting in a high degree of concurrency.

The sieve program can be effectively run on a hypercube
by embedding the pipeline structure into the hypercube con-
figuration A natural arrangement would place each task in
the pipeline on adjacent processors in the form of a “snake”.
However, since the parallelism is specified at the language
level without specifying the assignment of tasks to proces-
sors, other assignments of tasks to processors are possible.

A diagram of the logical flow of data is given in Fig 1.
Figure 2 shows the operation within each pipeline task vsing
pscudo-code. The code of an actual Ada program is given in
Fig 3 Key words are shown in lowercase and user defined
names and variables in uppercase.

In the program, the tasks 7,,73....7a are represented by
the elements of the array TASK_ARRAY They are identical
and are instantiations of the task type SIEVE. The main pro-
gram generates the stream of numbers by passing all odd num-
bers greater than or equal 1o 3 to the task TASK_ARRAY (1).
The rask code accepts the entry PLACE in two locations in
order to distinguish its first receipt of a call on this entry.
This distinction is made because, it can be shown, the first
call will always transmit the i-th prime number. It is copied
into P The value of F is printed, and it is also used to filter
the remainder of the incoming stream. Filtering is performed
within the select statement that is embedded in a loop. Until
all of the tasks, TASF._ARRAY (1) ... TASK_ARRAY (N), be-
come idle, each task. TASK_ARRAY (1) . waits for a call on
PLACE within the select. The value read in here is compared
to the closest multiple of P. If this multiple is equal to the
value read, no action is taken and the value is effectively fil-
tered from the stream Otherwise, the value is passed on to
the next task, TASFE._ARRAY (I+41), in the pipeline. When
the data stream has passed through all of the tasks, they are all
waiting on the entry FLACE in the select statement with the
terminate altemative At this juncture, all the tasks terminate
and the program ends

The operation of the task TASK_ARRAY (N), where N =
V/Af '2. is different from the others because it prints all the
numbers that it is passed. This is because the number of tasks
needed to perform the sieve is bounded by AN, and all of the
values passed to the last task can be shown to be prime.
In particular, no primes greater than the square root of the
maximum value, M. need to be considered as factors because
any number less than Af that has as a factor a prime number
greater than VAT will also have a prime number factor less
than +“A7 and will thus be filtered out Also, since we know
trivially that even numbers are not prime (with the exception
of 2), we can bound the number of tasks needed to sieve all
prime numbers less than Af by N = /i 2.

'We assume the O-th prime, 7 = 2.

Main Program

0Odd Numbers > 1

Task 1 —— 3

{x | (x mod 3) « 0}

Task 2 — 5

{x [(x mod 5) ¢ O}

Task 3 ———o 7
l

o {x [(x mod 7) » O}

Task i ——— P,

l(xl(xmodE)QO)
Task i+t

Figure 1: Task pipeline
3 Run-Time System Requirements

Because of the large number of features available in the
Ada language, there are many operations which must be in-
cluded in the run-time system. These mun-time system re-
quirements can be specified independently of the target ar-
chitecture. They are summarized in the points below.

Memory Management In addition to supporting the nor-
mal allocation and deallocation of storage of a Pascal-like
language, 2 mechanism must be established to support the
shared-memory model of Ada. This is necessary for the case
where tasks are nested and may reference vanables in an en-
closing task This requirement is more complicated than the
case of nested blocks, because each task also needs its own
independent stack space. The approach taken is to allocate a
fixed amount of stack space for each stack and interconnect
them in a cactus stack In this data structure. a task's local
stack space points back into the stack of its parent where visi-
ble variables, subprograms, and/or tasks may be located This
structure allow's several tasks 1o share the trunk of the cactus
stack while still maintaining their own individual stacks.

The run-time system must also support the dynamic alloca-
tion of memory objects of all types including tasks Dynami-
cally created tasks must also have their stacks linked into the
cactus stack.

Task i-1

Task |

accep! PLACE(l, DATA)
P = DATA
prini(DATA)

loop
accept PLACE(l, DATA)
HDATAmod P = 0
then TASKS(l+1) PLACE(l+1, DATA]
olse dscard DATA

ond loop termineate

Task i+1

Figure 2: Task pscudo-code.

Task Activation and Termination The language rules for
Ada specify that actvation and termination of tasks be syn-
chronized. A task may not activate until all of its children
are active. Conversely. a task may not terminate until all of
its children are terminated. In the case where a task depends
directly on a block or subprogram. the execution of the parent
code may not pass an end or return statement until the child
task is terminated. Tasks may also be abnormally terminated
by an abort statement, with the abnormal termination being
propagated to all dependent tasks.

These rules provide for orderly management of the cactus
stack, but require additional work by the run-time system.
Several differem task states are necessary so that the run-
time system can coordinate the activation and termination.
Tasks must be aware of their dependents and a mechanism
for communicating state changes among these tasks is needed.
Suppont is also needed for processing abort statements and the
terminate altemative of the select statement.

Timing Support The notion of time is provided by Ada and
is available for use in the form of a time-of-day clock, task
delays, and time limits on task communication. Although
not required by the language, the run-time system may also
support the time-slicing of multiple tasks on a single pro-
cessor. Since this is usually desirable, a single interrupting
count-down timer (interval timer), normally available, should

with TEXT_10; use TEXT_10:
with MATH; use MATH;
package SIEVE_DECS is
task type SIEVE s
entry PLACE(Y, DATA: in INTEGER):;
end SIEVE;

M : INTEGER := 10 _000; --Numter ceiling
N : INTEGER := INTEGEFR (SOPT(FLOAT(M)) / 2.0):
TASK_ARRAY : arrayll..N] of SIEVE;

end SIEVE_DECS:

package body SIEVE_DECS is
task body SIEVE is --Code for task array

F, NEW_NUM, CURRENT, LOC INTEGER;
begin

accept PLACE(I, DATA : in INTEGER) do
LOC := I; --LOC is lozatizn in pipeline
P := DATA; ~-F is prime for this task

end FLACE;

PUT_LINE(INTEGER IMAGE(F)): --Frint F

CURRENT := P;

locp --Loop until termination

select

accept PLACE(1, DATA : in INTEGER) do
NEW_NUM := DATA;

end PLACE;
-~Check NEW_NUM against multiple of

if NEH_NUM > CUFRENT then
CURRENT := CURRENT + F;

end if;

if NEW_NUM < CUERENT ther
if LOC = N then --The last task
PUT_LINE(INTEGER'IMAGE(NEN_NW4H:

else --Face data on
TASK_ARPAY(LOT+1) .PLACE (LGT4],
NEW_NUM;;
end if;
end if;

or
terminate;
end select;
end loop;
end SIEVE;
end SIEVE_DECS:

with TEXT_10; use TEXT_1C;
with SIEVE_DECS: use SIEVE DECS;
procedure MAIN is
DATA : INTEGEF := 3; --Fcr data stream
begin --Beginning ¢f main program
PUT_LINE("2");
-~Pass stream of odd numbters tc first task
while DATA < M locop
TASK_AFPPAY (1) .FLACE (1,DATA) ;
DATA := DATA + 2;
end locp:
end MAIN;

Figure 3: Ada code lisung.

be dedicated to this purpose.

The strategy for managing several time delays and limits
is based on the time-of-day The run-time system manages
8 queue of events. a imed events queue, that is ordered in
increasing time-of-day values Whenever a time-slice inter-
rupt or systermn cafl is made, a check is performed to see if the
current time-of-day implies that any delays or limits have ex-
pired. If so, the associated events are processed and removed
from the queue. Obviously, with this scheme it is possible for
a delay or time limit to last longer than specified However,
this is consistent with the language definition, which states
that a time delay must last gt least as long as the delay value
specified {LRM83)

This scheme may also be used in conjunction with an addi-
tional interval timer that is not used for time-slicing. At each
interrupt. the next delay interval in the list is loaded into this
timer. In the case where a second timer is not available, a
time-of-day clock is relied upon. If such a clock is not avail-
able in hardware. careful use of the time-slicing interval timer
is required. A scheme for using a single timer to implemem
all ming suppon (i e time-slicing, time-of-day, and delay«)
is described in {CMV'R7). This scheme has yet to be extended
to cover the multiple processor case, however. This problem
is discussed in Sec. 4.2 below.

Task Communication A major requirement of the run-time
system is support for the rendezvous mechanism. This must
cover the simple. conditional, and timed entry calls as well as
the various alternatives of the select statement for accepting
entry calls. Entry queves must be provided for each entry
to store pending calls that cannot be immediately accepted
Workspace for rendezvous parameters must also be provided.

The run-time system implements the necessary synchro-
nization through the use of several additional task states.
Calls that cannot be immediately accepted are placed in entry
queues, and also added to the timed events queue in the case
of atimed entry call In case of a call time-out, the entry call
is removed from the entry queue. Tasks accepting entry calls
take them from the appropriate queues, or wait for one to
arrive depending on the accepting code used. If a time bound
is placed in a select statement, an entry is made to the timed
events queue. When the delay expires, the task moves on to
the next statement beyond the select if no call was accepted
Guards for accept statements are evaluated by code generated
by the compiler and their values are passed to the run-time
system.

Run-time system calls are made by tasks attempting to call
or accept an entry. The run-time system must provide mech-
anisms for exchanging state information and rendezvous pa-
rameters between tasks in addition to the requirements stated
above.

Exception Handling and Propagation Exception handling
is provided in Ada as a means for tecovering from error con-
ditions When an exception occurs, it must be trapped by the
operating system of run-time system (in the case of division

by zero) or detected by the run-time system or generated code
(in the case of a tasking error or an array bounds violation)
When an exception occurs, a branch to the handler for that
exception occurs This address is contained in the current
call frame. If no handler exists at this level, the exception is
propagated up the dynamic calling chain until either a handler
is found or the program is aborted

It is also possible in some cases 1o propagate exceptions
between tasks. When a 1ask is elaborated. if an exception
occurs, it is propagated 10 its parent task Also, an exception
may be propagated during a rendezvous if the called task has
no handler or if the calling or called task is aborted Outside
of these situations, exceptions are not propagated outside of
tasks.

The run-time system then, in addition to detecting and trap-
ping exceptions, must ensure that proper handlers are found
by propagating exceptions either by rolling back the call stack
or by notifying a task as necessary.

Task Scheduling The run-time system must provide a
task scheduler, which may involve time-slicing as discussed
above The scheduler must switch contexts hetween tasks at
scheduling points by saving state. selecting another task to
run, and dispatching that task The state of a task is saved
by storing the program status word and program counter and
saving all necessary registers in the task's local task space
Scheduling points occur whenever operating system or run-
time system calls are made in addition to time-slice interrupts
Scheduling should be fair, and account for task priorities if
present

As an aid to the scheduler and run-time system in general,
each task has a data structure referred to as a task control
block (tch) This structure contains the task identifier, pro-
gram status word, program counter, state identifier, local stack
space, pointers to parent’s and dependent’s tcbs, pointers to
rendezvous parameter space and entrv queues, and pnssihly
other information. These tcbs may be linked in a circular list
or linked into queues depending on their state. A ready queue
of tchs is kept in order of priority.

Additional Requirements Other run-time system require-
ments include support for generic units, compiler attributes.
1/0, predefined packages. and interrupts. Generic unitc are
mainly supported by the code generator, but may require
some run-time type checking Some compiler attributes are
queries to the run-time system requesting basic information,
¢ g., E'COUNT retums the number of tasks currently waiting
on entry E These are supported as calls to the run-time sys-
tem. 1/O. predefined packages, and interrupts are all highly
system dependent but each has a language level specified in-
terface. The role of the run-time environment in this case is
to implement that interface Each of the above listed features
is discussed in more detail in [CIM88).

4 Distributed Run-Time System

In order 1o suppon the distributed execution of a single Ada
program on 8 hypercube multiprocessor, the run-time system
must be extended to account for multiple processors that lack
a common shared memory. In an effont to keep the require-
ments of the run-time system at a reasonable level, cerain
restrictions are placed on the units of an Ada program that
may be distributed across multiple processors. We exam-
ine these restrictions in the next section, and then present the
associated run-time system requirements in the following sec-
tion. Consideration is then given to relaxing these restrictions
at the expense of additional run-time system overhead ‘This
may be desirable in the case of a target machine with very
fast interprocessor communication.

4.1 Language Unit< of Distribution

The Ada language definition does not specify how a program
is 10 be pantitioned for execution on multiple processors This
decision is left to the implementor. We have chosen 10 restrict
the allowable units of distribution so that a reasonable amount
of granularity may be obtained without unnecessarily compli-
cating the run-time system This was also one of the goals
of the study done in [VMB8R]. where library packages and
library subprograms were proposed as units of distribution.
They were chosen so as to reduce the number of potential re-
mote references and to eliminate the need for cross-processor
dynamic scope management. For example, the above units of
distribution ensure that nested blocks and subprograms cannot
be remotely located from their enclosing scope.

As discussed in {CIM8R]. more fiexibility is desired for
distributing Ada programs on a large scale distributed mem-
ory multiprocessor such as a hypercube To allow for this,
we propose the same units as in (VMBR&R], but also allow
tasks that are declared or have their types declared in a li-
brary package specification to be distributed. We also allow
these tasks to be distributed when they are array components.
This scheme allows tasks that are dependents of library pack-
ages 1o be distributed. but requires that tasks nested within
other tasks reside on the same processor as their pasent. This
is true because nested tasks must be declared in the parent
task’s body, which must be defined in a package body, and
such tasks are not allowed to be distributed according to the
rules given,above.

These units of distribution allow a large number of tasks,
possibly identical. to be distributed to separate processors
while still retaining a fiexible naming scheme {CIM88). This
allows SCMD style algorithms to be easily supported within
the parallel language Also. these distributable units save the
run-time system some effort, by not allowing nested tasks to
be distributed. This restriction simplifies the implememation
of task termination via the terminate altemative of the select
statement, and prevents the need for cactus stack pointers
to cross processor boundaries, thus reducing the number and
type of potential remote references

In order to further simplify the run-time system, our initial

approach disallows the dynamic migration of tasks once they
have been assigned a processor. Instead, statically declared
tasks, as well as library packages and library subprograms are
assigned @ processor at compile-time. Dynamically created
tasks are loaded onto the processor executing the allocating
statement and are thereafter prohibited from moving While
this scheme does not allow for dynamic load balancing of
tasks, it does simplify the run-time system’s job of locating
tasks and does not violate the restrictions stated in the above
paragraph The prospect of migrating tasks is discussed fur-
ther in Sec. 4.3 below.

4.2 Run-Time System Components

The chosen wnits of distribution together with the target ar-
chitecture dictate the specific requirements of the run-time
system. A summary of these requirements is outlined in the
subsections below. Additional details regarding these run-
time system companents including implementation strategies
can be found in [CIM8R}.

Run-Time System Kernel The fisst step in implementing
the nun-time system for a hypercube target is to rephcate the
task scheduling kemel on each processor. Along with this,
the various data structures associated with a panicular task
should be located on the same processor as that tash These
data structures include tcbs, entry queues, and rendezvous
work space

In order to support language features across processor
boundaries, the run-time system needs an interprocessor com-
munication facility. In most cases, this is provided by the
operating system. In our implementation on the NCUBE.
we made use of the existing store and forward communica-
tion facility, Vertex. Because of the need for communication
between processors that do not share a physical memory. a
message passing based run-time system was designed This
system implements all communication between tasks in the
run-time system as messages. A queue of pending messages
is read and processed at each scheduling point The pro-
cessing of messages results in changing task states, system
queues, or sending more messages. The inspiration for the
message based approach came from the work described in
{WeaRd4). An implementation of a partial run-time system
has been built and is described in [CMV&7} This implemen-
tation provides the basic foundation for building a complete
Ada run-time system.

Memory Management As mentioned in Sec. 4.1 above,
the units of distribution and restriction on task movement
climinates the possibility of cactus stack pointers crossing
processor boundaries. This allows each processer 10 man.
age a cactus stack in the same manner as the uniprocessor
case. Relative addressing is then used in the place of remote
memory references involving message passing

In the case of dynamic non-stack allocation and dealloca-
tion of objects, the run-time system manages a heap of storage

and is responsible for error checking on requests and raising
an exception when storage is exhausted. In most cases, the
run-time system allocates blocks of memory from the operat-
ing system, which is the situation with Venex. The run-time
system should allocate large blocks to form a heap, and then
manage the heap sccordingly. This reduces the number of
calls to the operating system An additional benefit of this
scheme is that the run-time sysiem provides an operating sys-
tem independent interface for the code generator.

The class of objects that may be allocated dynamically
includes tasks In this case, storage must be allocated for
the code as well as the data structures associated with the
task. The run-time system must also initialize this storage
I the task being created has its type defined in the package
residing on the processor executing the allocation, a local
memory copy may be needed to initialize the code section
Otherwise, the code must be loaded from a remote processor,
using the message passing primitives provided

Task Activation and Termination The synchronization of
task elaboration, activation, and termination is easily imple-
mented in the parallel case. This is due to the language units
of distribution and the restriction of task migration These
rules create a situation where the only task dependency to
cross a processor boundary is that of a task depending upon
a library package. A library package is not an active body
of code. and the language definition states that the termina-
tion of a task that depends on a library package is not defined
{LRMRB3] This gives the implementor the freedom to let tasks
that are dependent on packages hang indefinitely on a termi-
nate altemative, but places the burden of detecting program
completion on the programmer, who may terminate tasks ex-
plicitly with the abort statement. It is possible. however.
for the run-time system to suppon collective termination of
distributed tasks Stategies to implement this suppont have
been proposed and are discussed in Sec. 4.3 below.

The minimum requirement. then, for suppon of synchro-
rized activation and termination is the same as in the unipro-
cessor case Since all dependencies are local to a given pro-
cessor, task states can be readily examined and altered by the
run-time system kemel This is also true of tasks terminating
via the terminate altemative of a select statement. Quiescence
of tasks all waiting to terminate on a single processor can be
detected in a straightforward manner [BaRRS5].

Timing Support The approach for implementing basic tim-
ing support is to replicate the linked list structure of timed
events on each processor. This assumes that each processor
has a mechanism for keeping track of at least the relative
passage of time. This capability is usually supplied in the
form of an interval timer on each processor, as is the case
with the NCUBE. The linked list on each processor contains
records pentaining to events related to delays and rendezvous
time-outs for tasks residing on that processor.

As stated in Sec. 3, it is possible to use a single interval
timer to manage both task time-slicing and to keep track of

the relative time since the processor was initialized What is
needed, though, is a common sense of the time-of-day by all
processors to support the CLOCK function of the CALEN.
DAR package This function retums the absolute time-of-day
when called. In principle, the CLOCK function may be sup-
ported by synchronizing all interval timers before beginning
any program, then keeping track of time pascage as before
However, this scheme requires a significant amount of stan
up overhead, and is subject to drift due to ticks lost during
timer manipulation.

Another possible solution is to implement a centralized
time-of-day server. However, the time delay in accessing
such a server may be too great to make the retumed value
reliable. The value may be adjusted to compensate for this
overhead, but the exact amount may be indeterminable. dve to
variable delays in message passing and conflicts arising from
multiple simultaneous requests. This approach is discussed
further in Sec. 4.3 below.

The best solution to this problem is support in hardware for
two timers per processor. In addition 10 the interval timer. a
time-of-day clock is also provided. This allows time-slicing
and the event queue to be managed as described above. but
the time-of-day is provided by a scparate clock A similar
solution that is proposed in {[VoMR7b] utilizes a time-of-das
clock along with a readable/writable compare register The
compare register contains an absolute time value that indi-
cates the next timer interrupt. In the case of either sclution,
though. the time-of-day clocks for all processors must be syn-
chronized. This can be achieved by driving all ticks from the
same line, as is currently done with the interval timers on the
NCUBE.

Task Communication In common with the suppon for
other language features across processors, a message passing
scheme is needed to implement the rendezvous mechanism
These messages must indicate the task state changes that are
needed in executing a rendezvous as well as transmit param-
eters A straightforward approach is used, with a2 minimum
number of messages.

The message passing begins with the calling task request-
ing the rendezvous. In the case of the simple call. the request
is sem with parameters and the calling task waits for a re-
ply with results. If the call is conditional, a call message
with parameters is also sent, but the run-time system on the
receiving node sends a negative reply if the called tash can
not immediately accept the rendezvous If the called task i<
waiting to accept the call. a reply message is not sent until
the critical section is executed and results ase retumed This
is possible because the calling task is suspended awaiting a
reply in both cases.

The message passing protocol for the timed entry call is
more complex. A total of four messages are required 1o ex-
ecute the rendezvous. As before, a call message is sent ini-
tially, but an entry to the timed events queue is also made
This entry in the timer queue is based on the time-out interval
supplied in the call. When the accepting task is ready to exe-

cute the critical section. a reply message is sent indicating this
fact. H the time-out has yet to occur on the calling node, a
“go ahead™ message i< sent, and the rendezvous is executed.
Upon completion, a reply message is sent with results. If
the time-out does occur before the go-ahead is sent, an ahon
message is sent to cancel the request This message identifies
the specific call to be canceled, and allows the called task
1o recover whether or not it had sent a ready message. The
protocol described here for the timed entry call was modeled
after that in [Wea84].

As for the accepting task, message replys and state changes
are processed according to the type of accept In the simple
case, the incoming request is placed in the appropriate entry
queue unless it can be immediately serviced. When it can be
serviced, the first message in the queue is removed, and the
reply is sent after execution of the critical section If the task
atiempts a simple accept when no calls are pending, it waits
indefinitely until one arrives.

In the case of a select statement surrounding several ac-
cepts, the task executes any one of the entries with a true
guard from those that are queued. 1f no such calls are pend-
ing. the task waits for a call to arrive. If a delay aliemative
with a true guard is present, an entry to the timed events
queue is made to bound the amount of time that the task will
wait for a call In the case of an else altemative, the code
following the else is executed if no calls are pending on the
selected entries with true guards. If a terminate altemative
is present instead of a delay or else altemnative, the task will
wait on the selected entries if none are pending until a call
arrives or the task is terminated by the run-time system.

Further details of this implementation can be found in
{CIM88] and [CMV&7].

Remote Subprogram Call and Object Reference Suppon
for remote subprogram calls and remote object references
must be included in the run-time system since these entities
are bound to processors according to the package they reside
in, and packages may expor interfaces via specifications to
code units on other processors. 1t is also possible in some
cases for objects that are declared in a package body 1o be
visible to tasks taken from the same package but distributed
to a remote processor. References to these objects and sub-
programs must be implemented via a run-time system call.
Among the parameters to such a call is the identifier of the
processor holding the object. This is known to the caller as
long as the binding specification is made when the package
containing the object is compiled.

Remote references can also occur through the use of access
variables (commonly known as pointers). To address this
problem, access values are implemented as processor—address
pairs Each pointer reference then results in a check of the
processor part to see if the reference is remote. If it is, a
call 10 the run-time system is made. An altemnative approach
to this problem could be to disallow the passing of pointer
values across processors, but this would violate the language
definition.

In all cases of remote reference, the referencing task is
blocked while the run-time system makes the request by send-
ing a messape to the kemel on the processor holding the ob-
ject or subprogram. Because the remote processor may be
more than one hop away on the hypercube and the run-time
kernel a1 the remote site must process the request before re-
sponding, the requesting processor performs a context switch
to allow another task to run while awaiting a reply. The reply
message may contain an acknowledgement of a write to an
object, the value of an object being read. a function retum
value, or parameters retumed from a procedure The value
retumed is passed back to the requesting task In the case
of a remote subhprogram call, the call parameters are placed
in the message and the run-time system ar the receiving end
places these values on the stack space of a server task: this
task is scheduled like any other This approach is similar to
the scheme described in {BiN84]. except there is no need 10
bind the caller and callee dynamically, because the location
of the subprogram is known when it is compiled.

Exception Handling and Propagation The additional sup-
port for exceptions needed in the multiprocessor case involves
the propagation of exceptions across processors. This can oc-
cur when exceptions are raised in remote subprograms where
there is no handler or in the case of an exception in a ren-
dezvous between tasks on different processors In these sit-
vations, the retum messages normally sent must include an
indication of the exceptional condition that is being propa-
gated In the case of a calling task in a rendezvous being
ahorted. a message must be sent to cancel the rendezvous if
it has not already started If it has begun, the called task ex-
ecutes the rendezvous as it normally would and no exception
occurs.

4.3 Extensions for Fast Communication

In the prescence of very fast intemode communication time,
it may be desirable to remove some of the restrictions on
program distribution and change the implementation of the
run-time system. Possible changes would affect task migra-
tion, task distribution, a network sense of time. and remote
object access. The possibilities are discussed in the para-
graphs below.

Migration of Distributable Tasks One approach in allow-
ing the migration of tasks is to allow only tasks that are
currently distributable to be migrated. This may involve the
implicit migration of nested tasks, in order to preserve the
guarantee that nested tasks all reside on the same processor
as their parent. In all cases of task movement. all data struc-
tures associated with the tasks as well as all code must be
moved via internode communication 1In the case where a
large amount of memory is available on each processor. it
may be possible for each node to retain a copy of all mi-
gratable code so that code movement is not necessary. The
advantage of this approach to migration is that it does not

violate the assumptions that simplify the cactus stack imple-
mentation and synchronized task termination.

Distribution and Migration of all Tasks This unrestricted
migration is implemented as in the case above, but the run-
time system must also support cactus stack pointers across
processors and the synchronized activation and termination of
tasks across processors including the termination of tasks via
the terminate altemative of the select statement. Cactus stack
relative references would have to be modified to incorporate
the use of pointers that indicate processor as well as address.
Synchronized activation and termination can be implemented
in a straight forward manner using message passing when
states need to be altered A solution for the simple case ap-
pears in [WeaR4), and a solution for the case of the terminate
alternative of the select statement can be obtained by adding
messages to the solution given in {FSS87). However, un-
restricted migration of tasks also causes a problem when a
task needs to be located A possible approach to solving this
problem is to adopt the method presented in [Ros87)

Time-of-Day Scrver In the case where only a single inter-
val umer is available on each processor, a centralized time-
of-day server is a possible approach to solving the common
system wide sense of time problem. The usefulness of such
a timer is dependent on the its access time with respect to its
resolution. In addition to the time needed to read the timer,
the access time is made up of the communication delay and
the time to resolve access conflicts if more than one processor
requests the time-of-day simultaneously. If this access time
can be limited to a small value in comparison with its reso-
lution, then a centralized time server can be used to support
a common sense of the time-of-day throughout the system.

In the case of the hypercube, the time server can be im-
plemented by a host processor or a dedicated node proces-
sor. The communication delay in accessing the timer is then
bounded by the maximum number of hops between the caller
and the time server. In the case of a dedicated node proces-
sor as the server, this number of hops is the dimension of the
hypercube.

Remote Object Reference In the presence of fast commu-
nication times, it may be desirable to implement a remote
object reference as a processor synchronous operation, as
suggested in [LeBRB2) In this approach, the referencing pro-
cessor remains idle while it awaits a response from the called
processor’s run-time system. This approach is preferred if the
semote reference can be performed in an amount of time less
than it takes to perform a context switch to another task. In
the case of the hypercube, it may be necessary to employ this
strategy in only some of the remote references. The decision
of whether or not to schedule another task is based on the
number of hops away the referenced variable is, since this
determines the lower bound on communication time.

§ Status and Conclusions

The current implementation of the Ada run-time system on
the NCUBE hypercube contains support for task scheduling,
rendezvous, delays, and synchronized activation and termi-
nation. Initially, a general approach was taken and the mes-
sage passing schemes discussed above were used in suppon
of features executed within one processor as well as across
processor boundaries. This approach will simplify the tran-
sition to incorporate the capabilities described in Sec 4 3
above, but may cause unnccessary overhead given the cur-
rent restrictions. In some cases, the run-time system code
will be modified to take advantage of these restrictions. The
two approaches may then be compared through performance
measurement, using the techniques and algorithms given in
{CDVB6] More details regarding the actual implementation
and an example of its use may be found in {CMV87).

Several conclusions can be made about parallel languages
on distributed memory multiprocessors These range from
the programmability of such machines 10 the structure and
implementation of the run-time environment Based on the
above discussion, we can make the following points:

» Parallel languages improve the multiprocessor program-
ming environment. Such languages allow multiproces-
sors to be coded with a single program thar provides
abstraction through high level structures. The benefits
of this approach include strong type checking, mutti-
tasking, and the opportunity to create coherent parallel
programs. An additional benefit of parallel languages is
the reusability of machine independent concurrent soft-
ware that is coded in these-languages

e Specification of the allowable program units of distri-
bution greatly impacts the requirements of the run-time
system. Placing some straightforward restrictions on the
units of distribution can simplify the duties of the run-
time sysiem without unreasonably hampering the pro-
grammer or violating the language definition.

Even when supponting a large number of language fea-
tures, efficiency can be achieved if suppon for costly
operations does not hamper the implementation of other
operations. This is a goal that we wanted 10 achieve,
and it influenced the implementation and choice of units
of distribution. Implementing intraprocessor rendezvous
through direct queue manipulation instead of message
passing and restricting task migration to allow only lo-
cal cactus stack pointers are instances of this approach.

¢ Developing run-time support for Ada on a parallel tar-
get provides valuable experience for the study of similar
parallel languages on multiprocessors. The units of the
run-time system were coded in a high level language in
our implementation and were organized into well defined
modules. They can be easily modified to provide specific
support for other languages that have similar models of
concurrency, e g., Concurrent C.

References

{BaR85]

[Bar84]

{BiN84)

{BCG88)

{Buz88)

[CDV86]

{CMVR7]

[CIM88]

[Dal88)

[FMO83)

[FiW86]

[FSS87)

Baker, T.P. and G.A Riccardi, *Ada Tasking:
From Semantics to Efficient Implementation,”
IEEE Software, pp. 34-46, March 1985.

Bames, 1.G.P., Programming in Ada, Addison-
Wesley, Reading, Mass., 1984.

Birrell, AD. and BJ. Nelson, “Implementing
Remote Procedure Calls,” ACM Transactions on
Computer Systems, vol. 2, no. 1, pp 39-59,
February 1984

Bjomson, R., N. Carriecto and D. Gelemier,
“Linda on Distributed-Memory Machines,” The
Third Conference on Hypercube Concurrent Com-
puters and Applications, January 1988

Buzzard, G.D. “High Performance Communi-
cations on Hypercube Multiprocessors,” Ph.D.
Thesis, The University of Michigan, (work in
PIOgress).

Clapp. RM., L Duchesneau, RA. Volz, TN
Mudge and T. Schultze, “Toward Real-Time Per-
formance Benchmarks for Ada,” Communica-
tions of the ACM, vol.-29, no. 8, pp. 760-778,
August 1986.

Clapp, R M., T.N. Mudge and R.A Volz, *Dis-
tributed Run-Time Supponn for Ada on the
NCUBE Hypercube Multiprocessor,” Technical
Repon RSD-TR-10-87, Robotics Research Labo-
ratory, The University of Michigan, August 1987

Clapp, R.M. and T.N. Mudge, “Distributed Ada
on a Loosely Coupled Muliiprocessor,” Tech-
nical Report RSD-TR-3-88, Robotics Research
Laboratory, The University of Michigan, January
1988.

Dally, W.J., “Object-Oriented Concurrent Pro-
gramming in CST,” The Third Conference on Hy-
percube Concurrent Computers and Applications,
January 1988.

Felten, EW., R. Morison and S.W. Ono, “Co-
herent Parallel C.”” The Third Conference on Hy-
percube Concurrent Computers and Applications,
January 1988

Fisher, D.A. and R.M. Weatherly, “1ssues in the
Design of a Distributed Operating Sysiem for
Ada,” IEEE Computer, pp. 38-47, May 1986.

Flynn, S., E. Schonberg and E. Schonberg, “The
Efficiemt Termination of Ada Tasks in a Mulu-
processor Environment,” ACM Ada Leners, vol.
7. no. 7, pp. 55-75, November/December 1987.

{LeB82)

[LRM83)

{Ree88)

[Ros87)

[Sha88]

(VMBS8)

[VoM87a]

[VoM87b)

[Wea84)

LeBlanc, TJ., “The Design and Performance of
High-Level Language Primitives for Distributed
Programming,” Ph.D. Thesis, TR-492, Computer
Science Department, University of Wisconsin,
December 1982,

Ada Programming Language (ANSI-MIL-STD-
18154). Washingion, D.C. 20301: Ada Joint
Program Office, Department of Defense, OUSD
(R&D), January 1983.

Reeves, A.P., “Programming Environments for
Highly Parallel Multiprocessors,” The Third Con-
Serence on Hypercube Concurrent Computers and
Applications, January 1988.

Rosenblum, D.S., “An Efficient Communication
Kemel for Distributed Ada Run-Time Tasking
Supervisors,” ACM Adu Leuers, vol. 7, no 2,
pp. 102-117, March/April 1987.

Shapiro, E “In Search of a Base Language for
Parallel Computers,” The Third Conference on
Hypercube Concurrent Computers and Applica-
tions, January 1988.

Volz, R A, T.N Mudge, G.D. Buzzard and P Kr-
ishnan, “Translation and Execution of Distributed
Ada Programs: Is It Sull Ada,” IEEE Transac-
tions on Software Enginecring. (to appear).

Volz, RA. and T.N. Mudge, “Timing Issues
in the Distributed Execution of Ada Programs,”
IEEE Transactions on Computers, vol. C-36, no
4, pp. 449-459, Apnil 1987.

Volz, RA. and T.N. Mudge., “Instruction
Level Mechanisms for Accurate Real-Time Task
Scheduling.” IEEE Transacuons on Computers,
vol. C-36, no. 8, pp. 988-992, August 1987.

Weatherly, R.M., “A Message-Based Kemel to
Support Ada Tasking,” JEEE Computer Sociery
1984 Conference on Ada Applicanions and Envi-
ronments, pp. 136-144, October 1984.

