Hypercube Computer Research at
the University of Michigan

] P. HAYES*. R. JAIN*. W_R. MARTIN?. T. N. MUDGE*.
L R SCOTTi. K. G. SHIN®* AND Q. F. STOUT*

Abstract Since 1984, the Advanced Computer Architecture Laboratory {ACAL) at the
University of Michigan has been developing a research program concerned with the archi-
tecture and application of high-performance parallel computers. ACAL operates 2 64-
processor NCUBE rsix hypercube acquired under a beta-site agreement with the manufac-
turer. This paper describes our early experiences with a hypercube research facility, and
also surveys our current research activities in the following areas: performance evalua-
tion. paralle! algorithms. fault-tolerant computing. computer vision, and scientific compu-
tation.

1. Introduction

The concept of a hypercube computer can be traced to work in the early 1960's by
Squire and Palais at the University of Michigan Squire and Palais 1963 . They carried
out a detailed paper design of a 4096-node (12-dimensional} hypercube in which, as noted
by Thurber, “hardware considerations and hardware economy were secondary considera-
tions to the ease of programming’ Thurber 1976 . The hardware requirements of the
Squire-Palais machine were estimated to be 20 times those of the IBM Stretch, one of the
largest and most complex computers then in existence. Although several large hypercube
computers were subsequently proposed. notably CHOPP by Sullivan and his colleagues
at Columbia University Sullivan et al. 1977, such machines did pot become practical
until the 1980°s when VLSI technology made it feasible to produce powerful single-chip
16/32-bit microprocessors, and RAM chips in the IM-bit range. In 1985 three manufac-
turers, Intel, Ametek and NCUBE, introduced the first commercial hypercubes. Also in
that year, the Advanced Computer Architecture Laboratory (ACAL) of the University of
Michigan obtained a 64-processor NCUBE/six hypercube made by NCUBL Corp., and
has since then served as the sole university-based beta site for this
machine.

* Department of Electrical Engineering and Computer Science, University of Michigan, Ane Arbor,
Michigan 48109 tDepartment of Nuciear Epgineering, University of Michigar, Ann Arbor Michigan 48109
tDepartments of Computer Scierce and Mathematics. Pepnsyivania State Umiversity Universmity Park.
Pernsvivania 16802

382

RN SR—

HYPERCUBE RESEARCH AT MICHIGAN 383

The organization of ACAL’s hypercube research facility is shown in Fig. I. The
hypercube nodes are based on a VAX-like 32-bit microprocessor with full [EEE-standard
floating-point capability. Each node has 128K bytes of local RAM storage and 11 high-
speed (1M byte/sec) input-output channels. Ten of these channels can be connected to
neighboring nodes in the hypercube, thus allowing the NCUBE machine to be expanded
to a 10Z4¢-node hypercube. An additional channel links each node to a host processor
based on the Intel 80286, which manages the [/O system and the UNIX-like AXIS
operating system. The programming languages supported are Fortran 77 and C, both
with message-passing extensions, and NCUBE assembly language.

6-dimensiones!l Host
(64-node) processor
hypercube

Merit computer
network (remote

{ 4«—] giei-up sccess)

160-Hbyte Ceartriage Dot-matrix S User
daisk grive tepe grive printer termineals

FIG. 1. The hypercube research facility at Michigan's Advanced Computer Architec-
ture Laboratory as of Sept. 1986,

ACAL is concerned with research into the theory, design. and application of
advanced computers. especially massively parallel architectures. [t draws its membership
primarily from the Computer Science Engineering division of the Electrical Engineering
and Computer Science Department at the University of Michigan, but also has partici-
pants from the Mathematics and Nuclear Engineering Departments. Current research
efforts are concentrated in the following areas: performance evaluation, parallel algo-
rithms, fault-tolerant computing, computer vision, scientific computation. Recent and
planned work in each of these areas is discussed in the remainder of this paper.

2. Performance Evaluation

Performance analyses attempt to quantify the behavior of a computer system—how
many instructions can be executed per second, how quickly can data be retrieved from
secondary storage, and so on. Qur work at Michigan is pursuing three approaches to the
performance analysis of distributed-memory machines. The first is collecting applications
programs to be used as benchmarks. The second involves the creation of svnthetic
benchmarks, or synthetic workload generators (SWGs), by abstracting representative
features from the benchmarks. Finally, the third involves taking the abstraction process
further to develop analytical {usually stochastic) models of performance.

384 HAYES ET AL.

An important dichotomy in parallel machine architectures is that between machines
with shared memory and those with distributed memory. The NCUBE /six and other
hypercubes are representative of the class of parallel machines that have distributed local
memories which can be accessed in normal memory access times. In contrast, accessing
remote memory, i.e., memory associated with another CPU, takes an order of magnitude
longer. Our work in performance evaluation is aimed at determining what limitations. if
any, the local memory restriction places on the effectiveness of parallel machines, particu-
larly, hypercubes. The initial phase of our work is concerned with developing a set of
programs that can be used as benchmarks. These come from a wide variety of applica-
tion areas. and draw heavily on the other research being performed at ACAL. Examples
of functioning code that we have developed for the NCUBE /six include: svnthetic bench-
marks, specifically the Whetstone and Dhrystone programs Haves et al. 1986a.b ; matrix
decomposition using standard Linpack routines: printed circuit hoard routing Olukotun
and Mudge 1986; assorted image processing algorithms Mudge and Abdel-Rahman
19%7a,b ; problems in nuclear engineering using Monte Carlo simulation techniques Mar-
tin et al. 1986:; sorting Wagar 1986 : and machine learning.

Fortran Fortran
Processor Dhrystones/s Whetstopes/ss
NCUBE node processor at 8MHz 999 381,000
NCUBE node processor at 10MHz {est.) 1249 476,000
Intel 80288 (NCUBE host) at 8MH1 with 510 101,000
80287 floating-point coprocessor
DEC VAX-11/780 with floating-point 741 426 000

accelerator

sDouble precision.

FIG. 2. Some performance measurements on the NCURE node processor.

Figure 2 summarizes the results of some performance experiments, designed by
Michigan student D. Winsor that compared the NCUBE node processor to two other
CPU’s with floating-point hardware: the Intel 80286 80287 {the NCUBE host processor
served for this) and the DEC VAX-11/780 with a floating-point accelerator. The meas-
urements were made with the NCUBE node and host processors running at 8 MHz.
Extrapolated figures for the planned 10-MHz version of the NCUBE node processor are
also given; they assume no wait states, Two widely used synthetic benchmark programs
were employed in this study: the Dhrystone and the Whetstone codes. The Dhrystone
benchmark is intended to represent typical system programming applications and con-
tains no floating-point or vectorizable code. The original Dhrysione Ada code was
translated into a Fortran 77 version with 32-bit integer arithmetic that attempted to
preserve as much of the original program structure as possible. The Whetstone

HYPERCUBE RESEARCH AT MICHIGAN 385

benchmark, which aims to represent scientific programs with many floating-point opera-
tions, was used in a double-precision Fortran 77 version that closely resembled the origi-
nal Algol code. The Dhrystone results in Fig. 2 are reported in “Dhrystones per second,”’
each of which corresponds roughly to one hundred Fortran statements executed per
second. The Whetstone figures represent the number of hypothetical Whetstone instruc-
tions executed per second.

The communication delay associated with neighbor-to-neighbor message passing in
the NCUBE/six is indicated by Fig. 3, which is based on measurements made on an
image-processing application program. With a 6 MHz clock, each message incurs an
overhead of about 0.5 ms, primarily due to message buffer copving and the internode
communication protocols employed by Vertex. the resident operating system kernel
responsible for the store-and-forward message-passing function in the NCUBE. While
this overhead is small compared to that of most other commercial hypercubes, there are
applications which require faster message passing. We are developing a set of fast com-
munication routines for these applications that bypass the normal NCUBE message-
buffering steps Mudge, Buzzard and Abdel-Rahman 1986

3.8+

3.6 <%+

T 2.8 ¢

PTE
second 201

1.5+
1.0 +
o ¥
[4 + $ + + + + +
° (Y] 128 192 256 320 384 48 $12

no. o byles transierrec

n

FIG. 3. Node-to-node communication delay T in sending an n-byte message.

3. Parallel Algorithms

The overall objective of this research is to design, analyze, and empirically measure
the performance of a variety of parallel algorithms for solving nonumeric problems. It
includes algorithms for sorting, routing, mapping graphs onto other graphs, optimization,
computational geometry, and image processing. Approximation algorithms for NP-hard
optimization problems are being developed with the general goal of obtaining efficient
performance on distributed-memory medium-grained parallel machines, and the specific
goal of efficient performance on hypercubes.

B. Wagar, a student at the University of Michigan has developed an internal sorting
algorithm for the hypercube which has been measured to be significantly more efficient
than Bitonic Sort ‘Wagar 1986. For a hypercube of n processors each item i3 moved
only lg{n) times, instead of the approximately lg ?(n)’2 times required by Bitonie sort.

386 HAYES ET AL.

This sorting technique, which is called Hyperquicksort, is loosely based on Quicksort, and
uses estimates for medians to reduce the number of times an individual data item must
move. Like Quicksort, the partitioning may not be even, but with only a few hundred
items per processor the observed average uneveness is quite small. We intend to push
the analysis to prove that this is indeed the expected behavior, and to tune the algorithm
for even better performance. We also intend to use Hyperquicksort to develop an exter-
nal sort in which parallel disk 1/O operations are used by the hypercube. The homo-
geneity of hypercubes encourages one to have a separate I/0O channel into each node, but
few algorithms have been developed which can utilize such a feature. The NCUBE
hardware supports this, as do the FPS T-series machines to a lesser extent, and we
expect that it will be widely supported in future hvpercubes. For such a machine.
eflicient sort algorithms are likely to be important tools.

We have studied a variety of routing algorithms for specific message-passing tasks
under a model of hypercubes in which the communication channels are the primary limit-
ing factor and where each processor can use all of its channels simultaneously. This
model is aiready approximately appropriate for the NCUBE series of machines, and other
hypercube manufacturers are trying to develop nodes with this capabilitv. We have
shown optimal or nearly optimal algorithms for tasks such as broadcasting and transpos-
ing a matrix ‘Wagar and Stout 1986, but have not vet been able to implement them to
determine the actua! times. Slightly Jess efficient algorithms for these tasks have been
developed at Yale Saad and Schultz 1985 . One particularly interesting algorithm we
have developed is a deterministic analogue of Valiant's randomized routing scheme for
hypercubes Valiant 1982 . Currently this requires that ali processors know the routing
permutation in advance, but we are also trying to find an efficient deterministic algo-
rithm for the situation where the routing permutation is not known in advance.

The mapping of a task graph, where nodes represent modules and edges represent
communication, onto a graph representing a parallel architecture. where nodes are pro-
cessors and edges are communications links. is a well-studied problem in parallel process-
ing. Typically one is trying to optimize some parameter, such as minimizing the max-
imum stretching of any edge, while satisfying some constraints, such as balancing the
computational load of the processors. It is known how to map meshes, some trees, and
pyramids onto hypercubes ‘Harary et al. 1986, Stout 1986, but little is known about
mapping general graphs onto hypercubes. Stout and M. Livingston (a visiting scholar at
Michigan) are working on this problem from several approaches. First they are trying to
provide some bounds on the dimension needed to embed without stretching. For exam-
ple it is proved in Garey and Graham 1973 that if a bipartitite graph of n nodes can be
embedded into some hypercube without stretching (in which case it is said to be cubical),
then it can be embedded into a hypercube of dimension n'2 without stretching. We
have extended this to show that if a graph of n vertices with minimum node degree 2 is
cubical, then it can be embedded into a hypercube of dimension 2n/3 without stretching,
and further. this bound is the best possible.

Many computationally important problems in routing. scheduling, and packing are
NP-hard optimization problems. Because they are NP-hard, there is an extensive litera-
ture on various serial approximation algorithms for such problems. There are also pro-
posals to use special-purpose parallel computers for such problems {Hopfield and Tank
1986 . However, it is not clear how to blend such algorithms together to obtain ones suit-
able for medium-grained distributed-memory machines. and it seems that several
approaches will be needed. In one project we use a 2-tier approach to do wire routing for
printed circuit board design ‘Olukotun and Mudge 1986 . We assign a region of the cir-
cuit to each processor, and first use a high-level view which decides which regions each

HYPERCUBE RESEARCH AT MICHIGAN 387

wire would cross. Then we use a local algorithm within each processor to route all the
wires in the processor’s region, making sure that boundaries matched property. Once the
parallel high-tevel algorithm has finished, each processor only needs to perform local com-
putations or communications with a neighbor. This approach, which is also used on
serial computers, matches medium-grained machines quite well, and seems to be applica-
ble to other problems such as stereo matching of images.

A different approach is being used by a student R. Tanese in another research pro-
ject. She is examining the neural network model, which has been suggested for optimiza-
tion problems such as the traveling salesperson problem Hopfield and Tank 1986, This
model sets up a ‘‘neural network’ representing an instance of the problem, where some
of the synaptic strengths in the network are somewhat randomly chosen, as are the ini-
tial neural aczivation levels. Then the model is iterated to produce a stable situation,
which represents a solution which one hopes is legal and nearly optimal. To improve the
solution, some of the strengths and. or activation levels are changed and the model is
rerun.

4. Fault Tolerance

Fault toierance, which is the ability to operate reliably in the presence of hardware
of software failures, is a key requirement of high-performance computer systems in such
areas as vehicle control and medical diagnosis. Its achievement requires comprehensive
and fast testing of the system, detection and containment of error propagation. and
reconfiguraticn to recover a fauit-free operating condition. We have been conducting
research for many years in the areas of fault modeling and test generation Bhattacharya
and Hayes 1835, error handling and fault tolerance models and techniques Shin and Lee
1984, and recovery techniques for multiprocessors and distributed systems Yanney and
Hayes 1986, Lee and Shin 1984, Krishna and Shin 1986 . We are presently conducting an
experimental evaluation Woodbury and Shin 1986 of the error-handling characteristics
of the FTMP and SIFT fault-tolerant multiprocessors at NASA's Langley Research
Center. We have begun to study error detection and recovery in massively parallel
distributed- memory systems using ACAL's NCUBE six svstem. We are also experiment-
ing with the design of test generation and fault simulation programs for executicn on

both hypercises and vector processors {the Crav-XMP.

The fau:t coverage that is achievable by practical testing schemes is severely limited
by the compurtational cost of generating the test patterns: this cost rapidly increases with
circuit size. Dramatic improvement in test generation would be possible if many test
patterns couid be generated in parallel; almost no work has been done to date on such
techniques. however. We are investigating the problem of parallel test-pattern generation
for very complex digita! systems. The major goal of this effort is to obtain extremely
high fault coverage i.e.., to maximize the percentage of faults that are detected or iso-
lated. A Ph.D. student D. Bhattacharya is developing a new hierarchical approach to
this probiem that can analyze faults and generate test patterns for them at several
different leveis of complexity, such as the gate and register levels ‘Bhattacharya and
Hayes 1985 . Thus, instead of dealing with all faults at the conventional single-line or
bit level, this methodology can manipulate vectors of lines {buses) or bits so that many
faults can be handled in parallel during test-pattern generation. This approach can
reduce test generation time, while allowing up to 100 percent of the traditional stuck at-
0.1 faults to be detected.

When an error is detected in a multiprocessor system, the source of this error must

be quickly identified so as to correctly reconfigure the system and recover from the error
successfully. We are attempting to establish an experimentally validated model for the

g8 HAYES ET AL.

study of error propagation in multiprocessors, including hypercubes, and to use this
model for locating faults for & given detection mechanism. The basic component of the
model is a unit with a single input and 2 single output. The error propagation property
of the unit is characterized by a triplet (k,L,T), where k represents the pass rate, L the
error latency, and T the error delay. The pass rate is the probability that an error in
input will eventually induce an error in output. The error latency is measured from the
time a fault occurred within the unit till an error was seen in output. The error delay is
the time for an error to propagate from input to output within the unit. L and T are
both random variables with distribution functions F; (-} and Fr(-). The unit considered
can represent any part of the system. i.e., it is pot restricted to represent only processors,
memories. It is useful to decompose the whole system into subsystems and model each
subsystem as a unit. We are developing rules to combine two units into one larger unit
so that once the properties of all subsystems are known. the property of the combined
system can be derived. Due to the large number of units in a multiprocessor system. this
combination often requires excessive computation. We have developed a paralle] algo-
tithm for the NCUBE six to calculate F, and F; for each of n units which interact
with one another in an arbitrary way.

Since faults occur randomly and infrequently, it is difficult to study the behavior of
faults and errors in 2 multiprocessor system without ar artificial mechanism of injecting
faults. Based on our extensive experience in using the fault injector for the FTMP, we
are investigating the design of ar improved fault injector for a large-scale hypercube mul-
tiprocessor. It is to be fiexible enough to accommodate the injection of various faults.
e.g., permanent faults, transient faults with varying active durations, intermittent faults.
and malicious faults. We plan to develop auxiliary software to collect and dump data
into a secure device. This data will be used in our parallel investigation of error propa-
gation modeling, system diagnosis, and error containment. As a starting point, we have
designed a prototype software fault injector for the NCUBE ‘six at ACAL.

5. Computer Vision

This research is concerned with a variety of computation-intensive problems related
to machine vision, image understanding, and their applications to such areas as sensor-
based robot control. A major goal is to develop computer vision algorithms suitable for
hypercube architectures in particular, and massively parallel architectures. in general.
We are pursuing a new qualitative dynamic approach to image understanding which Is
based on exploiting redundant information. We wish to compare the performance of
distributed-memory versus shared-memory multiprocessors for problems tha: involve rea-
soning about images. We are applyving our results to problems in real-time control of
robots with visual and other sensors as input.

The computationa! requirements of computer vision systems are extremely demand-
ing. and are well suited to parallel processing. At the signal processing end. the number-
crunching requirements may exceed several hundred MIPs (integer arithmetic), while at
the cognitive end, very fast processing is also requirec. We have an extensive research
effort at Michigan on dvnamic vision Jain 1984. Sethi and Jain 19%6 . range image
understanding ‘Besl and Jain 1986 object recognition ‘Knoll and Jain 198€. Turney et al.
1985, and computer architecture for vision ‘Agrawal and Jain 1982, Milier and Stout
1985, Mudge and Abdel-Rahman 1987a,b]. We are presently addressing hypercube algo-
rithm design and architectural issues related to some of the more computation-intensive
aspects of computer vision.

Fast recognition of objects is one of the major goals of machine vision systems. We
are studying object recognition using both range and intensity data. A major long term

HYPERCUBE RESEARCH AT MICHIGAN 389

goal of this effort is to develop techniques that use range information for object recogni-
tion and navigation. Range images contain explicit information about surfaces. This
explicit information facilitates recognition and location tasks in many applications. Our
emphasis in range image understanding is on finding robust symbolic surface descriptors
that will be independent of viewpoint. We are developing techniques to characterize sur-
faces in range images with these symbolic descriptors. We have designed two new
methods to recognize objects: the feature-indexed hypotheses method Knoll and Jain
1986 ; and the saliency-based method [Turney et al. 1985,. The first method breaks the
recognition process into two phases: hypotheses generation and hypothesis verification.
By using features that occur more than once in the possible object set. the number of
features in the search can be greatly reduced. This method also has the advantage that
unique features, which are difficult or impossible to find if the object set contains many
similar objects, are not required.

We view image understanding as a dynamic process, which allows us to cope with
the error-filled visua! world by exploiting the availability of redundant information in an
image sequence. We are currently developing a gualitative approach to this aspect of
computer vision. This approach uses relative information available in a sequence to infer
the relationships among objects in a scene. In dynamic vision we are addressing the fol-
lowing 1ssues: segmentation, image fow, motion stereo, trajectories, and architecture for
dvnamic vision. The need to deal with sequences of images makes dynamic scene
analvsis a strong candidate for parallel processing using hypercubes.

QOur past work has shown how many low-level computer vision algorithms (e.g.
filtering) and mid-level algorithms can be redesigned to take advantage of hypercube
architectures Milier and Stout 1986, Mudge and Abdel-Rahman 1987b . We have suc-
cessfully implemented on the NCUBE, six an algorithm for reconstructing in three dimen-
sions the submicron surface topography of an integrated circuit ‘Kayaalp and Jain 1986
Work is also under way to parallelize an existing solder-joint inspection program Besl,
Delp and Jain 1985 for the NCUBE. The inspection technique employed is a statistical
patrern analysis method that uses objective dimensionality reduction to select inspection
features. It requires us to design and write parallel algorithms for extracting various
classes of features from an image. AS well as being important to our particular inspec-
tion techniques, many of these algorithms are of general use in computer vision. Two
other applications being considered are a parallel version of our bin-of-parts algorithm
Mudge and Abdel-Rahman 1983, Turney, et al. 1985, and the development of parallel
programs to support our work in dynamic scene analysis.

8. Scientific Computation

This section describes several research projects concerned with the algorithm design
and software implementation for scientific computing applications using both hypercubes
and conventional vector processors. These projects embrace some of the research issues
in areas of scientific computation where supercomputers are most used. The major topics
of the current research effort at Michigan are reactor plant simulation, Monte Carlo tran-
sport algorithms, logic circuit simulation, and distributed data structures. This work
also aims at obtaining new insights into the important question of the relative efficiency
of distributed-memory and shared-memory machines for large-scale scientific computa-
tions.

We are investigating the development and implementation of 2 nuclear reactor
plant simulation model on hypercube architectures. The goal is to obtain a fast-running
(faster than real time), reasonably accurate reactor plant simulation model that can exe-
cute satisfactorily on a computer other than an expensive conventional supercomputer.

3% HAYES ET AL

The cost/performance characteristics of massively parallel architectures such as the
hypercube makes them an attractive candidate for such & simulation. The intent is to
have an economical and reliable reactor plant mode! that could be used within an operat-
ing plant, perhaps as a standalone plant simulator or as a component within a larger
expert system.

The principal research task here is to partition the simulation algorithm across the
processors of the hypercubes. Thus, one can assign the reactor to one or more processors
or clusters of processors, the steam generator(s) to another cluster, the pressurizer to
another cluster, etc., and let each solve the pertinent equations for its specific component.
Communication between clusters of processors is necessary due to the flow of the reactor
coolant {density, enthalpy, pressure, velocity, etc.) and is being accomplished via message
passing. The partitioning of the component modele within each cluster of processors
requires some new work. Since we have had substantial experience over the past 10 vears
developing reactor component and piant models Feng. Lee. and Martin 1981; Baggoura
and Martin 1983, this does not pose any major difliculties.

We are conducting research on the implementation of a photon transport Monte
Carlo algorithm on the requested parallel processors. As opposed to other types of
Monte Carlo: methods, particle transport Monte Carlo is characterized by a considerable
amount of fleating-point arithmetic and is probably one of the most computation-
intensive methods in scientific computation. This work is a natural extension of our pre-
vious successful eflorts to develop vectorized Monte Carlo algorithms for the CDC
Cvber-205 vector supercomputer: Brown and Martin 1985, the Cray-XMP anc Cray-2
supercomputers Martin et al. 19%6 and the IBM 3090 200 and 400 supercomputers,
‘Wan and Martin 1986 . To allow meaningful comparisons with the conventiona! algo-
rithm. a conventional Monte Carlo code has also been developed and successfully ben-
chmarked against a production-level photon transport code from Lawrence Livermore
Nationa! Laboratory. At this time we have a series of realistic demonstration codes for
Monte Carlo photon transport on vector supercomputers and parallel vector supercom-
puters, as well as conventiona! sequential computers.

We have completed a number of preliminary experiments running a paraliel Monte
Carlo code for photon transport on the ACAL NCUBE /six Martin. War and Mudge
1986 . As noted in Martin et al. 1986, two alternative approache:s were taken to
develop parallelized algorithms for the NCUBE ’six which made use of this change.
Representafive results will be giver for one approach - replication of the problem on each
of the processors. In this case, the entire code is replicated on each processor and the
host processor reads in the input data, sends messages to each node describing the prob-
lem and giving the random seed, and receives the results from each node when it is done.
Since each node receives a different random seed, it is possible to combine the results a
posterior to produce a result which is equivalent to one large simulation. This is one
great advantage of Monte Carlo, and this implementation simulates how a user might
combine several smaller Monte Carlo calculations to achieve a result with better statis-
tics. It should be noted that this results in a problem size that grows linearly with the
number of processors. Figure 4 summarizes the results of simulations with a 49 X 40
mesh (1960 zones) with approximately 2700 photons per node. As can be seen. the per-
formance is nearly linear with the number of nodes, as might be expected for this
approach. Since the total elapsed time for N Monte Carlo calculations (with different
random seeds) distributed to N nodes is a constant (approximately 205 s}, it is clear
that the maximum speedup is being observed, indicating that hypercubes are extremely
well-suited to this application. The last column of Fig. 4 lists the number of
microseconds to simulate {track) a single photon, a commonly-used performance measure

HYPERCUBE RESEARCH AT MICHIGAN 391

in this area. Comparable figures obtained for the optimal scalar code (2X faster} on con-
ventional vector processors are 35 usec/track (Cray-XMP/48) and 40 usec/track (IBM
3090 and Fujitsu VP-200).

No. of Processing Elapsed
nodes N time T time T; usecftrack
1 105 205 4920
2 185 204 2448
4 195 204 1224
8 195 205 815
18 195 205 308
32 195 204 158
84 185 205 78

FIG. 4. Perfor—ance of Monte Carlo photon transport program on the NCUBE 'six.

We are also sxamining ways to automate the programming of algorithms that util-
ize distributed data structures in scientific computation Scott. Bovle and Bagheri 1986,
This research invoives introduction of language extensions to Fortran that allow code on
one processor to access variables explicitly (by name only} that are stored in another pro-
cessor. In our implementations to date, code written with these extensions is then con-
verted into approoriate message-passing code via a preprocessor. {lmplementations have
been done for bo:: rthe NCUBE and Inte! hypercubes;. Not oniy does this approach free
the programmer rom having to write the message-passing code each time. it assures that
it will be done correctly. So far, experiments have been carried out for simple iterative
and direct methods for solving linear equations, which is the most computationally inten-
sive part of many scientific computation codes. More complex algorithms are currently

being coded in the extended language and tested on the NCUBE. six.

References

B BAGGOURA ::d W R MARTIN, Transient Analysis of the TMI-2 Pressurnizer System, Nuclear
Technology, vol. 82 1983, p. 159

P BESL, E DELP and R JAIN, Autematic Visuai Solder Joint [nspection, [EEE J or Robotics and
Automatios. vol it no. 1, 1985 p 42-38

P BESL and R JAIN, Invartant Surface Charactemstics Jor 3-D Object Recognition tn Depth Maps,
Computer Vision Graphics and [mage Processing, vol. 33, 1988, pp 33-80

D BHATTACHARYA and JP HAYES, High-level Test Generation Using Bus Faults, Proc 15th
Fauit-Toleraat Cozpuung Symp , June 1985, pp 85-T1

(10}

(1)

{12}

HAYES ET AL.

FB BROWN spd WR MARTIN, Monte Carlo Methods on Vector Computers, Prog 1o Nuclear
Energy, vol 14, 1985 p 269

M .S CHEN and K G SHIN, Embedding of Interacting Task Modules Into ¢ Hypereube Multsprocessor,
submitted to SIAM J or Computer, to appear Sept 1986

M .S CHEN and K G SHIN, Determination of ¢ Minimal Subcube for Inleracting Task Modules,
presested st Second Conl. on Hypercube Multiprocessors, Knoxville, Tenn, Sept /Oct 1986 (these
Proceedings)

Y C FENG, JC LEE ard W R MARTIN, Noneguilibmum Transient Two-phase Flouv Modeling and
Analysts, Trans A Nuci Soc, voi 39 1981, p 505

MR GAREY and RL GRAHAM, On Cubical Graphe, J Combiz Theory A, 18 1973 pp 263287

F HARARY JP HAYES and P WU A Survey of the Theory of Cube Graphs Sept 1586, submitted
for publication

JP HAYES, TN MUDGE, QF STOUT, S COLLEY acd J PALMER The Architecture of o Hyper-
cube Supercomputer Proc 1986 Iptl Con! on Paralie! Processing, Aug 1986z, pp 653-660

JP HAYES, TN MUDGE. QF STOUT, & COLLEY and J PALMER A Mycroprocessor-Bosed
Hypercube Supercomputer [EEE Micre vol 6 no § Oct 18860 pp 617

JJ HOPFIELD anc DW TANK, Computing With Neural Circurte 6 Mode! Scienze voo 233 1688
pp 625-633

R JAIN, Segmentation of Frame Sequences Obfained By 6 Moving Observer, IEEE Trans PAMI Sept
1984 pr 624-62¢

Al KAYAALP ard R JAIN The Paraliel Implemeniation of an Algorithm for §-D Reconsiruction of
IC Pattern Topogrephy Uring SEM Stereo on the NCUBE Mochine, preserted at Second Con! or
Hypercube Mujtiprocessors, Kroxvilie. Tenn., Sept /Oct 1983 [these Proceedings.

N KHAN and R JAIN Uncertainty Management 1n ¢ Disinbuted Boee System Proc inu Joint Corf
on Artifical Intelligence Los Apgeles Aug 1985 pp 318320

TF KNOLL and R JAIN Recogninng Partigliy Visbie Obyect: Using Feature Indered Hypothess,
IEEE J Robotics and Automaticrn, vor 2, 1986, pp 313

CM KRISHNA and K G SHIN, On Scheduling Tasks with o Quick Recovery from Fasiure, IEEE
Trans Computers, vo! C-35, May 1986, pp 448-455

YEB LEE and K G SHIN, Derign and Evaluation of ¢ Fault-tolerant Multiprocessor Uning Hardware
Recovery Biocks, [EEE Trans. Computers, vol. C-33, Feb 1984 pp 113124

W R MARTIN et ai . Monte Caric Photorn Transport on ¢ Vector Supercomputer, IBM Jour. of Res
and Dev., March 1986z

W R MARTIN, D POLAND TC WAN, TN MUDGE and TS ABDEL-RAHMAN, Monte Carlo
Photon Transpor! on the NCUBE, presented at Second Con! or Hypercube Multiprocessors, Knoxville,
Tenrn., Sept /Oct 1986b {these Proceedings).

R MILLER and QF STOUT, Geomeinc Aigonthms for Digitized Pictures on ¢ Mesh-connected Com-
puter, [EEE Trans. Pattern Analysis and Machine Intelligence. vol. PAMI-7, 1985 pp 216-228

{23)

30}

(a7)

{38)

(39)

(40]

HYPERCUBE RESEARCH AT MICHIGAN 393

R MILLER ard QF STOUT, Dats Movement Operations for Mesh-of trees and Hypercube Compulers,
submitted for publication, 1988

TN MUDGE azd TS ABDEL-RAHMAN, Case Study of a Program for the Recognition of Occluded
Parts, Proc 23d Anpual [EEE Workshop on Computer Architecture for Pattern Analysis and Image
Data Base Mangement, Pasadena, CA, Oct. 1983, pp 56-80.

TN MUDGE. The Next Generation of Hypercube Computers, Proc of ARO Workshop on Future
Directions iz Computer Architecture and Software, May 1988

TN MUDCE GD BUZZARD and TS ABDEL-RAHMAN 4 High-Performance Operating System
for the NCUBE presented at Second Conf on Hypercube Multiprocessors. Knoxviile, Tenn , Sept Oct
1986 {these Praceedings)

TN MUDGE apd TS ABDEL-RAHMAN. drchitectures for Robot Vision, Specialized Computer
Arciitectures “or Robotics and Automation. £E4 J Grakam, Publ” Gordon and Breach. Inc . 19873 fto
appear;

TN MUDGE spd TS ABDEL-RAHMAN Viston Algorithmy for Hypercube Machines, Jourzal of
Parallel azd Dsiributed Computer, 1587h, (o appear;

TN MUDGE JpP HAYES GD BUZZARD :né D C WINSOR. Analysts of Multiple bus [ntercon-
nection Networks Jourral of Parallel and Diswributed Computing, 1987, ‘o ippear)
OA OLUKOTUN, and TN MUDGE. Parailel Routing on g Hypercube Compuier, submitted wo rhe
24tn Desigr Altomation Conf . 1987

Y SAAD axi MH SCHULTZ, Data Communication in Hypercubes, Tech Rept YALU 'DCS RR-
428 Dept of Computer Science, Yale U, 1985

LR SCOTT 1M BOYLE 224 B BAGHER] Distributed Data Structures for Scientific Computation
presented 1t Second Conf op Hypercube Muitiprocessors, Knoxville, Tann Sept Oc: 1986 {these

Proceedings

LK SETHI azd R, JAIN Finding Trajeciories of Feature Posnte in o Monocular Image Sequence
[EEE Trazs PAMI, Nov 1386

K G SHIN a2d Y -H LEE, Error Detection Process Mode!, Design, and [ts Impact on Computer Per.
formance [EEE Trans Computers vol C-33, June 1984, pp 529-540

K G SHIN a2d Y-H LEE, Eraluation of Recovery Blocks Used for Cooperating Processes, |EEE
Trans Software Engineering, vol SE-10. Nov 1985 pp 692-700

18 SQUIRE and SM PALAJIS Programming and Dengn Considerations for a Highly Paralie! Com-
puter, AFIPS Coanf Proc., vol 23, 1983 SICC, pp 395400

QF STOUT and B. WAGAR, Passsing Messoges in Link-bound Bypercubes, presented at Second Coaf
on Hypercube Multiprocessors, Kaoxville, Tenn., Sept /Oct 1988 {these Proceedings).

QF STOUT. Hypercubes and Pyramids, in Pyramidal Systems for image Processing and Computer
vision, V. Carctoni and § Leviaidi, eds . NATA ASI Series ARW, Spriuger-Veriag, 1986, to appear

H SULLIVAN and TR BASHKOW, A Large Scale, Homogeneous, Fully Disiributed Parallel Machine,
{ Proc 4th Azn Symp on Computer Architecture, 1977, pp 105-117

K.J THURBER, Large Scale Computer Architecture, Hayden, Rochelie Park. NJ., 1978

354

(41)

{42)

{43)

{46

HAYES ET AL.

JL TURNEY, TN MUDGE and R A VOLZ Recogniang Parliclly Occtuded Parts JEEE Trans op
Patterr Apalysis and Machioe Inteiligence, vo! PAMI-7 July 1983 pp 41042}

LG VALIANT, A Scherne for Paralle! Communication, SIAM J Computing voi 11 May 1982 pp
350-381

B WAGAR, Hyperguicksori—a Fast Sorting Algorithm for Hypercubes presented at Seconcd Con! on
Hypercube Multiprocessors, Kuoxville, Tenr . Sept /Oct 1986 {these Proceedings)

TC WAN and WR MARTIN, Parallel Algorithme for Photon Traneport Monte Cario. accepted for
presentation at the Winter meeting of the American Nuclear society. Washingtor. DC, Nov 1986

MH WOODBURY and K G SHIN Performance Modeling and Measuremen! of Real-fime Multipro.
cessors unth Time-chared Buses IEEE Traps ou Computers 1986 {tc appear;

R YANNEY acd JP HAVYES, Distmbuied Beccvery in Fault-tolerant Mulliprocezsor Networks JEEE
Trass op Computers vo! €-35 Oct 1685 pp &7}-B7G

