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SUMMARY

A method for solving the recognition of partially
occluded parts is presented. It is based on the automatic
generation of features from a set of primitive features
which are configurations of pairs of fixed length segments
of boundary edges of the parts. The procedure that
creates the recognition features assigns a number in the
range (0, 1] that indicates the importance of the feature
in the recognition strategy. This number is referred to as
the feature’s saliency. The method assumes that the parts
that can occur in a scene come from a known set of
parts. An example illustrates how automatically gen-
erated features can be used to count the number of
identical parts in a heap.
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L. INTRODUCTION

In many practical applications of computer vision the
basic vision task is that of recognizing one or more parts
in a digitized image where the parts may be partially
occluded. The partial occlusion normally results from
allowing the parts to overlap one another. This
overlapping greatly complicates the recognition problem.
This problem of overlapping parts is sometimes named
for a paradigm, the bin of parts problem, which involves
recognizing parts piled in a bin, a common way in which
parts are presented for batch assembly. The bin of parts
problem has been described as “the most difficult
problem in automatic assembly.” A solution is said to be
worth “tens of millions of dollars a year in the U.S.””!
The bin of parts problem is common to many industrial
tasks such as part sorting, part retrieval, and part
assembly, and, as yet, there is no satisfactory solution to
this problem.

Partial occlusion is also found in images where parts
are obscured by dirt, where parts are defective, or where
parts are partially outside an image. Images with these
characteristics present basically the same problem to
recognition as occlusion from overlap: only some areas
of the parts are exposed, and the parts must be
recognized from these exposed areas. In this discussion
the general recognition problem will be called the
partially occluded parts problem — the POP problem for
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short. Overlapping, obscured, defective, and incomplete
views of parts are all instances of the generic POP
problem.

This paper presents a method that recognizes partially
occluded parts by using a set of features that are
automatically generated from a set of primitive features.
The procedure that creates the features assigns a number
in the range (0, 1] that indicates the importance of each
feature in the recognition strategy. ‘This number is
referred to as a feature’s saliency. Saliency, in effect,
characterizes the relative importance of certain aspects of
a feature’s shape and is used to determine the order in
which a search for recognition is made. The method
assumes that the set of parts that may appear in an image
is known a priori. This a priori knowledge is what allows
us to calculate the saliency during an off-line training
step. The method is restricted to 2-dimensional parts.
For our purposes, a part is 2-dimensional if two of the
dimensions of the part are much larger than the third. A
solution to the 2-dimensional POP problem is nearly as
useful as a solution to the general POP problem,;
applications involving stamped, cast, and forged flat
metal parts are common in industry.

Figure 1 shows a bin of parts. In this example the parts
are similar but can appear in two distinct stable
positions. The application is to count the number of parts

Fig. 1. A bin of parts.
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Fig. 2. Boundaries from the bin of parts.

in the bin. The figure shows the grey level image of the
parts. It is a 256 X 256 image of 8 bit pixels. We assume
that some form of preprocessing is performed on the
image to extract pixel wide edge boundaries (see Figure
2). The off-line training step acquires shape information
either by viewing each part alone in each of its stable
positions, or directly from a solid model of each part.
(For industrial parts the latter may be available from a
CAD database.) The shape information is the set of pixel
wide edge boundaries of the part. Figure 3 shows the
boundary of the part that appears in the bin of parts
shown in Fig. 1.

The method under discussion provides solutions to
many problems in industrial vision that current systems
cannot handle. The method can recognize 2-dimensional
parts under any of the following conditions:

1. The parts may be located at any spatial position, or

under any rotation about the viewing axis.

2. The parts may touch, overlap, lie partially outside

the image, be dirty or have defects.

3. The parts may be reflective and viewed under poor

lighting conditions.

4. The parts may be viewed with any scale within a

wide range.

The primary focus of this paper is the concept of a
salient feature. It does not discuss the last two
recognition problems. They are discussed in detail in ref.
2, which also compares the performance of the method
to that of other popular approaches.

This paper is organized as follows. In the following

O

Fig. 3. Boundary of a part.
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section we present arguments for using pairs of fixed
length overlapping boundary segments, termed con-
figurations, as primitive features. An efficient method is
presented for determining matches between the
configuration-segments used to recognize parts and
segments in the image. Section III presents a method for
automatically generating salient features from the
primitive features. The section begins by formalizing the
concept of saliency and goes on to present a training
method for the automatic generation of salient
configurations. Section IV presents a strategy for solving
the POP problem that makes use of the salient features.
Section V concludes the paper.

II. PRIMITIVE FEATURES

The choice of pairs of fixed length overlapping boundary
segments as primitive features can be better appreciated
if features used in other recognition methods are briefly
reviewed first.

1. Review

Merlin and Farber® and Ballard® use edge points as
their primitive features. Edge points are a good
representation in the presence of occlusion, because,
short of total occlusion, some edge points of a
part-model will always appear in the image. Unfortun-
ately edge points have the disadvantage that they are
indistinguishable from one another: edge points can
belong to any boundary of any part in the image. For this
reason, as is shown in ref. 2, the generalized Hough
transforms of Merlin and Farber, and Ballard often find
incorrect locations for parts. The edge points of the part
may correlate better with edge points that belong to
other parts, or to the wrong edge points on the same
part, than to the correct set of edge points.

Rutkowski® uses edge points with associated
probabilistic labeling vectors and relations between edge
points as primitive features. A probabilistic labeling
vector p’ is associated with each edge point i of the
image. Element p; represents the probability that image
point i can be labeled as edge point j of the part.
Rutkowski uses the labeling vectors and spatial relations
between edge points as input to a relaxation algorithm.
The method appears unnecessarily complex and results
in undesirably long times.

Kelly et al.® and Jacobsen and Wechsler’ use gray level
regions as primitive features. A gray level region is no
more than a contiguous set of gray valued pixels. By
correlating certain regions with an image, one can
estimate the location and identity of parts in the image.
If we adopt the approach in ref. 6, region correlation
requires O(n’m°) operations, when images have n Xn
pixels, regions have m X m pixels, and m? different views
of each region are used. Region correlation is sensitive to
occlusions because it is unreliable when based on small
regions. In a POP image the visible regions of a part will
generally be small, and, therefore, regions are
inadequate features for the POP problem.

Primitive features based on axial representations, such
as the symmetric axis transform (SAT) of Blum and
Nagel® and the smoothed local symmetries (SLS) of
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Brady and Asada,’ are simple features to identify, but
they will only match corresponding representations of
images when the images are essentially free of occlusion.
The axial representation of a part can be dramatically
changed by relatively minor subtractions from the part’s
shape (such as might occur from occlusion). This makes
finding a match with an axial representation of the part
difficult.

Bolles and Cain,'® Berman et al.,!' Tropf,'> Koch and
Kashyap,'® and Stockman et al.'* use special features, such
as corners and holes, as primitive features. Special features
have the advantage that they are easy to locate and are
thus useful for quick recognition. However, special
features occur infrequently on the contours of typical
parts, making them vulnerable to occlusion. In general,
algorithms that rely solely on special features often have
difficulty finding enough features in the image for reliable
recognition. In addition, algorithms based on special
features are problem specific. Without an automatic way
to select special interesting features from a set of parts, it
is necessary to redesign an algorithm for each problem
domain.

Ayache and Faugeras' use line segments that form the
sides of a polygon approximation of the boundary of a
part as primitive features. Line segments are more
frequent in typical images than special features, but are
distinguishable from each other only by their length.
When recognizing a part, Ayache and Faugeras compare
only the longer segments from the part-model to the
segments in the image. This dramatically reduces the
number of comparisons from the number required if they
had compared line segments of arbitrary length.
Unfortunately, in POP images the longer line segments
are more likely to be occluded, and, thus, are generally
not a good choice of features.

Our brief survey suggests that probabilistic labeling
vectors, regions, axial representations, special features,
and line segments, are not the most suitable features for
use in solving the POP problem. By comparison, edge
points appear better suited to the problem. Their main
shortcoming is that they have no local structure to

Fig. 4. The visible segments of a part in the bin.
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Fig. 5. Overlapping segments.

differentiate one edge point from another. This can be
overcome by using sequences of linked points, or
segments. Moreover, to maximize the number of visible
segments in the presence of occlusion, segments should
be overlapped. Therefore, we have chosen fixed length
overlapping segments of the boundary as components in
our primitive features. The fixed length is a design
parameter and depends on the set of known parts. If the
length is too short, the segments will be indistinguish-
able. On the other hand, if the length is too long, the
segments are less likely to be visible, although longer
segments are implicitly compared when shorter fixed
length segments that cover the longer segments are
compared. The fixed segment length should be related to
the curvature of the parts: if there is frequent
occurrences of high curvature, segments should be short.
Figure 3 shows the boundary of one of the stable
positions of the part that appears in the bin of Fig. 1.
Figure 4 repeats Fig. 2 with the visible boundary
segments of one instance of the part highlighted. Figure
5 shows overlapped segments AA’, BB', and CC'.

The set of overlapping segments are obtained from all
the boundaries from all of the part’s stable positions.
Since the part is 2-dimensional, we make the assumption
that it will always appear in a quasi-stable position, that is
to say, tilted little from one of its true stable positions,
even when it is in a pile with other parts. Finally, to
minimize the possibility that a segment, resulting from
the random alignment of two or more boundary
segments from different parts in an image, can match one
that may be used for recognition, we have chosen to use
configurations of segments as primitive features. Figure 6
shows a configuration. It is simply two fixed length
segments in a fixed relative position. The relative
position of two segments can be defined by the angle

@,

centroid

Fig. 6. A configuration of segments.
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between the vectors from the mid-points of the segments
to the centroid of the part’s boundary from which the
segments are taken. (This definition implicitly fixes the
length of vectors and the angles they make with the
tangents at the mid-point of the segments.) The notion of
a configuration could be extended to allow an arbitrary
number of components or segments. This extension is
similar to Bolles and Cain’s local feature focus, which is a
configuration of special features.'” The case of
configurations with other than two components, how-
ever, will not be considered further.

Configurations form our primitive features. However,
using them indiscriminately for recognition would not result
in an efficient algorithm, since each part has a large
number of configurations which are nearly indistinguish-
able. To counter this we have adopted a measure for the
distinctiveness of a configuration which we term the
saliency of the configuration. Informally, the saliency of
a configuration is the inverse of the frequency of
occurrence of the configuration in the set of known parts.
The idea behind this notion is that the more often a
configuration is found in the set of parts, the less
important the configuration is in distinguishing a part and
its pose. An efficient recognition strategy begins by
trying to identify the most salient configurations first.
The concept of saliency must be modified slightly when
noise is taken into account, as we shall see. However,
before exploring saliency more fully, we first present an
efficient method for determining matches between
configuration-segments used to recognize parts and
segments in the image.

2. Segment matching
To avoid confusion we shall refer to configurations
generated during training as model configurations to
distinguish them from configurations in the image.
Similarly, we shall refer to model segments or sometimes
model configuration-segments when we wish to em-
phasize that they are components of a configuration.
The information needed to recognize a part includes a
dual representation for the model configuration-
segments, a straightforward Cartesian representation and
a 0—a representation (see Figure 7). The 6-—a
representation is a parameterization of the slope angle,
0, of the part’s boundary by its arclength, 4, where
arclength is measured from an arbitrary starting point on
the boundary. The slope angle can be represented as a
function of arclength, 6(a). The 6 —a representation
allows us to compare model segments with image
segments that are flipped, that are scaled, and that occur
in images with contrast reversals, in each case more
efficiently than in a Cartesian representation (for more
on these cases see ref. 2). The 6 — a representation does
not, however, preserve 2-dimensional distances between
segments. Therefore, to compare configurations it is
necessary to compare the segments of both configura-
tions individually in 6 —a space and then to check the
relative poses between segments in Cartesian space. We
will assume that two configurations matched if their
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Fig. 7. A part and its 6 — a representation.

segments have the same relative pose in Cartesian space
and if the corresponding segments of the configurations
match in 8 — a space.

Comparing configurations. In a Cartesian repre-
sentation, segments are compared by fitting a segment of
the part to a segment of the image. Fitting involves three
parameters: x and y components of translation, and a
relative rotation angle, ¢. In the 6 — a representation the
segments can be fit with one parameter, the relative
orientation, ©.

To compare a model segment with an image segment,
we select the sum of the squares of the differences
between corresponding slope angles as a measure of the
closeness of the fit. The centers of the segments are
aligned and the 6 values of the model segment, 6 (a;)
for i=-n,...,n, are least squares fit to the
corresponding @ values of the image segment, 6,(a;) for
i=-n,...,n. We assume that both segments have .
been sampled at equal arclengths at n points on either
side of their centers. The fit parameter, ©, is chosen to
minimize the following sum of squares,

1 n
m+1 i;_n (Om(a;) — 6/(a;) - 9)2-
The minimum occurs when
1 < - -
©= nm+1 i=2_" (Bm(a;) — 6/(ay))) =0p - 6,

in other words, when © is simply the difference between
the mean tangent angles of the two segments. The
minimum residue

1 2 ~ ~
R=\zre7 S (Oula) = Bu - (6ia) =8P ()
can be used as a measure of the similarity of the
segments, and is used to decide whether the segments
match. Equation (1) is all that must be calculated to
compare segments once 6 and a are determined. In
practice we assume that two segments match if R is less
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Fig. 8. Critical points of a part and a POP image.

than a fixed threshold, D. The value of D is chosen to
reflect the noise anticipated in the images under
consideration. We assume that two configurations match
when

1. the relative poses of the segments of the
configurations in cartesian space are equal and,

2. the segments of one configuration individually
match corresponding segments of the second
configurations in @ —a space, i.e., are within a
tolerance D of each other.

Critical points. Critical points in a boundary, if they
exist, can be used to further improve the efficiency of
comparison. We define critical points as the maxima and
minima of the curvature of the boundary, i.e., d6(a)/da
(see ref. 16), that have a curvature value above a fixed
threshold. If a model segment contains critical points, as
is often the case, it need only be compared to image
segments that contain critical points at the same relative
positions, thus substantially reducing the number of
comparisons needed to locate matches. The location of
critical points in the boundary is readily obtained by
applying a 1-dimensional edge detector to the function
6(a). Figure 8(a) shows the critical points of a part;
curvature maxima are shown as circles and curvature
minima are shown as squares. Figure 8(b) shows the
critical points of the boundary in a POP image. Note the
correspondence of critical points.

Finally, we note that it is not necessary to store all the
segments of both representations; it is sufficient to store
the Cartesian boundary and 6(a) as a linked list of edge
points from which segments may be taken during
run-time.

II. AUTOMATIC GENERATION OF SALIENT
RECOGNITION FEATURES

1. Saliency
The concept of saliency, a measure of the importance of
a feature in identifying the part, is central to our
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Fig. 9. Parts without noise.

recognition algorithm. An earlier version of this concept
was presented in ref. 17. The saliency of a configuration
is learned during off-line training from the boundaries of
the complete set of parts that may appear in the image.
To simplify the presentation of the concept we begin by
considering the case where there is no noise in the
image. We then show this is a special case of saliency in
the presence of noise.

Saliency without noise. If parts are viewed without
noise and all parts appear with equal likelihood in an
image, we define the saliency of a configuration of
segments to be the inverse of the frequency with which
identical configurations appear in the set of parts. For
example, assume that the notched rectangle and the
square shown in Figure 9 are the set of parts that may
appear in an image, and that both have equal probability
of appearing. The configuration of corner A and corner
B has a saliency of 1/(2+4) or %, since identical
configurations appear twice in the rectangle and four
times in the square. Figure 10 shows how saliency is
computed for the configuration of corners A and B. The
dashed outlines indicate the six alignments of the set of
parts that yield matches. The notation X-Y means that
segment X from one of the parts is matched with
segment Y of the rectangle. Note that, in effect, both
parts are moved around to find matches with the

AA CA

i

o o 1

HA A

|
ﬁ

T e e

8 F8

Fig. 10. Computing saliency.
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Fig. 11. Notched rectangle and triangle without noise.

configuration A and B. We could just as easily have
imagined the matching process as moving the configura-
tion while the parts were held fixed. Continuing our
example, we see that the configuration of corner A and
corner C has a saliency of 1 since identical configurations
appear twice in the rectangle. Finally, the configuration
of corner A and the notch E has a saliency of 1 since this
configuration appears only once in all the parts: it
uniquely characterizes the rectangle and its pose in the
image. If this configuration appears in the image, the
pose of the rectangle is known with probability one,
barring accidental alignments (see below). The calcula-
tion of saliency depends on knowing the set of all parts
that may appear in an image, consequently features that
make use of saliency implicitly incorporate comparative
information about the particular part set.

Clearly, saliency is highly dependent on the set of
parts. To illustrate this consider a set that contains only
the notched rectangle of Figure 9 and a similarly notched
triangle (see Figure 11). Reexamining the saliency of the
configurations in the rectangle reveal that the configura-
tion of A and B now has a saliency of %; the configuration
of A and C still has a saliency of %; but the configuration
of A and the notch E now has a saliency of } and thus no
longer uniquely identifies the pose of the rectangle.
However, the pose of the rectangle is still uniquely
identified by C and E.

The saliency of a configuration is in some sense
indivisible; it cannot, in general, be determined from the
frequency of occurrence of its component segments. For
example, in Figure 9 the saliency of the configuration
formed by corners A and B is 1. and the saliency of A
and C is 1, while the inverse of the frequency of the
individual segments A, B, and C are all 1

Saliency with noise. We now turn to consider noisy
images. If noise is present in an image the saliency of a
configuration may be defined by generalizing the
probabilistic viewpoint introduced informally above. In
the following, we will adapt the simple Bayesian
argument of ref. 18 to formalize the concept of saliency
for parts when noise is present in the image. First some
notation. Let B,(x, y, 6) describe the boundary of part p
from the set of known parts. The parameters x and y are
the coordinates of the centroid of the boundary and 6 is
the orientation of the boundary about the centroid—
different values of x, y and 6 correspond to different
poses. In practice x, y, and @ are restricted to a finite set
of values as a result of digitization. Thus, it is more
accurate to represent B,(x, y, ) as B,(x;, y;, 6«) where
i, j, and k are indices for the finite set of values to which
x, y, and @ are restricted. Assume that B,(x;, ¥j, 6,) is
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partitioned into a set of overlapping segments. If
B,(x;, y;, 6,) consists of u segments there will be
u(u —1)/2 configurations (pairs of segments). Let
Ci(x;, y;, 6) be the r* configuration of boundary
B,(x;, y;, 6x), where r ranges from 1to u(u—1)/2.

Assume configuration Cj, is present in an image at
pose x;,y, and 6. In general, Cy(x;, Y 6,) will be
distorted by noise so that it will appear as some
configuration C. Let the probability that Cj, is distorted
into C be represented by Pr[C| Cy(x;, y;, 6,)]. Without
knowing in advance which configuration caused C, the
configuration C may be interpreted in several ways. Let
the probability that C will be correctly interpreted as
Ci(x;, yj 0x) be represented by Pr{Ci(x;, ), 6,) | Cl-
Then, the product

Pr[Cy(x;, ¥, 6:) | C1 X Pr(C]| Co(xi, 3 61,

is the probability that Cy(x;, y;, 6) is present in the
image, appears as a configuration C, and is correctly
interpreted as configuration Cp(x;, y;» k).

It is impossible to know a priori the form in which
Ci(xi, yj» 6,) will appear in an image due to noise
distortion. It is, however, still desirable to determine the
probability with which the presence of Cp(xi, yj» 6c) will
be correctly interpreted. We therefore define the saliency
of configuration Cy(x;,y;, 6x) as the probability that
Ci(x;, y;, 6,) will be present in an image and will be
correctly interpreted, given that Cp(x;, y;, 6;) could be
distorted into any possible configuration C. This
definition can be written as

SA(Cp(x:> yj» 0) & % Pr IC;(xi: Yj» 6) | Cl

X Pr[C| Cy(x:, ¥;» 6x))-

Saliency is a measure of how unambiguously a
configuration will be recognized, given all the possible
distortions it can undergo due to noise. If the noise is
independent of x, y, and 6, the saliency is also
independent of x, y, and 6, in which case, the above
definition can be rewritten as

SA(C) 2 S PrICi(x v 60| €)X PrIC| Cote 3, 00}
@

The probabilities still depend on the pose x;, y;, and 6.
However, it is not important which pose, only that a
particular one be chosen. Varying x;, y;, and 6, changes
the terms that contribute in (2), but the summation
remains constant because it is taken over all possible
configurations C. We will further explore this definition
by individually examining the terms on the right-hand
side.

The term Pr[C| Cy(x;, y;, 64)] is a noise distribution
for the image. It is the probability that configuration
Ci(xi, y;, 6x), when present in the image, will be
distorted by noise and appear as configuration C. The
noise distribution is intrinsic to the image and not to the
configuration Cy(x;, ¥, 6k)-

The term Pr[{C(x;, y;, 6,) | C] is the probability that
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the appearance of C in the image will be interpreted as
Cp(xi, yj» 6x). If there are many configurations that can
appear as C the probability will be low. If, however, only
a few configurations, including C,(x;, y;, 6x), can appear
as C the probability will be high. The expression for
Pr[Cy(xi, y;» 6:) | C] can be rewritten as

P’[C;(xn Yis ek) | C]

P"[C | C;(xn y;’ ak)] X Pr[ (xn yp ok)]

Pr{C]

where Pr[C,(x;, y;, 6x)] is the a priori probability that
configuration C,(x;, y;, 6;) is present in the image, and
Pr[C] is the total probability that configuration C
appears in the image. Applying Bayes’ rule to Pr{C]
yields
Pr[C]
= z Pr[C|C‘(x,,y,,,,0)]><Pr[C (xl’yrme)] (4)

q.5,0,m,n

€)

where Ci(x;, Ym, 0,) is the s” configuration of boundary
B,(%1, Ym» 0,)- Part g is any of the set of known parts,
including p, that can appear in the image. The term
Pr[C | Cy(x1, Ym, 6,)] is the probability that given
conﬁguratlon Cy(x1, ym» 6,) is present in the image, it
appears as C. The term Pr[Cy (x,, Ym> 6,)] is the a priori
probability that Ci(x;, y., 6,) is present in the image.
We have assumed in this expansion that the segments in
a configuration come from the same part, and not from
the accidental alignment of segments of two or more
parts. More precisely, an accidental alignment occurs
when a configuration of segments from two or more parts
happens to fall in a relative position that resembles a
configuration of segments from a single part. Strictly
speaking (4) should also include terms of the form
Pr[C] 5;,8;,| x Pr[S;,8%,] and hrgher order joint prob-
abilities, where S5, and S’ are the i** and j* segments of
different parts q, 'and qz Accidental alignment would
cause some of these terms to be non-zero. We assume
that accidental alignments have negligible probability.
With this assumption (3) becomes

P"[ (xn yp Bk)] | C]
Pr[c | C;(xn yp ek)] X Pr[ (X,, }’,, ek)]

2 P’[CIC(xb}’m:a)]XP’[C(xhym,B)]

q.5.L,m,n

If we assume, for the moment, that a part is equally
likely to be at any pose in the image then
Pr[Ci(x1, Ym) 6,)] is a constant independent of x, y, and
6. This constant is proportional to,

©)

the frequency of parts of type q in lmages
the number of digitized poses

To simplify the discussion we will assume that the parts
occur equiprobably; therefore, the constant terms are
equal and, thus, cancel one another. This results in the

following, .
PrCy(x, 3y, 801 €] = — A Gl 8]
Z P’[C|C(xhym,0)]

a.s,L,mn

(6)

123

Substituting (6) into (2), the saliency of C,(x;, y;, 6«)
becomes

sacy =3 — PG v, D)
> Pr[ClC(zby,,,,e)]

q.5.L,m,n

™)

If we assume, for the moment, that no noise is
associated with the boundaries of the image, equation (7)
can be greatly simplified. Let I(e € A) represent an
indicator function whose value is 1 when e is an element
of the set A and whose value is 0 otherwise. In the
noiseless case, if configuration Cy(x;, Y, 6,) is present in
an image it will appear as Cy(x, ym, 6,); thus,
Pr[C| Ci(xi, ym» 6,)] becomes an indicator function
I(Ce {Cq(x,, Ym» 6,)}) defined for the singleton set
{C(xi, Ym» 6,)}. Substituting for Pr[C| Cy(x;, yi, 64)]
and Pr[C| Ci(x;, Ym» 6,)] in (7) we obtain

5 I(C e {Cy(xs, 3, 6:)})?
¢ 2 I(C € {C (X[, Ym> 0 )})

q.s.L,m,n

SA(Cp) =

1
. s;.., ) I(Cy(xi, yj» 6:) € {C5(Xt, Ym»> 6:)})

By summing over all x;, y,,, and 6, we are, in effect,
moving part g so that each of its configurations, s, is
compared with the fixed configuration C(x;, y;, 6). The
resulting saliency is the inverse of the frequency with
which configurations Cy(x,, y.., 6,), that are identical to
configuration Cy(x;, y;, Bk) occur in the set of parts. This
agrees with our earlier informal definition of saliency.

Now, returning to the noisy situation, we observe that
if the noise distribution Pr[C| C(x;, ym, 6,)] is known,
the saliency for configuration Cp(x;, y, 6;) can be
calculated from (7). On the other hand, if the noise
distribution is not known but is characterized by a fit
tolerance, D, the expression on the right in (7) can be
approximated as follows.

Denote by {C}p, the set of configurations with
segments which are in the same relative pose as the
segments of a configuration C and which are individually
within a tolerance D in 6 —a space of corresponding
segments of C. This set is simply the configurations that
match C in the sense defined after (1). The set can also
be viewed as a radius D sphere in configuration space
centered on C. Configuration space contains the set of all
possible configurations. Points in this space include all
the configurations Cj at all poses. The metric is the fit
given by (1). We assume a constant density of
configurations in configuration space, and let the number
of configurations in a radius D sphere in configuration
space be N, a constant. Then, we can approximate
Pr[C|Cy(xs, ym» 6,)] by the term 1/NxI(Ce
{Cy(xt, Ym> 6,)}p). In other words, we have assumed
that the probability that a configuration, C, can be
distorted enough to fall outside of the radius D sphere
about Cy(x;, ym, 6,) is 0. Similarly, we approximate
Pr[Cl C;(X,-, yj: ak)] by 1/N X I(C € {C;(xi: yj: Ok)}D)’
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Fig. 12. Spheres in configurations space.

Substituting the above two terms into (7) we obtain,

(z(c € {Cp(xi» ¥j» Gk)}p))2

NS N
SA(C))~ 2~ I(C e (Cyea v 6)1)
q.s,L,m,n N
1 1
== N X )
Ce{Cp(xiyj 06)}D W ,zm ) I(C € {C-“l(x,, Yms 0,,)}0)

®

In the denominator of (8) configuration C is held fixed
while the sum over g¢,s,l,m, and n selects sets
{C5(x1, Ym» 6n)}p that contain C. Thus, the summation
counts the number of spheres that contain a particular
value of C. This sum is equal to the sum

‘ ; I(C:q(xl’ Ym> 0,,) € {C}D)° (9)
The equality follows from the observation that the
number of radius D spheres centered on the possible
values of Cj(xi, Ym, 0,) that contain a particular C is the
same as the number of centers C5(Xi, Ym, 6,) Within a
sphere of radius D centered on the particular value of C.
Substituting (9) into (8) yields

1 1

Ce{C(xiyp8))p q's'%:m,,. I(C;(x,, Ym> 0,,) € {C}D)
Diagrammatically, the Cj terms counted in the

denominator of (10) are shown in Figure 12. The solid
circles represent the radius D spheres. Therefore,
configurations within the circle centered on C are those
within a D tolerance of C.

If we assume that the density of Cj(x;, Ym, 6r)
configurations is locally constant within a 2D sphere
centered on Cj, (the dashed circle in Figure 12), then we
can obtain an estimate of the number of C’s within D of
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C by the number of Cj within D of C;. Substituting this

number in (10) yields,
Ly
N ceicyimppo0in

1

z I(C;(xb Yms 0,,) € {C;(xi’ yi’ ek)}D)

q.s,L,m,n

Since, the sum in the denominator is now approxim-
ated by a sum independent of C and the cardinality of
{Ci(xi, yj» Bi)}p is simply N, we can eliminate the
summation over C to yield the following modified
definition of saliency:

SA(C) & 1

v s?m n I(C;(ZI, Ym> 0,,) € {C;(xi’ yj’ ok)}D)
M (11)

This is the working definition that we use to calculate
saliency during training. In other words, we approximate
the saliency of configuration Cp(x;, ;> 8,) as the inverse
of the frequency of all configurations of the set of parts
that have segments in the same relative pose as those of
Ci(x:, yj» 6x) and which are within a D tolerance of
C;(xi) )’,', ek)

There are two points to discuss before concluding this
section on saliency. First, in the special case of
symmetric parts we are generally uninterested in which
of the equivalent symmetric poses the part is found. For
example, if a part has n rotational symmetries, n of its
poses are equivalent to us. In this case the saliency of
any configuration of the part should be modified by
multiplying its normal saliency by the symmetry of the
part. In other words, the saliency of a configuration Cj,
would become n X SA(C;). Clearly, this saliency is
defined with respect to the part—the same configuration
in the other parts in the part set, i.e. parts without n
rotational symmetries, would not have the same value of
saliency. Second, if there is a priori knowledge about the
frequency of occurrence of each part in typical
application images, the saliency of part-configurations
can be weighted by a normalized frequency of
occurrence factor. This factor can be accounted for by
rederiving (11) from (5), but with the term
Pr{C(xi, Ym> 6,)] now a function of the part q.

II1.2 Training

Training is the process of determining the saliencies of
the configurations of a set of parts. Assume that we wish
to determine the saliencies of the configurations of
boundary, B,. An obvious approach is to start by
comparing all of the configurations of B, to those of
another boundary, B,, as was done in Figure 10. This is
inefficient. If there were u, segments in boundary B, and
up(ug -1

2

configurations in B,

u, segments in B, we would compare
A Ly Ug(ug,—1
configurations in B, with —"(—"i——)

(= 1) ug(ug— 1)
2 T 2

u
for a total of £ comparisons. Since
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all parts must be compared there would be a grand total
of

S up(u; l)x 3 u,(u, 1), (12)
peP qeP 2

where P is the set of known parts. Even though this is a

one-time off-line computation, it is unacceptably

inefficient.

Instead the following approach is taken. The segments
of B, are compared to the segments of B,. If a segment
of B, at pose (x;, Y., 6,) matches a segment Sy(x;, y;, 6;)
of B,, the pose (x;, ¥, 6,) and the identity of S5, i.e.,
the index r, are stored in a match table. The match
should satisfy a D tolerance. As before, we consider the
configuration to be fixed at (x;, y;, 6,) while the segments
of B, are moved. The match table is implemented as a
hash table with the ordered triple (x;, y.,, 8,) as the
primary key. A key may have multiple indices, r, stored
at its associated table location. After all segments of B,
have been matched to those of B,, the match table is
searched for pairs of segments of B, which matched B, at
the same pose. These are simply pairs of indices at the
same key. If two segments of B, match two segments of
B, at the same pose (X;, ¥, 6;) then the configuration of
the two segments of B, must match a configuration of
segments of B,(x;, Y., 6,). Thus, searching the match
table for pairs of indices at the same key is equivalent to
searching for matching configurations.

A 2-dimensional array, indexed by the identities of
pairs of segments in B,, is used to record the frequency
with which configuration-pairs match the boundary B,.
The array elements are initially zero. Each time a
configuration of B, is found which matches a
configuration of B,, the element of the array
corresponding to the pair is incremented.

After the match table has been completely searched, it
is cleared and the segments of another boundary, B,, are
matched to the segments of B,. This is repeated for all g,
including p itself. Each time the array of frequencies is
updated to reflect the number of matching configura-
tions. When the segments of all parts have been matched
to the segments of B,, the reciprocals of the elements of
the array yields the saliencies of the configurations of B,.
The configurations, Cj,, with their associated saliencies,
SA(C;), form the part-model of p. In most applications
only those configurations, Cj, with SA(C,)=1 are
retained for the salient features. The whole procedure is
repeated for each part. It is straightforward to show that
the number of comparisons required by the training
procedure is given by

22 Upltg.
pPeP geQ
This compares favorably with (12).

IV. USING SALIENT RECOGNITION FEATURES
TO SOLVE THE POP PROBLEM

If a particular part is sought, an efficient strategy
searches for configurations in order of decreasing
saliency. As an example, consider searching for the
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(a) {b)

{c) (d)

Fig. 13. Locating a part.

rectangle shown in Figure 9. Model configurations which
include the notch as a segment have the largest values of
saliency and should be compared first to the POP image.
If no such pair can be found, a model configuration with
less saliency, e.g., corner A and corner C, should then
be compared to the image. This process is continued
until the part is found or no untried model configurations
are left. If the latter situation occurs we assume the part
is not present or is totally hidden. If more than one part
is sought, for example a subset of the set of parts, an
efficient strategy is to search for all the model
configurations from all of the parts in the subset in order
of decreasing saliency.

Searching for matches to model configurations of a
particular saliency can best be done by first searching for
the model segment that occurs most often in the
configurations. The search for individual segments can be
done in the manner outlined in the previous section, and
illustrated by the following.

If the segment has a curvature extremum, we align the
curvature extremum of the segment with an extremum in
the image boundary before comparing the segments. On
the other hand, if the segment has no extremum, it must
be compared to all segments of the image boundary. In
both cases, comparison is performed in the 6 —a
representation. If a good match is found between a
model segment and an image segment (see the notch
Figure 13(a)), the rotation and translation necessary to
align the two segments is computed by performing a least
squares fit of the two segments in cartesian space. The
rotation and translation are applied to the entire
boundary of the part (see dotted outline in Figure 13(b))
and the transformed boundary is used as a guide in
searching for the second segment of a configuration with
high saliency (see the lower corner in Figure 13(c)). The
saliency provides an estimate of the probability that the
correct part at the correct pose has been located. In our
example, if the notch in the rectangle were not visible in
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Fig. 14. Finding a part in a bin of parts.

the POP image (see Fig. 13(d)), the algorithm locates the
rectangle using a less salient pair (corner A and corner C
in Fig. 13(d)) and reports that the probability of it having
found the correct pose is 1, i.e., the saliency of A and C.

As a second example the technique was applied to the
bin of identical overlapping parts shown in Figure 1.
Using the new recognition method it was possible to
count, with a high degree of accuracy, the number of
parts in the scene. All of the seven parts present were
correctly located when the method was tried. Figure 14

shows the location of one of them.
Although space does not permit detailed evaluation of

the new technique two points are worth noting. First, the
time to recognize a set of parts from a bin containing
about a dozen parts is less than 1 second, if a
VAX 11/780 minicomputer is used. This compares
favorably with other common approaches. Second,
experiments were run against other common approaches
to compare recognition ability. In all cases the method
presented here identified all the parts in the bins that it
inspected. This robustness was unmatched by any of the
others.

A variation on the above search strategy, due to
Knoll’®, is to maintain pointers back to model
boundaries of all the parts that contained each model
configuration. The search starts with model configura-
tions (the configurations used in ref. 19 consist of single
segments) that have non-maximal saliencies. When such
configurations are located in the image, their possible
interpretations are determined by fitting to the image all
the boundaries from which the model configurations may
have come, and then selecting the boundary and pose
with the best fit as the correct interpretation. This works
best if there are a large number of parts in the set and
only a few are expected to appear in any image; and if
fitting the entire boundary can be done efficiently.
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V. CONCLUSION

This paper has focused on the concept of saliency, a new
concept that allows improved recognition ability,
especially in the presence of occlusion. A method was
presented for automatically generating salient features,
or configurations, from primitive features. A strategy
was presented for using salient configurations to solve
the POP recognition problem. Space has not permitted
us to present a complete evaluation of the method.
Details are available in ref. 2 where the performance of
the method has been evaluated for bins containing a
mixture of parts as well as identical parts.
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