Y

Y
\

Proc.

of the 1987 Int. Conf. Parallel

Processing,

Aug. 1987, pp. 266-269.

Crosspoint Cache Architectures *

Donald C. Winsor and Trevor N. Mudge
Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2212

Abstract: We propose a new architecture for shared memory
multiprocessors—the crosspoint cache architecture. 'This architecture
consists of a crossbar interconnection network with a cache memory at
each crosspoint switch. It assures cache coherence in hardware while
avoiding the performance bottlenecks associated with previous hardware
cache coherence solutions. We show this architecture is feasible for a
64 processor system. We also consider a two-level cache architecture in
which caches on the processor chips are used in addition to the caches in
the crosspoints. This two-level cache organization achieves the goals of
fast memory access and low bus traffic in a cost effective way.

Introduction

Advances in VLSI technology have made available high performance
single-chip 32-bit processors. The excellent cost/performance ratio of
these microprocessors has generated considerable interest in using them
to build high performance multiprocessor systems. Architectures in which
all of the processors share a single memory have significant advantages
in flexibility and ease of programming over other multiprocessor
architectures. However, the maximum performance of these shared
memory systems is extremely sensitive to both memory bandwidth and
memory access time; thus, cache memories are an essential component
of this class of multiprocessor.

When using a private cache memory for each processor in a
multiprocessor system, it is necessary to ensure that all valid copies
of a given cache block are the same. This requirement is called the
multicache consistency or cache coherence problem. Solutions to the
cache coherence problem based on hardware, software, and combinations
of both have been proposed. Hardware solutions have the advantage of
being completely transparent to the software; existing programs need not
be modified. However, none of the proposed solutions is completely
satisfactory for large numbers of high performance processors. They
all become prohibitively expensive, slow, or both, for more than a
few processors. Software solutions avoid the cost of special hardware,
but they require the operating system to identify all shared regions of
memory and to issue appropriate commands to the caches to ensure
consistency. These requirements significantly complicate the operating
system. Furthermore, the high memory traffic generated by the software
solutions may be prohibitive for large numbers of processors. For a more
detailed survey of cache coherence schemes, the reader is referred to [1].

In this paper, we propose a new cache architecture that assures
cache coherence in hardware while avoiding the performance bottlenecks
associated with previous hardware solutions. Our proposed architecture
is a crossbar interconnection network with a cache memory at each
crosspoint. Crossbars have traditionally been avoided because of their
complexity. However, for the “non-square” systems that we are focusing
on with 16 or 32 processors per memory bank and no more than 4
to 8 memory banks, the number of crosspoint switches required is

*This work was supported in part by Ammy Rescarch Office grant number
DAAG29-84-K-0070

266

not excessive. The simplicity and regular structure of the crossbar
architecture greatly outweigh any disadvantages due to complexity. We
will show that our architecture allows the use of straightforward and
efficient bus oriented cache coherence schemes while overcoming their
bus traffic limitations.

Snooping caches

The most promising solutions to the cache coherence problem require that
all processors share a common main memory bus. Each cache monitors
all bus activity to identify references to its lines by other caches in the
system. This monitoring activity is called “snooping” on the bus. Along
with the “valid” and “dirty” tag bits for each line, there may be one or
more additional bits to record whether the line is shared or exclusive.
Thus, data is dynamically classified as shared or exclusive, as in the
centralized directory approach, but the directory information and control
logic is distributed among the caches. This avoids the bottleneck of the
central directory and controller.

Although this approach appears to be similar to broadcasting writes,
its performance is much better as long as the cache policy is not write
through. Since the caches record the shared or exclusive status of each
line, it is only necessary to broadcast writes to shared lines on the bus;
bus activity for exclusive lines is avoided. Thus, the cache bandwidth
problem is much less severe than for the broadcast writes scheme.

One of the first snooping cache schemes was the “write once™ technique
proposed in [2]. Numerous variations and improvements have followed.
These methods differ primarily in the details of the cache and bus
protocols used to ensure cache coherence.

The major limitation of the snooping cache schemes is that they require
all processors to share a common bus. The bandwidth of a single
bus is typically insufficient for even a few dozen processors. Higher
bandwidth interconnection networks such as crossbars and multistage
networks cannot be used with snooping cache schemes, since there is
no simple way for every cache to monitor the memory references of all
the other processors. Multiple bus systems similar to those in (3] could
be used, but each cache would have to monitor every cycle on every
bus. This would be impractical for more than a few buses, since it would
require extremely high bandwidth for the cache address tags. Multiple
buses also cause difficult synchronization problems. If two processors
reference the same line (using two different buses), they could each
modify a copy of the line in the other’s cache, thus leaving that line
in an inconsistent state.

Crosspoint cache architecture description
In this section, we show how two existing architectures, the single bus

with snooping caches and the crossbar network, may be combined to form
a new architecture, the crosspoint cache architecture.

trev
Typewritten Text
Proc. of the 1987 Int. Conf. Parallel Processing, Aug. 1987, pp. 266-269.

o o
Processor Processor Processor Processor Devices
] i 1
Snooping Snooping Snooping
Cache Cache Cache
l l 1 Shared
Bus ¢ v Memory

Figure 1: Single bus with snooping caches

Single bus architecture

Figure 1 shows the architecture of a single bus multiprocessor with
snooping caches. Each processor has a private cache memory. The
caches all service their misses by going to main memory over the shared
bus. Cache coherence is ensured by using a snooping cache protocol in
which each cache monitors all bus addresses.

Cache coherence problems due to input/output operations are solved by
connecting the 1/O processors to the shared bus and having them observe
the bus cache coherence protocol. Since the only function of the I/O
processor is to transfer data to and from main memory for use by other
processors, there is little or no advantage in using cache memory with it.
It may be desirable to cache disk blocks in main memory, but this is a
software issue unrelated to the use of a hardware cache between the 1/0
processor and the bus.

Although this architecture is simple and inexpensive, the bandwidth of
the shared bus severely limits its maximum performance. Furthermore,
since the bus is shared by all the processors, arbitration logic is needed
to control access to the bus. Logic delays in the arbitration circuitry may
impose additional performance penalties.

Crossbar architecture

Figure 2 shows the architecture of a crossbar network. Each processor
has its own bus, as does each memory bank. The processor and memory
buses are oriented (at least conceptually) at right angles to each other,
forming a two-dimensional grid. A crosspoint switch is placed at each
intersection of a processor bus and a memory bus. Each crosspoint
switch consists of a bidirectional bus transceiver and the control logic
needed to enable the transceiver at the appropriate times. This array of
crosspoint switches allows any processor to be connected to any memory
bank through a single switching element. Arbitration is still needed on
the memory buses, since each is shared by all processors. Thus, this
architecture does not eliminate arbitration delay.

The crossbar architecture is more expensive than a single bus.
However, it avoids the performance bottleneck of the single bus, since
several memory requests may be serviced simultaneously. Unfortunately,
if a cache were associated with each processor in this architecture, cache
coherence would be difficult to achieve. The snooping cache schemes
would not work, since there is no reasonable way for every processor to
monitor all the memory references of every other processor. To overcome
this problem, we propose the crosspoint cache architecture.

Crosspoint cache architecture

In the crosspoint cache architecture the general structure is similar to that
of the crossbar network shown in Figure 2, with the addition of a cache
memory in each crosspoint.

For each processor, the multiple crosspoint cache memories that serve
it (those artached to its processor bus) behave similarly to a larger single
cache memory. For example, in a system with four memory banks and a
16K byte direct mapped cache with a 16 byte line size at each crosspoint,
each processor would “see” a single 64K byte direct mapped cache with
a 16 byte line size. Note that this use of multiple caches with each
processor increases the total cache size, but it does not affect the line
size or the degree of set associativity. This approach is, in effect, an

267

interleaving of the entire memory subsystem, including both the caches
and the main memory.

To explain the detailed functioning of this system, we consider
processor bus activity and memory bus activity separately.

Processor bus activity

Each processor has the exclusive use of its processor bus and all the
caches connected to it. There is only one cache in which a memory
reference of a particular processor to a particular memory bank may
be cached. This is the cache at the intersection of the corresponding
processor and memory buses.

The processor bus bandwidth requirement is low, since each bus needs
only enough bandwidth to service the memory requests of a single
processor. The cache bandwidth requirement is even lower, since each
cache only handles requests from a single processor, and it only services
those requests directed to a particular memory bank.

Note that this is not a shared cache system. Since each processor bus
and the caches on it are dedicated to a single processor, arbitration is not
needed for a processor bus or its caches. Furthermore, bus interference
and cache interference cannot occur. ‘Thus, the principal delays associated
with shared cache systems are avoided.

Memory bus activity

When a cache miss occurs 2 memory bus transaction is necessary. The
cache that missed places the requested memory address on the bus and
waits for main memory (or sometimes another cache) to supply the
data. Since all the caches on a particular memory bus may generate
bus requests, bus arbitration is necessary on the memory buses. Also,
since data from a particular memory bank may be cached in any of the
caches connected to the comesponding memory bus, it is necessary to
observe a cache coherence protocol along the memory buses. The cache
coherence protocol will make memory bus operations necessary for write
hits to shared lines as well as for cache misses.

Since each memory bus services only a fraction of each processor’s
cache misses, this architecture can support more processors than a single
bus system before reaching the upper bound on performance imposed by
the memory bus bandwidth. For example, if main memory were divided
into four banks, each with its own memory bus, then each memory bus
would only service an average of one fourth of all the cache misses in
the system. So, the memory bus bandwidth would allow four times as
many processors as a single bus snooping cache system.

Memory addressing example

To better illustrate the memory addressing in the crosspoint cache
architecture, we consider a system with the following parameters:
64 processors, 4 memory banks, 256 crosspoint caches, 32-bit byte
addressable address space, 32-bit word size, 32-bit bus width, 4 word
(16 byte) crosspoint cache line size, 16K byte (1024 lines) crosspoint
cache size, crosspoint caches direct mapped.

When a Processor issues a memory request, the 32 bits of the memory
address are used as follows: The two least significant bits select one of
the four bytes in a word. The next two bits select one of the four words
in a cache line. The next two bits select one of the four memory banks,

/o /0
Processor Processor Processor Processor Devices
b—Crosspoint Crosspoint| ¢—| Crosspoint| ¢—| Crosspoint,
Memory 1)| J)| Memory
Bus - - v - Bank 0
ICrosspoint Crosspoint| »—Crosspoint, Crosspoint
Memory | 1 | 1 Memory
Bus - - - - Bank 1
Processor Processor Processor Processor
Bus Bus Bus Bus

Figure 2: Crossbar network

and thus one of the four crosspoint caches
processor. The next ten bits select one of

associated with the requesting
the 1024 lines in a Pparticular

Performance estimate

Because of the importance of a good snooping cache scheme to our
proposed design, we select a particular coherence protocol before
proceeding with our performance analysis. Six snooping cache protocols,
called Write-once, Hiinois, Firefly, and Dragon, are

model. The results indicate that

is referred to [4] for a detailed explanation of the Dragon protocol.

The simulation results of [4] show that the Dragon protocol can support
up to 15 processors without saturating the bus. Results were not shown
for more than 15 processors. The assumptions underlying this result
include: 16K word cache size, 4 word line size, one word bus width,
bus cycle time equal to cache cycle time, main memory cycle time equal
to four cache cycles, 98% cache hit ratio for private blocks, 85% read
operations, 16 to 1024 shared lines, 5% of references 1o shared lines.

Since saturation was not reached even with 15 processors, we will
assume that placing 16 processors on a single bus is feasible. Now
consider a crosspoint cache System with 64 processors, 4 memory banks,
and 4K words per crosspoint cache as in our previous example. Since
four crosspoint caches of 4K Wwords behave simitarty to a single cache of

crosspoint cache systems, since all the processors must be connected
to each memory bus. As
Ppropagation delays and capacitive loading will reduce the maximum speed
and bandwidth of the bus. A slow bus
of cache memories, However, with
not seriously reduce performance,
satisfied by the caches and will
the bus traffic reduction obtained
bandwidth of a slower bus.

cache memories a slow bus will
since most memory references will be
not involve the bus at all, Similarly,
fmmthemdmwiuoﬁsettheredueed

268

Two-level caches

The performance of the crosspoint cache architecture may be further
improved by adding a local cache between each processor and its
Pprocessor bus. To see why this is so, we examine some of the tradeoffs
in designing a crosspoint cache system.

Since memory bus bandwidth is a critical resource, large crosspoint
caches are desirable to maximize the cache hit rate, thus minimizing the
memory bus traffic. Cache speed is one of the most important factors
influencing a processor’s average memory access time. Thus, the speed
of the crosspoint caches should be as fast as possible to maximize the
performance of each individual processor. Simultaneousty achieving the
goals of low bus traffic and fast memory access
since large amounts of fast memory would be necessary,

Processor bus delay also limits the speed of the individual processors,
Although the crosspoint cache architecture eliminates processor bus

maximum feasible bus speed.

By placing a fast cache between each processor and its processor
bus, the effect of the Pprocessor bus
be greatly reduced. When Speed is the primary considerauon, the best
possible location for a Pprocessor’s cache is on the processor chip itself,
On-chip caches can be extremely fast, since they avoid the delays due
to IC packaging and circuit board wiring. They are limited to a small
size, however, since the limited area of a microprocessor chip must be
the cache,

Cache coherence with two-level caches

Using a two-level cache scheme introduces additional cache coherence
problems. Fortunately, a simple solution is possible,
In our cache coherence solution, the Dragon protocol is used on the

current, the crosspoint caches can service any references to shared lines
that they contain without interfering with the processor or its on-chip
cache.

Special attention must be given to the case in which a processor writes
to-a shared line that is present in another processor’s on-chip cache. It
is undesirable to send all shared writes to the on-chip caches, since this
would reduce the bandwidth of the on-chip caches that is available to
their processors.

If each crosspoint cache can always determine whether one of its lines
is also present in its associated on-chip cache, then it can restrict accesses
to the on-chip cache to only those that are absolutely necessary. When a
write to a shared line hits on the crosspoint cache, the crosspoint cache
can send an invalidation request for the line to the on-chip cache only if
the on-chip cache really has the line.

With suitable cache design, the crosspoint cache can determine whether
one of its lines is currently in the on-chip cache, since the on-chip cache
must go through the crosspoint cache to obtain all its lines. To see how
this can be done, we consider the simplest case. This occurs when both
the on-chip and crosspoint caches are direct mapped and have equal line
sizes.

In a direct mapped cache, there is only a single location in which a
particular line from main memory may be placed. In most designs, this
location is selected by the bits of the memory address just above the
bits used to select a particular word in the line. If the total size of the
crosspoint caches is larger than that of their associated on-chip cache
and all line sizes are equal, then the address bits that are used to select
a particular crosspoint cache entry will be a superset of those bits used
to select the on-chip cache entry. Consider those addsess bits that are
used to select the crosspoint cache entry but not the on-chip cache entry.
Out of a group of all crosspoint cache entries that differ only in these
address bits, exactly one will be in the on-chip cache at any given time.
If the value of these address bits are recorded in a special memory in the
crosspoint caches for each line obtained by the on-chip cache, a complete
record of which lines are in the on-chip cache will be available.

To determine if a particular line is in the on-chip cache, the crosspoint
cache uses the same address bits used to select the on-chip cache entry
to select an entry in this special memory. It then compares the additional
address bits used to select the crosspoint cache entry with the valve of
those bits that is stored in the special memory. These bits will be equal
if and only if the line is in the on-chip cache.

The size in bits of the special memory for each crosspoint cache is

given by:
an L:p
(5e) s (2122)

where L, is the number of lines in the on-chip cache, L., is the number
of lines in each crosspoint cache, and M is the number of memory banks.
This is not a large amount of memory. In our example system with four
memory banks, a line size of 16 bytes, and a crosspoint cache size of
16K bytes, we have M =4 and L,, = 1024. If we assume an on-chip
cache size of 1K byte, we have L,. = 64, so only 96 bits per crosspoint
cache are needed to keep track of the lines in the on-chip cache.

This approach is more difficult to use with set associative on-chip
caches, since additional signals must be provided on the microprocessor
to allow the on-chip cache to inform the crosspoint caches of the location
(which element in the set) of each line it loads. ’

A disadvantage of this two-level cache coherence approach is that it
requires arbitration on the processor buses, since the crosspoint caches
use these buses to issue the invalidation requests. This will decrease the
effective speed of the processor buses, so the time required to service
a miss for the on-chip cache will be slightly greater than the memory
access time of a similar system without the on-chip caches.

VLSI considerations

Using VLSI technology to build a crossbar network requires an extremely
large number of pin connections. For example, a crossbar network with
64 processors, 4 memory banks, and a 32 bit multiplexed address and
data path requires at least 2208 connections. Present VLSI packaging

269

technology is limited to a maximum of several hundred pins. Thus, a
crossbar of this size must be partitioned across multiple packages.

The most straightforward partitioning of a crossbar network is to use
one package per crosspoint. This results in a design that is simple and
easy to expand to any desired size. The complexity of a single crosspoint
is roughly equivalent to an MSI TTL package, so the ratio of pins to
gates is high. This approach leads to MSI circuitry in VLSI packages,
so it does not fully exploit the capabilities of VLSL. A much better pin
to gate ratio is obtained by using a bit sliced partitioning in which each
package contains a single bit of the data path of the entire network. The
bit sliced approach, however, is difficult to expand since the network size
is locked into the IC design.

The crosspoint cache architecture, on the other hand, permits the
construction of a single VLSI component containing the crosspoint
cache and its bus interfaces that is efficient in systems spanning a wide
performance range. If each package contains a single crosspoint cache,
the number of pins required is reasonable, and the cache size may be
made as large as necessary to take full advantage of the available silicon
area. It also allows the same chip to be used both in small systems with
just a few processors and a single memory bank and in large systems
with a hundred or more processors and eight or sixteen memory banks.

In the example given, each crosspoint cache contains 128K bits of data
storage, approximately 20K bits of tag storage, and some fairly simple
switch and control logic. Since static RAMs as large as 256K bits are
widely available, it should be feasible to construct such a crosspoint cache
on a single chip with present VLSI technology.

Summary and future research

To overcome the performance limitations of shared memory systems with
a single bus while retaining many of their advantages, we have proposed
the crosspoint cache architecture. We have shown that this architecture
should permit shared memory multiprocessor systems to be. constructed
with more processors than present systems while avoiding the need for
software enforcement of cache coherence.

We have also described a two-level cache architecture in which both
crosspoint caches and caches on the processor chips are used. This
architecture uses small but fast on-chip caches and large but slow
crosspoint caches to achieve the goals of fast memory access and low
bus traffic in a cost effective way. Further investigation of the protocols
for a two-level cache would be a useful topic for future research.

Finally, run-time measurements of real multiprocessor programs are
needed. Measurements of the quantity of shared data and the frequency
with which this data is referenced would be extremely valuable, as they
would allow more realistic estimates to be made of the performance that
can be obtained with the crosspoint cache architecture.

References

[1] Alan Jay Smith, ‘CPU Cache Consistency with Software Support
and Using “One Time Identifiers”’, Proceedings of the Pacific
Computer Communications Symposium, Seoul, Republic of Korea,
October 21-25, 1985, pages 142-150.

[2] James R. Goodman, “Using Cache Memory to Reduce Processor—
Memory Traffic”, Proceedings of the 10th Annual International
Symposium on Computer Architecture, Stockholm, Sweden, volume 11,
number 3, June 13-17, 1983, pages 124-131.

[3] T.N. Mudge, J. P. Hayes, G. D. Buzzard and D. C. Winsor, “Analysis
of Multiple-Bus Interconnection Networks”, Journal of Parallel and
Distributed Computing, volume 3, number 3, September 1986,
pages 328-343.

[4] James Archibald and Jean-Loup Baer, “Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model”, ACM Trans-
actions on Computer Systems, volume 4, number 4, November 1986,
pages 273-298.

