By replacing the
single shared bus of
conventional
multiprocessor
architectures by a set
of buses, the number
of processors can be

increased to a few
hundred.

42

recent study' noted that for

shared memory multiprocessors

the single system bus typically
used to connect the processors to the mem-
ory ‘“...is by far the most limiting
resource, and system performance can be
increased considerably by increasing the
capacity of the bus.’’ One way of increas-
ing the bus capacity, and also the system’s
reliability and fault tolerance, is to increase
the number of buses. In this article we dis-
cuss using multiple buses to provide high-
bandwidth connections between the
processors and the shared memory,
thereby allowing the construction of larger
and more powerful systems than currently
possible.

The architecture we have in mind is
shown in Figure 1. It contains N proces-
sors, Py, P, ...,Pn, each having its own
private cache, and all connected to a
shared memory by B buses, B, B,, ...,
Bp. The shared memory consists of M
interleaved banks, M;, M,, ..., My, to
allow simultaneous memory requests con-
current access to the shared memory. This

0018-9162/87/0600-0042801.00©1987IEEE

avoids the loss in performance that occurs
if those accesses must be serialized, which
is the case with only one memory bank.

Each processor is connected to every bus
and so is each memory bank. When a
processor needs to access a particular
bank, it has B buses from which to choose.
Thus, each processor-memory pair is con-
nected by several redundant paths, which
implies that the failure of one or more
paths can, in principle, be tolerated at the
cost of some degradation in system per-
formance.

In a multiple bus system several proces-
sors may attempt to access the shared
memory simultaneously. To deal with this,
a policy must be implemented that allo-
cates the available buses to the processors
making requests to memory. In particular,
the policy must deal with the case when the
number of processors exceeds B. For per-
formance reasons this allocation must be
carried out by hardware arbiters which, as
we shall see, add significantly to the com-
plexity of the multiple bus interconnection
network.

COMPUTER

Sculpture Simulation © Paul Brown/Digital Pictures 1983.

Techniques for interconnecting multiple
processors and, in particular, connecting
multiple processors to a shared memory,
have been the object of considerable study
during the past decade. Perhaps the most
studied type of interconnection network is
the multistage network. Many have been
proposed, and we refer the reader to
Siegel” for a thorough discussion of the
subject.

The rationale for most multistage net-
works is that they have fewer components
than a crossbar switch while retaining
many of the desirable connectivity proper-
ties of the crossbar. This reduction in inter-
connection complexity is important
because the systems for which multistage
networks are targeted are envisioned to
have hundreds or thousands of processors.
A few commercial machines based on mul-
tistage interconnection networks have
been produced, such as the BBN Butterfly.
These networks have also been proposed
for a number of experimental machines,
such as the Illinois Cedar project, the IBM
RP3, and the Purdue PASM.

In contrast, the shared memory mul-
tiprocessors emerging as commercial
products have, with few exceptions,
avoided multistage networks as a means of
interconnecting the processors to the
shared memory. Instead they employ
interconnection architectures based on
conventional buses. Representative exam-
ples are the Encore Multimax and Sequent
Balance 8000, which use a single shared
bus.! One consequence of this evolution-
ary approach to interconnection design is
that the commercial systems have been
limited to a few dozen processors rather
than thousands of processors. The
multiple-bus interconnection network
retains the well-understood features of the
single bus, but may allow construction of
larger systems that can compete with the
multistage systems in computing power.

A typical shared system bus contains 50
to 100 wires and is physically realized by
printed lines on a circuit board or by dis-
crete (backplane) wiring. Additional costs
are incurred by interface electronics, such
as line drivers, receivers, and connectors.
Concern about wiring and interface costs
is probably a major reason why multiple
buses have seen little use so far in multipro-
cessor designs.

In this article we explore some of the
practicalities of extending a single shared
bus system that can support a few dozen
processors to a multiple bus system that
can support two or three times as many
processors. To illustrate the issues

June 1987

Multiple bus interconnection network

Cache | [Cache
PR P

Cache
Py

Figure 1. Multiple-bus multiprocessor.

involved, we first describe the operation of
a hypothetical multiple bus system in more
detail.

System operation

The importance of the caches in the
multiple-bus system of Figure 1 is that they
reduce the number of processor-memory
requests (the bus traffic) that need to refer
back to the shared memory, allowing the
construction of more powerful systems
without increasing the number of buses.
This is important because, as noted above,
the buses and their associated interface
and control logic form a significant frac-
tion of the system cost. Unlike the
uniprocessor case, the cache of a multipro-
cessor does not have to be constructed
from very fast (and expensive) memory, as
its primary function is to reduce the traf-
fic with the shared memory, and thus to
avoid the potential performance degrada-
tion associated with having to wait for a
shared resource. The extent to which refer-
ences have to be made to shared memory
depends a lot on the caching algorithm
used. A key aspect of this algorithm is the
policy for updating the shared memory
when a request is addressed to the cache.
In this article we assume a simple copy
back or write back updating technique,
where an altered cache block is copied to
shared memory only when the block is
deallocated from the cache.

Copy back divides the references to
shared memory into two categories: those
due to cache misses and those due to the

M,

copy back process. A cache miss occurs
when a processor generates a read or write
request for data or instructions that can-
not be satisfied by the cache. A cache block
containing the requested word is read from
the shared memory or one of the other
caches into the cache where the miss
occurred. This replaces a block currently
in the cache.

The case where a cache is the source of
a requested block occurs when the most
recently modified version of the block is in
some cache rather than in the shared mem-
ory; we refer to this as a cross-cache hit.
Caches check for cross-cache hits
addressed to themselves by monitoring
memory addresses (snooping) on the sys-
tem buses. Congestion can occur at a cache
when it receives several simultaneous
cross-cache hits from the buses.

Replaced cache blocks can be discarded
(overwritten) if not modified while in the
cache. On the other hand, if modified they
must be copied back to the shared mem-
ory. A processor need not wait for a copy
back operation to be completed if a write
buffer is used at the interface to the buses.

Ensuring the consistency (coherence) of
the data stored in multiple caches can get
quite complicated. We refer the reader to
Archibald and Baer' for a detailed discus-
sion of this issue.

Since both read misses and copy back
operations require a cache block to be
transferred on a bus, we assume that the
data path width of the buses matches the
block size of the cache. In the case of
reads, the memory address information
will precede the data transfer by the mem-
ory access time. To avoid idling the data

43

path for this period, the address path and
data path sections of a bus ought to run
asynchronously.

Two sources of conflict due to memory
requests are present in the system of Fig-
ure 1. First, more than one request can be
made to the same memory module. Sec-
ond, available bus capacity may be insuffi-
cient to accommodate all the requests.
Correspondingly, the allocation of a bus
to a processor that makes a memory
request requires a two-stage process as
follows:

(1) Memory conflicts are resolved first
by M 1-of-N arbiters, one per memory
bank. Each 1-of-N arbiter selects one
request from up to N requests to get access
to the memory bank.

(2) Memory requests selected by the
memory arbiters are then allocated a bus
by a B-of-M arbiter. The B-of-M arbiter
selects up to Brequests from the M mem-
ory arbiters.

The assumption that the address and data
paths operate asynchronously allows
arbitration to overlap with data transfers.

At first glance it may seem that there
should be one bus per memory bank. This
obviates the need for the second level of
arbitration, yielding a double saving—we
can drop the B-of-M arbiter and use a
faster bus cycle. However, the optimal
configuration may require significantly
fewer buses than memory banks. To illus-
trate this, we next develop a simple per-
formance model of multiple-bus systems.

Performance modeling

If we model the requests made by a
processor for memory as a sequence of
independent Bernoulli trials,* we can
develop expressions for an ‘‘average’’
number of memory requests made by the
N processors at the start of each memory
cycle and the bandwidth of the interleaved
memory. Let r be the probability that an
arbitrary processor P; requests access to
shared memory at the start of a memory
cycle (this is the Bernoulli trial), then the
expected number of requests for shared
memory is given by N r.

Some requests will always be blocked
due to the two types of conflict mentioned
earlier, no matter how large we make B

*Repeated (statistically) independent trials are called
Bernoulli trials if there exist only two possible out-
comes for each trial and their probabilities remain the
same throughout. An example of this is a sequence of
coin flips.

44

and M. The bandwidth BW of the mem-
ory subsystem composed of the B buses
and the M memory banks is defined as the
expected number of busy memory banks,
which is also the expected number of suc-
cessful memory accesses. The presence of
conflicts means that not all of the N r
expected memory requests make success-
ful memory accesses, therefore
BW < Nr.

The requests for shared memory as
modeled above can be reads resulting from
cache misses; copy backs; or resubmis-
sions of misses and copies blocked in
earlier cycles due to conflicts with other
processors accessing the same memory
bank. When two or more processors
attempt to access memory, an arbiter is
invoked to give access to just one of them.

If we assume that the memory banks
interleave on the low-order bits of the
cache block address and that the instruc-
tion fetches and data accesses intermix,
then some empirical evidence suggests that
requests to all memory banks are equally
likely.> In other words, the probability
that the request from processor P;is for a
particular memory bank M; is r/M,
independent of i or j. Following Mudge et
al.,* we split the development of an
expression for BW into two steps cor-
responding to the two levels of arbitration.

(1) Memory arbitration. The probabil-
ity that there are no requests from P; to
M;is 1 — r/M, and therefore the proba-
bility that none of the processors request
M; at the start of a memory cycle is
(1 — r/M)™. Let E; be the event that there
is at least one request for M;; in other
words, that the 1-of-N arbiter for M; out-
puts a request. Then

PriE}=1- (1 —AL{)N (1)

for any j. If theevents E;,j = 1, ..., M,
are assumed independent and there are
always a sufficient number of buses, i.e.,
B = M, then the expected number of busy
memory banks is

on-§ mir-(-5)

where the subscript S denotes sufficient
buses. In the case of large N this expression
has an approximate lower bound given by

Bw,~ M (1-e- %) @

(In the example given later, this approxi-

mation results in an error of less than 0.2
percent.) This expression, or variations on
it, has appeared in the literature on numer-
ous occasions. One of the earliest deriva-
tions came from Strecker.’ In specific
cases, Equation (2) can be evaluated by
estimating r from the miss ratio, the cache
block size, the ratio of memory cycle time
to processor cycle time a, and the caching
algorithm for the processors.

In the most general case of interest,
B < M. This leads to the next step of the
analysis.

(2) Bus arbitration. The assumption that
the Ejs are independent allows us to
express f(i), the probability that exactly i
of the memory arbiters output a request at
the start of a memory cycle, as follows:

fiy= (154)Pr[Ej]"(l —PriEYM-i

In the case where i < B, there are suffi-
cient buses to handle the memory requests
and the B-of-M arbiter does not have to
block any requests. In the case where
i > B, allthe Bbuses are in use and the B-
of-M arbiter blocks i — B of the requests.
With these two cases in mind, we can write
the expression for the expected number of
memory banks in use as
B M

BW= ;lij(z)+ ‘leﬂt)

i=

3)

where the two terms on the righthand side
correspond to the two cases, i < B and
i > B. It is easy to show that when
B =M, BW = BWs; however, in
general Nr > BWs > BW, when
r > 0. These inequalities correspond to
conflicts that cause memory requests to be
blocked during memory arbitration
(Nr > BWg) and then during bus
arbitration (BWs > BW). Goyal and
Agerwala® first derived Equation (3) for
BW, about the same time that Mudge et
al.* extended it to the partial bus case.
Das and Bhuyan’ later used it in a reliabil-
ity study.

Mudge et al.® observed that the deriva-
tion leading to Equation (3) relies on two
assumptions: temporal independence and
spatial independence. Temporal independ-
ence requires that successive memory
requests by a processor be independent,
which is clearly not valid for resubmitted
blocked requests. Spatial independence
corresponds to independent E’s, an
assumption that also has limited validity.

Consider a system with two processors,
two buses, and two memory banks. The
condition for spatial independence is

COMPUTER

PrlE,E,] = PrlE,\Pr|E,] @)

However, Pr[E,|] = PrlE;] = r(1 —
(r/4)) but PrlE\E;) = r*/2. In other
words, Equation (4) is not satisfied for
1 = r > 0. The inaccuracy introduced by
the two independence assumptions is illus-
trated in Figure 2, which compares the
values of BW calculated from Equation (3)
to those obtained by a simulation in which
neither temporal nor spatial independence
was assumed. In view of the simplifying
assumptions in the underlying model,
deviation of the computed results from the
simulation data is quite small. Note that
when the number of buses B is less than
BW;, the buses are the limiting factor,
i.e., BW = B. When the number of buses
exceeds BWs, then the bandwidth can
approach its maximum (bus-sufficient)
value.

Other models address the accuracy of
the independence assumptions. For exam-
ple, Valero et al.’ and Bhuyan' present
several equivalent models in which only
temporal independence is assumed.
Although more complicated to develop,
their models are only slightly more
accurate than the model discussed above
leading to Equation (3). On the other
hand, iterative improvement techniques
allow for temporal dependence and yield
somewhat more accurate results when
applied to Equation (3) and the other
models cited above.® Towsley'' developed
amodel that gives bandwidth predictions
generally within one percent of simulation,
at the cost of considerable computation.
Using semi-Markov processes, Mudge and
Al-Sadoun'? obtained a model that
extends to multicycle memory accesses.

June 1987

This model is useful when modeling sys-
tems where the block size exceeds the bus
data path.

Finally, another class of multiple bus
memory interference models, based on the
work of Marsan and Gerla, employ tradi-
tional Markovian queueing network tech-
niques.>!* Their distinguishing feature is
that memory access time is treated as an
exponentially distributed random varia-
ble. However, the fixed access times incor-
porated into the earlier models are the
norm in real memories.

The remainder of our discussion illus-
trates the use of the performance model
leading to Equation (3) and its implica-
tions for the design of the multiple bus sub-
system.

Design example

Consider the design of the multiple bus
architecture of Figure 1, where M and B
are to be determined. Suppose that from
performance studies of the candidate
processors on the anticipated workload, it
has been determined that N = 64 proces-
sors are needed, and that requests for
memory from these processors should be
successful 90 percent of the time. We make
the following three assumptions:

(1) The processor cycle time is half the
cycle time of the shared memory, i.e.,
ar=120;

(2) The cache has a capacity of 64 kilo-
bytes with a block size of 16 bytes. For
such caches the observed miss ratio m has
been in the neighborhood of 0.01."

(3) Misses are frequently followed by
copy back operations. Statistics published

Figure 2. Graphs of BW versus B
for N = M = 16.

in Smith"® indicate that the resulting dou-
ble bus cycles occur about half of the time.

From these three assumptions we obtain
an estimate for r of 1.5ma = 0.03. This
leads to an expected number of
Nr = 1.92requests for shared memory at
the start of each memory cycle.

As we saw in the earlier analysis, it is
impossible to satisfy all requests because
of conflicts due to memory reference pat-
terns and insufficient bus capacity. The
mismatch between memory bandwidth
and memory requests can be conveniently
characterized by p, defined by

P 5)

and corresponds to the probability of a
successful request, which we require to be
90 percent. The memory subsystem design
problem can now be viewed as choosing
values of B and M, for a given N and r so
that p reaches a minimum acceptable
value. We solve this in two steps. First, we
estimate lower bounds on B and M assum-
ing a sufficient number of buses are avail-
able. These bounds are used to restrict the
search space when solving Equation (3) for
values of B and M that satisfy the con-
straint on p.

It follows from Equation (2) and Equa-
tion (5) that the probability of a success-
ful request psif there are sufficient buses
is given by

BW.

§

P ©

This is inherent in the memory request pat-
terns and depends only on M. Clearly,

45

Table 1. Success probability p, for
representative values of M assuming
sufficient buses.

M p,
4 0.80
8 0.89

16 0.94

32 0.97

Table 2. Success probability p for
representative values of M and B.

M B=2 B=4 B=8
16 0.73 0.92 0.94
32 0.74 095 0.97
64 074 096 0.99

Ps > p, as (insufficient) buses can only
make things worse. Our design specifica-
tion calls for processor requests for mem-
ory to be successful 90 percent of the time,
i.e., p > 0.9. The quantity ps must also
satisfy this bound, therefore we can use
Equation (2) and Equation (6) to estimate
M, the number of memory banks required.
Table 1 below shows values of ps for
selected values of M, which are powers of
2 for efficient address interleaving.
From Table 1 we can see that at least 16
memory banks are needed to satisfy the
requirement ps > p > 0.9 and to make
M a power of 2. Also, since Nr = 1.92,
we can conclude that at least two buses are
needed. Therefore, we can restrict our
attention to valuesof M = 16and B = 2,
when using Equation (3) to obtain combi-
nations of B and M that meet the bounds
on p. This leads to Table 2, from which we
see that B =4 and M = 16 yields
p = 0.92. Hence the system configuration
with 4 buses and 16 memory banks is the
desired solution to our example problem.
Lang et al.'® were among the first to
recognize in their study of multiple bus sys-
tems that the number of buses could be sig-
nificantly less than the number of memory
banks. The savings in the number of buses
can be substantial, as we can see from our
example, but come at the cost of requiring
a B-of-M arbiter. In the next section we
will look at this cost in detail.

Arbiter design
As we have seen, a general multiple bus
system calls for two types of arbiters: 1-of-

N arbiters to select among processors and

46

a B-of-M arbiter to allocate buses to those
processors that successfully obtained
access to memory.

1-of-N arbiters. If multiple processors
require exclusive use of a shared memory
bank and access it on an asynchronous
basis, conflicts may occur. These conflicts
can be resolved by a 1-of-N arbiter. The
typical signaling convention between the
processors and the arbiter is as follows:
Each processor P; has a request line R;
and a grant line G;. Processor P; requests
amemory access by activating R;, and the
arbiter indicates the allocation of the
requested memory bank to P; by activat-
ing Gi.

Several designs for 1-of-N arbiters have
been published.!” In general, these
designs can be grouped into three categor-
ies: fixed priority schemes, rings, and
trees.

Fixed priority arbiters are relatively sim-
ple and fast, but they have the disadvan-
tage that they are not fair: lower priority
processors can be forced to wait
indefinitely if higher priority processors
keep the memory busy.

A ring-structured arbiter gives priority
to the processors on a rotating basis, with
the lowest priority given to the processor
that most recently used the memory bank
requested. This has the advantage of being
fair, because it guarantees that all proces-
sors will access memory in a finite amount
of time, but the arbitration time grows
linearly with the number of processors.

A tree-structured 1-of-N arbiter is
generally a binary tree of depth log,N
constructed from 1-of-2 arbiter modules
(see Figure 3). Each 1-of-2 arbiter module
in the tree has two request input lines; each
with a corresponding grant output line,
and a cascaded request output and a cas-
caded grant input for connection to the
next arbitration stage. Tree-structured
arbiters are faster than ring arbiters
because the arbitration time grows as
O(log,N) instead of O(N). Fairness can be
assured by placing a flip-flop in each
1-of-2 arbiter, toggled automatically to
alternate priorities when the arbiter
receives simultaneous requests.

Pearce, Field, and Little'” give an
implementation of a 1-of-2 arbiter module
constructed from 12 gates. The delay from
the request inputs to the cascaded request
output is 2A, where A denotes the nominal
gate delay, and the delay from the cas-
caded grant input to the grant outputsis A.
Thus, the total delay for a 1-of-N arbiter
tree is 3Alog,N. Therefore, to construct a

1-0f-64 arbiter for our-example, we need
a six-level tree. This tree will contain 63
1-of-2 arbiters, for a total of 756 gates. The
corresponding total delay imposed by the
arbiter will be 18A.

B-of-M arbiters. Lang and Valero'®
gave detailed implementations of B-of-M
arbiters. The basic arbiter consists of an
iterative ring of M arbiter modules A,
A,, ..., Ay that compute the bus assign-
ments, and a state register to store the
arbiter state after each arbitration cycle
(see Figure 4). The storage of the state is
necessary to make the arbiter fair by tak-
ing into account previous bus assignments.
After each arbitration cycle, the highest
priority is given to the module immediately
following the last one serviced—a stand-
ard round-robin policy.

An arbitration cycle starts with all the
buses available. The state register identi-
fies the highest priority arbiter module,
A, by asserting signal e; to that module.
Arbitration begins with this module and
proceeds around the ring from left to right.
At each arbiter module, the R; input is
examined to see if the corresponding mem-
ory bank M; is requesting a bus. If a
request is present and a bus is available, the
address of the first available bus is placed
on the BA; output and the G; signal is
asserted. BA, is also passed to the next
module, to indicate the highest numbered
bus that has been assigned. If a module
does not grant a bus, its BA; output is
equal to its BA;_, input. If a module does
grant a bus, its BA; output is set to
BA; + 1. When BA; = B all the buses
have been used and the assignment process
stops.

The highest priority module A, as indi-
cated by the e; signal, ignores its BA;,
input and begins bus assignment with the
first bus by setting BA; = 1. Each mod-
ule’s C, input is a signal from the previ-
ous module that indicates that the previous
module has completed its bus assignment.
Arbitration proceeds sequentially through
the modules until all of the buses have been
assigned, or all the requests have been
satisfied. The last module to assign a bus
asserts its s; signal. This is recorded in the
state register, which uses it to select the
next €; output so that the next arbitration
cycle will begin with the module immedi-
ately after the one that assigned the last
bus.

Turning to the performance of B-of-M
arbiters, we observe that the simple itera-
tive design of Figure 4 must have a delay
proportional to M, the number of arbiter

COMPUTER

modules. By combining g of these modules
into a single module (the ‘‘lookahead”’
design of Lang and Valero'®), the delay is
reduced by a factor of g.

If the enlarged modules are imple-
mented by PLAs with a delay of 3A, the

R: Gc

1-of-2 arbiter

Ro Go

R; G,

Ry Go

resulting delay of the arbiter is about
(3M/g)A. For our example, where
M = 16 and g = 4, the arbiter delay is
about 12A. This allows the complete
arbitration process for this example to be
implemented with delay 30A, 18A for the

R Ge R. Gc

1-of-2 arbiter 1-of-2 arbiter

Ry Gy Ry Go

Figure 3. 1-of-8 arbiter constructed from a tree of 1-of-2 arbiters.

State register

Figure 4. Iterative design for a B-of-M arbiter.

June 1987

Ry Go

Ry G

1-of-N arbiter, and 12A for the B-of-M
arbiter. Since arbitration can be over-
lapped with bus accesses, the memory bus
cycle time must be at least 30A.

If the lookahead design approach of
Lang and Valero'® is followed, the

Re Gc

1-of-2 arbiter

R G

47

arbitration time of B-of-M arbiters grows
at a rate greater than O(log,M) but less
than O(log,”M). Thus the delay of the B-
of-M arbiter could become the dominant
performance limitation for large M. This,
however, is not a problem in our example
with M = 16.

Like the arbiters, the bus conductors
make a significant contribution to the
overall system cost. Some rough calcula-
tions show that our four-bus example does
not require an excessive number of (back-
plane) conductors. To transfer a cache
block in one bus cycle requires 16 X 8
data conductors; combining these with a
32-bit address and 10 control signals gives
atotal of 170 conductors. Thus four buses
will require 680 conductors. These are eas-
ily accommodated by two standard
384-pin 10-inch PCB edge connectors,
which leave adequate additional conduc-
tors for power and ground. If four proces-
sors can be placed on a card, and the
shared memory plus the arbiters can be
placed on four cards, the system will fit on
20 cards, exclusive of the I/O subsystem.
Placing the connectors on the backplane
at 5/8-inch centers results in a backplane
that measures about 2 feet X 1 foot.

ackaging technology is likely to set

alimit of about four buses for the

near future. If we assume the four
buses can be time multiplexed and that
larger caches than those proposed in the
example are possible, then a four-bus sys-
tem could support several hundred proces-
sors. If optical backplanes become a
reality, the number of buses that could be
supported will greatly increase, allowing
future shared-memory multiple bus sys-
tems with thousands of processors. []

Acknowledgments

This work was supported in part by Army
Research Office grant no. DAAG29-84-K-0070
and by the Office of Naval Research under con-
tract N00O14 85 K 0531.

References

1. J. Archibald and J.-L. Baer, ‘“Cache
Coherence Protocols: Evaluation Using a
Multiprocessor Simulation Model,”” ACM
Trans. Computer Systems, Nov. 1986, pp.
273-298.

2. H.J.Siegel, Interconnection Networks for
Large-Scale Parallel Processing: Theory
and Case Studies, Lexington Books, Lex-
ington, Mass., 1985.

3. C.H.Hoogendoorn, ‘“A General Model for
Memory Interference in Multiprocessors,”’

48

IEEE Trans. Computers, Oct. 1977, pp.
998-1005.

4. T.N.Mudge et al., ‘“Analysis of Multiple-
Bus Interconnection Networks,”” Proc.
1984 Int’l Conf. Parallel Processing, Aug.
1984, pp. 228-232.

5. W.D. Strecker, Analysis of the Instruction
Execution Rate in Certain Computer Struc-
tures, PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, Penn., 1970.

6. A.Goyaland T. Agerwala, ‘‘Performance
Analysis of Future Shared Storage Sys-
tems,”” IBM J. Research and Development,
Jan. 1984, pp. 95-98.

7. C.Dasand L. Bhuyan, ‘‘Bandwidth Avail-
ability of Multiple-Bus Multiprocessors,”’
IEEE Trans. Computers, Oct. 1985, pp.
918-926.

8. T.N.Mudgeetal., ‘‘Analysis of Multiple-
Bus Interconnection Networks,’’ J. Paral-
lel and Distributed Computing, Sept. 1986,
pp. 328-343.

9. M. Valeroetal., ‘‘A Performance Evalua-
tion of the Multiple Bus Network for Mul-
tiprocessor Systems,’’ Proc. ACM Conf.
Performance Evaluation, 1983, pp.
200-206.

10. L.N. Bhuyan, ‘‘A Combinatorial Analysis
of Multibus Multiprocessors,’’ Proc. 1984
Int’l Conf. Parallel Processing, Aug. 1984,
pp. 225-227.

11. D. Towsley, ‘‘Approximate Models of Mul-
tiple Bus Microprocessor Systems,’’ IEEE
Trans. Computers, Mar. 1986, pp. 220-227.

12. T.N. Mudge and H.B. Al-Sadoun, ‘“‘A
Semi-Markov Model for the Performance
of Multiple-Bus Systems,” IEEE Trans.
Computers, Oct. 1985, pp. 934-942.

13. M.A. Marsan et al., ‘““‘Modeling Bus Con-
tention and Memory Interference in a Mul-
tiprocessor System,’’ IEEE Trans.
Computers, Jan. 1983, pp. 60-72.

14. I.H. Onyiiksel and K.B. Irani, ‘‘A Marko-
vian Queueing Network Model for Per-
formance Evaluation of Bus-Deficient
Multiprocessor Systems,’’ Proc. 1983 Int’l
Conf. Parallel Processing, Aug. 1983, pp.
437-439.

15. A.J. Smith, ‘‘Cache Evaluation and the
Impact of Workload Choice,”’ Proc. IEEE
12th Ann. Int’l Symp. Computer Architec-
ture, June 1985, pp. 64-73.

16. T. Lang, M. Valero, and I. Alegre, ‘‘Band-
width of Crossbar and Multiple-Bus Con-
nections for Multiprocessors,”’ IEEE
Trans. Computers, Dec. 1982, pp.
1227-1233.

17. R.C. Pearce, J.A. Field, and W.D. Little,
“‘Asynchronous Arbiter Module,”’ /IEEE
Trans. Computers, Sept. 1975, pp. 931-932.

18. T. Lang and M. Valero, ‘‘M-users B-servers
Arbiter for Multiple-Buses Multiproces-
sors,”” Microprocessing and Micropro-
gramming, 1982, pp. 11-18.

Readers may write to the authors at the
Advanced Computer Architecture Laboratory,
Dept. of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor,
MI 48109.

L
€ \%
Trevor N. Mudge is an associate professor in the
Department of Electrical Engineering and Com-
puter Science at the University of Michigan. His
research interests include computer architec-
ture, programming languages, and computer
vision.

Mudge received a BSc in cybernetics from the
University of Reading, England, in 1969, and
an MS and PhD in computer science from the
University of Illinois in 1973 and 1977, respec-
tively. He is a senior member of the IEEE.

e >
John P. Hayes is a professor in the Department
of Electrical Engineering and Computer Science
at the University of Michigan. He is also direc-
tor of the department’s Advanced Computer
Architecture Laboratory. His research interests
include computer architecture, VLSI design,
digital system testing, and switching theory.
Hayes received the BE degree from the
National University of Ireland in 1965, and the
MS and PhD degrees from the University of
Illinois in 1967 and 1970, all in electrical engi-
neering. He is a fellow of the IEEE.

Donald C. Winsor is pursuing a PhD in electri-
cal engineering at the University of Michigan.
His research interests include computer archi-
tecture and VLSI design.

Winsor received the BSE degree in electrical
engineering in 1981, the BSE degree in computer
engineering in 1982, and the MSE degree in elec-
trical engineering in 1983, all from the Univer-
sity of Michigan.

COMPUTER

