IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

449

Timing Issues in the Distributed Execution of Ada
Programs

RICHARD A. VOLZ, SENIOR MEMBER, IEEE, AND TREVOR N. MUDGE, SENIOR MEMBER, IEEE

Abstract—This paper examines, in the context of distributed
execution, the meaning of Ada constructs involving time. In the
process, unresolved questions of interpretation and problems
with the implementation of a consistent notion of time across a
network are uncovered. It is observed that there are two Ada
mechanisms that can involve a distributed sense of time: the
conditional entry call, and the timed entry call. It is shown that a
recent interpretation by the Language Maintenance Committee
resolves the questions for the conditional entry calls but results in
an anomaly for timed entry calls. A detailed discussion of
alternative implementations for the timed entry call is made, and
it is argued that: 1) timed entry calls imply a common sense of
time between the machines holding the calling and called tasks;
and 2) the measurement of time for the expiration of the delay
and the decision of whether or not to perform the rendezvous
should be made on the machine holding the called task. The need
to distinguish the unreadiness of the called task from timeouts
caused by network failure is pointed out. Finally, techniques for
realizing a single sense of time across the distributed system (at
least to within an acceptable degree of uncertainty) are also
discussed.

Index Terms—Ada, Ada conditional entry calls, Ada task
timing, Ada time entry calls, distributed Ada, distributed lan-
guages, distributed program exgcution.

I. INTRODUCTION

NE of the principal purposes for which the Ada language
¥ was designed is the programming of embedded real-time
systems [1], and, with increasing frequency, embedded real-
time systems involve distributed computing. It is therefore
necessary that Ada support the distributed execution of
programs. In this paper, we explore one of the most important
factors in achieving distributed execution of Ada programs:
the management of time across a network of processors. In
particular, we examine the meaning of Ada constructs
involving time in the context of distributed execution, note that
there are both unresolved questions of interpretation and
problems with the implementation of a consistent notion of
time across a network, and propose interpretations and timing
mechanisms to resolve these problems. Other important issues
involving the distribution of Ada across a network of
processors are discussed in [2]-[4].
The Ada mechanisms involving time are the delay state-
ment, the conditional entry call, the timed entry call, and the

Manuscript received August 28, 1986; revised December 3, 1987. This
work was supported in part by General Dynamics under Contract DEY-
605028, General Motors Corporation under Contract GM/AES (1986-87) and
NASA under Contract NAG 20359.

The authors are with the Robotics Research Laboratory, College of
Engineering, University of Michigan, Ann Arbor, MI 48109.

1EEE Log Number 8613057

selective wait statement. The delay and selective wait state-
ments are strictly local in their actions (i.e., their effects take
place on a single processor), and thus are not of concern in this
paper. Of course, the view of time and the underlying
mechanisms for managing it are crucial. The management of
time in the distributed environment begins with the manage- -
ment of time within a single processor. This is discussed in a
separate paper in which we recommend that time within a
processor be kept in a (locally) absolute sense and show a
mechanism for accomplishing absolute timing which is sim-
pler than the mechanisms now in use [5]. In this paper, we will
argue that, among other things, this absolute sense of time
should be extended to the multiple distributed processor
situation as well, and that, indeed, such an absolute network
sense of time is required by the reference manual [1]. In doing
so, we will focus attention on conditional and timed entry
calls. An absolute sense of time is assumed in several models
for real-time systems (see, for example, [6]), and the
advantages of using absolute time are also discussed in [7],
where it is proposed for fault-tolerant distributed systems.

The definitions of conditional and timed entry calls are not
entirely clear when examined in the distributed setting. The
interpretations applied significantly effect the implementation.
We will approach the problem by trying to make a strict
interpretation of Ada as presented in the reference manual
(RM), since the ‘‘no supersets, no subsets’’ philosophy is one
of the major tenets of the language and the principal upon
which the portability of Ada is based. Where there is possible
ambiguity in the interpretation of the manual due to consider-
ation of distributed execution, the various possibilities and
their implications are discussed. We expect that, ultimately,
the Ada Board and ISO Working Group 9 will have to examine
these problems and issue interpretations of the RM to cover
the distributed situation more completely. It is hoped that the
discussions presented here will aid in the determination of
logically consistent and implementable interpretations.

In the next section we review the conditional and timed
entry call structures of Ada to place the rest of the paper in
perspective. Section III then examines the issues in conditional
entry calls, while Section IV does so for timed entry calls. In
both sections interpretations are proposed. Section V follows
by addressing the question of maintaining the network sense of
time required for a reasonable interpretation of time entry
calls. Concluding remarks are presented in Section VI.

II. OVERVIEW OF CONDITIONAL AND TIMED ENTRY CALLS

The conditional entry call is used to determine whether or
not the called task is ready to accept an entry call and, if it is,

0018-9340/87/0400-0449$01.00 © 1987 IEEE

450

to make the call. To illustrate, suppose that a robot and an
automatic guided vehicle (AGV) are engaged in a cooperative
manufacturing task in which the robot unloads two different
kinds of parts from a pair of machine tools, placing them in a
temporary storage area, and when the AGV is ready, loads
parts onto it. The AGV alternately is loaded with parts by the
robot and transfers them to a longer term storage area where it
is unloaded and then returns to the robot for another load. We
assume that the temporary storage area always contains
enough parts to fill the AGV. An abstraction of the relevant
parts of the robot and AGV tasks might look like the
following.

Example 1
Abstraction of Robot Task:

loop
select—This begins a conditional entry call.
AGV.READY(KIND);--This is the actual call.
--Load a part of type KIND on the AGV from
--temporary storage.
else
null;
end select;
--Unload a part from a machine tool
--and place it in temporary storage.
end loop;

Abstraction of AGV Task:

task AGV is

entry READY(K: out TYPE_OF_PART);
end AGV;
task bady AGV is

while AGV_NOT_FULL loop
accept READY(K: out TYPE_OF_PART) do;
K. =LOCAL_KIND_NEEDED;
end READY;
end loop;

Upon reaching the select, the robot task would check to see
if the AGV task has reached the accept READY statement. If
it has, it will rendezvous with AGV at that point. The
rendezvous consists of executing the code between the
“‘accept READY’’ and the ‘‘end READY.”’ In this case, the
rendezvous simply amounts to invoking a function LOCAL__
KIND_NEEDED to deterrhine the type of the next part to be
loaded, and then assigning the result to KIND, a variable of
the robot task. (KIND is the actual parameter for K in the
rendezvous executed by the AGV task.) The value of KIND
tells the robot what kind of part to load next. After completion
of the rendezvous, the robot will proceed to load the AGV

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

with the appropriate part. Following this, the robot will unload
the next part from the machine it is tending. In the case where
the AGV has not reached the READY entry point at the time
that the conditional entry point is made, then the robot task
will start immediately to unload the next part from the
machine.

Whenever the AGV is ready to be loaded with parts by the
robot, it will reach the loop shown above. If it reaches the the
accept statement before the robot makes the call, it will simply
wait at that accept statement until the robot task makes the call
to READY. After each rendezvous, which initiates loading
another part, the function AGV_NOT_FULL is called to
check if the AGV has room for more parts (it returns a
Boolean value).

We use the same example to illustrate timed entry calls.
Consider the code abstraction shown below.

Example 2
Abstraction of Robot Task:

loop
select--This begins a timed entry call.
AGV.READY(KIND);--This is the actual call.
--Load a part of type KIND on the AGV from
temporary storage.
or
delay 1*SECOND;--The time limit for accepting
the call.
end select;
--Unload a part from a machine tool
--and place it in temporary storage.
end loop;

The abstraction of the AGV task is the same in this case as
for the conditional entry call. The operation in this case is
similar, except that the robot task will now wait one second
after attempting the call to AGV.READY before taking the
alternative of unloading a part from the machine it is tending.

Note that the segment of code which is executed during the
rendezvous is written as part of the called task. Normally, this
will mean that this segment of code will be located on the
processor holding the called task. However, Haberman and
Nassi [8] have shown that, in some cases, this code may be
executed in the context of the calling program for the purposes
of reducing executfon time. We will consider the implications
of both locations in the following discussion.

III. ConpITIONAL ENTRY CALLS

First, we examine an ambiguity in the interprétation of
conditional entry calls across a network of processors. The
RM, in Paragraph 1 Section 9.7.2, states that ‘“A conditional
entry call issues an entry call that is then canceled if a
rendezvous is not immediately possible.’” There is a possible
difficulty in the word ‘‘immediate.”’ At least one group [9] has
interpreted the work ‘‘immediate” in a temporal sense and
used this to disallow conditional entry calls when such calls are
placed across the network since network delays would prevent
the ‘‘immediate”” determination of whether or not the call

-VOLZ AND MUDGE: DISTRIBUTED EXECUTION OF ADA PROGRAMS

could be accepted. This would mean that in the example
above, the conditional entry call from the robot task to the
AGYV task would always fail and the code sequence shown
could not be used to cause the AGV to be loaded. One would
be forced to use the timed entry call.

However, the RM also presents a nontemporal interpreta-
tion of the word ‘‘immediate’’. In Paragraph 4 of the same
section it restates the conditions for cancellation of the call:
““The entry call is canceled if the execution of the called task
has not reached a point where it is ready to accept the call....”’
There is nothing that inherently involves time in this interpre-
tation. This statement expresses the action of the conditional
entry call only in terms of the readiness of the called task to
receive the call. This is appropriate, and this interpretation
shall be used throughout the remainder of this paper. If a sense
of time is required, timed entry calls should be used.

In a related matter, the RM, in Paragraph 4 Section 9.7.3,
states that timed entry calls with zero or negative delays are to
be treated as conditional entry calls. Under the condition that
the called task is ready to accept a call, an inconsistency may
arise with respect to whether the rendezvous should be
completed or canceled. Due to delays in network transmission,
there will be a set of small delays for which the rendezvous
fails, while for delay values either above or below those in the

- set, the rendezvous would succeed. This situation is illustrated
in Fig. 1 where we have shown one of the possible protocols
for managing the remote timed entry call (others are discussed
in Section IV-D). If a call is initiated on processor A4 at time ¢,
it is not received on processor B until time ¢, + d,. If the
specified delay is less than d,, the delay will have expired and
the request will be denied. If the specified delay limit is greater
than the network delay time, the call will succeed. However,
the call succeeds for zero and negative delay since it is then
treated as a conditional entry call. A more consistent statement
would result if the RM did not contain the phrase about
treating the case with zero or negative delay as conditional
entry calls. Nevertheless, the RM does state quite clearly that
the situation is as shown in Fig. 1.

These questions of interpretation of conditional entry calls
have been considered by the Language Maintenance Commit-
tee of ISO Working Group 9 and the Ada Board of AJPO. In
Ada interpretation number Al 276 the committee has stated
roughly the interpretations expressed here.

IV. TiMED ENTRY CALLS

Timed entry calls are not as easily handled as conditional
ones; the anomaly of Fig. 1 is only part of the problem. They
raise a number of issues, not only about the interpretation of
the timed entry calkitself, but about the management of time in
a distributeéd environment as well. The timed entry call is the
one place in the RM where an upper bound is placed on the
time duration for some action to occur. This is both necessary
and the source of interpretation and implementation difficul-
ties in a distributed environment. We interpret this upper
bound in a strict global absolute sense. That is, the stated
action must be accomplished within the required time in spite
of network time delays or failures, or the alternative action
must be taken.

451

Processor A

>

| request response
'V en sent
: i » Time

Processor B
e —————
t . Network delay
Timed entry Timed entry Timed entry
/‘% calls fail calls succeed
delay specifiedin
0 d min time entry call.

Fig. 1. The timed entry call anomaly.

There is, of course, a trivial implementation of the timed
entry call. One could say that since one cannot, in general,
exactly . maintain a network sense of time, rendezvous for
timed entry calls never take place and the calling unit always
executes the alternative sequence of code. However, this is
unnecessarily restrictive, timed entry calls are a valuable part
of the language, and it is possible, and thus important, to find
consistent interpretations and implementations for them, even
in the distributed environment.

A. Review of Ada Timed Entry Calls

To begin a study of timed entry calls, we review the relevant
statements from the RM. In Paragraph 4 of Section 9.7.3, the
RM says both that:

1) ““If a rendezvous can be started within the specified
duration..., it is performed....”

2) ““....the entry call is canceled when the specified delay
has expired,”"

Statement 1) refers to an action performed on the processor
containing the called task, while Statement 2) refers to an
action performed on the processor containing the calling task.
Implicit in these statements is thus the notion that there is a
common sense of time between the calling and called
processors. This common sense of time must be maintained in
the face of network delays, clocks on individual machines that
are not precisely synchronized, as well as failures in the
system. In general, of course, this cannot be done exactly. One
must develop interpretations that take into account disparities
in the clock measurements made at different parts of the
system. We will, however, initially develop our interpreta-
tions assuming a perfect common network sense of time, i.e.,
if read at the same time, clocks on all processors would yield
the same value. We will also initially assume a constant
network communication delay d, on all interprocessor mes-
sages. Later we will relax these assumptions and extend our
interpretations to handle variations in time that exist in
practice.

The principal difficulty with interpretating these two state-
ments in the distributed environment arises because informa-
tion. must be transmitted between the calling and called
processors, and this transmission typically takes a significant
amount of time. Because of this network transmission time, it
is not possible to operate in a manner that satisfies both
Statements 1) and 2) simultaneously.

Before discussing this problem in detail, we elaborate
further on the implications of 1) and 2). Consider a timed entry

452

call from a task executing on processor A to an entry of a task
located on processor B. The entry call is made at time ¢, and
has a delay of d. Then the time #, = ¢, + d is the time by
which the called task must be able to accept the call, Taken
literally, Statement 1) says that if by the time #, the called task
has reached an appropriate accept statement the called task is
made ready so that the rendezvous may take place. Similarly,
2) says that if by time ¢, the called task has not reached an
appropriate accept statement the call is canceled and the
calling task is made ready at the alternative sequence of
statements following the delay part of the timed entry call. In
neither case does the language require that the rendezvous or
the alternative sequence of statements actually start, just that
they be made ready within the stated time interval. Actual
starting times will depend upon other tasks, and their
priorities, that are also ready, and upon the scheduling
mechanisms used.

This lack of rigid upper bounds on the actual start of actions
ensuing from a timed entry call might be used as an excuse for
relaxing the rigid bounds implied by 1) and 2) on the times at
which the tasks are made ready. Indeed, we will show that this
is necessary for one or the other of the two statements. In spite
of this, however, we believe it is necessary to maintain rigid
bounds where possible. An application may (particularly in the
distributed situation) only have a single task on a processor, in
which case the task would resume shortly after being
scheduled, and an application might depend upon bounding
this time. Furthermore, if the time bound were relaxed with
respect to both statements, the timed entry call would have no
meaning at all. We will show that under certain reasonable
conditions the bound specified in 1) can be realized.

A slightly stronger interpretation, and one which is proba-
bly more difficult to implement, would result if 1) were
interpreted to mean that the called task must actually start by
the time #,. This would add little, however, since the called
task could always be preempted by a higher priority task.
What might be useful would be to bound the completion time
of a rendezvous. Although Stankovic [10], [11] discusses
techniques that can guarantee ending times of tasks, these
techniques require more information, e.g., a global view of
tasks to be scheduled and their repetition rates, than are
available in an Ada timed entry call statement; they thus
cannot be automatically constructed from the data associated
with the timed entry call.

B. Discussion of Problem

To illustrate the impossibility of simultaneously satisfying
Statements 1) and 2), we describe one (of many) protocols
which might be used in implementing timed entry calls.

Example 3: We consider the communication sequence
shown in Fig. 2. At the time # a timed entry call is
encountered, and a message is sent from processor A to
processor B indicating that the rendezvaqus is requested. This
message is received by B at time #,. It contains as a parameter
the time #, = ¢, + d by which the rendezvous is to be
accepted. The measurement of-the time #, is performed on
processor B and the decision of whether or not to accept the
call also made on processor B. Two cases are shown. For case

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

se| 3 send
ok/: fail

s time —»

Processor A

Processor B

Fig. 2. Communication sequence for Example 3.

1, the called entry is able to accept the call at the time #, —e
and the rendezvous is accepted. For case 2, time ¢, is reached
without the entry call being accepted and the timed entry call
fails. In the case that the rendezvous is accepted, the called
task is immediately made ready on processor B and will
execute in accordance with task scheduling mechanisms in use
on processor B. When the rendezvous is completed, a message
is sent to processor A indicating the completion. Statement 1)
is thus satisfied. Note that processor A cannot know whether
or not the call was accepted until some time after #,, and that
this violates a strict interpretation of Statement 2). It is only
possible to cancel the call some time after t,, possibly as much
as d,, after #,. We will show later that there exists a different
protocol which would allow 2) to be satisfied at the expense of
D). :
One set of issues, then, is which of the Statements 1) or 2) is
to be satisfied and how this is to be done. We will refer to these
two choices as interpretations I1 and 12, respectively. There
is, however, another aspect to the question which must also bé
considered at this point: the use to which timed entry calls are
put. Until now, the discussion has been phrased in terms of
determining the readiness of the called task to accept an entry
call as this is the abvious interpretation from the RM. One
might also consider using them as timeouts for detecting
network or other system failures. The network might fail at
any of several points in the communication sequence, or the
processor on which the called task resides (or the device
associated with the entry point) might fail. By basing the
interpretation of timed entry calls on Statement 2), one might
detect such failures through timeouts. The use of timed entry
calls for this purpose impacts the possible protocols and
interpretations of Statements 1) and 2) and thus will be
considered here.

There are three possible things one might try to accomplish
with timed entry calls: ‘

® cstablish a bound on the time at which a rendezvous is

scheduled to start (I1), '

¢ establish a bound on the time at which the delay in

awaiting a rendezvous expires (I2), and

® detect network or system failures.

These goals are not mutually compatible and we will
explore the differences below.

Example 3 above assumed both a goal of achieving
interpretation I1 and that the time measurements and the
decision process were performed on processor B. A communi-
cation sequence was then selected to achieve I1. Actually,
there are two possible interpretations, I1 and 12, and two

VOLZ AND MUDGE: DISTRIBUTED EXECUTION OF ADA PROGRAMS

locations at which the time measurements and decisions could
be made. There are thus four basic cases to consider, with
variations on each as to the locations at which the rendezvous
code could be located:
Case 1: Interpretation I1 and decision on called processor.
Case 2: Interpretation 12 and decision on called processor.
Case 3: Interpretation 12 and decision on calling processor.
Case 4: Interpretation I1 and decision on calling processor.
Before discussing these cases, however, we will return to
the question of the use of timed entry calls and argue that they
should not be used for device timeouts and system failure
detection; instead we will argue that exceptions should be
used. This discussion impacts the subsequent discussion on the
interpretation of Statements 1) and 2).

C. Timeout Detection of System Failures

The use of timed entry calls for failure detection implies,
first of all, a measurement of time on the calling processor
since the failures being tested for could preclude receipt of a
value of time measured at any other location. This either limits
the protocol choices or requires the determination of the lapse
of the time interval on both the calling and called processors.
In either case, unfortunately, if timed entry calls are used to
detect network, node or device failures (any of which we will
call a system failure), there is a possible ambiguity in the
interpretation of the expiration of the delay. One cannot know
whether it means merely that the called task has not reached an
appropriate accept or whether there has been a system failure.

As an illustration, consider an extension to Example 3 in
which the expiration of the time delay is measured on both
processors A and B, and that a network failure occurs at time
t, + 4, before the messages can reach processor A. The
calling task will eventually time out, and have no way of
knowing whether or not the called task was able to accept the
call. This means that the alternative part of the timed entry call
must be prepared to deal with an indeterminate situation.

To solve this problem, one must first recognize that there
are two distinct types of conditions to be detected, the
readiness of the called task and system failure detection. We
believe that two distinct techniques are required. In particular,
we believe that the timed entry call should be used for
determining the readiness of the called task and that excep-
tions should be used for device timeouts.

- The use of exceptions to handle device timeouts seems
more natural than using timed entry calls since a network or
other system failure is, in fact, an exception to normal
operation and would seem to fit the role for which exceptions
were intended. Also, the actions which must be taken to
recover from a timeout can be more drastic than those required
from a task being unready to accept a call. For example, in the
illustration described above, the called task may have started
the rendezvous when the calling task times out, requiring the
recovery procedure to roll back the effect of the rendezvous.

In order to use exceptions in this way, an implementation
could include a generic package TIMEOUT that provides an
exception and associated data and operations. A data object of
type DURATION would be needed for each instance of
TIMEOUT, and procedures would be needed to set this value

453

generic
package TIMEOUT is

LATE__START: exception;

procedure SET__START__LIMIT(DEL: DURATION);
end TIMEOUT;

Fig. 3.

and initiate timing. Each task using TIMEOUT exceptions
could instantiate an instance of this generic package to provide -

‘an actual exception and associated objects.

The generic package TIMEOUT must essentially provide
two kinds of things,

¢ functions which take an object of type DURATION as an
argument and activate a timeout, and

¢ exceptions which are raised if the timeouts expire.

The details of the generic TIMEOUT package depend on the
interpretation of Statements 1) and 2) and the protocol
implementing them.

To illustrate, we will again extend Example 3. The delay
associated with the timed entry call will be used, as illustrated
previously, for the obvious purpose of checking the readiness
of the called task. The generic package TIMEOUT will
provide an additional timeout for failure detection. Fig. 3
shows the specifications of a generic package intended to be
used with the protocol of Example 3. It provides an exception
LATE_START, and the procedure SET_START_LIMIT
which provides a link to the runtime system and defines the
additional timeout. The effect of this timeout is not immediate,
however. It is activated upon the next timed entry call. If an
entry call acknowledge message is not received within the
specified time limit after the beginning of the entry call, the
exception LATE_START is raised.

With the use of TIMEOUT, the timed entry call of Example
3 would take the following form.

EX3_TIMEOUT is new TIMEOUT;

EX3_TIMEOUT.SET_START_LIMIT (2.0*
NETWORK_DELAY);
select
REMOTE.ENTRY(PARAMETERS);
or
delay DELTA;
--alternative sequence of statements if the called task
--is not at an appropriate accept
end select;

exception
when EX3_TIMEOUT.LATE_START = >
--corrective action

The interpretation of the timed entry call would then be in
accordance with Statement 1). The cancellation of a call due to
expiration of DELTA occurs only when processor A receives

454

a message from processor B indicating that the rendezvous
could not be accepted in time. If a message indicating success
or failure is not received by the time #; = £, + 2d,, it is
assumed that there has been a system failure and LATE__
START is raised. Note that with the addition of TIMEOUT,
the alternative sequence of the timed entry call always refers to
the failure of the called task to reach an appropriate accept
within the desired time; it never refers to a system failure.
System failures are always handled by exceptions, which is in
line with the intent of exceptions. If it were possible to actually
bound the network transmission time by d,, then the excep-
tion LATE__START would always mean system failure and
we would have orthogonality of the two constructs (timed
entry call and timeout detection of system failures). While
such a bound will not exist in all circumstances, in practice it
may exist in a very large percentage of situations.

This example does not provide for any error checking on the
ending time of a rendezvous, or system failure during the
message exchange at the conclusion of the rendezvous, but
then, neither does Ada. One could handle the possibility of
detecting system failures during a rendezvous by including
additional exceptions and procedures in the generic package
TIMEOUT. These will not be discussed here, but deferred to
discussions of individual protocol and interpretation options.

If one did not use the TIMEOUT package, the protocol of
Example 3 would have to be changed or the system could hang
forever on a system failure. One possibility would be to
perform timing on both processors and make an explicit check
of the system when the calling processor detects the elapse of
the delay specified. This is similar to the protocol suggested in
[12] in which the calling processor tries to withdraw the
request at the expiration of the delay. However, the approach
of [12] has two negative features. First, it removes some of the
orthogonality of language features. Second, it requires extra
overhead in the usual situation in which the expiration of the
time delay simply means that the called task has not reached an
appropriate accept.

We will thus consider timed entry calls to be used for testing
the readiness of the called task and not for detecting system
failures. '

D, Alternat{'ve Interpretations of Statements 1) and 2)

The following sections will address five basic protocol types
and interpretations of Statements 1) and 2) for dealing with
timed entry calls. These correspond to the four cases listed
above and a variation of the location of the rendezvous code.
As appropriate, additional TIMEOUT procedures for failure
detection will be discussed.

Case 1) Interpretation 11 and Decision on Called
Processor: Consider first taking the called processor as the
point of decision and reference for time measurements. This is
essentially the situation illustrated in Example 3 above. The

. principal question with this protocol is the interpretation of
Statement 2) which calls for cancellation of the entry call when
the delay has expired, i.e., at time #,. As illustrated in the
example above, if one makes the decision about accepting a
timed entry call on processor B at time #, then it is not
possible for processor A to make a decision about canceling

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

the call ‘“‘when the delay has expired,”’ i.e., also at time %,.
However, if one makes a liberal interpretation of Statement 2),
then canceling the entry call only means taking the alternative
sequence at some time after 7, and taking the alternative

-sequence (if present) at time #; + d + d, on processor A

would be consistent with 2). The decision of whether or not to
cancel the call is then not directly dependent upon time, but
depends only upon receipt of the appropriate message from
processor B.

With this interpretation and communication sequence the
timed entry call is written assuming that no relevant network
or system failures occur. A secondary means, such as the
TIMEOUT.LATE__START exception described above is
required, and provides an adequate means, for detecting
failures during the initiation of the rendezvous.

Detecting failures during the rendezvous or the completion
message transmission is a bit more complex. There are two
obvious possibilities. First, if the user can be expected to place
an upper bound, say dr, on the time to perform the rendezvous
(including any delays accruing from interrupts of higher
priority tasks) then a second procedure SET_RENDEZ-
VOUS_LIMIT(..) could be added to the generic package
TIMEOUT together with a second exception LATE__FIN-
ISH, which has the effect of raising the exception if a
completion message is not received at the calling processor
within the duration specified in the argument. The obvious
difficulty with this approach is the existence of the bound dk;
in general, one will not be able to place such a bound on the
system. Without an upper bound, the occurrence of the
exception could, in some cases, represent delays introduced
through response to higher priority tasks rather than a system
failure. The exception handler would then have to perform
explicit checks to determine the actual situation.

Second, a double phase completion protocol, as shown in
Fig. 4, could be used. In this case, processor A must
acknowledge the receipt of the completion message from
processor B. Processor B performs the timeout check. It could
either use the same duration specified in SET_START _
LIMIT or use a separate procedure to specify the limit. A
system failure would then be detected on processor B, which
would then raise the exception LATE__FINISH if the ac-
knowledge were not received in time. This case, however,
only checks the system during the completion message
exchange; it does not provide any detection capabilities for
failures during execution of the rendezvous. It is likely that if
this option is chosen an implementation would provide, as an
implicit parameter, information about the lineage of the task
on processor A so that processor B could report the failure to
the appropriate parent task. ’ ‘

We note that this protocol is similar, in some respects, to the
protocol suggested in [12], in which decisions are made on
both processors. In that proposal no message is sent from B to
A to indicate acceptance of the call. Instead, if the delay
expires on the calling processor A, a message is sent to B at
time 7, asking to withdraw the rendezvous request. If the
rendezvous was actually started within the requested time, the
withdrawal request is denied and the rendezvous proceeds.
The calling processor cannot know until two message times

VOLZ AND MUDGE: DISTRIBUTED EXECUTION OF ADA PROGRAMS

Processor A A\'/
send send send
tail rendezvous ack.
done
Processor B A\'/
time —p

1 2
Fig. 4. Communication sequence indicating end of rendezvous.
Processor A
Processor B

Fig. 5.

Communication sequence for Case 2.

after #, whether or not the rendezvous is proceeding. Assum-
ing no network failures, the effect is similar to the protocol
described here except that a larger delay (two network
message times) can occur before the canceling of a timed entry
call due to the unreadiness of the called task.

Case 2) Interpretation I2 and Decision on Called
Processor: In this case, processor B makes the decision and
must notify processor A by time #, whether or not the call can
be accepted with the given time interval, as shown in Fig. 5. In
order to do this, processor B must be able to bound the
network delay and make the decision prior to time #,. Thus,
the interpretation of Statement 1) must be relaxed and the
decision point moved up in time. This is analogous to the
relaxation of Statement 2) which was made in Case 1.

The difficulty in this case is the need to bound the network
delay, d,,. When one considers the possibility of transmission
errors and retransmissions, this is not strictly possible. Also,
for many networks, the message transmission time, even for
successful transmissions, cannot be bounded. Thus, this case
will not be considered further.

Case 3) Interpretation 12 and Decision on Calling
Processor: A communication sequence to achieve this combi-
nation is shown in Fig. 6. The shaded arrow from A to B at the
beginning of the sequence is an optional message in the
sequence. The solid arrow from B to A is the upper bound on
the time at which the message could be sent while the shaded
arrow from B to A indicates that it could be sent at any earlier
time. The essential point is that processor B notifies processor
A when it is ready to accept an entry call. If processor A has
received a ready message from B by the time ¢, the call is
accepted; if not, the call is canceled at time #,. Once processor
A makes the decision, a message is sent to processor B
indicating whether or not the rendezvous is to be performed.
In this case, the time of making the decision in the task
containing the rendezvous code segment ready is relaxed. The
notification that B is ready to accept a call may either be in
response to a request from processor A (shaded arrow at the
beginning of the sequence) or a broadcast to all that it is ready.

This case is essentially the dual of Case 1 in the sense that

455

Processor A

P send/ /i
i entry ready;:,f
Processor B : % o

/\./

s

% request send Send
decision done
time —p

by 2

Fig. 6. Communications sequence for Case 3.

the roles of A and B in timing and decision making are
reversed. However, contrary to Case 1, if the call is canceled,
one cannot know if it is due to the unreadiness of the called
task or a system failure. If it is important to make this
distinction, the alternative code sequence must explicitly check
the system status. This impairs the orthogonality of the
construct to other mechanisms for handling errors. Also, the
task executing the rendezvous is not made ready until after a
message is received from A indicating that the rendezvous is
to be performed. A network failure could occur during the
transmission of this message and the system would hang.

In comparing Case 1 to Case 3, we make several observa-
tions. Both achieve an upper bound on making either (but not
both) the rendezvous code or the alternative code sequence
ready under the conditions that the given code section is
selected. Case 1 achieves the bound on the rendezvous code,
while Case 3 achieves it on the alternative sequence. Second,
Case 1 appears to be somewhat more amenable to achieving
orthogonality of the language than Case 3. Also, since
accomplishing the rendezvous within a given time interval
would seem to be the intent of the timed entry call, placing the
bound on the rendezvous code would seem more natural than
placing it on the alternative sequence. For these reasons, we
prefer interpretation Case 1.

Case 4) Interpretation Il and Decision on Calling
Processor: Fig. 7 illustrates a message sequence for accom-
plishing this case. As with the previous case, the called task
must notify the calling task that it is ready to accept an entry
call. It may do so either by responding to a entry request or in
a broadcast mode. The difference between this mode and the
previous case is that the calling processor must anticipate the
network time delay and make the decision far enough ahead of
time to allow the message containing the decision to reach the
called task by time #,. However, since the time reference is on
the called processor, the decision time must be advanced
further than in Case 3 so that the decision can reach the called
processor by time #,. The amount of time by which statément
(1) must be relaxed is thus greater than in Case 3. Further, this
case depends upon the bounding of the network time, which is
an undesirable feature. Thus, this case does not appear to have
any advantages, and will not be considered further.

Case 5) Same as Case 3 with Rendezvous Code on
Calling Processor: It has been suggested that for purposes of
optimization the code associated with the rendezvous could be
placed in the context of the calling task [8]. In the distributed
situation, this would involve placing the code for the rendez-
vous on the processor holding the calling task. With the code

456

Processor A - ‘
< Fal'
RS 4
request send / y Send
entry*, ready /
I V4
Processor B —
‘ time —
t
t 1 2
Fig. 7. Communication sequence for Case 4.
Processor A : : /.\\./
* request send/ /' send
\entry input / results at end
Processor B % / /_\v of rendezvous
: time —»
' .
1 ! 2

Fig. 8. Communication sequence for Case 5.

on the calling processor, it would seem that the only
reasonable combination of the other parameters is to use 12 and
make decision on the calling processor. This corresponds to
Case 3 above. A message sequence for accomplishing this is
shown in Fig. 8. Comparing this figure to Fig. 6, it can be
seen that fewer messages are required, though at the expense
of including any local variables of the called task as input and/
or output parameters in the messages. Since in most cases the
number of messages is more important in determining com-
munication times than the length of the messages, this
approach might have some advantages in terms of communica-
tion efficiency. However, this approach shares with Case 3 the
ambiguity in interpreting the absence of receiving a response
from the called processor by time #,: one cannot tell if this is
due to not reaching an appropriate accept, or a system failure.

E. Timed Entry Calls in the Presence of Timing
Uncertainties

In most distributed situations the problem will be compli-
cated, not only by a network delay, but by an uncertainty in the
consistency of the sense of time maintained on two or more
processors (see Section V for a detailed discussion of this
point). Since two different machines will not have exactly the
same value of time, it will not be possible to make a precise
determination of whether the rendezvous can or cannot be
started within the given time interval, as required by a strict
interpretation of 1) and 2) above. From the perspective of the
called processor, there will generally be a subinterval of
measured time during which it is impossible to determine
whether or not the specified delay has expired. See Fig. 9. A
complete interpretation of time entry calls must state what is to
be done if the called task becomes able to accept a call within
this uncertainty interval.

An interpretation of timed entry calls that resolves this
uncertainty is: ‘“if the call can be guaranteed to be able to start
within the given delay it is started and canceled otherwise.’’
Thus, if the called task becomes able to accept a timed call

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

Processor A

request
entry

Processor B

time —»

uncertainty interval

Fig. 9. Timed entry calls in the presence of uncertainty.

within the uncertainty interval, the entry call would be
canceled even though in some instances it might actually have
been within the specified delay; it is canceled because it is not
possible to know that it is within the given delay.

F. Summary of Timed Entry Call Interpretations

There are thus several aspects to complete and consistent
semantics of timed entry calls. For convenience, we summa-
rize them here. '

1) Timed entry calls imply a common sense of time between
the machines holding the calling and called tasks.

2) The measurement of time for the expiration of the delay
and the decision of whether or not to perform the rendezvous
should be made on the machine holding the called task.

3) An implementation must guarantee that acceptance of a
timed entry call means that the called task was ready to accept
the call within the specified delay. The call fails if there is
uncertainty about when the called task is ready to accept.

4) Exceptions should be used to handle timeouts caused by
failures in system components.

In other words, we believe that the interpretation of timed
entry calls given by Case 1 is the appropriate way to view
interprocessor timed entry calls in a distributed system.
Furthermore, exceptions should be used (rather than timed
entry calls) to handle communication errors. Finally, a
common sense of time is needed. The maintenance of a
common sense of time between the calling and the called task
is discussed next. ‘

V. MAINTAINING A NETWORK SENSE OF TIME

It was noted in Section IV-A that the definition of timed
entry calls implies a single sense of TIME throughout the
execution of a program, and that it is not possible to absolutely
achieve such a common sense of time across a distributed
network. In this section, we consider various methods for
managing distributed timing and discuss how to take their
characteristics into account in the implementation of timed
entry calls. We will show that the best that we can expect to do
is to bound the differences in the sense of time on different
processors in the system. The bound on the time synchroniza-
tion among the processors will be treated as an additional
uncertainty, as described in Section IV-E. Three methods will
be considered, maintaining a network time server to which all
processors go when they need a value for time, maintaining
separate but synchronized clocks on each processor, and
exporting the delay to be used on the called processor. This is

VOLZ AND MUDGE: DISTRIBUTED EXECUTION OF ADA PROGRAMS

not intended to be an exhaustive list of methods; however, it is
representative of the more obvious options available with
current technologies.

A. A Network Time Server

The first mechanism we will consider is the use of a network
time server. In this case each program use of a timing
construct will require one or more accesses to the network
server. The implementation of timed entry calls must take into
account the time required to access the time server. We first
describe the implementation scenario that could be followed
for Case 1 and then develop an expression for the delay to be
used by the called processor.

Referring to Fig. 2, the implementation sequence might be
as follows:

® The processor containing the calling task will obtain the
time from the network server and include both it and the
specified delay in the timed entry call message sent to the
processor holding the called task.

® The processor having the called task will call the network
time server to obtain the time at the time the call is received.

® The processor containing the called task will compute the
remaining time delay with which the called task is requested to
start.

® Local management of the timed entry call will proceed as
usual.

Thus, in addition to the network delay, there will be an
effect from the time to make two accesses to the network time
server.

Next we obtain an expression for the local time delay (d)) to
be used on the called processor to bound the time it will wait
for an appropriate entry to be reached. For the purposes of this
analysis denote’ the time measured on processor A by a
superscript A, similarly for time measure on B. Further, let
AT, to be the worst case difference in time that any processor
can experience with respect to the server, i.e.,

ti—t;<AT,

where i can indicate any of the processors in the system and ¢ ;
is the time returned by the time server when processor / makes
the request at time #;. In the case of an exact sense of network
time, the local delay is given by
di=d-(t,—t)))

this guarantees the delay on B will not run past #,. Taking
server inaccuracy into account results in the following:

1,<tB
thus,
d-(t,—t)>d—-(t8-t)
but
Lzt - AT,
therefore,

di>d—(t8—t4)— AT, @)

457

Since ¢2 and ¢4 are the quantities that are measured (rather
than ¢, and #,) the right-hand side of (2) is the best estimate we
can obtain for d; that guarantees that the called task is able to
accept the call within the specified delay.

The utilization of a network time server is thus dependent
upon our ability to bound the service time of the timer server.
Two sources of service time must be considered, the propaga-
tion delay, and delays from interfering access requests.
Propagation delays will depend upon the geometry of the
system, and can often be bounded if there is suitable
information about .the geometry. However, the type of
connection and not just its geometry must also be considered.
Ethernets, for example, can not guarantee a bound; on the
other hand, they might be acceptable in a practical sense.
Delays due to interference of timer server requests from more
than one processor may or may not be present, depending
upon the particular method used to implement the network
time server. If present, however, they usually inject an
uncertainty in the response time from the server. If this cannot
be bounded, then, strictly speaking, the network time server
cannot be used as the basis for implementing timed entry calls
in the distributed environment.

1) Use of Synchronized Clocks: An alternative method of
providing timing is to maintain synchronism among the local
clocks of the processors. There are then two issues to be
considered here, the mechanism to be used to maintain
correct Ada operation upon occurrence of a clock update and
the development of an expression to be used for the local delay
d, on the called processor. We consider first the clock update.

a) Clock Update Correction: Until now, we have spoken of
a clock on each processing unit, though the Ada semantics
actually imply two, a time of day clock and a relative timer.
We must be concerned with maintaining synchronism in both.
For purposes of discussion, however, we will assume that we
are talking about maintaining synchronism among a set of time
of day clocks. Without further discussion we will assume that
operations on these clocks are also reflected into the local
relative timing clocks. Actually, as pointed out in [5], timing
could be based solely upon the use of absolute timing, with an
improvement in performance, though this is rarely done today.

The straightforward approach to the clock synchronization
problem, and the one we will analyze, is to have a central
master clock that periodically transmits time stamps to all of
the local clocks so that they can be brought into agreement
(synchronized). We will assume that the local clocks can drift
with respect to one another and the master. This drifting can
result in two situations when a synchronization time stamp is
received: local time is either ahead, or behind of the time
received. Let ¢/ be the time on the local clock when an update
time stamp is received, and let ¢5 be the value of the time
stamp received. When #° is received, this value will replace ¢/
in the local clock. Depending upon the relative values of ¢/ and
t° different corrective actions must be taken.

In the first case, ¢/ > #°. Resetting the local clock will
essentially replay the local time for an amount of ¢/ — ¢5,
Thus, any local processes awaiting the expiration of a delay
will have this amount of time added to their delay. For those
that have been waiting since the last clock update, this will

458

simply compensate for the fact that the local clock was running
too fast. For those which have been waiting for less than a
clock synchronization period, the delay will be overcompen-
sated slightly. In those cases corresponding the use of the
delay only to delay a process, this does not matter, since Ada
is only required to delay for at least as long as the specified
delay. For situations where the delay relates to an interproces-
sor timed entry call, the delay has already been reduced by the
synchronization uncertainty and again Ada semantics are
maintained. However, in the case of local intraprocessor timed
entry calls, the specific delay time could be exceeded. This
indicates that the synchronization uncertainty must be taken
into account even for local timed entry calls. The process for
doing this is very similar to the establishment of the bound for
d; above, and will be discussed below.

In the second case, ¢° > ¢/, In this case, the update to the
local clock bypasses the elapse of time on the local processor.
By so doing, one or more scheduled delay expirations may be
passed. It is thus necessary to check the list of scheduled delay
actions and make ready any tasks whose delays expired during
the clock update. It is worth noting that this happens
automatically with the techniques described in [5] and no
special checking of the schedule is necessary.

There are two obvious methods for distributing a master
clock, by hardwired connection and by radio. Distributing the
time signal by a wire is the easier to implement and perfectly
adequate for many fixed location applications of moderate
locality. (Microsecond precision is achievable if all systems
are within 500 feet of each other and millisecond precision is
achievable if they are within 100 miles). A physical connection
between clocks of course is a potential source of failure, and
limits applications to systems in which the components do not
have autonomous mobility.

Synchronization can be achieved without connection by
using one of the time keeping services supported by the U.S.
Naval Observatory and the National Bureau of Standards [13],
[14]. Both organizations provide phone line or satellite
services; the NBS also provides a radio service (WWVB).
These services are capable of providing time references with
accuracy ranging from milliseconds to tens of microseconds,
depending on the particular service and on the extent to which
corrections are made for location. Clearly, receiving the signal
and making corrections for location is more complicated and
costly than dealing with a clock provided over a wire. On the
other hand, in the case of satellites and radio stations no
physical connections are needed.

An important question that arises is how frequently one
must update the clocks in the system. This issue has been
addressed empirically in [15] where it was found that to
maintain synchrony within 10 ms on a collection of VAX
computers, a synchronization process had to be executed once
every 173 s. The clocks used in this case were not of high
precision, however. Similar bounds would have to be estab-
lished on the clocks to be used on each of the computers in the
network. .

b) Achieving Correct Ada Operation with Local Time
Delay: Next we consider the use of multiple clocks, which are
synchronzied periodically, for the implementation of Case 1.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

This is very similar to the network server case, except that
instead of accessing a network server clock—thus adding delay
times to time values received—we access a local clock
whenever we need a time value. The local access can be much
faster than access to the network time server, but the value
returned has some error in it, as discussed above. The analysis
to determine the lower bound that can be placed on d, follows
that for the network time server. Let AT, be the worst case
difference in time between any clock in the system and the
master clock, i.e.,

[ti—t| <AT,

where i can indicate any of the processors in the system, ¢ ; is
the time measured on the local clock and ¢; is the correspond-
ing time on the master clock. Then we have

t,—t3<AT,
and
-t <AT,.

These may be directly substituted into (1) to obtain

d>d—-(t8-t{)-2 - AT,. 3)

As with the network server case, the right-hand side of (3) is
the best estimate we can obtain for d, that guarantees that the
called task is able to accept the call within the specified delay.

While there are some similarities between the network time
server case and the maintenance of synchronous clocks, there
are important differences. With synchronized clocks the
overhead of maintaining a network sense of time is decoupled
from the use of the clock for timed entry calls. Thus, the
overhead is not necessarily attached to timed entry calls, but is
distributed over whole operation of the system. When the
requested delay is large, the network time server case loses
accuracy since the local relative clock used for timing the
delay d; may drift with respect to the server. In the analysis
leading to inequality (2) an accurate local clock was assumed.
With the use of synchronized clocks, this drift will not exceed
the bounds derived since the local clock is periodically
updated. Further, in the hardwired case it is often possible to
keep the clock skew AT, much smaller than AT,;. We thus
prefer the synchronized clock method of maintaining a
network sense of time.

2) Rely on the Exported Value of Delay: In some
situations it may not be possible, or necessary, to share a
common sense of time between processors (e.g., between
satellites exploring deep space). In such cases, timed entry
calls can be handled by exporting the time from the calling unit
and use only this and local timing to manage things on the
receiving processor. This requires knowledge of, or at least a
bound on, the network communication times, and a bound on
the relative drift of the local clocks. The implementation
scenario for Case 1 is now a lot simpler than in the previous
two cases: the processor containing the calling task transmits
the specified delay to the called task. The best guarantee for d,
is now

d>d—-AT,,

VOLZ AND MUDGE: DISTRIBUTED EXECUTION OF ADA PROGRAMS

where AT,, incorporates both the communication delay d, and
the relative drift. Unfortunately, in most cases that amount of
drift grows with time and is unbounded. In practice, this is
likely to place an upper bound on the length of delays that can
be used, as in the network server case.

3) Uniprocessor Considerations: Considerations such as
those described above can be carried out in a uniprocessor
situation as well. For example, the delay d,, corresponds to the
overhead associated with implementing the checking and
rendezvous. Indeed, these times should be included in the
AT’s in the distributed situation as well. Depending upon the
accuracy of the delay interval implemented, the A7”s may be
significant. This is likely to be the case for most processors at
the 50 us accuracy réecommended in the RM and even more
likely for the 10 us accuracy discussed for some implementa-
tions. Strictly speaking, in these cases a timed entry call for
small delays should fail even though a conditional entry call
should succeed. This conformance is likely to be very difficult
to measure, however.

VI. SuMMARY AND CONCLUSIONS

The need for distributed execution of Ada programs is
growing rapidly as closely coordinated operation of multiple
processors for such applications as robotics, space systems,
and vehicle control increase. At this stage of development,
distributed execution raises many issues of both interpretation
and implementation. In this paper we have focussed on the
impact of distributed execution on time-related constructs.
Two constructs were singled out for attention because their
effect can be interprocessor. These were the conditional entry
call and the timed entry call. An anomaly with the timed entry
call was pointed out that results from equating timed entry
calls with zero or negative delay to conditional entry calls.
Then, it was pointed out that there are several fundamentally
different ways of interpreting timed entry calls across a
network corresponding to the locations at which the time
measurements and decisions are made. Placing both of these
on the called processor causes fewer difficulties than the other
choices. The use made of timed entry calls also affects the
communication protocols necessary. It was recommended that
the detection of network failures or device timeouts be
associated with exceptions rather than the elapse of a delay in a
timed entry call. It was also noted that the realization of a
common sense of time across the distributed system is
required, and an interpretation proposed that allows for a
bounded variation in the value of time at different points
across the system.

The possible interpretations presented are just that, possible
interpretations. It remains for the governing bodies of the Ada
Language to develope official interpretations of these con-
structs. It is hoped that this discussion will help in those
deliberations.

REFERENCES

[11 Ada Programming Language (ANSI/MIL-STD-18154A). Wash-
ingion, DC 20301: Ada Joint Program Office, Dep. Def., OUSD
(R&D), Jan. 1983.

[2] R. A. Volz, T. N. Mudge, A. W. Naylor, and J. H. Mayer, ‘‘Some
problems in distributing real-time Ada programs across machines,’’
Ada in use, Proc. 1985 Int. Ada Conf., May 1985, pp. 72-84.

459

[3] R. A. Volz, T. N. Mudge, G. D. Buzzard, and P. Krishnan,
““Translation and execution of distributed Ada programs: Is it still
Ada?’’ to appear in IEEE Trans. Software Eng. Special Issue on Ada,
1987.

[4] M. C. Paulk, ‘‘Problems with distributed Ada programs,’’ in Proc.
5th Phoenix Conf. Comput. and Commun., 1986, pp. 396-400.

[51 R. A. Volz and T. N. Mudge, ‘‘Instruction-level mechanisms for
accurate real-time task scheduling,”’ in Proc. IEEE 1986 Real-Time
Symp., Dec. 1986, pp. 205-215.

[6] A.K. Mok, ‘‘The design of real-time programming systems based on
process models,”” in Proc. IEEE 1984 Real-Time Syst. Symp., Dec.
1984, pp. 5-17.

171 L. Lamport, ‘‘Using time instead of timeout for fault-tolerant distrib-
uted systems,”’ ACM Trans. Programming Lang. Syst., vol. 6, pp.
254-280, Apr. 1984.

[8] A. N. Habermann and I. R. Nassi, ‘‘Efficient implementation of Ada
tasks,”’ Carnegie-Mellon Univ., Pittsburgh, PA, CMU-CS-80-103, pp.
1-21, Jan. 1980.

[9]1 A. Dapra, S. Gatti, S. Crespi-Reghizzi, F. Maderna, D. Belcredi,

Natali, R. A. Stammers, and M. D. Tedd, Using Ada and APSE to

support distributed multimicroprocessor targets. Commission Eu-

ropean Communities, July 1982-Mar. 1983.

J. Stankovic, ‘‘Achievable decentralized control for functions of a

distributed processing operating system,’’ in Proc. COMPSAC 82,

Nov. 1982, pp. 226-230.

K. Ramamritham and J. Stankovic, ‘‘Dynamic task sheduling in hard

real-time distributed systems,”’ IEEE Software, vol. 1, pp. 65-75,

July 1984.

R. Jha and D. Kafura, ‘‘Implementation of Ada synchronization in

embedded, distributed systems,”” Dep. Comput. Sci., Virginia Poly-

technic Inst. State Univ., Blacksburg, TR-85-23, pp. 1-56, 1985.

G. M. R. Winkler, ‘‘Changes at USNO in global timekeeping,’’ Proc.

IEEE, vol. 74, pp. 151-154, Jan. 1986.

R. E. Beehler and D. W. Allan, ‘‘Recent trends in NBS time and

frequency distribution services,”” Proc. IEEE, vol. 74, pp. 155-157,

Jan. 1986.

R. Gusella and S. Zatti, ‘““TEMPO a network time controller for a

distributed Berkeley Unix system,”’ Distrib. Processing Tech. Com-

mittee Newslett., Informal publication of IEEE Computer Society

Committee on Computer Processing, June 1984.

[10]

[11]

[12]

[13]

[14]

[15]

Richard A. Volz (M’60-SM’86) received the
Ph.D. degree from Northwestern University, Evan-
stown, IL.

From 1964 to 1976 he was an Assistant Professor
at the University of Michigan, Ann Arbor. He is
now Director of the Robot Systems Division of the
Center for Robotics and Intergrated Manufacturing
at the University of Michigan. Prior to assuming
this position, he held positions as Associate Director
of the University Computer Center and Associate
Chairman of the Department of Electrical Engineer-
ing and Computer Science. His current research includes the software/
hardware computer architecture to support robot systems and the use of
computer-aided design systems (CAD) for driving robot and sensor program-
ming. Particular projects include CAD model-driven systems, automatic
determination of grasp points (from CAD information), graphic programming
of robots, and distributed systems integration languages for real-time control.

Trevor N. Mudge (S’74-M’77-SM’84) received
the B.Sc. degree in cybernetics from the University
of Reading, England, in 1969, and the M.S. and
Ph.D. degrees in computer science from the Uni-
versity of Illinois, Urbana, in 1973 and 1977,
respectively.

He is currently an Associated Professor in the
Department of Electrical Engineering and Com-
puter Science at the University of Michigan, Ann
Arbor. He has been there since 1977. His research
interests include computer systems architecture
(both hardware and software), VLSI design, and computer vision.

