Solutions to the n Queens Problem Using Tasking in Ada

by
Russell M. Clapp, Trevor N. Mudge, Richard A. Volz
June 26, 1986

Introduction

This article discusses solutions for the n Queens problem written in Ada. The n Queens problem can
be stated as follows: How can n queens be placed on an 7 by n chess board so that no two queens lie on
the same row, column, or diagonal? There is no solution to this problem for n < 3. Forn24, there 18
always more than one solution. The programs presented here find all solutions for a given n.

We have written two programs using Ada tasking to solve this problem. These solutions were compared
to each other and to a third program, Wirth’s solution slightly modified and translated from Pascal to
Ada. This solution appears in its original form in (1]. The main basis for comparison was execution time,
but the number of tasks needed for the first two programs was also examined.

The Sequential Solution

This program is Wirth’s solution coded 1n Ada and modified to provide all possible solutions to the n
Queens problem given a particular n. The algorithm proceeds by placing a queen on a square and then
checking for a safe square to put a queen in the next column. A safe square 1s one where a queen may be
placed without making the current partial solution invalid. This process begins in the first column, and 3
solution is found if safe squares are found up to and including the nth column. If no safe square is found in
a column, the algorithm backtracks to a previous columnn where a safe square can be found. The program
uses recursion and iteration to explore all possible solutions.

This program did provide some data structures used in the other solutions. Three one dimensional
arrays are used to bold bit values indicating the presence of a queen in a row, diagonal, or reverse diagonal.
A square can be checked to determine if it lies in the path of a previously placed queen by referencing each
of these arrays using the proper combination of the square’s row and column numbers. When a queen is
placed on the board, these arrays are updated accordingly.

The Task Spawning Solution

This program uses the most concurrency of the three solutions. Each time a queen is placed on a
board, a new task is created to find safe squares in the next column to place the next queen. The process
starts in the first column, and since the board is initially empty, n tasks are created, each with one queen
in a different row in the first column. Each of these tasks then attempts to find safe squares in the next
column. Whenever one is found, a new task is created with one more queen placed on the board in that
column. Since all safe squares are found, one task may have several child tasks, each with an identical
board configuration except for the last occupied column. If a task can find no safe squares in the next
column, it does not spawn any child tasks and that solution path is terminated. This program, then, finds
all solutions to the problem concurrently.

In & machine with multiple processors, this program may be able to find all solutions quickly if a
processor was available to execute each new task created. However, if the machine has multiple processors
with a shared memory accessed by a common bus, only one task creation may occur at a time. This is
due to the fact that a task creation requires code to be copied to a processor from memory over the bus.

SIGPLAN Notices v21 #12, December 1986

-100-

The program can be coded so that all information a task needs is passed to it in & rendezvous, leaving
task creation as the only operation that requires use of the shared memory. However, depending on the
architecture of the machine, task rendezvous may also require use of the bus. Excessive task creation and
message passing then would reduce the parallelism and slow down the computation. This would be the
result for even modest values of n, as the number of tasks required appears to increase exponentially in n,
A bypercube machine with interconnected processors would speed up the task rendezvous, but would not
be well suited to copying code to a new processor for each task creation.

The Square Solution

This program has less concurrent execution than the previous one, but uses significantly fewer tasks.
One task is created for each square on the chess board. Each task of this type is identical. Each task in the
first column begins at the same time with a queen placed on its square. It proceeds to look for safe squares
in the next column. When s safe square is found, a rendezvous occurs with the task of the safe square,
passing it the board configuration of the current task with & queen added in the acceptor’s square. The
accepting task then looks for safe squares in the column to its right, repeating the process. All solutions
are found since all possible solutions are explored concurrently. It is possible that a square may be safe for
more than one potential solution at the same time. In this case, the calling tasks are queued on the entry
point and serviced one at & time. This results in less concurrency than the previous program. Potential
solutions that become invalid terminate in & manner similar to that mentioned above.

The advantage of this solution over the previous one is the reduced number of tasks needed. This
program requires only n? tasks to execute, but uses less concurrency. There is also the possibility of tasks
going unused with this solution. In tests involving values of n ranging from 4 to 10, only two tasks went
unused in two cases. These were the tasks for the upper right and lower right squares in the n = 4 and

= 6 cases.

This program could find all solutions quickly if it were run on a multiple processor machine with n?
processors available. The program can easily be coded so that all information that a task needs is passed
to it in a rendezvous. There is no need for shared memory. Thus, this program is well suited to be run on
a hypercube machine, with all tasks running in parallel.

Results

The programs were timed using the CLOCK function provided by Ada in the package CALENDAR.
The Verdix Version 5.2 compiler was used running on a VAX 11 /750 with Unix 4.2 bsd and no other user
processes. The timing was done to show the relative efficiency between the programs and includes 1/0
time. Since the programs were run on a single processor time shared system, the sequential solution was
fastest since it involved no tasking overhead. The results are summarized in the following table.

n | Sequential | Spawn | Square
Execution Time (in seconds)

0.2 0.4 0.5
0.4 1.0 1.1
0.4 22 14

1.8 8.2 4.0
4.9 32.4 11.0

oo =3 M| oY

References

(1] - Niklaus Wirth, Algorithms + Data Structures = Programs, Prentice Hall, 1976.

-101-

with TEXT_IO, CALENDAR;
use TEXT_IO, CALENDAR;
procedure SEQUENTIAL 1s

package MY_INT_IO 1s new INTEGER_IO (INTEGER) :
use MY_INT_IO:

package TIME_IO 1s new FIXED_IO (DURATION) :
use TIME_IO:

NUMBER_OF _QUEENS:constant := 7;
LOW_DIAG:constant := 1 - NUMBER_OF _QUEENS:

type CONEIG_ARRAY 1s array (INTEGER range <>) of BOOLEAN:;
type COL_ARRAY lis array (INTEGER range <>) of INTEGER:

TIME_BEGIN, TIME_END : TIME:

EXECUTION_TIME : DURATION:

ROW: CONFIG_ARRAY (1. .NUMBER_OF _QUEENS) := (others => TRUE):
R_DIAG: CONEFIG_ARRAY (2. . (2*NUMBER_OF_QUEENS)) := (others => TRUE):
DIAG: CONEIG_ARRAY (LOW_DIAG..NUMBER_OF _QUEENS-1) := (others => TRUE):
COL: COL_ARRAY (1. .NUMBER_OF _QUEENS) := (others => 0):

procedure TRY(I: INTEGER) 1is
SAFE: BOOLEAN:
J: INTEGER := O:

begin
while (J < NUMBER_OF_QUEENS) loop
J::=J + 1
SAFE := ROW(J) and R_DIAG(I+J) and DIAG(I-J):
1f SAFE then

| COL(I) := J:
f ROW (J) = FALSE:
R_DIAG(I+J) := FALSE:

DIAG(I-J) := FALSE:;
1f I < NUMBER_OF_QUEENS then
TRY (I+1):
ROW (J) := TRUE;
R_DIAG(I+J) := TRUE:
DIAG (I-J) := TRUE:
else
PUT ("Solution follows as row numbers 1in column order:"):
for K in 1..NUMBER_OF_QUEENS loop
PUT(COL(K), 0):
1f K < NUMBER_OF_QUEENS then PUT(", "):

end if;
end loop:
NEW_LINE:
ROW (J) := TRUE;
R_DIAG(I+J) := TRUE:
DIAG(I-J) := TRUE:
end if:

end if:

-102-

end loop:
end TRY:

begin

TIME_BEGIN := CLOCK:

TRY (1)

TIME_END := CLOCK:

EXECUTION_TIME := TIME_END - TIME_BEGIN;

PUT ("Execution time for solution (in seconds) 1s :
PUT (EXECUTION_TIME, 3, 1):

NEW_LINE:

end SEQUENTIAL:

-103-

with TEXT_IO, CALENDAR;
use TEXT_I10, CALENDAR:
procedure SPAWN 1is

- This program uses many tasks to find all solutions for the n-queens
-- problem. A task type is used for tasks that represent nodes on a path
-— in a solution tree. There 1s also a task for controlling I/O requests.

- This program lncorporates some basic information about the n-queens

-- problem that simplifies the approach. First, a valid solution may have

-- only one queen in any row or column. Second, a one dimensional array may
-— pe used to encode informatlion about queens in diagonals. (A separate array
-— §s needed for reverse diagonals). This reduces the check for a queen in a
-- dlagonal to one array reference. This technlique was taken from Wirth's

-- solution involving recursion.

== The program finds all solutlons concurently. One task begins examining
-- squares in the first column. All squares in this column are safe for

-- potentlial solutions since the board is initially empty. So, for each safe
-- square, a queen 1s placed on the square and a new task is created to check
-- squares in the next column. Initially, this means that n tasks are created
-— each with a different board configuration, checking for safe squares in the
-- second column. This task creation then, proceeds from the first column to
-- the last. If a particular task can find no safe squares in the next column,
-- that potential solution {s invalid and that thread of executlon terminates.
-— When a safe square 1s found in the nth column, a solution is found. A

-- rendezvous with the 1/0 controlling task occurs before the solution 1s

-~ printed so that separate solutions are not written over each other.

== The program also keeps track of the number of tasks created, and prints
-~ this total. The amount of time needed to execute the program is also printed
-~ upon completion.

package INT_IO 1s new INTEGER_IO (INTEGER) :
use INT_IO:

package TIME_IO 1s new FIXED_IO (DURATION) :

use TIME_IO:

NUMBER_OF _QUEENS:constant := 8:;

COUNT : INTEGER : =0 --Count the number of tasks created

TIME_BEGIN, TIME_END:TIME:

EXECUTION_TIME :DURATION;
begln

declare
~~ Configuration data structure adapted from Wirth's solution

LOW_DIAG :constant:= 1 - NUMBER_OF _QUEENS:

type CONFIG_ARRAY is array (INTEGER range <>) of BOOLEAN:
type COL_ARRAY is array (INTEGER range <>) of INTEGER:

type CONEFIGURATION 1is
record

ROW: CONFIG,ARRAY(I..NUMBER_OF_QUEENS) (others => TRUE)

R_DIAG: CONFIG,ARRAY(Z..(Z'NUMBER_OF_QUEENS)) ;= (others => TRUE)
DIAG: CONFIG_ARRAY(LOW_DIAG..NUMBER_OF_QUEENS-I) := (others => TRUE)
COL: COL_ARRAY(I..NUMBER_OF_QUEENS) := (others => 0);

end record;

task IO_CONTROL 1is
entry START;
entry STOP;

end IO_CONTROL:

task type NODE is
entry START (COLUMN:INTEGER: GRID:CONF IGURATION) ;

end NODE:

type A OF_T is array(l..1) of NODE: —-Necessary because 'new NODE' is not
—= allowed in the body of NODE

type AT 1s access A_OF_T;

FIRST_LEVEL:A_T:
LAY _OUT:CONt IGURATION;

tzex body NODE is

BOARD : CONT IGURATION:
COL: INTEGER

ROW: INTEGER := O:
NODE_PTR:A_T:
SAFE : BOOLEAN:

begin --The task T

COUNT := COUNT + 1: ——Count the task after it is creazted
accept START (COLUMN:INTEGER: GRID:CONF IGURATION) do
COL := COLUMN; --Read configuration from parent task
BOARD := GRID;
end START;
while ROW < NUMBER_OF_QUEENS loop --For each row in this columr

ROW := ROW + 1:
SAFE := BOARD.ROW(ROW)
and BOARD.R_DIAG(COL+ROW)

and BOARD.DIAG (COL-ROW) ; --Find safe squares
1f SAFE then
BOARD.COL (COL) := ROW; —-Place queen on square

i1f COL = NUMBER_OF_QUEENS then --Found a solution
IO_CONTROL.START:

PUT("Solution, row numbers in column order: "):
for I in 1..NUMBER_OF_QUEENS loop

—iVvJT

INT_IO.PUT (BOARD.COL(I), O):

if I /= NUMBER_OF_QUEENS then PUT(", "): end 1if:
end loop:
NEW_LINE:

IO_CONTROL.STOP:
else

BOARD .ROW (RCW) := FALSE; --Place queen on board
BOARD.R_DIAG (COL+ROW) := FALSE:
BOARD .DIAG (COL-ROW) := FALSE:
NODE_PTR := new A_OF_T:; --Create child task

NODE_PTR.all (1) .START(COL+1, BOARD): --Pass info to child task

BOARD .ROW (ROW) := TRUE; --Take queen off board for next
BOARD.R_DIAG (COL+ROW) := TRUE:; --iteration on this column
BOARD .DIAG (COL-ROW) =
end if;
end if;
end loop:
end NODE:

task body IO_CONTROL 1s
begin
loop
select

accept START;
accept STOP:

or

terminate;
end select:

end loop:

end IO_CONTROL;
begin —-declare
TIME_BEGIN := CLOCK:

FIRST_LEVEL := new A_OF_T: --Create first task
FIRST_LEVEL.all(1) .START(1, LAY_OUT): --Pass it empty configuration

i ®nd: ——geclare Do not proceed past this point untll all tasks are completed.
TIME_END := CLOCK:

L]
L4

:3%('The total number of tasks created for this solution is: ")
' (CounT, 0):

-106~

NEW_LINE:

EXECUTION_TIME := TIME_END - TIME_BEGIN;

PUT ("Executlion time for solution (in seconds) is : ")
PUT(EXECUTION_TIME, 3. 1):

NEW_LINE:

end SPAWN:

-107-

with TEXT_IO, CALENDAR;
use TEXT_IO, CALENDAR:
procedure SQUARE 1s

- This solution uses n-squared tasks to solve the n-queens problem.
—— There is one task for each square on the chess board. There is also

—— a task for controlling 1/0 requests. This program finds all possible
—- solutions to the n-queens problem, for a particular n.

- The program lncorporates some basic information about the n-queens

-- problem that simplifies the approach. First, a valid solution may have

-- only one queen in any row or column. Second, a one dimenslonal array

-- may be used to encode information about queens in diagonals. Thls reduces
-- the check for a queen in a diagonal to one array reference. This technic.e
—— was taken from Wirth's solution involving recursion.

-- The program finds all solutlons concurrently. First, each task in the
—— first column begins, assuming it 1s the only square in the solution thus far.
—— This means that n different threads of execution occur at the start. Each
—— task then checks the next column for ‘safe' squares, l.e. squares where a

-- queen may be placed 1n proceeding with a potential solutlion from the current
-- square. Then, the task rendezvous with each safe square in the next coluzn
-- passing it the current board configuration. This has the potentlal of

-- splitting that particular thread of execution into several paths. If a zIzsx
—— can find no safe squares in the next column, that thread of executlicn

—— terminates. If a safe square 1is found in the nth column, a solutlon is

-— found. A rendezvous with the I/O controlling task occurs before the sol.zicn
-- is printed so that separate solutions are not written over each other.

~= The program also keeps track of task usage, and prints a message 1f any
-- tasks go unused. The amount of time needed to execute the program 1s ailsc

-- printed upon completion.

package INT_IO 1is new INTEGER_IO(INTEGER) ;
use INT_IO:

package TIME_IO is new FIXED_IO(DURATION) :
use TIME_IO:

NUMBER_OF _QUEENS:constant := 8;
-- For keeping track of task usage
type USAGE_ARRAY is array (INTEGER range <>, INTEGER range <>) of BOOLEAN:

STATS : USAGE_ARRAY (1. .NUMBER_OF _QUEENS, 1. .NUMBER_OF_QUEENS) :=
(others => (others => FALSE)) :

TIME_BEGIN, TIME_END:TIME:
EXECUTION_TIME :DURATION;

begin --Main
declare

~-~ Configuration data structure adapted from Wirth's solution

LOW_DIAG :constant:= 1 - NUMBER_OF _QUEENS:

-108-

type CONFIG_ARRAY is array (INTEGER range <>) of BOOLEAN;
type COL_ARRAY is array (INTEGER range <>) of INTEGER:

type CONFIGURATION is

record
ROW: CONF IG_ARRAY (1. .NUMBER_OF _QUEENS) := (others => TRUE);
R_DIAG: CONFIG_ARRAX(Z..(Z'NUMBER_OF_QUEENS)) := (others => TRUE) ;
DIAG: CONFIG_ARRAX(LOM_DIAG..NUMBER_OF_QUEENS—I) := (others => TRUE) ;
COL: COL_ARRAY (1. .NUMBER_OF _QUEENS) = (others => 0):

end record:

type ORD_PAIR 1is
record
ROW: INTEGER ;
COL: INTEGER:;
end record:

task IO_CONTROL is
entry START:
entry STOP;

end IO_CONTROL:;

task type SQUARE 1is
entry BRANCH (BOARD:CONEFIGURATION; POSITION:ORD_PAIR) ;

end SQUARE:
type A_SQUARE 1is access SQUARE:;

type TASK_ARRAY is array(l..NUMBER_CF_QUEENS, 1..NUMBER_OF_QUEENS)
of A_SQUARE;

SQUARE_ARRAY : TASK_ARRAY ;
EMPTY_CONF IG:CONF IGURATION;
FIRST_CONF IG:CONFIGURATION;
FIRST_POSITION:ORD_PAIR;

task body SQUARE is —- n squared of these tasks referenced by TASK_ARRAY

LAY_OUT : CONF IGURATION;
POS:ORD_PAIR:;
NEW_BOARD : CONE IGURATION;
NEW_POSITION:ORD_PAIR:

begin --The task SQUARE

loop
select
accept BRANCH (BOARD:CONF IGURATION:; POSITION:ORD_PAIR) do
LAY_OUT := BOARD; -— Read data from task in previous column
POS := POSITION;
end BRANCH:

STATS (POS.ROW, POS.COL) := TRUE; --Indicate that the task has been used

if

-109-

POS.COL = NUMBER_OF_QUEENS then -- A solutlon
10_CONTROL . START: -- Lock out writers

PUT("Solution, row numbers in column order: "):
for J in 1..NUMBER_OF_QUEENS loop
INT_I10.PUT(LAY_OUT.COL(J), O):
if J /= NUMBER_OF_QUEENS then PUT(", "): end {f:
end loop:

NEW_LINE;
IO_CONTROL.STOP:;
€lse
for 1 in 1..NUMBER_OF_QUEENS loop --Check each row in next cclumn
NEW_BOARD := LAY_OUT: --Initlalize board to empty next cclumn
1 f NEW_BOARD.ROW(I) --Check for safe square
and NEW_BOARD.R_DIAG(I+POS.COL+1)
and NEW_BOARD.DIAG(I- (POS.COL+1)) then -- Pass it on
-- Place queen on square for next task
NEW_BOARD.COL (POS.COL + 1) = I:
NEW_BOARD.ROW (I) = FALSE:
NEW_BOARD.R_DIAG(I+POS.COL+1) := FALSE:
NEW_BOARD.DIAG (I- (POS.COL+1)) := FALSE:
NEW_POSITION.ROW := I;
NEW_POSITION.COL := POS.COL + 1;
--Pass on info to safe square 1ln next column
SQUARE_ARRAY (NEW_POSITION.ROW, NEW_POSITION.COL) . BRANCE (
NEW_BOARD. NEW_POSITION) ;
end if;
end loop:
end 1f;
or
terminate:
end select:;
end loop:
end SQUARE:

task body IO_CONTROL 1s

begin

loop

select

accept START:

-110-

accept STOP;
or

terminate;
end select:

end loop:

end IO_CONTROL:
begin -—declare
TIME_BEGIN := CLOCK:

for I in 1..NUMBER_OF_QUEENS locp --Create tasks for each square
for J in 1..NUMBER_OF_QUEENS loop
SQUARE_ARRAY (I, J) := new SQUARE:

end loop:

end loop:

for I in 1..NUMBER_OF_QUEENS loop --For each row in the first coclur-
FIRST_CONFIG := EMPTY_CONFIG: --Re-initlzliize to emp:y
FIRST_CONFIG.COL (1) = 1:
FIRST_CONFIG.ROW(I) := FALSE:; --Mark occupied sguare
FIRST_CONFIG.R_DIAG(I+1) := FALSE;
FIRST_CONFIG.DIAG(I-1) = FALSE;

FIRST_POSITION.ROW := I:
FIRST_POSITION.COL := 1:

—-Pass on data to first column task
SQUARE_ARRAY (I, 1) .BRANCH(FIRST_CONFIG, FIRST_POSITION) ;

end loop:

end; ——declare Do not proceed until all tasks completed.

TIME_END := CLOCK:

for 1 in 1..NUMBER_OF_QUEENS loop --Print out unused task info
for J in 1..NUMBER_OF_QUEENS loop

if not STATS(I, J) then
PUT ("Task for board square (row, col) "):

PUT(I. O0): PUT(", "): PUT(J, O):
PUT_LINE (" was not used."):
end if;
end loop:
end loop:

EXECUTION_TIME := TIME_END - TIME_BEGIN:

PUT ("Execution time for solution (in seconds) is :7):

PUT (EXECUTION_TIME, 3, 1):

NEW_LINE: N
(4 pages of outpet not price

end SQUARE: _Ed.

