Instruction Level Mechanisms for Accurate
Real-time Task Scheduling *

Richard A. Vols
Trevor N. Mudge
The Robotics Research Laboratory
Department of Blectrical Engineering and Computer Science
The University of Mochigan
Asnn Arboe, Ml 48109

Abstract: The scheduling of timed tasks is generally
based, at the hardware level, upon the use of time
intervals. For example, most microprocessor families
provide their only hardware support for timing control in
the form of a programmable interval timer chip accessible
as an 1/O device over the system bus. In this paper we
will argue that a more natural and elegant solution bases
tirning on a local {to & particular cpu} absolute timer.
Further, we will show that the desired timing functions
can be provided by simple extensions to existing cpu
architectures. The widespread use of the “time interval”
view has also influenced, in a negative way, the design
of programming languages. An important example is
Ada, a language designed with real-time multi-tasking
explicitly in mind. We will describe the difficulty with
the current timing methods used in Ada, and present a
method for overcoming the timing weakness by using the
proposed timing mechanisms, while still remaining within
the definition of the Ada language.

1 Introduction

Real-time. multi-tasking processing requires that the
activities of the processors be scheduled in accordance
with both timing and external event requirements.
Programming tools used for writing such applications
should contain effective mechanisms for managing system
resources to meet these kinds of requirements. Current
time management tools have evolved from a separate
development of hardware timers which may be added
to the bus of a computer system and scheduling
algorithms which use the timers. The consequence of
this uncoordinated approach has been the development
of timing systems which are largely interval based,
inefficient, limited in resolution practically obtainable,
difficult to use and not readily extendible to dealing with
distributed systems. In this paper we argue that a unified
approach to the development of software scheduling

*This work was spopsored by General Dynamics, contract mo
DEY-601540.

mechanisms and supporting hardware yields much more
efficient, natural and easy to use tools for timing control.

In particular. we suggest that timing control should b
expressed in terms of absolute time at the languag:

level and show that there exist simple extensions to cpu
architectures which make the implementatior particularly
straightforward and efficient.

The real-time performance of a system is highly
dependent upon the performance of the scheduler. which
in turn, is highly dependent upon the timing mechanisms
available. Accordingly, real-time computer systems nearly
always contain an interval timer, with either fixed or
programmable interval, and frequently, bat not always,
a time of day clock. If present, the time of day clock is
usually of relatively low resolution, and not of value in
scheduling tasks with a high repetition rate. Scheduling
at the user level is typically accomplished by using some
type of delay or wait function which puts the user
process to sleep until a specified period of time has
alapsed 112, The use of a fixed interva' clock lim"
the practically achievable timer resolutior because of the
software overhead associated with each timer interrupi.
This is a limiting factor for many real-time applications.
A programmable interval clock can be used to reduce
unessential software overhead, but care must be taken in
managing it to avoid loss of clock ticks 3.

Mechanisms for timing control in modern languages
intended for concurrent and/or real-time applications are
either absent or also rooted in the use of time intervals.
Ada provides a “delay interval” construct to allow a
process to delay its execution by the value of the variable
interval |4, section 9.6]. Concurrent C and Concurrent
Pascal utilize similar mechanisms [5,6,. Modula-2 (7,
provides no intrinsic timing mechanism at all. OCCAM
|8 appears to have a construct which references a desired
absolute time. It maintains an interna! variable which
represents time and can apparently be used to delay until
after a desired time. However, the syntax for using this
feature is not very stable; at least two different versions
have ‘appeared in OCCAM documentation over the past
three years. Moreover, OCCAM does not maintain a

To appear in the Proceedings of the IEEE Real-Time Systems Symposium (RTSS 1986)

global sense of time, and has only a very limited time
resolution (16 bits), certainly far too limited for serious
real-time applications.

Aside from being nonoptimal for real-time scheduling
activities. interval based timing csuses additional
complications for distributed systems which must
maintain time synchronism [9). The adoption of an
absolute sense of time at each node in the system simplifies
user level synchronization problems by placing the burden
at the point of maintaining synchronism among the
individual system clocks.

The next section describes the difficulties with current
timing mechanisms. Section 3 then presents a set of
underlying support primitives based upon absolute timing
which allow efficient implementation and illustrates their

use in a simple scheduling algorithm. Section 4 describes
the use of the new constructs to simplify and improve the

efficiency of timing control in Ada.

2 Current Modes of Operation
and Their Limitations

The problem of concern is the time scheduling of a set
of tasks T1.... TN, so that they are made ready at
the times ¢,....,t,. The times ¢;,...,t, are presumed
to be known. Also of interest is the ability to
schedule a task to occur after some interval of time has
elapsed. Algorithms for selecting the times £),...,In
or the interval are covered elsewhere [10] and are not
of concern here. Rather, the interactions between the
timer and the scheduler are considered. In most existing
implemerzations. the timing hardware is designed without
regard for the types of scheduling algorithms best suited
for real-time operation and the schedulers must be written
to accommodate existing hardware, with a resulting
limitation in performance. The most common present
mode of operation is to use a fixed interval timer which
periodically interrupts the processor and invokes the
scheduler. The scheduler maintains a list of scheduled
tasks. the times at which they are to be made ready, and a
software clock. Each time an interrupt occurs the software
clock is updated and the list of scheduled tasks are checked
to see if any of them should be made ready. The overhead
associated with updating the clock and checking the task
list after each interrupt places a lower bound on clock
interval which may be used, as this must be incurred on
each interval, regardless of whether or not there is a task
to be scheduled.

The use of a programmable count down timer makes
an ahernative scheduling discipline possible. Such 2
timer always counts down at some basic rate (10-100
kHz are typical). Whenever sero is reached, an interrupt
to the processor is generated and the scheduler invoked.

Thus, overbead s incurred only when a scheduling
operation is actually required, and, therefore, it is not
necessary to choose 3 minimum interrupt rate on the
basis of the fraction of processor time taken up by time
management. This type of scheduling is preferred for
real-time operations. In this case, however, the count in
the timer must be updated by the scheduler to the interval
required before the next task is to be made ready, and, as
described below, this scheme is prone to errors which can
result in a “drift” of the time kept by the system'.

Many vendors offer programmable timers that operate
as described above which may be added as a device
on the bus of a computer configuration and used for
scheduling operations (e.g., the Intel 8254 programmable
interval timer [11]). A few processors, e.g., the Intel
8096, even offer on-chip timers. All of these, however,
suffer one major deficiency; they allow a cumulative loss
of time under some circumstances. If the timer receives
a new value by a store operation, the time between
the occurrence of the previous interrupt and the store
operation is lost. This is of no consequence if no pulse from
the underlying clock generator arrived at the timer during
the store. However, if such a pulse did arrive during or
before the store, its eflect will be wiped out by the store
of a new value in the timer, resulting in a slow drift of the
time maintained on the system. The likelihood of such loss
of time is accentuated by the presence of other external
devices which might interrupt the processor or cycle steal
from the processor during time management.

One solution to this problem is to add the new interval
to the timer rather than store to it. That is, if clkis the
value of the interval timer. and new.inferval is the next
delay interval. it is necessary to achieve

clk — elk ~ new_interval;

rather than elk — new_interval if a drift in time is
to be avoided. However, the add operation must
also be performed without losing account of any clock
pulses that may occur during the add. If it were
implemented in software, there would be the possibility
of the add blocking the pulses, particularly if interrupts
or DMA occurred simultaneously. Unfortunately, existing
commercial timers do not support the desired “add
to timer” function in hardware, and one can only
approximate the desired behavior by making the timer
management function run at the highest priority possible.
Then. however, clock pulses and nonmaskable interrupts
can still intercede and lead to cumulative time loss. A
programmable count down timer with an “add to timer”

!Throughout this paper we shall use the word *drift” to mean the
camulative Joss of time due to missed clock pulses, rather than
the fluctuations in the behavior of the oscillator producing the
clock pulses that can often be caused by changes in the physical
environment.

function has been built in a real-time computing systems
jaboratory at the University of Michigan and incorporated
into the scheduler in a real-time operating system |3
1- that system. the timer was a device on the Q-bus of
an LSI-11/1 system. Cyclic timing intervals as low as 1
millisecond have been realized with the system.

While the timing problems can be solved via an
*add to timer” function or the use of a second register
in conjunction with a programmable timer, as Digital
Equipment Corporation does in the VAX {2, we believe
the best solution to the problem of scheduling events in
time is based upon a common sense of “absolute time.”
This is the approach that we shall present in this paper.
Although it is not essential to the approach, the paper
describes the placing of the necessary timing functions
directly on the cpu chip. While perhaps infeasible a few
years ago, most current LSI cpu chips have both extra
space on the chip and unused instruction codes. These
can be used in an upward compatible fashion to provide
improved single chip real-time control processors.

3 Basic Timing Functions for
Real-time Task Scheduling

3.1 Programmable Absolute Timer

There are three basic questions to be answered in defining
the new programmable absolute timer capability:

e How many bits should it have?
e Where should it be placed architecturally?

e How should it function?

The number of bits is a function of timer resolution and
the maximum interval length to be measured. A 32 bi:
timer with a 10 microsecond resolution allows a maximum
period of approximately a half a day. This is marginal for
many applications. Since the number of bits is not critical
to the remainder of the discussion, we assume a timer with
64 bits (this corresponds to a range of about 1/2 million
years at a 1 microsecond resolution).

One of the key points to the proposed timer is that it
be placed in the cpu. Proper timing operation requires
several complex operations to be performed atomically,
that is they must be performed in toto or not at all. This
can be accomplished if the timer is part of the cpu, but is
difficult to guarantee if the timer is only accessed through
the bus. The need for atomic operation will become
clearer as the necessary timer functions are described and
illustrated below.

The proposed scheme requires the addition of two cpu
registers, as shown below. The todc register holds the

current time and is incremented at a fixed rate. The
cpr register is used to hold the time of the next event
to be scheduled. The arrival of the event is checked for
by continuously comparing the contents of ¢pr with those

63 0
timer or time of day clock (tode)

63 0
compare register (cpr)

of tode. At every clock tick, the following operations are
performed:

tode — tode + 1;
if tode > cpr then

epr — 1...1;

generate timer snterrupt;
end if;

The comparison is atomic and is performed by hardware:
clearly it should be performed within a clock tick. A
convenient choice for the clock tick would be a multiple
of the basic cpu clock. For example, in current 32 bit
microprocessors a 2—4 phase clock would be appropriate
and yield a tick period on the order of 1 psecond. This
degree of timer resolution is much finer than is currently
typical. Just prior to generating a timer interrupt epr is
loaded with its maximum value (all ones). This prevents
subsequent meaningless interrupts from occurring before
new event times are loaded into cpr. The timer interrupt
is generated on every tick where epr < todc. even if epr
is, for whatever reason, loaded with a value less than the
present time of day.

Given the above two registers and the continuous
checking logic, four scheduling primitives can be defined
that are sufficient for implementation of a number of
scheduling algorithms:

o Set timer
o Set compare register
e Conditional set compare register

o Read timer

We next describe the operation of these instructions and
then illustrate their use in a simple scheduling algorithm.

1. Set timer: stodc(neu_tode,A,B)

¢(A,B) — tode;
todc — new_todc;

where nsw. tede is a 64 bit register pair or memory
location, and A and B are a pair of 32 bit registers (we
will assume for the purposes of this discussion that we are
dealing with a 32 bit machine). The value returned in the
A,B register pair can be used for adjusting stored time
values after tode has been reset to synchronize with an
external clock. This operation should be atomic, i.e., no
interrupts or DMA activity should intercede during the
operation. Further, the set timer should be a privileged
instruction. In addition to providing a way to initially
set the value of the clock, this instruction will be used to
synchronize two or more loosely coupled cpu’s.

3. Set compare register: scpr(new_compare_value,A,B)

¢{A,B} — cpr;
pr — new_compare_value;

where A and B are two 32 bit registers used to save
the old value of cpr and new_compare value is 2 64
bit quantity from cpu registers or memory. It is not
essential that scpr(A,B) be atomic for the purposes of
this paper, though other considerations are likely to make
it desirable. If interrupts, DMA or other events result
in new.compare_value being less than todec when sepr is
executed, then a timer interrupt will be generated on the
next clock tick. However. since the timing is based on
“absolute time” this local anomaly will not contribute
to a cumulative bias as it can in similar situations
when the underlying timing mechanisms are based on
interval timing. Xf initialization is performed correctly
the accaracy rests solely with the ability to minimize the
fluctuations of the oscillator that increments todc. The
contents of todc are never modified except when it is
set initially or reset to effect synchronization with othe-
processors or some absolute time base.

3. Conditional set of compare register:
escpr(nex_compare_value, flag, A, B)

fag— O;

if new_compare_value < cpr then
¢fA,B} — cpr;
epr — new_compare_value:
flog — I;

end i,

This operation simply loads the compare register with
a new event time if that time is earlier than the one
presently in cpr. The 1 bit register flag is set to 1 if the
exchange is made, and the old value is saved in a register
pair. Typically, flag will be one of the cpu status bits.
The instruction cscpr should be atomic. If the new value
set into epr is less than tode, that is, one has atternpted to
schedule something to occur prior to the present time, an
interrupt will occur immediately after completion of this

instruction and the item to be scheduled can be handled at
the nearest possible point in time to that desired. Again,
because the scheme relies only on absolute time, there will
be no permanent or cumulative joss of time.

4. Read timer: rtodc(save timer.value)
save_timer_value — tode;

This operation saves a copy of the timer in save_timer_value,
a 64 bit pair of cpu registers or memory locations.

We next demonstrate how the defined operations can
be used as primitives in a simple model of a scheduling
algorithm.

8.2 Simple Scheduling Model

Consider a set of tasks to be scheduled at various points
in time. Order the tasks by the time at which they are
to begin. For illustration purposes, we show the result
as a linked list of task control blocks (TCB’s) in Fig.
1. Each TCB contains, among other things, a pointer,
nezt, to the TCB of the next task in the scheduling se-
quence, and a value, scheduled_time, at which the task
is to begin. The variable HEAD points to the head of
the list. Suppose that the timer already has been loaded
with HEAD.scheduled_time, the time at which task Tl is
to begin. HEAD.scheduled.time, the time at which task
T1 is to begin. I T is a pointer to the TCB of a new

TCB for task T, TCB for task Ty
—_—
HEAD —— ner - nezxt —
scheduied time scheduled. time
name {= T)) name (= Ty}
—_— —
H i
. l
L

Figure 1. List of TCBs

task, that task can be added to the list of Fig. 1 as follows,

T.scheduled_time — ealculate scheduled time;
interrupts off.

cscpr(T.scheduled_timc,ﬂag,A ,B);

insert T in schedule bist:
interrupts on;

The action of the cscpr instruction permits the new task to
be placed at the head of the queue of tasks to be processed
if its scheduled_time is earlier than that of Ty. Of course,
in such cases the scheduled time for T, is not lost, and

it will be reloaded into epr at the appropriate time, a8
we will see. The insertion of T into the list can be done
in the wsual way by following the chain of TCB's until
T.scheduled_time < next.scheduled_time.

The actions performed by the scheduler upon the oc-
currence of a timer interrupt are equally simple. If the
variable NOW is used to retain the epr time which caused
the timer interrupt, then the scheduler need only perform
the following:

interrupts off ;

NOW — HEAD.scheduled_time;

repeat
edd task pointed to by HEAD to set of ready tasks;
HEAD — HEAD.next;

until NOW # HEAD.scheduled_time ;

upr{HEAD.uhedulcd.time,A,B} H

snterrupts on ;

The repeat...until is executed at least once and moves
all the tasks which where scheduled to run at the cpr time
which caused the interrupt to the set of ready tasks. These
tasks all have the same scheduled_time. The first task after
the sequence of ready tasks then has its scheduled_time set
in the compare register to await its start time.

In this sunple example, neither the flag nor the
registers which return the old value of epr were used
because all of the needed information was held in the
TCB's. However, in more complex scheduling methods,
a need for them may arise.

4 Language Level Issues

The pervasiveness of the “time interval” view has
influenced the design of programming languages in a
way that has introduced unnatural complexity into
the scheduling operations. An important example is
Ada. a langzage designed with real-time multi-tasking
explicitly in mind. Ada provides a predefined date
type. DURATION; objects of this type represent time
intervals. A ianguage construct, delay, provides a delay
for at least the length of time given by an argument
of type DURATION. In addition, a predefined package,
CALENDAR. is specified which provides 2 data type
TIME, and a set of mathematical operations for dealing
with TIMEs and DURATIONs. For example, it provides
a function “-7 which subtracts two TIMEs and yields a
DURATION

To illustrate the influence of interval timing on Ada.
we present an Ada version of a commonly used timing
loop for repetitive (at a fixed interval) operations and note
that even though the language has interval based timing
mechanisms the user must still maintain an absolute sense

of time (st least locally). We consider a simple control
loop, which for instance might be controlling the motion
of a robot arm, which must be executed repetitively with
period 0.01 seconds. Denote the control action by the
subprogram F. Then using the Ada language syntax the
loop may be expressed as [12}:

with CALENDAR;
declare
use CALENDAR;
INTERVAL: constant DURATION := 0 .01;
NEXT.TIME: TIME := FIRST_TIME;
begin
loop
delay NEXT.TIME - CLOCK;
F;
NEXT_TIME := NEXT.TIME + INTERVAL;
end loop;
end;

where the package CALENDAR provides the data types
DURATION and TIME, and the functions CLOCK (for
returning the current value of TIME}, «” and “+" for
operating on values of these types.

There are several observations to be made about
this example. First, even though the example itself is
intrinsically interval based and the language provides
interval based timing, it is necessary for the user to
implement an absolute (at least local to this problem)
sense of time. This is necessary because of the unknown
length of time required for the execution of F (indeed, it
may not even be constant). Without the maintenance of
an absolute sense of time. there could be a long term drift
in the timing of the loop which could be harmful to the
operation being performed.

The syntax of the language reflects the bias toward
an underlying interval timer. The example illustrates the
inefficiency of this. One must first convert from a time
interval specification to an absolute time specification and
then back again. Furthermore, arithmetic involving data
objects of type TIME is not necessarily efficient. On one
compiler tested, the times required for “+" and “.” are
on the order of 200 u seconds. Even worse, CLOCK
function measurements on five Ada compilers showed
times ranging from 94 to 3400 useconds [13]. Furthermore,
the underlying scheduling operations must suffer from one
of the kinds of ills described in section 1.

The times required for timing operations is highly
dependent upon the representation of the data types.
The underlying use of an interval timer in conjunction
with the requirement to provide functions returning the
MONTH, DAY and YEAR of the TIME make a record
representation appealing. It is this underlying record

implementation which jesds to the lasge execution times.

The use of an underlying absolute timer would allow
and encourage improvements in several ways. First, it
would encourage an underlying representation of TIME
objects as extended fixed point numbers, with conversion
being performed for MONTH, DAY and YEAR as
necessary. Then the TIME arithmetic and CLOCK
functions could be performed in useconds rather than
hundreds of useconds. Time could easily be kept
in Greenwich Mean Time allowing compatibility across
time sones; the time zone would then be simply a
set-up parameter. Second, it would allow a more
patural language expression of the timing function.
Using the package facility a new package could be
defined, ABS_TIME that supercedes the capabilities
of CALENDAR and that is based on absolute time.
Among other things it could provide a new procedure
DELAY_UNTIL(T: TIME), which would delay until the
timer reaches the time passed in as a parameter. This
would typically be used in place of the current delay
statement in Ada.

Then the above control loop may be expressed as:

with ABS_TIME;

declare
use ABS_TIME;
INTERVAL: constant DURATION := 0.01;
NEXT_TIME: TIME := FIRST.TIME;

begin
loop
DELAY_UNTIL{NEXT.TIME);
F:
NEXT.TIME := NEXT_TIME - INTERVAL;
end loop;
end;

Several points are worth noting. First, no reading of
the clock is mecessary. Second, no subtraction of time
is necessary. Both of these contribute to being able the
execute much faster loops. Also, the expression of the
timed loop is more natural and easier to understand.

5 Summary and
Conclusions

The management of time is critical in real-time embedded
systerns. We have shown that basing time on a
(local) absolute timer is more natural. leads to simpler
implementations, and is easier to use. The timing registers
and primitives introduced can be easily implemented on
a cpu chip or on a timer board that can be attached to
the system bus. We have illustrated both simple time

scheduling using the proposed instructions and new high
level language functions for Ada to allow more efficient

and natural expression of timed loops.

The use of (local) absolute timers also simplifies the
maintenance of synchronism across a set of machines
and isolates the real problem. that of providing correct
synchronized values of time to each of the processors in
the system. Though beyond the scope of this paper,
there are a number of mechanisms possible for solving
this latter problem, e.g., radio and satellite broadcasts of
digitally encoded time (and geographical position which
allows transmission time compensation).

References

{1] Intel Corporation, iRMX-86 Reference Manuals,
Santa Clara California, 1980.

{2] Digital Equipment Corp., VAX 11/780 Hardware
Handbook, Maynard, Mass., 1978.

{3] R.A. Volz, The CRASH—Compiler for Real-
time Applications SHop—Manual, Electrical and
Computer Engineering Dept., The University of
Michigan, Ann Arbor, Michigan, 1978.

Ada Programming Language (ANSI/MIL-STD-18154).
Washington, D.C., 20301: Ada Joint Program Of-
fice, Department of Defense, OUSD(R&D), January,
1983.

{4

N.B. Gehani and W. D. Roome, Concurrent C,
AT&T Bell Laboratories report, Murray Hill, New
Jersey, 1985.

B

{6, Per Brinch Hansen, The Architecture of Concurrent
Programs, Prentice-Hall. Englewood Cliffs. New
Jersey, 1977.

[7] N. Wirth, Programming in Modula-2, Springer-
Verlag, Berlin, 1982.

{8’ D. May, “OCCAM,” SIGPLAN Notices, vol. 18, po.
4, pp- 69-79, April 1983.

R.A. Volz, T. N. Mudge, A. W. Naylor, and J. H.
Mayer, “Some Problems in Distributing Real-time
Ada Programs Across Machines,” Ada in Use, Proc.
of the 1985 Int’l Ada Conf.,

[10] K. Ramamritham and J.A. Stankovic. “Dynamic task
scheduling in distributed hard reai-time systems,”
IEEE Trans. Software Engineering. vol. 1, no. 3,
July 1984.

11} Intel Corporation, Microsystems Components Hand-
book, Santa Clara California, 1984. pp. 72-84, May
1985.

(12} J.G.P. Barnes, Programming in Ads, (2nd ed),
Addison-Waesley: London, England, 1984.

(13} RM. Clapp, LJ. Duchesneau, R.A. Volz, T.N.
Mudge, and T. Schultze, “Toward real-time
performance benchmarks for Ada,” Communications

ACM, to appear.

