760

COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor

Benchmarks are developed to measure the Ada notion of time, the Ada
features believed important to real-time performance, and other time-related

features that are not part of the language, but are part of the run-time
system; these benchmarks are then applied to the language and run-time
system, and the results evaluated.

TOWARD REAL-TIME PERFORMANCE
BENCHMARKS FOR ADA

RUSSELL M. CLAPP, LOUIS DUCHESNEAU, RICHARD A. VOLZ,
TREVOR N. MUDGE, and TIMOTHY SCHULTZE

As stated in the forward to the Ada Language Refer-
ence Manual [1], “Ada is the result of a collective
effort to design a common language for programming
large scale and real-time systems.” The common de-
nominator among real-time systems (e.g., the avionic
system in an airplane, a robot controller, and even
the controller for a video game) is the need to meet a
variety of real-time constraints. Although Ada® is
intended to be used for such real-time applications,
there is nothing in the Language Reference Manual
(LRM) that ensures that Ada programs, regardless of
processor speed, will provide the performance neces-
sary to accommodate the real-time constraints of
particular applications. The Ada Compiler Valida-
tion Capability (ACVC) suite of programs was estab-
lished to validate the form and meaning of programs
written in Ada, but not to specify the size or speed
of their object code, or the precise nature of their
task scheduling mechanisms, all of which are criti-
cal to real-time performance. In other words, the
Ada language contains mechanisms to accommodate
real-time applications, but leaves performance issues
to supplemental measurement. This article addresses
the issue of real-time performance measurement—

Ada is a registered trademark of the U.S. Government (Ada Joint Program
Office).

This work was partially sponsored by Land System Division of General
Dynamics and NASA.

© 1986 ACM 0001-0782/86,/0800-0760 75¢

Communications of the ACM

particularly time measurement and scheduling for
which adequate requirements are not explicitly
stated in the LRM—through the design and use of a
set of benchmarks that measure the real-time per-
formance of code produced by an Ada compiler.

Benchmarking can be approached in two ways: by
developing a composite benchmark {e.g., Whetstone
or Dhrystone [5, 9]); or developing a set of bench-
marks, each of which measures the performance of a
specific feature of the implementation [6]. Although
the composite benchmark is easier to apply, no
single composite can capture all of the information
required for even a modest spectrum of real-time
applications. Moreover, since detailed knowledge of
the performance of individual features is often re-
quired for applications planning, and is also useful
in understanding the relation between real-time per-
formance, language constructs, and compiler imple-
mentation, our approach concentrates on techniques
for measuring the performance of individual lan-
guage features.

Measuring the performance of individual language
features through benchmarks involves a number of
complex operations, including

e isolating the feature to be measured;

¢ achieving measurement accuracy and repeatabil-
ity;

¢ eliminating underlying operating-system interfer-
ence from time slicing, daemons, and paging;

August 1986 Volume 29 Number 8

each of which is considered in this article. Besides
the performance of individual language features,
there are other real-time performance measure-
ments associated with the run-time system (e.g.,
measurements of scheduling and storage manage-
ment algorithms).

In this article, we focus on the features from the
language and run-time system that are believed to
be important for real-time performance, concentrat-
ing not only on the benchmarks, but also on the
basic measurement techniques used. A comprehen-
sive effort to acquire benchmark programs and pro-
vide an extensive database of comparative results on
all major Ada compilers is being conducted under
the auspices of the ACM Special Interest Group in
Ada [8). Most of the benchmark tests presented here
were contributed to that effort in the summer of
1985; the remainder (i.e., those developed during the
fall of 1985) were contributed in early 1986.

The development and interpretation of measure-
ment techniques for real-time programming are
based on the Ada notion of time, which is reviewed
in the following section. Thereafter, techniques are
presented for achieving basic measurement accu-
racy, isolating the features to be measured, and de-
termining the interference of operating-system func-
tions. A subsequent section presents the set of fea-
tures believed important for real-time performance,
discusses why they are considered important, and
describes the measurements to be made by the
benchmark. Particular focus is given to scheduling
operations and time measurements. The next section
presents the results of the benchmark tests for sev-
eral compilers: Verdix Versions 4.06, 5.1, and 5.2
running with Unix® 4.2 bsd on a VAX 11/780; DEC
VAX Ada Version 1.1 running with Micro VMS 4.1
on a Microvax II; DEC VAX Ada Version 1.3 running
with VMS 4.4 on a VAX 11/780; and Alsys Version
1.0 running with Aegis Version 9.2 on an Apollo
DN660. It is important to note that these versions of
the compilers are intended for time-shared use, not
real-time applications, and therefore the results
should not be interpreted with real-time perfor-
mance in mind. At the time of this writing, however,
these were the principal Ada compilers available to
the authors, and the results do help illustrate the
methods presented. The parameters obtained also in-
dicate areas in which users should look for improve-
ments in cross-compilers intended for real-time ap-
plications.

REVIEW OF ADA TIME UNITS

The Ada LRM defines several entities that relate to
time, its representation within Ada programs, and
the execution of Ada programs:

Unix is a trademark of AT&T Bell Laboratories.

August 1986 Volume 29 Number 8

Computing Practices

e the data type TIME, objects of which are used to
hold an internal representation of an absolute
point in time;

e the data type DURATION, objects of which are
used to hold values for intervals of time;

¢ a predefined package, CALENDAR, which pro-
vides functions to perform arithmetic on objects of
type TIME or DURATION;

¢ a predefined function, CLOCK, which returns a
value of type TIME corresponding to the current
time;

e DURATION’SMALL, which gives an indication
of the smallest interval of time that can be repre-
sented in a program,; this time interval must be
less than or equal to 20 ms, with a recommenda-
tion that it be as small as 50 us;

e the value SYSTEM.TICK, which is defined as the
basic system unit of time;

o the operation delay, which allows a task to sus-
pend itself for a period of time.

The semantics associated with the first three of
these entities are clear, whereas those of the last
four warrant some discussion.

Specifically, values of type DURATION are fixed-
point numbers and thus are integer multiples of the
constant DURATION’SMALL. DURATION objects
are only data representations of time and in no way
imply actual performance of a system for time mea-
surements or scheduling. That is, there is no re-
quired relation between the clock resolution time
and DURATION’SMALL. For example, on the
Verdix and Telesoft compilers for a VAX Unix sys-
tem, DURATION’SMALL is 61 us, while the timer
resolutions are 10 ms and 1 s, respectively.

The CLOCK function generally presumes an
underlying clock or timer that is periodically up-
dated at some rate undefined by the LRM. We call
this period the resolution time of the system. CLOCK
simply returns the value of time associated with the
current value of the underlying timer. If the execu-
tion time of CLOCK is less than the time resolution,
successive evaluations of CLOCK may return the
same value.

The term “basic system unit of time” is not very
specific. One might think it refers to the basic CPU
clock cycle. However, the constant SYSTEM.TICK is
used by several compiler vendors to hold the value
of the resolution of time measurements available
from the CLOCK function.

In addition to the above, an implementation may
have other important time-related parameters that
are not identified in the LRM. For example, some
validated Ada implementations frequently insert siz-
able delays—in conjunction with the delay state-
ment—that are neither directly specified by the pro-

Communications of the ACM 761

Computing Practices

762

grammer nor caused by system load, but are present
simply for convenience in the implementation of the
compiler and run-time system. Parameters that fall
in this category will be identified in the discussion
that follows, and techniques will be proposed for
measuring them.

MEASUREMENT TECHNIQUES

There are two basic techniques for measuring the
time needed to perform an operation. The first is to
isolate the operation and make time measurements
before and after performing it; however, for this to
be adequate, the time resolution of an individual
measurement must be considerably less than the
time required by the operation being measured. Un-
fortunately, this is typically not the case, and an
alternative method must be found. The second tech-
nique, and the one used here, involves executing the
operation a large number of times, taking time read-
ings only at the beginning and the end, and obtain-
ing the desired time by averaging,

Although this sounds simple and straightforward,
there are a number of complications that must be
handled carefully if the results obtained are to be
meaningful:

¢ isolating the feature to be measured and avoiding
compiler optimizations that would invalidate the
measurement,

e obtaining sufficient accuracy in the measurement,
¢ avoiding operating-system distortions, and
¢ obtaining repeatable results.

Isolation of Features

To isolate a specific feature from other features of
the language for measurement purposes, the basic
technique is to use two execution frames—a control
loop and a test loop—which differ only by the fea-
ture whose execution time is being measured. Theo-
retically, a difference of execution times between
the control loop and the test loop yields the time of
the function being measured. Code optimization,
however, can distort benchmark results by removing
code from test loops, eliminating procedure calls,

or performing folding. The benchmark programs
must therefore utilize techniques to thwart code
optimizers.

The key to avoiding these problems is not to let
the compiler see constants or expressions in the
loops whose times are being measured. For example,
instead of using a for loop with a constant iteration
limit, a while loop is used with the termination con-
dition being the equality of the index variable to an
iteration variable. The index variable is incremented
by a procedure, the body of which is defined in the
body of a separate package. The iteration variables

Communications of the ACM

are declared and initialized in the specification of a
library package. Since the iteration values are kept
in variables (not constants) and the body of the in-
crement procedure is hidden in the body of the
package, there is no way the benchmark loops can
be removed by optimization as long as the package
specification and body are compiled separately, with
the body being compiled after the benchmarking
unit.

Similarly, the compiler must be prevented from
either removing the execution of the feature being
tested from the loop, or eliminating the loop entirely
from the control loop that does not contain the fea-
ture. To ensure that these problems do not arise,
control functions are inserted into both loops, and
the feature being measured is placed in a subpro-
gram called from a library unit [3]. Again, if the
bodies of these subprograms are compiled separately,
and after the benchmark itself, the compiler is un-
able to determine enough information to perform
optimization and remove anything from either the
control or test loops. These techniques will be evi-
dent in the benchmarks described below.

The loops must each be executed N times, as dis-
cussed in the next section, to produce the desired
accuracy. The form of the test loop is

T1 := CLOCK;
while I < N loop
control functions;
DO_SEPARATE_PROC_F ; -- the function F
-- whose time is being measured
INCREMENT(1); (L1)
end loop;
T2 := CLOCK;
T":=T2—T1;

The control functions and subprogram call to incre-
ment [are included to thwart code optimizers. The
control frame would be identical to this except that
a separately compiled function DO_SEPARATE_
PROC_NULL would replace DO_SEPARATE_
PROC_F.

Basic Measurement Accuracy

Knowledge of both the resolution of a time measure-
ment and the variability of the time needed to make
a time measurement is required to determine the
number of iterations needed to obtain a parameter
measurement within a given tolerance. If r is the
basic time resolution unit in terms of which all time
measurements are made, then the value returned by
the CLOCK function at time ¢ is

F_EI_J . (1)

T

where LxJ is the “floor” function (the largest integer

August 1986 Volume 29 Number 8

less than or equal to x), 7. is the nominal time re-
quired to perform the CLOCK function, and =, is a
variable indicating a (hopefully) small random varia-
tion in the time required to perform the CLOCK
function. Since a difference of CLOCK measure-
ments will be used, 7. will subtract out of the equa-
tions to be developed and can be ignored. In all of
the equations that follow, it is assumed that 7, is
small in comparison to 7 and can also be ignored. In
any application, however, this assumption must be
verified. One of the tests described under “Features
to Be Measured” on page 768 can be used for this
verification.

If the time required to execute the loop excluding
Fis To and the time required to perform function F is
Tk (i.e., Tr is the time we are trying to ascertain),
then the difference between the values returned by
the two calls to the CLOCK function above will be

T"=NTo+Tr)xd-7 2
where
0=di<1
Then T is given by

T" é -7
Tr=-—=—-To %
VAL E Y

(3)

Thus, the accuracy of the measurement is deter-
mined by
éo-17 _ T

N <KI . @)

Once the time resolution unit 7 is determined, the
number of iterations can be chosen to provide the
desired accuracy. However, the impact of cumula-
tive error buildup must be taken into account; if To
is obtained by a similar type of measurement, one
must increase N for both measurements.

To measure 7, a call to the CLOCK function is
placed in a loop that is executed a large number
of times. Each time value obtained is placed in an
array. We will now show that the second difference
of the values obtained will equal either zero or the
time resolution unit.

Let the time to complete one execution of the
loop be
Tlao 1)=n.r4+6-71

p(1) 6)

where nisan integerand 0=<é<1

Without loss of generality, consider that the first ex-
ecution of the loop begins at time zero. Then the
time at the end of the kth iteration will be

TopkK) =k -n-7+k-6 -1 {6)

and the measured time will be

August 1986 Volume 29 Number 8

Computing Practices

T"k)=k-n-7+k.-68)-7 (7)

since the times returned are a multiple of the
CLOCK resolution 7. The first difference of the
measured times can be written

AT™K) = T™(k + 1) — T"(k) @)
=n.r+{+1)-8—lk-8l} -7

We note that since k is an integer and 6 lies in [0, 1)
we have

lk+1)-8)—Ltk-8l=00r1 .)

Therefore, in the second difference of the times
measured by the CLOCK function, the n - = in Equa-
tion 8 will subtract out and yield

AT™(k) — AT"(k— 1) =0, 70r —r . (10)

More specifically, the second difference will yield
one of the following sequences:

.., 0,7,-7,0,...,0,7,—-7,0,... (11a)
or
.., 0,-1,7,0,...,0,-7,7,0,... (11b)
depending on the value of 8. The length of the
substrings of zeros is approximately
%—2 if0<as%
Lo = .12
1 1
—— -2 if -<&8<
=3 2 if : <1

Lo can be controlled by empirically adding instruc-
tions to the loop. If é < %, the sequence (11a) results,
whereas, if § > V2, (11b) is obtained.

If n in the above equations is zero, then a first
difference measurement will suffice, yielding a
string of zeros with r appearing occasionally. The
only purpose in taking the second difference was to
eliminate n.

This second differencing procedure represents a
reliable technique for measuring the resolution time
of the CLOCK function. As will be seen below, it is
also useful for measuring a number of other param-
eters associated with real-time system performance.

Operating-System Interference

Isolating the feature being measured from other lan-
guage features and from code optimization is not the
only isolation that must be achieved. The timing of
the feature being measured must also be isolated
from the times for other user processes or for the
operating system itself. Since the CLOCK function
measures absolute time, any other processes execut-
ing during the test (e.g., in a time-shared mode)
would contribute to the measured time and thus

Communications of the ACM

763

Computing Practices

764

distort the results. Some operating systems (e.g.,
Unix) provide a timing function that nominally mea-
sures only the time of the processes being tested,
excluding the times of the operating systems or
other user processes. Not all operating systems can
be expected to have this function, however, and
even for those that do, there is some question as to
how precisely this calculation is made. Benchmark
tests should therefore be run on a system with no
other user processes in concurrent execution and
with all daemon processes disabled. A consequence
of this requirement is that no output should be gen-
erated by a benchmark until all timing is completed,
since a request for output could create an indepen-
dent process running concurrently with the bench-
mark.

Even with the disabling of daemon processes and
running on a single user system, there are still tim-
ing anomalies that must be detected and measured,
most notably the time-sharing activities of the oper-
ating system. The operating system can still be ex-
pected to interrupt the benchmark periodically to
check the queue for other processes waiting to run,
and then return control to the benchmark process.
For sufficiently high use of memory, operating-
system paging functions may also be invoked. How-
ever, except for memory allocation/deallocation
tests, benchmarks can usually be designed to use
less memory than the size that will cause paging
activity. The frequency and duration of these
operating-system actions must be determined and
taken into account in the timing calculations.

We begin by analyzing the effect of a function F,,
which periodically intrudes on the operation of the
benchmark. Let the function F, require a constant
T,s seconds and occur with period T,, and make the
following definitions:

T.=actual time required to execute the control
loop, N times;
Ts=actual time required to execute the control
loop and F, N times;
n. = number of times F,; is executed during T;
ny = number of times F,; is executed during T;
T =measured time for T,;
T & =measured time for T,.

It then follows that
Tc=N‘T0+nc‘Tos (13)
ch =N . (T + Ty + Ny - Tos . (14)

Since the measured times must be multiples of the
time resolution r, we have

T¢=Tc+6 -1 (15)
TG=Ts+ 65 -7 (16)

Communications of the ACM

where —1 < §, 4 < 1. Then, letting the calculated
time difference be T, = T& — T7, it is straightfor-
ward to obtain

T Ng—n
TF=N“—(—‘N;‘)-T”—(50,—5C)-£ . 7

Next, we observe that n. and n,s must be integers
and hence that

T,

n. = T—; + € (18)
T,

Mep = ?‘f + e (19)
14

for some —1 < ¢, ¢y < 1. It can then be found that

Tes

I g =

7-
+2.6-1-08).—
2.6-1-0) N

for some —1 < §, ¢ < 1 where

TOS

8= T, <1
The two right-hand terms in Equation 20 can be
made arbitrarily small by making N sufficiently
large. The effect of 8 shows that the results previ-
ously obtained in Equation 3 are pessimistic and that
a correction can be applied if T, and T,s can be
determined.

Estimates of T, and T, can be obtained by the
same second differencing technique described above
for obtaining the resolution time of the CLOCK func-
tion. Assume, for the moment, that T, satisfies the
relation Tos >> 1, that T, = m - = for m > 1, and that
¢ in Equation 5 is zero. The latter assumption means
that the contribution to the second difference from
the resolution time r is also zero, and the following
analysis will reflect only the effects of T,;. From a
filtering point of view, the time measurements are
simply a staircase input to the simple second differ-
ence filter. The output string, then, is just

. rov TOSy —Tosy 01'- . 10y Tos; —TOSv 01'~ . . (21)

This yields T, directly, and the periodicity of the
sequence gives the frequency of the operation T,.

If 5 # 0, the above sequence will have the se-
quence of Equation 11 superimposed upon it, which
may occasionally distort the value of T, by % 7.
Further, if T, is not an integral multiple of r, the
values in the sequence will only be within r of T. If
T,s > 7, reasonable estimates of the parameters
should still be obtainable. Theoretically, it is possi-
ble to derive the precise value of T,; based on the
number of periods in Equation 21 that lie between

August 1986 Volume 29 Number 8

fluctuations of size 7 in the nonzero values; in prac-
tice, however, it will be difficult to detect because of
the length of sequence required and the distortion
from the {r, —7) occurrence as in Equation 11.

If T,s < 7, it is again theoretically possible to ob-
tain the measurements, but somewhat more difficult
in practice. In this case, we begin by examining the
sequence of Equation 11 and determining the length
of the string of zeros between every (r, —r) pair.

If T, = 0, then this length may not vary by more
than 1. Any deviation by more than 1 indicates an
occurrence of Fy;. If T,s < 7, this will be reflected by
a shortening of the length of the string of zeros. The
amount by which the string is shortened in a mea-
sure of T,s (measured in multiples of the loop time),
and the period within which this is repeated indi-
cates T}.

Minor extensions of this technique permit the
detection and evaluation of multiple periodic
operating-system functions of differing service times.
However, it is generally difficult to fit the execution
time and period of more than a single function to the
sequence of Equation 11. Nonetheless, by accumu-
lating the shortening of the strings of zeros and di-
viding by total time, it is typically possible to get an
overall estimate of the operating-system overhead
involved.

Actual tests conducted using this approach re-
vealed another difficulty. Some implementations of
the CLOCK function involved the dynamic alloca-
tion of records, which in turn involved the invoca-
tion of a run-time system function. As discussed un-
der “Dynamic Allocation of Objects” on page 766,
the time required to perform this operation can
vary widely, and this variation in storage allocation
time will give the appearance of operating-system
overhead. To avoid these problems, the Ada
CLOCK function should not be used in tests to
determine operating-system overhead. Instead, an
implementation-dependent subprogram should be
used that can read the system timer without invok-
ing any variable time system functions such as stor-
age allocation. Such a system-dependent subprogram
was written and used in our tests. However, for all
the other tests to be described, the CLOCK function
is evaluated only at the beginning and end of a loop
iterated a large number of times, and the effect of
dynamic storage allocation is effectively eliminated,
as shown in Equation 20. Thus, except for determin-
ing the operating-system overhead, the Ada CLOCK
function may safely be used.

Resolution of Measurements

The result of Equation 20 is based on a periodically
occurring function that always takes the same time
to execute. Since in practice this assumption may

August 1986 Volume 29 Number 8

Computing Practices

not be entirely correct, repeated executions of the
benchmark can be used to both test the validity of
the assumptions and improve the accuracy of the
results obtained.

The distribution of the estimates can be observed
by running a repeated set of trials and then averag-
ing the results obtained from each trial. The vari-
ance of the resultant estimate is divided by N, if Nj
trials of the benchmark are made.

An alternate strategy is to use the minimum of the
values obtained. However, when this is done, it is
important to determine the minimum of Ty and T.
separately and use these values in the computation
of T;. Otherwise, one is likely to use a larger than
average value of T, in combination with a smaller
than average value of T, and produce a result that is
distorted on the side of being too small.

FEATURES TO BE MEASURED
In this section, we examine the features that are
relevant to real-time execution and whose perfor-
mance should be measured. A motivation is given
for each proposed test as well as a precise statement
of what is being measured. Where the measurement
requires techniques beyond those just described,
specific details are given.

The specific features discussed are listed below;
all but the last three are measurements of features
specified in the Ada LRM:

subprogram calls;

object allocation;

exceptions;

task elaboration, activation, and termination;
¢ task synchronization;

¢ CLOCK evaluation;

o TIME and DURATION evaluations;

e DELAY function and scheduling;

¢ object deallocation and garbage collection;

e interrupt response time.

In the areas of tasking, timing, and storage man-
agement, the compiler implementors have been
given a great deal of implementation latitude, and as
a result, it is difficult to develop a priori a set of
benchmarks that completely characterize these
areas. Since knowledge of the type of disciplines im-

plemented is essential before a determination can be

made as to what parameters it is relevant to mea-
sure, measurement techniques in these areas are ori-
ented toward determining the general nature of the
implementation techniques used.

Subprogram Overhead

With today’s software running into sizes that exceed
one million lines, modular programming is a neces-
sity—but a necessity that also leads to an increase

Communications of the ACM

765

Computing Practices

766

in procedure and function calls. In a recent study,
Zeigler and Weicker found that 26.8 percent of a
typical Ada program, as implemented in the iMAX
432 system, consisted of subprogram calls [10];
Shimasaki et al. obtained a range of 26.5 percent to
41.4 percent for typical Pascal systems [7]. Since it is
clear that the overhead associated with a subpro-
gram call and return should not deter software pro-
ducers from using a structured programming style, a
way of avoiding this increased overhead is having
the compiler generate an in-line expansion of the
code of the subprogram where the call to it occurs.
There is a trade-off here, however, in the sense that,
as the call/return overhead is eliminated, the size of
the object module is increased. Ada provides for a
method of in-line expansion with the INLINE
pragma, but a compiler is not required to implement
this or any other pragma. By measuring both sub-
program overhead and the time needed (if any) to
execute code generated by an in-line expansion, one
can determine whether or not the language/com-
puter will encourage real-time systems programmers
to use good programming techniques.

Several tests were designed to provide insight into
the different aspects of subprogram calls. The first
measures the raw overhead involved in entering and
exiting a subprogram with no parameters and then
determines the overhead associated with simple
parameter passing by passing various numbers of
INTEGER and ENUMERATION parameters. Com-
posite objects may be passed either by copy or refer-
ence. Another test will determine which method is
used, because, if the parameters are passed by refer-
ence, the time required will be independent of the
number of components of the object. The final case
involving parameters is the one in which the formal
parameters of the subprogram are of an uncon-
strained composite type. The test in this situation is
designed to measure the additional overhead present
in passing constraint information along with the pa-
rameter itself. All of the tests include passing the
parameters in the modes in, out, and in out.

All the tests involve two different types of subpro-
gram calls, one to a subprogram that is a part of the
same package as the caller, and the other to a sub-
program in a package other than the one in which
the caller resides. These two sets of tests determine
if there is any difference in overhead between intra-
and interpackage calls. In the case of intrapackage
calls, the tests are repeated with the addition of the
INLINE pragma to determine if the INLINE pragma
is supported and, if it is, the amount of overhead
involved in executing code generated by in-line ex-
pansion as opposed to executing the same set of
statements originally coded without a subprogram
call.

Communications of the ACM

The final aspect of the tests involves the use of
package instantiations of generic code. All the tests
for interpackage and intrapackage calls are repeated
with subprograms as part of a generic unit to deter-
mine the additional overhead involved in executing
generic instantiations of the code.

Dynamic Allecation of Objects
Writing software without distinct bounds on the size
of arrays and records or the number of tasks or vari-
ables improves portability and ease of support as the
application changes. The ability to dynamically allo-
cate objects is also important to the development of
some algorithms, but with embedded real-time sys-
tems, the time required to dynamically allocate stor-
age may make it an undesirable feature. To deter-
mine if dynamic allocation of objects is feasible in a
real-time application, the associated overhead must
be measured.

Three types of dynamic storage allocation are con-
sidered:

¢ allocating a fixed amount of storage by entering a
subprogram or declare block with objects declared
locally, where the amount of storage needed is
known at compile time, but is allocated at run
time;

* allocating a variable amount of storage not known
at compile time (e.g., to an object like an array
with variable bounds) by entering either a subpro-
gram or declare block;

¢ achieving dynamic allocation explicitly with the
new allocator, which can be used to allocate a
single object of a particular type.

The overhead associated with each of these types of
dynamic allocation is measured as follows.

In the case of fixed-length allocation, the times
to allocate various numbers of objects of types
INTEGER and ENUMERATION are measured as
well as the times to allocate various sizes of arrays,
records, and STRINGs. The objective is to determine
the allocation overhead involved and whether the
overhead differs based on the type of object allo-
cated. With variable-length storage, arrays of various
dimensions—bounded by variables—are allocated.
The test in this case is designed to determine if allo-
cation time depends on the size of the object. Many
compilers will probably allocate small objects from
the stack assigned to the task, and larger objects
from the heap (which will typically take a much
longer time). Finally, in the case of the new alloca-
tor, allocation time of objects of type INTEGER and
ENUMERATION as well as composite type objects of
various sizes is measured. This test will show if allo-
cation time is dependent on size (in the composite
type object case) and provide some idea as to the

August 1986 Volume 29 Number 8

relative efficiency of this method as opposed to the
fixed-length case.

Exceptions

Embedded real-time systems require extensive error
handling and recovery so that errors can be isolated
and reported without bringing the whole system
down. Also, modular programming encourages the
abstraction of abnormal error reporting. Since many
real-time systems must function in the absence of
human intervention, as in spaceships, satellites, etc.,
the ability to provide extensive exception handling
is of great importance.

The following four types of exception-handling
routines—NUMERIC_ERROR, CONSTRAINT.
ERROR, TASKING_ERROR, and user-defined excep-
tions—are interesting because they represent differ-
ent ways in which exceptions are raised. The
NUMERIC_ERROR exception is first discovered by
the hardware and then propagated back to the run-
time system by an interrupt signal from the hard-
ware. The CONSTRAINT_ERROR is raised by the
Ada run-time system. The TASKING_ERROR is
raised during task elaboration, task activation, or
certain conditions of conditional entry calls, and the
user-defined exception is raised by the programmer.
Except for the user-defined exception, the excep-
tions are raised either by forcing the relevant abnor-
mal state in the code or by using the raise state-
ment.

To gauge exception-handling efficiency, time mea-
surements for responding to and propagating excep-
tions must be examined. The response time for an
exception is the time taken between the raising of
the exception and the start of exception-handler ex-
ecution. When an exception is raised in a unit and
no handler is present, the exception is propagated by
raising the exception at the point where the unit
was invoked. The time between raising an exception
in a unit and its subsequent raising at the point
where the unit is invoked is the time necessary to
propagate the exception. In the tests presented here,
both of these times are determined for three of the
four types of exceptions mentioned above; the ex-
ceptions are raised both by the raise statement and
by forcing the abnormal state to occur in the code.

Task Elaboration, Activation, and Termination

The tasking function represents the heart of the real-
time power and usefulness of Ada. Many algorithms
(e.g., buffering algorithms) involve the creation and
execution of tasks such as the reader-writer scheme
described in Barnes [2]. Nevertheless, task elabora-
tion, activation, and termination are almost always
suspect operations in real-time programming, and
programmers often allocate tasks statically to reduce

August 1986 Volume 29 Number 8

Computing Practices

run-time execution time. As a result, exploring the
efficiencies of task elaboration and activation is of
special interest.

In this test, the time measured is that consumed
elaborating a task’s specification, activating the task,
and terminating the task. This composite value gives
an indication of the overhead involved in the use of
the tasking function. Of course, individual values for
each component of this metric would have provided
more detailed information, but the coarse resolution
of the currently available CLOCK function pre-
vented measurement of individual values because of
the large number of iterations needed to get a pre-
cise measurement. Iterating many times through a
loop where tasks are created without being termi-
nated causes the run-time system to thrash and pre-
vents an accurate measurement. When higher reso-
lution clocks are available, the source code of the
test can easily be changed to time each individual
part of the metric.

However, some additional information can be de-
termined about the time for task activation. The test
for measuring the composite of elaboration, activa-
tion, and termination is run for the two possible
cases of task activation: entering the nondeclarative
part of a parent block, and using the new allocator.
In the first case, the task to be activated can be
declared directly in the declarative part of a block,
or it can be an object declared to be of a task type.
To measure task activation time using the new allo-
cator, an access type object is allocated that is a
pointer to an object of a task type. The difference in
the times provided by these three tests gives some
insight into the relative efficiency of the two types of
task activation.

Task Synchronization

Synchronizing tasks is important in multitasking. In
Ada, synchronization is supported by the rendez-
vous mechanism, which allows tasks to pass infor-
mation to one another at key points during their
execution. To start the rendezvous involves at least
two context switches: one to the run-time system,
and then another to the acceptor if the latter is
ready to accept the rendezvous. The run-time sys-
tem must check to see if the acceptor is indeed
ready to receive the rendezvous, and this adds to the
overhead associated with context switches. If the
overhead associated with a rendezvous is too great,
the efficiency of execution in a multitasking envi-
ronment will suffer.

The synchronization test measures the time
needed to complete a rendezvous between a task
and a procedure with no additional load. This
method gives a lower bound on rendezvous time
since no extraneous units of execution are compet-

Communications of the ACM

767

Computing Practices

768

ing for the CPU. This test is also repeated for the
rendezvous mechanism where various numbers,
types, and modes of parameters are passed.

Clock Function Overhead

In a real-time application, the CLOCK function pro-
vided in the CALENDAR package may be used ex-
tensively. The overhead associated with calling the
CLOCK function can be an important contribution to
the speed limit with which timed loops can be
coded. The benchmark test in this case measures
the overhead associated with a call to, and return
from, the CLOCK function provided in the package
CALENDAR. The method is essentially the same as
the one used to measure the overhead associated
with an entry and exit of a do-nothing subprogram
in a separate package.

Arithmetic for Types TIME and DURATION
Dynamic computation of values of types TIME and
DURATION is frequently a necessary component of
real-time applications. An example is the difference
between a call to the CLOCK function and a calcu-
lated TIME value, which is often used as the value
in a delay statement. If the overhead involved in this
computation is significant, the actual delay experi-
enced will be somewhat longer than anticipated, and
could be critical in the case of small delays.

The objective of the TIME and DURATION test is
to measure the overhead associated with a call to
and return from the “+” and “—” functions provided
in the package CALENDAR. Times are measured for
computations involving variables only and then both
constants and variables. Although both “+” func-
tions are essentially the same (only the order of
parameters is reversed), both are tested, since a dis-
crepancy in the time needed to complete the compu-
tation will occur if one of the functions is imple-
mented as a call to the other.

Scheduling Considerations

Many real-time programs need to schedule tasks to
execute at particular points in time, and to allow
execution to switch among tasks. To provide pro-
grammers a mechanism for handling the former,
Ada provides the delay statement. Switching execu-
tion among tasks can be achieved through a variety
of mechanisms: The scheduler provided by the run-
time system is entered at certain synchronization
points in a program, at which time other tasks may
be placed into execution; or the underlying system
may implement a time slice mechanism. Great free-
dom is provided Ada implementors in realizing
these mechanisms, and as a result, the schemes used
can have a greater impact on the suitability of a
particular implementation for real-time applications

Communications of the ACM

than the raw execution speed of many other con-
structs.

The principal issue involved, from a real-time per-
spective, is the mechanism by which tasks are
placed into execution. The LRM states that the order
of scheduling among tasks of equal priority, or
among tasks of unstated priority, is undefined: Fair
scheduling is presumed. Synchronization points are
the beginning and end of task activations and ren-
dezvous. In a system that does not implement priori-
ties, these are the only points at which a user can be
sure that the scheduler will be entered. The issue is
determining when a task becomes eligible for execu-
tion after the expiration of a delay. An implementa-
tion may elect to check only for expiration of the
delay periodically, at synchronization points, or in a
variety of other ways.

Consider an embedded system in which the pro-
grammer has control over all nonsystem tasks to be
executed, and a simple polling loop whose purpose
is to receive messages from a network device and
post them to a local mailbox. Although it would
undoubtedly be desirable to have such a function
interrupt driven, assume for this example that the
underlying system precludes this possibility, hence
the need for the polling loop. The basic loop, ignor-
ing the need to allow other tasks to run, might rea-
sonably have the following form:

loop
if DEVICE_HAS_MESSAGE then

RECEIVE(MESSAGE);
--May be entry or procedure call {L2)
DEPOSIT(MESSAGE);
--May be entry or procedure call
end if;
end loop;

The problem is how to allow other tasks to occasion-
ally obtain service from the CPU and still have the
polling loop execute frequently enough that mes-
sages do not remain pending for long periods of time.
The basic loop above must be modified to ensure
that this occurs.

As a first strategy, suppose that a delay 0.05 state-
ment is inserted before the if statement to provide
an opportunity for other tasks to execute. One
would expect that, if all tasks have equal or unde-
fined priority, this strategy would allow other tasks
the chance to run every time the message task runs,
and, moreover, that the message task would have a
chance to run in accordance with the underlying
fair scheduling system. Further, if only the message
task is ready to run, one would expect it to run
approximately once every 50 ms. However, if, as is
the case in some validated compiler systems, the
expiration of this delay is only checked periodically,

August 1986 Volume 29 Number 8

say at 1-s intervals, to see if any delayed tasks are
ready to be reactivated, the polling loop may only be
executed once a second in spite of the fact that there
are no other tasks ready to run. We call this type of
scheduling fixed-interval delay scheduling. It can be
performed quite independently from time slicing or
other task scheduling that may be part of the same
scheduling system.

If priorities are supported, one might also place a
PRIORITY pragma before the loop to give the polling
loop a higher priority and ensure that it will run in
preference to other tasks, if ready. However, even in
this case it is not clear when the implementation
will check to determine if the delay has expired.
This matter is presently under study by the Lan-
guage Maintenance Committee, but because of the
current uncertainty, it is wise to have a method for
testing the scheduling algorithm used.

In order to develop many real-time Ada programs,
it is clearly necessary to have supplemental informa-
tion about the scheduling strategies used by an im-
plementation. A method for determining the time
slice interval was described on page 764. Next, we
present techniques for determining the scheduling
discipline related to delay expiration.

Delay and Scheduling Measurements

The test proposed here provides information regard-
ing preemptive or fixed-interval scheduling, It is
based on embedding a simple delay statement inside
a loop that is executed a large number of times; For
example,

T1 := CLOCK;

while I < N loop
delay DEL; L3)
INCREMENT(I);

end loop;

T2 := CLOCK;

Obtaining the desired interpretations requires run-
ning this test for several different ranges of values of
DEL. Typically, the proper value ranges will not be
known a priori and may range over five orders of
magnijtude. The correct set of ranges must be deter-
mined empirically for each implementation. It will
also generally be necessary to execute the test as the
only process running on the CPU. Using this proce-
dure, several useful interpretations can be obtained
by plotting d(DEL) versus DEL where

d(DEL) = (T2 — T1)/N — TL 5

and TL is the loop overhead time: That is, d(DEL) is
the actual delay time achieved. Ideally, the points of
this plot should lie on a straight line, with slope 1, as
shown in Figure 1; deviations from this ideal will
provide useful information about the scheduler.

August 1986 Volume 29 Number 8

Computing Practices

Ideal curve

Actual delay time

Command delay time

FIGURE 1. The Ideal Delay Curve

Minimum Delay Overhead. First, it is important to
determine some information about the behavior of
the scheduler for small values of DEL. Some imple-
mentations are smart enough to recognize situations
in which the requested DEL is smaller than the
overhead required by the delay function and simply
do an immediate return to the calling unit. To study
this, let T, be the time required to perform the delay
operation, exclusive of any time the task is on a
delay queue and the processor is performing work
for another task. That is, T; is the overhead associ-
ated with delays. Typically, T; depends on DEL. For
example, the overhead associated with returning to
the calling program, if DEL is below some threshold,
would be different from the overhead associated
with placing the task in a delay queue.

To do the calculations, make a series of runs of
loop L3 for increasing values of DEL, beginning with
DEL = DURATION’SMALL, and generate the func-
tion given in Figure 1. If d(DEL) remains constant for
small values of DEL (as shown in Figure 2), this
suggests that, for DEL less than T;, the system does
an immediate return to the calling program (or im-

Actual delay time

Command delay time

FIGURE 2. The Delay Curve for Small Values
of DEL Showing Minimum Delay Overhead

Communications of the ACM

769

Computing Practices

770

mediate rescheduling of the calling program). The
threshold used can be obtained by increasing DEL
until the curve ceases to be a straight line of slope
zero. Care must be taken in choosing values for DEL
since the range of values required may well exceed
an order of magnitude.

If, on the other hand, d(DEL) shows a slope of 1,
even for small values of DEL, then it is likely that
the system always puts the calling task on a delay
queue for the specified duration. In this case, a
straight line passed through the sample points will
intercept the ordinate at the value of T; for small
values of DEL. Unfortunately, this latter effect
may be difficult to observe if scheduling is non-
preemptive.

Fixed-Interval versus Preemptive Delay Scheduling.
Next, we try to determine if fixed-interval delay
scheduling, or true preemptive scheduling based on
interrupts from a programmable clock, is being
used. If, for DEL > T;, the points of the plot lie on a
straight line of slope 1, preemptive scheduling is
indicated.

If the straight line with a slope of 1 is not
achieved, it is suggestive that true preemptive
scheduling is not being used. The plot is then likely
to be a staircase function (i.e., if fixed-interval delay
scheduling is being used). To see this, assume that
only this task (loop L3) is executing and that, after
the first iteration of the loop, the delay statement
will be encountered very shortly after the expiration
of one of the fixed scheduling intervals. If the
DEL specified does not exactly reach the end of the
next scheduling interval, sufficient extra delay will
be inserted implicitly to reach the end of the sched-
uling interval. Thus, after the first loop, the actual
delay will be approximately some multiple of the
scheduling interval. If the scheduling interval is
large compared to TL, then the size of the step in the
plot will be approximately the interval of the sched-
uler as illustrated in Figure 3. Again, obtaining a
sufficient set of values for d(DEL) is not entirely
straightforward, as some compilers are known to
have a scheduling interval more than five orders of
magnitude larger than DURATION’'SMALL. Some
cleverness is required in selecting the values of DEL
to use (e.g., a coarse-to-fine strategy).

There is one additional characteristic to a sched-
uling strategy that might complicate the interpreta-
tion. If the implementation does do preemptive
scheduling, but with a time resolution element
larger than DURATION’SMALL, a staircase plot will
also result. Distinguishing between these cases can
be difficult. If the measurement clock resolution 7 is

Communications of the ACM

l e o 0 /\/o
g } Large time, possibly as much as 1 s

Actual delay time

Small minimum
delay, possibly

V.

~1ms)
Command delay time

FIGURE 3. The Delay Curve for Fixed-Interval Scheduling

relatively small compared to T1 — T2 for N = 1, the
two situations can be distinguished by rerunning the
experiment for a fixed DEL with randomized start-
ing times. In the case of true preemptive scheduling,
T2 — T1 should remain relatively fixed, whereas, for
fixed-interval delay scheduling, T2 -~ T1 will vary
randomly, and the range of variation will correspond
to the size of the interval of the scheduler.

Compensation for Minimum Delay Overhead. Finally,
the situation where preemptive scheduling has been
used and DURATION’SMALL is significantly less
than T; provides us even further information. Al-
though theoretically d(DEL) will be a straight line
having slope 1 and passing through the origin, it will-
actually do so only if the system has compensated
the delay time by T;. An offset of the line so that it
does not pass through the origin indicates either no
compensation for T; or incorrect compensation. More
generally, due to the dependence of T; on DEL, the
plot might be composed of several line segments,
each of which could be examined as described
above. If a fixed-interval delay scheduler has been
used, this effect will be dominated by the extra de-
lays introduced by the scheduler and will not be
visible.

Although the data obtained in this test must be
analyzed in several different ways, the data do allow
a great deal of useful information to be determined
about an implementation.

Memory Deallocation and Garbage Collection
Memory allocation and deallocation processes are of-
ten critical to the operation of real-time systems.
Systems can fail when there is insufficient (virtual)
memory available, when the allocation or dealloca-
tion times are too large, or when a deallocation pro-

August 1986 Volume 29 Number 8

cess (garbage collector) is implicitly called at times
not under control of the applications program.

There are two reasons why insufficient memory
failures might occur. First, there may just intrinsi-
cally be too little space available in the pool of stor-
age from which allocations are made, although, for
most systems, this problem will probably not occur.
The second and more important reason, for real-time
systems, is the fact that the LRM does not require an
immediate return of deallocated storage to the stor-
age pool. In fact, a validated compiler is available
that does not return storage to the pool even if
UNCHECKED_DEALLOCATION is called. Embed-
ded systems are often expected to run for long pe-
riods of time, and although the total amount of stor-
age in use at any one time may not be large, if
deallocation does.not take place, the system will
eventually run out of storage unless the applications
program takes over responsibility for storage alloca-
tion. It is preferable for storage deallocation in real-
time systems to be under explicit control of the ap-
plications program. Some systems implicitly call a
garbage collector—either periodically, or when the
amount of allocated or unallocated storage reaches
some threshold. Under these conditions, garbage col-
lection can take a substantial amount of time, and
unless it is run at the lowest possible priority (and
priorities need not be supported), it can disrupt the
operation of the system. Imagine a tight 1-ms control
loop on an aircraft suddenly put into abeyance for a
couple of seconds.

There are also interesting run-time or operating-
system effects that are interesting to observe. In any
virtual memory system, the amount of memory allo-
cated can eventually reach the point where paging
takes place. Both the amount of memory for which
this occurs and the paging times required may be of
interest. In one Unix system, it has been found that,
when allocation storage approaches the virtual stor-
age limit, overhead times of several seconds occur.
(However, this is probably not a problem since the
virtual size limit is so large that rarely, if ever,
would one approach the limit.)

The basic idea behind building tests to measure
these effects is to use the new allocator in a loop
with various controls that determine whether or not
it is possible for deallocation to take place. The sec-
ond differencing technique described in “Basic Mea-
surement Accuracy” on pages 762-763 can then be
used to measure the relevant times.

In one test, a large array of pointers to a sizable
array of data is declared. Each time the loop is exe-
cuted, a pointer to a newly allocated data array is
placed in the pointer array, as shown below:

August 1986 Volume 29 Number 8

Computing Practices

type INT_ARRAY is array(1..10, 1..10) of INTEGER,;
type ARRAY_PTR is access INT_ARRAY;
PTR_ARRAY: array(1..MAX) of ARRAY_PTR;
TIME_ARRAY: array(1..MAX) of TIME;
begin {L4)
for I in 1.MAX loop
PTR_ARRAY(1) := new INT_ARRAY;
TIME_ARRAY(1) := CLOCK;
end loop;

This forces the storage acquired to be kept and not
deallocated since the pointer to it remains through-
out the run. By making the loop counter sufficiently
high, more storage will eventually be requested
than is available in the system, and the exception
STORAGE_ERROR will be raised. A second differ-
ence analysis on the time array will yield the results
on storage allocation and paging times.

A second test uses the same loop structure, but
only two access variables. Each time the loop is exe-
cuted, the content of one access variable is shifted to
the second variable, and the newly acquired data
are assigned to the first access variable, thus im-
plicitly freeing the storage that was allocated two
iterations prior to the current one. (This shifting is
used to prevent the possibility that an optimizer will
avoid the actual allocation of storage.) If the excep-
tion STORAGE_ERROR is also raised on this loop,
lack of any implicit deallocation is indicated. If a
garbage collector is implicitly called, this will be de-
tected by the second difference analysis on the array
of clock times.

The third test is similar to the second except that
a call to UNCHECKED_DEALLOCATION is added
to the loop to try to force deallocation. If the excep-
tion STORAGE_ERROR is still raised, either
UNCHECKED_DEALLOCATION does not function
properly, or there is some global limit on the amount
of storage that can be allocated that is independent
of the availability of storage to be allocated (a
strange and unlikely occurrence).

Interrupt Response Time
Although interrupt response time is critical for many
real-time embedded systems, techniques for measur-
ing it are difficult to develop since hardware exter-
nal to the CPU is generally involved. Second, the
times that must be measured will be at substantively
different points in the test program, and the use of
iteration to improve accuracy of measurement (as
in Equation 4) cannot be expected to work in this
situation.

The first problem—the generation of the interrupt
signal in a controlled and time-measurable fashion—

Communications of the ACM

77

Computing Practices

e

is approached by adding a parallel interface to the
system being tested and writing a special driver for
the interface that is directly accessible from the
benchmark program. The output from the parallel
interface is treated as a logic signal to cause an inter-
rupt. The procedure for outputting a signal through
this interface must be written to be directly callable,
and hence time measurable, from the benchmark
program, so that it does not have to go through the
underlying run-time ar operating system. Then, us-
ing techniques described earlier, it is possible to ob-
tain an accurate measure of the time required to
output a signal to the interface.

Two program segments are required for the
benchmark. The first is a loop that repeatedly re-
cords the clock and outputs a signal to the parallel
interface.

TIME_ARRAY: array(1..MAX) of TIME;

begin
for I in 1. MAX loop
TIME_ARRAY(1) := CLOCK; (L5)

SEND_SIGNAL;
--to parallel interface & create interrupt
end loop;

The second program segment is an interrupt handler
that simply records the time at which it is invoked
and returns from the interrupt. If possible, the inter-
rupt handler should be set at a higher priority than
the main loop.

The output procedure call and clock recording
overhead can be calculated by the techniques de-
scribed above. If T, represents this time, we can
then calculate the average time difference between
the times recorded in the main loop and the corre-
sponding times recorded in the interrupt handler. If
this average is denoted by T..., one can then calcu-
late the interrupt response time as Taye — Too.

RESULTS

In this section, we illustrate the application of the
benchmarks in terms of their use with several com-
pilers: Verdix Versions 4.06, 5.1, and 5.2 running

TABLE |. The Compiler/Hardware Combinations

with Unix 4.2 bsd on a VAX 11/780; DEC VAX Ada
Version 1.1 running with Micro VMS 4.1 on a Micro-
vax II; DEC VAX Ada Version 1.3 running with

VMS 4.4 on a VAX 11/780; and Alsys Version 1.0
running with Aegis Version 9.2 on an Apollo DN
660. The specifics of the compiler/hardware combi-
nations tested are given in Table I. All user and
daemon processes were disabled (except for the
swapper and page daemon, which can never be disa-
bled). The tests described in “Measurement Tech-
niques” were run to determine the operating-system
overhead injected into the measurements for Unix
on the VAX. Individually, the components to over-
head required significantly less than the resolution
of the time measurement, 7, making it difficult to get
an accurate value for the overhead. Nonetheless, by
examining the amount by which the string of zeros
is shortened, we were able to obtain a crude esti-
mate of the overhead. Using this approach, we esti-
mated the overhead to be 5 percent. Owing to the
coarseness of this estimate, we present the rest of
the results without modifying them to reflect the
operating-system overhead for time slicing.

The number of iterations used in the test and con-
trol loops was chosen to produce results that are
theoretically accurate to the nearest 10th of a micro-
second or 10th of a millisecond (except where
noted), depending on the size of the quantity being
measured. The results were very repeatable. Raw
control and test results were usually repeatable to
within 0.1 or 0.2 us (per iteration) for tests with simi-
lar target accuracies. This allowed us to see the ef-
fects of single instruction differences between two
different situations and exposed a number of inter-
esting implementation variations.

We found that similar but not identical situations
(e.g., passing one parameter versus passing several
parameters) resulted in slightly different code se-
quences for some compilers. We even found posi-
tional dependencies in which the timing varied
among identical functions on the basis of the relative
position of units within a package, or their position
relative to double word boundaries in memory (re-

= Machie

Verdix 4.06

Vax 11/780, 4M real memory

" Unix bsd 4:2

Verdix 5.1 Vaxi11/780, 4M real memory Unix bsd 4.2
Verdix.5.2 - Vaxi11/780, 4Mireal memory . Unix bsd 4.2 3
Alsys 1.0 Apollo DN660, 4M reat memory: = Aegis Version 9.2 ¢

DEC VAX Ada, V.1.1
DEC VAX Ada, V.1.3

DEC Microvax Il, 5M real memory Micro VMS 4.1
DEC VAX'11/780 = S

VMS 4.4

Communications of the ACM

August 1986 Volume 29 Number §

Verdix4.06 e R :
Verdix 5.1 e T

Verdix 5.2 E R Due et 18,080 e s
Alsys 10 BRI 1800 e

DEC VAX Ada, V.1.1
DEC VAX Ada, V.1.3

w

Computing Practices

Verdix 4.06
Verdix 5:1
Verdix 5.2
Alsys 1.07 DS g e W
DEC VAX Ada, V.1.1 TS AT R
DEC VAX Ada, V.1.3 Ay 5

o e

~6.0+ |
~6.0+

* Compiler INLINE the call reducing value to zero. DEC has Supplied @ value of 15.1 us for this'e

lated to the number of memory fetches required).
With the assistance of some of the compiler vendors,
we tracked down exactly what was happening in a
number of such cases to be sure that our bench-
marks were correct. We will describe some of these
below as illustrations of the differences that can
occur.

As a result of such minor variations, it is difficult
to place meaning on results any closer than a couple
of microseconds (even though theoretically more ac-
curate results have been obtained) for two reasons:
First, the number of special cases to track down is
sufficiently large as to require a very large effort to
be comprehensive, and second, even if one did track
down each situation completely, there would be so
many separate cases to report that one could not
reasonably attempt to use all of the data.

The test results are summarized in Tables II-VII,
where all values are reported in microseconds ex-
cept where noted. A complete listing of all results is
given in [4].

Subprogram Overhead

The times resulting from procedure calls of various
kinds are given in Table II, which contains several
surprises. First, it is evident that simply checking
one kind of procedure call is inadequate. For some
compilers, the differences among different kinds of
calls—generic, nongeneric, intra- or interpackage—
can be as much as two to one. Detailed investigation

August 1986 Volume 29 Number 8

of DEC VAX compiler outputs showed that there
were differences in certain elaboration and stack
checks between the generic and nongeneric versions
of the code.

A second characteristic of subprogram overhead
that is not obvious from the table is the effect of
code optimization. The DEC compiler, for instance,
will in-line procedures for small procedure sizes au-
tomatically as a time optimization, even if INLINE is
not used. Although this improves performance sub-
stantially, it makes it difficult to test procedure call-
ing time and raises some question about the inter-
pretation of the results. The numbers not available
for procedure calls in Table II indicate circum-
stances in which the compiler INLINEd the test pro-
cedure, reducing the time to near zero.

As a second illustration of minor code differences,
consider the procedure call times with 1 or 10 inte-
ger arguments (not shown in detail in Table II due to
the size of the data). For a single integer argument,
the calling time was less for in out mode parameters
than for out mode parameters. This relative timing
was reversed when 10 parameters were passed. The
reason is that the DEC peephole optimizer could see
that a single in out formal did not receive an assign-
ment (in our benchmark) and therefore optimized
the exiting assignment out of the code, whereas, for
10 parameters in the parameter list, the window was
too small for that observation to be made, and the
exiting assignment was done for all parameters. That

Communications of the ACM

m

Computing Practices

7

TABLE III

Dynamic Storage Allocation

Verdix 4.06
Verdix 5.1
Verdix 5.2

Alsys 1.0

DEC VAX Ada, V.11
DEC VAX Ada, V.1.3

149 161 --;
31-32. 43-46
7 145-168

92-25 37-38 |

Verdix 4.06

309-1200

' 221-284 326-xt"
Verdix 5.1 200-260 280-1140 300-3370"
Verdix 5.2 220-280 290-1300° . 300-3350.
Alsys 1.0 2249-2185 . 2191-2297 = 2300-2334 |
DEC VAX Ada, 410-450 430-870 490-4830 ¢
\ALS | ; : ik SIS
DEC VAX Ada, 290-300. 280-300 - 370
V.13, 2 ; ' ; 7
Compler
Verdix 4.06
Verdix 5.1
Verdix 5.2
Alsys 1.0

DEC VAX Ada, V.1. 1
DEC VAX Ada, V.1 3

° Integer arrayswnhrange1 al&”igeadrdumen
® Two tests each, integer arays with ranges:1 and 10

}

each dlmBﬂSiOﬂ

< Storage errors rsultetf when we attempted to allocate Iargef amounts'éf storage.

optimization was not performed for the out mode
case.

The per argument times associated with proce-
dure calls were checked for lists of 1, 10, and 100
arguments of INTEGER and ENUMERATION types,
except for the Alsys and VAX Version 1.3 compilers,
which would not handle argument lists of length
100. The differences in times among the modes seem
to indicate copying associated with pass by value
and initialization of variables. Variations also oc-
curred in the number of registers used (and there-
fore saved and restored) as a function of the number
of parameters passed. The “+"” in the per argument
table indicates that a fraction of a microsecond was
added to each argument passed, depending on the
number of registers used.

Although we did obtain repeatable results with
the Alsys compiler, the results did not fit a linear
formula well and are thus not reported that way.
The values were in the range of 4-7 us per argu-
ment.

Communications of the ACM

Dynamic Allecation of Objects

The memory allocation tests given in Table III are
divided into two categories: allocations performed in
a declarative region on entering a procedure, and
allocations performed via the new allocator.

The time required for fixed-size storage allocation
in a declarative region was small (a few microsec-
onds) and roughly constant for each of the compil-
ers, and so was not shown in the table. The time
required for dynamically bounded arrays varied ap-
proximately as a linear function of the number of
dimensions, which was expected (considering the
formulas typically used for computing array dope
vectors). The times were in the 10-20 us per dimen-
sion range for all compilers except the Verdix 5.1
and Alsys compilers, where the times were apprecia-
bly larger. All the ranges used in these tests were
kept small to avoid other storage effects, like allocat-
ing from the heap for objects above some size
threshold.

Two significant effects were discovered that had

August 1986 Volume 29 Number 8

to be taken into account in order to obtain useful
results in dynamic allocation via the new operator.
First, for the Verdix 4.06 compiler, problems arose
with the underlying memory management mecha-
nism. Since this compiler version never deallocated
storage, as the amount of storage allocated across a
large number of iterations began to grow, the operat-
ing system began to swap memory pages onto disk,
which was sufficient to distort the test results. To
eliminate this difficulty, a sequence of pretests was
run to determine the number of iterations that could
be included in the test before paging became a sig-
nificant problem. The tests were then run with this
number of iterations. This reduced precision some-
what, but useful results were still obtained. Verdix
Versions 5.1 and higher did deallocate storage,
which, while it eliminated the paging problem, did
increase slightly the storage times recorded.

Second, most of the compilers used a multilevel
storage allocation scheme. Small objects were allo-
cated from some locally held storage pool, whereas
for larger objects calls were made to the underlying
system for more storage. The latter situation was
quite evident since the larger objects typically re-
quired nearly an order of magnitude larger time
than objects allocated from the local pool. To make
these results evident, the dynamic storage requests
via new were run several times with object sizes
ranging from 4 to 4000 bytes. The wide range of
times shown in Table III simply reflects the fact that
small objects were allocated locally while large ob-
jects required a system call.

The multilevel nature of dynamic storage alloca-
tion was also found in the CLOCK function although
it was not easy to detect. The Verdix CLOCK func-
tion dynamically allocates a record each time it is
called. Although the time needed to allocate this
record from the local pool is usually only a few 10s
of microseconds, every once in a while the local pool
becomes exhausted, and a system call must be made

TABLE IV. Exception Handling

Computing Practices

to obtain more storage; when this happens, the time
needed to obtain a new chunk of storage is on the
order of 3 ms. Thus, the time to allocate any one
object can be quite variable. The possibility of a
CLOCK call occasionally taking a long time due to
the need to acquire more storage can have a devas-
tating effect on some real-time programs, as CLOCK
will be used in many, if not most, real-time schedul-
ing loops. Since the system call for more storage does
not happen very often, it will be difficult to isolate
the problem. Consequently, it is important to iden-
tify all implementation-supplied procedures or func-
tions that allocate storage.

Exceptions

The exception-handling tests are divided into two
sets. In the first set, an exception is raised within a
declare block, and the exception handled by a han-
dler at the end of the block. In the second set, an
exception is raised from within a procedure that
does not have an explicit handler. The exception is
then propagated to the calling block, which handles
the exception at the end of the block from which the
procedure was called. Exceptions were raised by
three methods—explicitly with the raise statement,
by violating a subtype range, and through INTEGER
overflow.

The results of the exceptions tests are shown in
Table IV. In general, the compilers take little or no
time for exceptions that are not raised, which is im-
portant for real-time applications. However, all the
exception-handling times are significantly longer
than would be required for condition testing and
subprogram calls. When very fast response is re-
quired, users may find it necessary to explicitly han-
dle exceptional situations in the body of their pro-
grams rather than relying on the Ada exception
mechanism. The much larger times associated with
implicitly raising NUMERIC_ERROR are associated
with the fact that this kind of error is first trapped

Znas

—

Verdix 4.06 0
Verdix 5.1 S e
Verdix 5.2 Ll Y
Alsys 1.0° 2 0
DEC VAX Ada; V.11 4
DEC VAX Ada, V.+:3 3

ok .' 3]
(DD O 40

614-671 ps

0 3967448 us 718-783 us:
' 8.80-9.80'ms. 19-20ms

667-836us . 736-894 us

414-581 s 482-619 s

54461348 |

August 1986 Volume 29 Number 8

Communications of the ACM

775

Computing Practices

TABLE V. Tasking Times

Rendezvous ' activats, terminate
Compiler (ms) " (ms)
Verdix 4.06 3.50 19.6
Verdix 5.1 3.40 204
Verdix 5.2 0.82-0.89 36
Alsys 1.0 9.55 14.2
DEC VAX Ada, V.1.1 1.85 8.2
DEC VAX Ada, V.13 1.10 6.6 ,g

by the operating system, which then passes control
back to the exception handler. In an embedded sys-
tem with a dedicated real-time operating system,
this time could be significantly less than occurred in
our tests on a time-shared system.

Task Elaboration, Activation, and Termination
This test was run for the three different types of task
elaboration and activation explained on page 767.
The task elaboration, activation, and termination
times for the compilers tested are given in Table V.
For each individual compiler, the differences be-
tween elaboration and activation in a declarative re-
gion versus the new operator did not differ by more
than 15 percent and thus are not reported sepa-
rately. Table V shows that efficient techniques for
task elaboration, activation, and termination are
possible.

Task Synchronization

The test here was rather straightforward: It involved
entering a block where a task is activated and a
subprogram is called that executes a rendezvous
with that task repeatedly in a loop. The control for
this test is of the same structure, except that the
loop is iterated with no rendezvous. As can be seen
in Table V, the rendezvous times varied signifi-
cantly, again indicating that, as development contin-
ues on successive versions of compilers, the rendez-
vous times can be decreased. Entry calls with pa-

TABLE VI. Timing and Scheduling

rameters showed that the additional time needed to
pass parameters was negligible.

Clock Function Overhead and Resolution

Table VI shows the overhead associated with the
CLOCK function. The numbers reported are aver-
ages obtained over several test runs and show a large
variation in the length of time required by the dif-
ferent compilers. The large increase in overhead re-
quired by the Verdix 5.1 and 5.2 compilers is due to
a change in the data structure for objects of type
TIME, and an increase in the number of procedure
and function calls within the CLOCK function. Unix
system routines are called by CLOCK to get the time
and compensate for the time zone. Daylight saving
time is also taken into account, and the time is nor-
malized with respect to Greenwich meridian time.
Since TIME objects are represented as Julian days
and seconds, an Ada function in the CALENDAR
package is also called to compute the Julian day. We
were able to determine this information about the
CLOCK function by examining the source code of
the body of the CALENDAR package. Although use-
ful for some applications, these extensive computa-
tions are too time expensive for many real-time
applications, and some additional clocklike function
will be required for real-time applications. A CLOCK
resolution of 10 ms is marginal for many real-time
applications.

Arithmetic for Types TIME and DURATION

The TIME math tests measure the overhead in-
volved in addition and subtraction operations in-
volving types TIME and DURATION. All possible
combinations involving variables and constants of
each type are tested; the results are presented in
Table VII It appears that constant expressions are
evaluated at compile time in all the compilers. The
difference of more than an order of magnitude be-
tween operations on type TIME and type DURA-
TION is probably due to the representation of TIME
as a record, whereas DURATION is fixed point. The
variation in results between the different versions of

Verdix 4.06 Fixed interval Variable 10 ms-1s
Verdix 5.1 Fixed interval ~ Variable 10 ms—1's
Verdix 5.2 3644 10ms " Preemptive 10ms
Alsys 1.0 1500 1s ? 1s

DEC VAX Ada, V.1.1° g5 10ms Preemptive 10ms

DEC VAX Ada, V.1.3 89 10 ms Preemptive 10ms

Communications of the ACM

August 1986 Volume 29 Number 8

TABLE VII.

Time
e —

m

° Reliable data unavailable.

the Verdix compiler for expressions involving type
TIME is due to a change in the record used to repre-
sent TIME.

Delay and Scheduling Measurements
The results of measuring the time elapsed during the
execution of a delay statement appear in Table VL
For the Verdix 4.06 compiler, a minimum delay
value of 1.4 ms was detected. This delay occurred
for requested delays between zero and slightly less
than 1 ms (actually, the upper bound is 16 times
DURATION’SMALL, the greatest model number less
than 1 ms). This value corresponds to the part of the
curve before the jump in Figure 3. For the Verdix
5.2 and DEC compilers, the minimum actual delay
was 10 ms, while for the Alsys compiler it was 1 s.

The actual delay values in other cases were more
difficult to isolate, due to the nature of the schedul-
ing systems. Verdix Versions 4.06 and 5.1 use fixed-
interval delay scheduling with a delay value of
1s. Thus, for a requested delay of 1 ms or greater,
the actual delay was for the remainder of the 1-s
time slice in which the delay expired. Since it is
impossible to see this effect when a large number of
iterations are run, the test was run repeatedly with
the loop executed only once on each test. A delay
generated by executing a statement a random num-
ber of times was inserted before the delay statement
to vary the value remaining in the time slice. This
procedure confirmed that requested delays between
1 ms and less than 10 ms resulted in actual delays
between 10 ms and 1.01 s, or the value remaining in
the 1-s time slice plus 10 ms. As the requested delay
was increased, the staircase function of Figure 3 was
obtained, with a 1.01-s step size. The extra 0.01 s
corresponds to one clock resolution time and ap-
pears to be time spent in the scheduler before the
basic 1-s time slice is reset.

Both the Verdix Version 5.2 and the DEC compiler
used preemptive scheduling with a time resolution

August 1986 Volume 29 Number 8

Computing Practices

of 10 ms. Owing to the 1-s time resolution of the
Alsys compiler, it was neither practical nor useful to
test its scheduling algorithms further.

Storage Deallocation and Garbage Collection

The storage deallocation tests provided insight into
the type of deallocation facilities provided for ob-
jects declared dynamically with the new allocator.
The object used for allocation throughout this test
was a one-dimensional array consisting of 1000
INTEGERSs. The size of the virtual memory space
available is approximately 32 Mbytes, the limit im-
posed by the operating system and the size at which
STORAGE_ERROR should be raised by loop L4.

By modifying the test loop to use only two access
variables, instead of the array of access variables
in L4, we found that the Verdix Version 4.06 run-
time system does not perform garbage collection,
since STORAGE_ERROR was still raised at the same
point. Further, by explicitly calling UNCHECKED_
DEALLOCATION after every allocation and observ-
ing that STORAGE_ERROR was still raised at the
same point, we concluded that the UNCHECKED_
DEALLOCATION procedure does not reclaim stor-
age in that version of the compiler.

Version 5.1 and 5.2 compilers also do not perform
garbage collection, but UNCHECKED_DEALLOCA-
TION does reclaim storage for scalar types, records,
strings, and statically bounded array types. Storage is
not reclaimed for unconstrained array types. Owing
to improper setting of system parameters on the
Microvax, the DEC Ada Version 1.1 tests (performed
by a third party) were ill behaved for large amounts
of storage allocation, and the tests were not per-
formed on this version.

SUMMARY AND CONCLUSION

This article has presented a series of benchmarks to
test the real-time performance of an Ada compiler
and run-time system, together with a set of analysis
tools to aid in the interpretation of test results. To
obtain accurate results, the tests should be run as
the sole application on the machine being used, with
as many system daemons disabled as possible. To
verify the quality of the environment before running
the tests, a simple procedure of repeatedly reading
the system clock and analyzing the results to iden-
tify the frequency and size of operating-system ac-
tivity should be performed.

Although the benchmarks are designed for testing
real-time performance, the only Ada systems avail-
able to us at the time of development were intended
for time-shared, not real-time, use. Time-shared sys-
tems often place less emphasis on real-time perfor-

Communications of the ACM m

Computing Practices

mance than on general program development and
execution support, and the results of our tests bore
this out. However, by the same token, the results
point to areas where users should expect significant
performance improvements in systems intended for
real-time applications, including improved perfor-
mance of the task scheduler, the incorporation of
pragma INLINE, improved storage management
facilities, higher speed operations with respect to
TIME, and a reduction in tasking and CLOCK over-
head.

There are a small number of real-time relevant
tests that we were not able to perform on the sys-
tems available to us (e.g., the interrupt response time
and the behavior of the system with respect to task
scheduling upon I/0 requests). However, a test has
been developed for interrupt response time, and the
time-shared operating system determines the behav-
ior of I/0 at a level above the tasking level of the
Ada program. Further work is required in these
areas when suitable testing facilities are available.

Finally, based on our experience in developing
these benchmarks, we argue that since so many
implementation-dependent variations are validata-
ble, it is not safe, in our opinion, to use an Ada
compiler for real-time applications without first
checking it with performance evaluation tools. Time
management, scheduling, and memory management
can have validated implementations that will devas-
tate a real-time application. Moreover, since real-
time performance evaluation is difficult due to the
great variety of implementation dependencies al-
lowed, it typically requires interpretation and
benchmark changes for each individual compiler
tested. And real-time performance evaluation is
really only meaningful for dedicated embedded sys-
tems.

Acknowledgments. The authors wish to thank
Chuck Antonelli for sharing his knowledge of the
Unix operating system and for his help in obtaining
and interpreting direct time readings from Unix. We
also thank Ron Theriault, Jarir Chaar, and Sue Hsieh
for numerous late nights in helping run the bench-
mark tests, and Bill Meier of Digital Equipment
Corporation for running our benchmarks on a

VAX 11/780 and assisting us in deciphering some of
the minor anomalies that occurred.

REFERENCES
1. Ada Joint Program Office. Ada programming language (ANSI/MIL-
STD-1815A). OUSD(R&D), Dept. of Defense, Ada Joint Program
Office, Washington, D.C., Jan. 1983. The official reference manual
for the Ada programming language.

Communications of the ACM

2. Barnes, J.G.P. Programming in Ada. Addison-Wesley, Reading, Mass.,
1984. A textbook on Ada written by one of the original design
teams; among other things, it gives examples of using Ada for real-
time control loops.

3. Bassman, M)., Fisher, G.A., Jr., and Gargaro, A. An approach for
evaluating the performance efficiency of Ada compilers. In Ada in
Use, Proceedings of the Ada International Conference (Paris, France,
May 14-16). ACM, New York, 1985, pp. 72-84. Presents techniques
for measuring specific features of a language and blocking code
optimizers. K

4. Clapp, R.M., Duchesneau, L., Volz, R.A., Mudge, T.N., and Schultze,
T. Toward real-time performance benchmarks for Ada. RSD-TR-6-
86, Electrical Engineering and Computer Science Dept., Univ. of
Michigan, Ann Arbor, Jan. 1986, pp. 1-25. Provides a more complete
listing of the test results.

5. Curnow, H.J., and Wichmann, B.A. A synthetic benchmark. Comput.
J=19, 1 (Feb. 1976), 43-49. The classic set of benchmarks oriented
toward scientific programs for comparing the computational per-
formance of computers and/or languages. Together, these bench-
marks form one synthetic benchmark.

6. Jalics, P.J. Comparative performance of Cobol vs PL/1 programs. In
Computer Performance Evaluation Users Group 16th Meeting (Orlando,
Fla., Oct. 20-23). Institute for Computer Sciences and Technology,
National Bureau of Standards, Washington, D.C., 1980, pp. 53~59.
Discussions and results for several benchmarks that are designed to
measure language features in Cobol and PL/1.

7. Shimasaki, M., Fukaya, S., Ikeda, K., and Kiyono, T. An analysis of

Pascal programs in compiler writing. Softw. Pract. Exper. 10, 2 (Feb.

1980), 149-157. Static statement frequencies and dynamic frequen-

cies of p-code instructions are given for several Pascal compilers

written in Pascal.

Squire, |. Performance issues workshop. In ACM SIGADA Users Com-

mittee Performance Issues Working Group (Baltimore, Md., July 15-16).

ACM, New York, 1985. The first in a series of workshops. that will

bring together and run a set of benchmark programs comparing Ada

compilers.

Weicker, R.P. Dhrystone: A synthetic systems programming bench-

mark. Commun. ACM 27, 10 (Oct. 1984), 1013~1030. Presents a syn-

thetic benchmark program, emphasizing use of records and pointer
data types, that is based on statement frequency, number of param-
eters, operand types, and operand locality of a very large set of
programs written in various high-level languages.

10. Zeigler, S.F., and Weiker, R.P. Ada language statistics for the iMAX
432 operating system. Ada Lett. 2, 6 (May 1983), 63-67. Reports
statistics on the percentage of Ada code in various categories, such
as subprogram calls.

CR Categories and Subject Descriptors: C.4 (Performance of Sys-
tems]; D.2.8 [Software Engineering): Metrics—performance measures;
D.3.m [Programming Languages): Miscellaneous; J.7 [Computers in
Other Systems]: real time; K.6.2 (Management of Computing and Infor-
mation Systems|: Installation Management—benchmarks

General Terms: Languages, Management, Measurement, Perfor-
mance, Verification

Additional Key Words and Phrases: Ada compiler evaluation, bench-
marks, real-time benchmarks, real-time performance evaluation, real-
time systems

Received 12/85; revised 3/86; accepted 5/86

Authors’ Present Addresses: Russell M. Clapp, Louis Duchesneau, Rich-
ard A. Volz, Trevor N. Mudge, and Timothy Schultze, The Robotics
Research Laboratory, The College of Engineering, The University of
Michigan, Ann Arbor, MI 48109.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

August 1986 Volume 29 Number 8

