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Abstract: The implementation of massively parallel com-
puters based on hypercube architectures is discussed in this
paper. It is argued that such machines offer an alternative to
traditional supercomputers at far lower cost. The rationale
for using hypercube machines for supercomputing applica-
tions is examined, including cost, node performance, com-
munication speed, packaging, reliability, and programming
requirements. These issues are illustrated by a recently
introduced commercial hypercube supercomputer, the
NCUBE/ten. The major design decisions underlying the
NCUBE/ten's implementation technology, system architec-
ture and operating system are described.

1. Introduction

A hypercube or (binary) n-cube computer is a multipro-
cessor characterized by the presence of N = 2" processors
interconnected as an n-dimensional binary cube. Each pro-
cessor P; forms a node (vertex) of the cube and is a self-
contained computer with its own CPU and local main
memory. FP; has direct communication paths to n other
processors (its neighbors), which correspond to the edges of
the cube that are connected directly to P;. 2* distinct n-bit
binary addresses or labels may be assigned to the processors
so that each processor’s address differs from that of each of
its n neighbors in exactly one bit position. Figure 1 illus-
trates the hypercube topology for n < 4; note that a zero-
dimensional hypercube is a conventional SISD computer. An
n-dimensional hypercube @, for n > 2 can be defined
recursively in terms of the graph product operation X as
follows [4], where K ;=@ is the complete 2-node graph:

Ql =K2X Qn—l

As illustrated by Fig. 1, @, is composed of two copies of
Q, _1- Every node Py, in one copy of @, _; is the neighbor
of a node P,, in the other copy.

For some time, it has been known that the hypercube
structure has a number of features which make it a useful
architecture for parallel computation. For example, meshes
of all dimensions and trees can be embedded into a hyper-
cube so that neighboring nodes are mapped to neighbors in
the hypercube. The communication structures used in the
Fast Fourier Transform and Bitonic Sort algorithm can simi-
larly be embedded into the hypercube. Since a great many
scientific applications use mesh, tree, FFT, or sorting inter-
connection structures, the hypercube is a good candidate for
a general-purpose parallel architecture, Even for problems
with less regular communication patterns, the fact that the
hypercube has a maximal internode distance (the grapl:
diameter) of n=log, N means any two nodes can communi-
cate fairly rapidly. This diameter is larger than the unit
diameter of a complete graph K, but is achieved with

Stephen Colley, John Palmer

NCUBE
1815 N. W. 169th Place, Suite 2030
Beaverton, Oregon 97006

nodes having only degree or fanout of logy N, as opposed to
the N - 1 degree of nodes in K. Other standard architec-
tures with small degree, such as mmha, trees, or bus sys-
tems, either have a large diameter (N 1/2 for a 2-dimensional
mesh) or a resource which becomes a bottleneck in many
applications because too much communication must pass
through it (as occurs at the apex of a tree, or at a large
shared bus). Thus, from general topological arguments it
can be concluded that hypercube architectures offer a good
balance between node connectivity, communication diame-
ter, algorithm embeddability, and programming ease. This
balance makes them suitable for an unusually wide class of
computational problems.

Based on various considerations of the foregoing kind,
proposals to build large hypercube computers have been
made for more than twenty years. In 1962, Squire and Palais
at the University of Michigan, motivated by the hypercube’s
rich interconnection geometry and programming ease, carried
out a detailed paper design of a hypercube computer [13,14].
They estimated that a 40968-node (12-dimensional) version of
their machine would require about 20 times as many com-
ponents as the IBM Stretch, one of the largest and most
complex contemporary computers. Around 1975 IMS Associ-
ates, an early manufacturer of personal computers,
announced a 256-node commercial hypercube based on the
Intel 8080 microprocessor, but its design details were not
published and the machine was never produced. In 1977,
Sullivan et al. presented a thorough analysis of hypercube
architectures, and a proposal to build a large hypercube
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Fig. 1. n-dimensional hypercube for n=0,1,2,3.
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called CHOPP (Columbia Homogeneous Parallel Processor)
containing up to a million processors [15,16]. In the same
year, Pease published a study of the ‘‘indirect” binary n-
cube architecture, in which a multistage interconnection net-
work of the omega type is suggested for implementing the
hypercube topology [8]. A number of other interesting archi-
tectures closely related to the hypercube have also been pro-
posed, for example, the cube-connected-cycles structure [11).

It is clear that the early hypercube designs were
impractical because of the the large number of components
(logic and memory elements) they required using the then
available circuit technologies. The situation began to change
rapidly in the early 1980's as advances in VLSI technology
allowed powerful 16/32-bit microprocessors to be imple-
mented on a single IC chip, and RAM densities moved into
the 10°-10° bits/chip range. A working hypercube com-
puter was not demonstrated until the completion in 1983 of
the first 64-node Cosmic Cube at Caltech [12]. For the
hypercube node processor, it uses a single-board microcom-
puter containing the Intel 8086 16-bit microprocessor and
the 8087 floating-point co-processor. Since them, Caltech
researchers have built several similar hypercubes, and suc-
cessfully applied them to numerous scientific applications,
often obtaining impressive performance improvements over
SISD machines of comparable cost {3].

Influenced primarily by the Caltech work, a number of
commercial hypercubes have been developed since 1983. In
July 1985, Intel delivered the first production hypercube, the
128-node iPSC (Intel Personal Supercomputer) which has a
16-bit 80286/287 CPU as its node processor. Assuming a
peak performance of 0.07 MFLOPS per node, the 128-node
iPSC has a potential throughput of about 8 MFLOPS, far
below that of a traditional vector supercomputer such as the
Cray-1 (160 MFLOPS). Other commercial hypercubes were
also introduced in 1985 by Ametek Inc. and NCUBE Corp.
The Ametek System/14 hypercube can have up to 256
nodes, which employ an 80286/287-based CPU similar to
that of the iPSC, with the addition of an 80186 processor for
communication management. The NCUBE/ten can accom-
modate up to 1024 nodes, each based on a VAX-like 32-bit
custom processor with a peak performance of 0.5 MFLOPS.
Thus a fully configured NCUBE system has a throughput
potential of around 500 MFLOPS. This high performance
level is supported by extremely fast communication rates
(both input/output and -node-to-node) making the
NCUBE/ten a true supercomputer. NCUBE machines have
been installed at several beta test sites, including the Univer-
sity of Michigan, since early 1985, and have been in general
production since December 1985. Several other hypercube-
style machines with supercomputing potential are presently
under development, including the Caltech/JPL Mark III [9]
and the Connection Machine [5). Much faster successors to
the current commercial hypercubes can also be expected to
appear over the next few years. Because of the effort being
devoted to the development of hardware and software for
these machines, and their relatively low cost, hypercube
supercomputers seem likely to provide an increasingly attrac-
tive alternative to conventional pipelined supercomputers for
many applications.

This paper explores the architectural and technological
issues influencing the design of supercomputing hyper-
cubes, with the NCUBE/ten serving as an example. Particu-
lar attention is devoted to the influence of component pack-

aging, reliability, communication speed, and the operating
system environment on the system implementation. Section
2 discusses the general design requirements of hypercube
supercomputers, while the specific design decisions made for
the NCUBE/ten are covered in Sec. 3. Software issues are
discussed in Sec. 4.

2. General Design Issues

Supercomputing performance requires extremely high
integer and floating-point execution rates, as well as
extremely high I/O throughput. Very large primary (RAM)
and secondary (disk) memory spaces are also usually
required. For the principal user base of scientific
programmers, the programming environment needs to pro-
vide FORTRAN, and a powerful operating system such as
UNIX. Low cost and high reliability imply minimizing the
component count at all levels, particularly the numbers of
chips and boards used. Some degree of fault tolerance is also
very desirable. Since a very large amount of RAM storage is
needed, memory fault detection and correction via an error-
correcting code (ECC) is an important consideration, despite
the fact that it increases the chip count. Reliability is
increased, and operating cost decreased, by employing an
air-cooled configuration suitable for a standard office
environment. Based on an examination of various existing
computer systems, it can be concluded that the air cooling
limits the machine complexity to under 50,000 chips. Off-
the-shelf parts decrease costs and usually increase reliability.
If custom chips are needed, then computer manufacturers
who rely on outside suppliers should use conservative design
rules which will be accepted by multiple silicon foundries. In
large-scale numerical calculations, the possibility of large
error accumulation forces the individual calculations to be as
accurate as possible. Numerical accuracy can be increased
by adhering to the IEEE 754 floating-point standard and
providing double-precision floating-point operations.”

A key decision in the design of a parallel computer is
the choice of the interconnection network to be used. Mul-
tistage interconnection networks have been advocated as
simplifying the programming process by providing a global
shared mémory, but it did not seem possible to build a large
multistage network using the technology available in 1983
without suffering significant delay in passing information
through the network. Since this strongly affects perfor-
mance, it was felt that to achieve supercomputer perfor-
mance it would be necessary to use a direct connection net-
work with local memory at every node. Many direct inter-
connection schemes have been analyzed and implemented
but, as discussed in Sec. 1, the hypercube structure has a

‘number of inherent advantages. The ease with which effi-

cient application programis were developed for the hyper-
cubes at Caltech has also shown the hypercube to be supe-
rior to alternative architectures such as meshes or trees. The
neighbor-to-neighbor links of the hypercube provide almost
the same communication capabilities as a complete graph,
while using nodes with only a logarithmic degree. The
achievable degree is constrained by a variety of packaging
considerations, but with current technology it is possible to
build hypercubes with thousands of nodes. In contrast, a
complete graph connection of a few tens of nodes may not be
possible.

There are additional features of the hypercube that are
particularly useful in designing a supercomputer, but have
not been previously exploited. For example, the hypercube



is homogeneous in that all nodes look the same, hence it is
natural to attach an I/O channel to each node. This pro-
vides the potential of extremely high system 1/O rates. Also,
since there are numerous ways to divide a hypercube into
subcubes, it is easy to support multiprocessing where each
user has a dedicated subcube. These subcubes can be allo-
cated so that all processor-to-processor and I/O communica-
tions occur without using processors or communications lines
in other subcubes. Further, by writing programs in which
the size of the subcube is a user-defined parameter, it is pos-
sible to develop programs in small subcubes and then do
production runs in larger subcubes. This partitionability
also makes it easier to tolerate faults, since the operating
system can allocate subcubes which avoid faulty processors
or faulty communication lines.

As discussed in Sec. 1, technology developments have
enabled a hypercube computer to be built reliably with a
large number of processors. A fine-grained supercomputer
architecture, i.e., one with a large number (over 1000) of
very simple processors, has a high ratio of communication to
computation. The Connection Machine is an example of a
fine-grained hypercube-class computer, but its suitability for
scientific computations is unclear. A very coarse-grained
architecture with, say, 10 to 100 large and fast processors,
requires that the nodes achieve extremely high performance.
For example, to achieve 10° instructions/sec with 10 proces-
sors requires processors capable of 10® instructions/sec. The
Caltech/JPL Mark III will be an example of a coarse-grained
hypercube. It was felt by the designers of this machine that
achieving 10° instructions/sec is best done with 1000 proces-
sors running at 10% instructions/sec.

Experience with the Caltech machines has demon-
strated that a medium-grain MIMD hypercube architecture
can attain high efficiency on a variety of scientific problems,
with a tolerable amount of revision of serial code and algo-
rithms [3]. This can be contrasted with the much greater
amount of program and algorithm redesign required of users
of fine-grained SIMD machines such as the MPP [10).
MIMD machines require each node processor to perform
instruction fetching, decoding, and other functions that are
not performed by SIMD nodes. Distributed-memory MIMD
machines must supply a program to each node, so that
MIMD machines may pay a large penalty in chip area and
chip count. In general, for the same chip area and number of
chips one can build more SIMD processors and have a
greater potential system throughput; however, the gain in
programming simplicity obtained by using an MIMD
machine more than compensates for this, except for a narrow
range of applications in which almost any penalty can be
tolerated if it yields the required speed. Furthermore, MIMD
machines can accommodate multiple independent users,
while SIMD machines cannot.

Since there may be hundreds or thousands of nodes in a
hypercube supercomputer, their chip count is the most signi-
ficant component of the total system chip count. Using the
densest possible memory chips available is the key factor in
decreasing the number of chips. The NCUBE/ten, for exam-
ple, uses 256K DRAM chips to implement the local memories
of the hypercube nodes. The next most significant reduction
in chip count can be achieved by putting all node functions
onto a single chip. This implies that the processor chip must
perform all communication, memory management, floating-
point operations, and other data-processing functions. Unlike

RAMs, there is not yzt widespread market pressure to pro-
duce standard processor chips of this type, consequently,
they are not available off the shelf. In 1983, when design of
the NCUBE/ten started, the only way to achieve supercom-
puter performance with a one-chip node processor was to
undertake the risky step of custom-designing such a complex
chip. INMOS made a similar decision with the Transputer
processor chip, with the important difference that the initial
version of the Transputer does not provide floating-point
operations, and has four rather than eleven 1/O channels [6).
The performance and functionality demands on the NCUBE
processor chip are quite severe, and numerous tradeoffs were
needed to enable it to be built with current technology.

3. NCUBE/ten Architecture

The overall goal of the NCUBE designers was to use
massive parallelism to build an inexpensive and reliable
range of software-compatible machines achieving supercom-
puter performance at the high end. The largest model in the
series, the NCUBE/ten, is a 10-dimensional hypercube con-
taining 1024 powerful 32-bit processors of custom design,
each with a 128-Kbyte local memory. Up to eight front-end
host processors are used to manage I/O operations under
control of a multiuser UNIX-based operating system. An
unusually high level of system integration is employed that
allows 64 processors with their memories and interconnec-
tions to be placed on a single printed-circuit board. A
maximum-sized NCUBE/ten system is composed of 16 pro-
cessor and 8 I/O boards (including host processors) and is
housed in a small air-cooled enclosure.

The NCUBE node processor provides the functions of a
32-bit supermini-class CPU, including a full floating-point
instruction set, and all the logic needed for memory manage-
ment and interprocessor communication on a single VLSI
chip; see Fig. 2. The design of the processor was started by
NCUBE in 1983, constrained by the desire to use conserva-
tive design rules acceptable to several silicon foundries. The
chip was designed using 2 pm (approx.) sMOS design rules,
and contains about 160,000 transistors. It is housed in a
pin-grid-array package with 68 pins. Combined with six
256K-bit DRAM chips (each of which is organized as 64K x
4 bits), an entire NCUBE/ten node requires only seven chips.
Because of this, a 6-dimensional hypercube with 64 nodes
and 8 Mbytes of memory can be packed into a single
16" X 227 board, a photograph of which appears in Fig.
3. The backplane connections are rather formidable since
each node has off-board bidirectional channels to four more

- processors of the hypercube, plus one bidirectional channel

to an I/O board, resulting in 640 backplane connections just
for communication channels.

The instruction set of the NCUBE/ten is conventional
and quite orthogonal, being similar to the VAX instruction
set without the latter's 3-address addressing modes [7].
There are three main classes of information: addresses
(unsigned integers), integers and floating-point numbers
(reals). Addresses are 32 bits long, but the current node
implementation only supports a 17-bit physical address
space. Integers can be 8, 18 or 32 bits long. Floating-point
numbers can contain either 32 or 64 bits, and conform to the
IEEE 754 floating-point standard. There are 16 general-
purpose registers of 32 bits each. A variety of addressing
modes are available, including literal (immediate), register
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Fig. 2. Organization of the NCUBE processor chip

Fig. 3. The 84-node NCUBE processor board.



direct, autodecrement/increment, autostride, offset, direct,
indirect, and push/pop. The instruction set contains a full
complement of logical, shift, jump, and arithmetic operations
(including square root). One instruction of particular use in
hypercube routing is Find First One, which finds the bit
position of the first 1 in a word, via a right-to-left scan.
Using a 10-MHz clock, nonarithmetic instructions can be
executed at about 2 MIPS, with single-precision floating-
point operating at 0.5 MFLOPS, and double-precision at 0.3
MFLOPS. (These performance figures assume that register-
to-register operations predominate.) A 32-byte instruction
cache allows loops of up to 16 bytes to be executed directly
from the cache. The node processor has a vectored interrupt
facility, and generates different interrupts to indicate pro-
gram exceptions such as numerical overflow or address
faults, software debugging commands such as breakpoint
and trace, I/O signals such as input ready, and hardware
errors such as correctable or uncorrectable memory errors.

Pin and silicon space limitations forced a number of
design compromises in the selection of the width of various
system data paths. The node memory supplies data in 16-bit
halfwords, plus an extra byte containing ECC check bits.
The processor performs single-error correction and double-
error detection (SECDED) on all memory words, generating
an interrupt in case of an error. This is an example of a
situation where the pin limitations affect performance, for it
requires two memory fetches to obtain a full 32-bit word. It
also increases the number of memory chips required, since
the SECDED code used for 32-bit data could be supplied by
five RAM chips organized as 32K X 8 bits, if such chips
were available.

Communication with other nodes is performed via
asynchronous DMA operations over 22 bit-serial 1/O lines.
The I/O lines are paired into 11 bidirectional channels,
which permit formation of a 10-dimensional hypercube, and
also allow one connection to an I/O board. Each node-to-
node channel operates at 10 MHz with parity check, yielding
a data transfer rate of about 1 Mbyte/sec per channel in
each direction. A channel has two 32-bit write-only registers
associated with it: an address register for the message buffer
location in the node RAM, and a count register indicating
the number of bytes left to send or receive. There is also a
ready flag and an interrupt emable flag for each channel.
Once a send or receive operation has been initiated by a pro-
cessor checking its flags and setting the appropriate regis-
ters, the processor can continue with other operations while
the DMA channel completes the internode communication
operation. Interrupts can be used to signal when a channel is
ready for a new operation. For general applications, this
requires less processor overhead than would occur in a pol-
ling communication protocol. An interrupt is also generated
if there is a channel overrun, which can occur only on an
input operation if more than 9 channels are transmitting
data into the node. To reduce DMA activity, a broadcasting
feature is supported which transmits the same data word
along an arbitrary set of output channels in a single DMA
operation.

The NCUBE/ten's 1/O boards provide the connections
between the hypercube and the external world. Each system
must have at least one host board, and may have as many
as eight. The host board uses an Intel 80288 to run the
operating system, and has 4 Mbytes of RAM used as a
shared memory by the various processors on the host board.

It has support for a variety of differext peripherals, including
eight ASCll-standard terminals, four SMD disks (which can
currently be as large as 500 Mbytes), and three Intel iSBX
connectors that can accept daughter boards for functions
such as graphics control or networking. Miscellaneous func-
tions found on the host board include a real-time clock, and
temperature sensors for automatic shutdown on overheating.
Besides the host board, other 1/O boards currently available
are a graphics board with a 2K X 1K X 8-bit frame buffer,
an intersystem board to connect two NCUBE systems, and
an open system board with about 75% of the board left for
custom design.

A distinguishing feature of the I/O boards in the
NCUBE/ten is the fact that each has 128 bidirectional chan-
nels directly connected to a subcube of the hypercube; see
Fig. 4. This permits extremely high I/O data-transfer rates
into the hypercube enabling, for example, a single 1/O board
to transfer 1024 X 1024 X 8-bit images at video rates (30
frames per second). To accomplish this, each I/O board con-
tains 16 NCUBE processors chips, each of which serves as an
1/O processor and is connected to eight nodes in the main
hypercube. Like the hypercube node processors, an 1/O pro-
cessor has a 128-Kbyte RAM which occupies a fixed slot in
the 80286 host's 4-Mbyte memory space. An input operation
from the outside world, e.g., a disk read, is performed by
first transferring the input data to the host's 4-Mbyte
memory. Then the data is transferred through the DMA
channels of the 1/O processors directly to the target hyper-
cube nodes. Output operations are handled in a similar
fashion. In addition to sharing access to the host’s memory,
the 16 1/O processors on each I/O board are interconnected
as two disjoint 3-dimensional cubes, (this disjointness occurs
because each node has only 11 bidirectional channels.) Note
that in a maximum-configuration NCUBE/ten system, the
hypercube nodes do not have to redistribute 1/Q. data to
other nodes. This is not the case in smaller NCUBE systems
where fewer channels are available for external 1/O opera-
tions.

An NCUBE system has from one to eight I/O boards
(at least one of which must be a host board), from one to 168
processor boards, and attached peripheral devices. All the
1/O and processor boards of a fully configured system, along
with their fans and power supplies, fit into a single enclosure
that is less than 3’ on each side. A full-sized system dissi-
pates about 8 kW, and can be housed in a standard air-
conditioned environment. A peripheral enclosure is about
3 X 2 X 3' and contains a 865-Mbyte cartridge tape drive
and up to four disk drives. A minimal standalone NCUBE
system consists of one host board one processor board

containing a 8-dimensional hypercube, and can handle up to
8 user terminals. By adding a second processor board, one
obtains a 7-dimensional hypercube. Since the operating sys-
tem can allocate subcubes of arbitrary size, it is possible to
have a number of processor boards which do not form a
complete hypercube. For example, three boards provide a
7-dimensional and a 6-dimensional hypercube, which could
also be allocated as three 6-dimensional hypercubes or as
numerous smaller hypercubes. A full-sized system (Fig. 4)
contains a 10-dimensional hypercube (which explains the
“ten” in NCUBE/ten). The 1024 processors of such a sys-
tem together have a potential instruction execution rate of
about 2 billion instructions/second, or about 500 MFLOPS.
The total amount of memory in the nodes is 128 Mbytes. If
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all of the 1/O boards are host boards, it is possible to sup-
port 84 terminals, and provide as many as 16 billion bytes of
storage. A host board can provide input or output at up to
90 Mbytes/sec, giving a system input or output rate of
about 720 Mbytes/sec.

Figure 5 summarizes the results of some performance
experiments designed by D. Winsor at the University of
Michigan, which compare the NCUBE node processor to two
other representative CPU’s with floating-point hardware: the
Intel 80286 (the NCUBE host processor served for this) and
Digital Equipment Corp.’s VAX-11/780. The measurements
were made with the NCUBE node and host processors run-
ning under 8 MHz clocks. Extrapolated figures for the 10
MHz version of the NCUBE node processor now nearing pro-
duction are also given, assuming no wait states. Two widely
used synthetic benchmark programs were employed in this
study, the Dhrystone and the Whetstone codes [2,18]. The
Dhrystone benchmark is intended to represent typical sys-

tem programming applications and contains no floating-
point or vectorizable code. The original Dhrystone Ada code
(18] was translated into a FORTRAN 77 version with 32-bit
integer arithmetic that attempts to preserve as much of the
original program structure as possible. This entailed changes
such as replacing Ada records by FORTRAN arrays which
produce a substantial performance degradation compared to
Dhrystone benchmarks in Ada, Pascal or C. However, any
such degradation here appears to apply uniformly to all pro-
cessors considered, since all were given the same FORTRAN
source code and used very similar FORTRAN compilers.
The Whetstone benchmark, which aims to represent scien-
tific programs with many floating-point operations, was used
in a single-precision FORTRAN 77 version that closely
resembles the original ALGOL code {2). The Dhrystone
results in Fig. 5 are reported in “Dhrystones per second,”
each of which corresponds roughly to one hundred FOR-
TRAN statements executed per second. The Whetstone fig-
ures represent the number of hypothetical Whetstone
instructions executed per second. It can be concluded from
the data of Fig. 5 that the NCUBE node processor is quite
fast and fully meets its performance targets cited above.

_ .4. System Software

The emergence of several commercial hypercube com-
puter has demonstrated the feasibility of constructing low-
cost massively parallel machines. The focus of research can
now be expected to shift to the issue of how these machines
can be programmed effectively. Indeed, the recent report on
the Supercomputing Research Center concludes that the
absence of appropriate parallel programming languages and
software tools is the single biggest impediment to the suc-
cessful use of paralle] machines [1). The operating system is
also a major design issue, since memory management and
interprocessor communication are critical to the functioning
of the programming languages. Three software issues need to
be considered. The first is the operating system that is used
for developing application programs for the hypercube. The
second is the operating system that provides run-time sup-
port for application programs running on the hypercube
nodes. The third is the set of application languages to be
used.

FORTRAN FORTRAN
Processor Dhrystones/sec Whetstones/sec -
NCUBE node processor at 8 MHs 999 381,000
NCUBE node processor at 10 MHz (est.) 1,249 476,000
Intel 80286 (NCUBE host) at 8 MHz with 510 101,000
80287 floating-point co-processor
DEC VAX-11/780 with floating-point 741 426,000

accelerator

Fig. 5. Summary of processor benchmark results.



An attractive choice for a development operating sys-
tem that provides the kind of environment associated with a
“programmer's workbench” is UNIX. Unfortunately, there
are two different versions of UNIX (System V and bsd 4.2),
and a large number of lesser-known variants. This leaves
the system designer with something of a dilemma: on the one
hand UNIX offers a proven development environment that is
widely known; on the other hand a UNIX standard has yet
to emerge. The solution chosen by NCUBE was to develop a
UNIX-like operating system called AXIS [7] that embodies
the features common to the major UNIX dialects. Subse-
quent change or additions can be readily made to AXIS
when a true UNIX standard is agreed upon. There are two
features of AXIS that we shall elaborate on here because
they are pertinent to the management of a very large hyper-
cube. The first is the ability to share files, and the second is
the way in which the main cube array is managed.

AXIS runs on the 80286 host processor that acts as the
CPU for each I/O board. (Recall that up to eight I/O sub-
systems can be accommodated in a 1024-processor
NCUBE/ten). It provides the large number of utilities for
editing, debugging and file management that one has come
to expect in a UNIX-like operating system. Consistent with
the UNIX philosophy, the file system is the most prominent
feature of AXIS, and almost all of the system resources are
treated as files. Massively parallel systems require high 1/0
bandwidth if they are to be useful for applications that are
not simply computation-intensive. This problem of I/O
management was not foreseen in the earlier generation of
massively parallel machines, and has proved to be a great
limitation [10). The ability to incorporate up to eight 1/O
subsystems in the NCUBE/ten is intended to avoid this
problem. However, it introduces the potential for eight
separate file systems. To avoid this, AXIS provides the
capability to organize the eight file systems as one distri-
buted file system; AXIS further allows complete systems to
be networked through iSBX connections to provide a single
multiuser file system. The principal mechanism for doing
this is the device directory pointer (ddir). ddirs are items
that can be placed in a file directory. Instead of represent-
ing a file name, they are pointers to disk drives. Each disk
drive has a unique device identifier, which includes a system
number, an 1/O board number, and a drive number. Within
a disk drive, the files are organized as a typical UNIX tree.
ddirs can be placed in the root directory of a disk to point to
the root of the other drives. This permits file sharing across
all physically connected NCUBE systems. Figure 6 illus-
trates how the directory structure for two host boards, each
having two physical disk drives, might be organized, if logi-
cal diskO and disk4 are shared systemwide. Typically, the
device directory of a physical diskO (called *//") will contain
the following:

1. The name of another directory which acts as the real

root of the file structures on diskO (*‘cb0"” on host 0)

2. ddir’s for the other drives connected to the same host

3. ddir’s of disk directories on any other host board in the
system

4. ddir’s for disks on any other physically connected
NCUBE system. Since system number is one of the

components of a ddir, it can refer to disks on other
NCUBE systems.

AXIS manages a hypercube of node processors as a dev-

Host boasrd O
diskO disk1
/" “cb0" “ch1”
b0 Al direc- Al direc-
cb1 (adir) tortes on tortes on
: disk0 disk |
cb4 (ddir) J—— )
Host boasd 1
diskO disk1
o s
cb0 (ddir)
bS (diir) All direc-
b4 tories on
‘_] diskS
o 5
- on
DT g4

Fig. 8. Distributed files on the NCUBE/ten.

ice, which is simply one type of file. It can be opened,
closed, written to, and read from as if it were a normal file.
AXIS permits users to allocate subcubes that have the
appropriate size for their application. Thus, one or two
large problems, or several small problems may share the
hypercube. This flexibility greatly increases the system effi-
ciency, and gives a hypercube supercomputer a significant
advantage over conventional supercomputers. Partitioning
the main hypercube into subcubes is simplified by the fact
that each subcube is protected from access by any other sub-
cube.

VERTEX, the operating system for the hypercube node
processors, is a small nucleus (less than 4K bytes) that is
resident in each of the NCUBE/ten nodes. Its primary func-
tion is to provide communication between the nodes, in the
form of send and receive functions that transfer messages
between any two nodes in the hypercube. The node proces-
sor has instructions that are used as primitives in the VER-
TEX communication calls, nwrite and nread, which imple-
ment the internode send and receive functions, respectively.
The messages transferred by awrite and nread are arrays
of bytes having four associated attributes: source, destina-
tion, length and type. The first two attributes are numbers
in the range 0 to 1023, and indicate the logical nodes being
used for source and destination. The length attribute is the
number of bytes in the message; messages as long as 64K
bytes are supported. Finally, the type attribute can be used
to distinguish messages, and so permit their selective recep-
tion at a destination node.

The subroutine nwrite may be represented as

nwrite (length, messages, dest, type, status, error)
where length is length of the outgoing message in bytes, mes-
sage is the name of the buffer from which the message is to
be taken, dest is the logical number of the node in hypercube
that is to receive the message, type is the type number of the
message, status indicates when the message has left the
buffer, i.e. when the buffer is reusable, and error is an error
code. Message transmission breaks the message into packets



of 512 bytes (or some other user-defined size), and sends
them to the destination node using the following routing
algorithm. Assume that in an n-dimensional cube, the logi-
cal number of the source node is 8, 8,_;...808, and that of
the destination is d, d,_;...dod;. The bit-wise exclusive-or
Z, Zo y...Z9T 1, of the two numbers is formed as follows:
z;=8;Pd; for i =1, ... ,n. The values of the z;’s are used
to control the routing process. Those values of i for which
z; =1 indicate the dimensions that must be traversed to
transfer a message from source to destination. The routing
algorithm was chosen for its simplicity; however, as noted by
Valiant [17), there is a potential for congestion in some situa-
tions. He defines an alternative routing algorithm that
avoids congestion by routing each message to a randomly
chosen node; from there the message is forwarded to its ori-
ginally intended destination. The randomization assures
that message congestion at nodes will be dispersed. Unfor-
tunately, Valiant's router does not perform as well as the
straightforward algorithm in many routine parallel process-
ing tasks, and its more complex implementation require-
ments discouraged use of it in the initial NCUBE/ten design.
Future insights into the behavior of parallel algorithms may
change this, however.

In addition to determining the routing path, VERTEX
must perform the store-and-forward function at each node
along the path. At the destination node the message is
placed in a queue that is allocated from a heap of 20K bytes.
The receive function, which can be represented by

nread (length, message, source, type, status, error)
looks for the first message from source of type type in the
input queue, and copies it to buffer message. Don't care
conditions are indicated for source or type by setting these
parameters to -1. This allows the next message from a par-
ticular source to be received regardless of type, it allows the
next message of a particular type to be received from any
source, and it allows the next message of any type from any
source to be received. Messages with negative types other
than -1 are system messages for VERTEX and are used for
process control at a node, e.g., for node program debugging.
In summary, the calls nwrite and nread provide a fast
internode message communication mechanism. The main
contributers to this speed are the machine instructions pro-
vided explicitly for internode communication, and the fact
that messages enter nodes through DMA channels.
Measurement of the internode communication performance
of the NCUBE system is presently under way.

The current NCUBE/ten application languages, apart
from the node and host assembly languages, are FORTRAN
77 and C. The choice of FORTRAN 77 and C was made
because the computer is targeted for a user community
interested primarily in scientific problems; this group has
traditionally programmed in FORTRAN. Compilers for
other languages, including Occam, are presently being
developed. The programming model adopted for the initial
set of languages (FORTRAN and C) is a simple extension of
the conventional uniprocessor model. Each node is treated
as a separate processor. No symbols are shared between
nodes: the naming scope is contained within a node. Values
of variables are shared by calls to the VERTEX subroutines
nwrite and nread.

§. Conclusion
Hypercube architectures are well suited to implement-

ing massively parallel supercomputers, given the counstraints
imposed by current technology. They offer an unusually
good combination of high node connectivity, software flexi-
bility, and system reliability. The NCUBE/ten is an exam-
ple of a new generation of low-cost and compact hypercube
machines with the capability of supercomputing perfor-
mance. Unlike earlier machines, it exploits the inherent
homogeneity of the hypercube to provide a multiuser UNIX-
like programming environment, along with support for
extremely high I/O data-transmission rates.
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