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Abstract '

This paper presents a technique for automatically recognizing parts that are only partly visi-

ble. This situation often occurs when parts are stored in a bin. The technique can be used to

identify parts (if they are not completely hidden), locate them, and inventory them rapidly

and without contact. It can also be used as part of an assembly process in collaboration

with one or more robots.
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1. Introductios

In this paper we will present a technique for solving the bin of parts problem. We will restnct
our solution to parts that are 9.dimensional, untilted, and at » fixed distance from the camers. We
refer to & part a8 9.dimensional when two of its dimensions are much larger than the third, and we
assume that the part is untilted whep its smallest dimension is aligned with the viewing axis of the
camera. Whep viewed at 3 fixed distance isolated parts of this type bave only two possible projec-
tions, i.c., when the smallest dimension of the part is either parallel or antiparalle] to the viewing
axis. These projections can be used to easily recognize parts. By comparison, overlapped parts, which
have an infinite number of possible projections due to their relative degrees of frecdom, are much
more difficult to recognize. When parts are overlapped, less of each part is exposed. As a conse-
quence, the exposed portion of a part in the presence of noise is often sufficiently distorted to make
it unrecognizable, and the recognition algorithm may fail to locate the part from its partial projec-
tion. Alternativdy, the exposed area of the part may appear to belong to another part or to another
section of the part, and thus the part may be either incorrectly located or its pose (position and
orientation) may be incorrectly determined. Again the algorithm has failed. While it true that no
algorithm can be designed to locate all the parts in the set of possible projections (in many projec-
tions some parts will be totally occluded), it is, however, desirable to design an algorithm that will
maximize the pumber of correctly located parts while at the same time minimizing the number of

incorrectly located parts.

The problem we describe has received considerable attention in the literature where it is com-
monly referred to as the 2-dimensional *partially occluded parts” or “bin of parts” problem.
Approaches to solving the problem have been proposed by
[1,2.3,4,5, ¢6,7,8,9,10,11,12, 13, 14, 15,16, 17,18, 19, 20). Several of the more recent works
10, 11,18, 20] bave proposed the use of segment matching for recognition. In these approaches edgc
points, which are locations in the image of rapid intensity changes, are linked together to form edgc
boundarics. Edge boundaries are partitioned into segments, which are lists of contiguous edge points
taken from the edge boundary. Parts in an image are located by matching segments of the edge
boundaries of the parts to segments of the edge boundaries of the image. This strategy makes sense
for the following reasons. Edge boundaries of 2-dimensional parts contain most of the structural
information of the part, but require less storage than an image of the part. Edge boundaries are
more robust to changes to illumination than are the images from which they are derived. Finally,
segments are ssed for matching because at least some can be expected to be exposed in an image.
(Figure 1a shows the boundary of a part and Fig. 1b shows the segments of the exposed part.)

3. Our Approsch

In order to maximize the pumber of correctly located parts, the recognition algorithm must be
designed to use as Wany segments as possible of the part’s boundary for recognition. In addition,
the algorithm should recognize a part with a minimum of the part exposed. Our approach works
with boundaries of parts that are partitioned into fixed length segments. Segments are selected so
that one segment s centered about each edge point on 3 boundary. This selection Jeads to a set of
segments such 2 AA’, BB’ and CC’ shown in Fig. 2a. By using overlapping segments, none of the
segments is excduded from use in recoguition. This adds robustness to the recognition algorithm
because if one segment is partially occluded, there is a good chance that a neighboring segment will
be totally expeed. To minimize the boundary used in recognition the length of the segment should
be chosen to be as short as possible. On the band, the length should be chosen to be long enough for
many segments to bave sufficient structure to make them distinguishable. Presently » compromise
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length is chosen by trial and error based op the parts to be located.

In order to minimize the number of incorrectly recognised parts the recoguition algoritbm must
be designed to wnambiguously interpret the exposed segments of the part’s boundary. While a seg-
ment, by itsell, may ot provide sufficient recoguition we bave found that a configuration of two
segments which is unique to the part cap usually provide the required level of reliability. A confi-
guration, as we defipe it, is simply two boundary segments in 8 fixed relative pose. The relative
pose of two segmeDts can be defined by the vectors from the mid-points of the segments to the cen-
troid of the part’s boundary from which the segments are taken (see Fig. 2b).

In previous work we used a geperalized Hough transform strategy to locate parts from the set
of edge boundary segments of the part (12,13,17). The approach was basically a weighted template
matching scheme. A weight, that we called “saliency,” was associated with each segment of the
part. This weight was used to emphasize segments which were important in recognizing the part and
its pose while deempbhasizing those that were pot. Once a set of parts was selected, the weights were
determined automatically in an off-line stage by comparing all of the segments of the set of parts
and by assignisg those that appeared frequently with little weight and those that appear infre-
quently with large weight. The weights were constrained to sum to 1 and an quadratic optimization
algorithm was used to adjust the weights. During the on-line stage the weighted template was
matched to the image. This proceeded by matching each segment of the template to each segment
of the image boundary. Every pose of the part was assigned the accumulated weight of all of the
weights of the segments of the template that matched segments of the image boundary at the pose.
The pose with the most accumulated weight was selected as the pose of the part. Experiments with
this approach showed it to be robust, but slow. Every segment of the part was compared to every
segment of the image boundary. After implementing this approach it was realized that in most
cases only a pair of part segments, i.c., 3 configuration (see [18]), was needed to recoguize any part.

In [21] we redefined saliency from its meaning in [17] to refer to the probability that a confi-
guration belongs to 3 particular pose of a part. Saliency was taken informally as the inverse of the
frequency with which a configuration occurs within the set of parts that are to appear in the image
(see [21] for a more formal treatment). We refer to the unique configurations, i.c., those that have
an inverse frequency of 1, as the most salient configurations or for the purposes of the following dis-
cussion as simply the salient configurations.

To determine the set of salient configurations for a part, every configuration of the part is com-
pared to every configuration of the set of parts that are appear in the image. If any configuration
appears more than once in the part or appears even once in any of the other parts, it is disc arded.
The configurations that remain are considered the salient configurations. Membership in this set
obviously depeads on the set of parts to appear in the image. For example, if the obverse side of the
part shown in Fig. 32 were the only part to appear in an image, configuration A and B would form a
salient configuration. If, however, the reverse side is included in the set of part boundaries (see Fig.
3b), the configeration A and B strongly resembles configuration A’ and B'. A and B, therefore, no
longer uniquely recognize the part’s pose and are discarded from the set of salient configurations.
However, A asd C still are a salient configuration because they are found only once in the set of
part boundaries. It is obvious that enlarging the set of part boundaries will reduce the membership
of the set of sabent configurations for the obverse side of the part even further.

To locate a part, a segment that is a member of many salient configurations of the part is
selected. Segment A in Fig. 4 is such a section. Segment A together with the segments whose centers
are marked with vertical spikes all uniquely recognize the part and its pose. This segment is com-
pared to the segments of the image boundary. If a good match is found, the rotation and transla-
tion necessary to align the two segments is computed. The rotation and translation are applied to
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the entire boundary of the part (see dashed boundary in Fig. 6a) and the transformed boundary is
used as a guide in searching for the second segment, B, of a salient configuration. If such » segment
is in turn found (see Fig. 6b), the part is assumed to be located. If mot, the process of selecting b
initial segment and then searching for a second segment that forms s upique configuration is
repeated. We bave assumed in the above that the segments in 3 configuration found in the image
come from the same part, and pot from the sccidental alignment of segments of two or more parts.
More precisely, an accidental alignment occurs when » configuration of segments from two or more

parts bappens to fall in » relative position that resembles 3 configuration of segments from a single

part. We assume this occurs with very low probability.

Segments of the part and image are compared in a slope angle-arclength representation. We
refer to this representation as the -2 representation. The #-» representation is a one dimensional
functional representation, #¢), of an edge boundary. The slope angle at each edge point is
parameterized by the arclength along the boundary from an arbitrary starting point to the edge
point (see Fig. 6).

In the 6-2 representation segments are fit with one parameter, the relative orientation between
scgments, 6. To compare 3 segment of a part with a segment of the image boundary, we select the
sum of the squares of the differences between corresponding slope angles as a measure of the close-
pess of the fit. The centers of the segments are aligned (see Fig. 7) and the ¢ values of the part’s
segment, Oy (s,) for i = [-n,:--.n}, are least squares fit to the corresponding 6 values of the image
segment, (s, ) for i = [-n,---m] We assume that both segments have been sampled at equal
arclengths at n points on either side of their centers. The fit parameter, ©, (see Fig. 7) is chosen to

minimize the following

— 2.: (On(0.)- 0s(s) - OF.

2n +1, =,

The minimum occurs when

0= ¥ (uln)-0(0))=Tu -0,

2" -

in other words, when © is simply the difference between the mean tangent angles of the two seg-
ments. The minimum residue

R =[5 T (Ols) -0 - (00,) - »=|".

2n +l|--

is used as a measure of the similarity of the segments to decide whether the segments match. We
assume that two segments match if R is less than a fixed threshold, D, where the value of D is
chosen to reflect the moise anticipated in the images under consideration.

Besides its simplicity, this method of comparison has the addition advantage that it allows
some latitude iz matching segments. It is not always possible to obtain precise estimates of the
arclength, o, slong the boundary, and with the sum of squares of the differences as a measurement
of similarity, small distortions in the s values do not affect the measurement as much as they
would, say, a fit that minimizes the maximum difference.

Another feature of using the ¢-# representation is that it allows ope to easily calculate critical
points. We define critical points as the extrema of the curvature of the boundary that have absolute
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curvatures above s fixed threshold. The curvature of s contour is the first derivative of #s) with
respect to ¢, or —‘-9:—) (see [22]). The locations of critical points in the contour are readily obtained

by applying 8 }-dimensional edge detector to the function K¢ ). Figure 8a shows the eritical points
of a part; curvature maxima are showp as circles and curvature minima are shown as squares. Fig-
are 8b shows the critical points of the boundary in ap image. Note the correspondence of cntical

points.

Critical points in a boundary, if they exist, cap be used to further improve the efficiency of
comparison. If a segment of the part contains critical points, as is often the case, it need only be
compared to segments in the image that contain similar critical points. By comparing a part segment
to only those image segments with similar eritical points, we substantially reduce the sumber of
comparisons needed to locate matches between segments.

3. Results

Figures 92-b show some of the results obtained for Jocating parts. Fourteen images of seven
parts were used with a success rate of approximately 5.8 parts found per image (83%). Recognition
times for the seven parts were on the order of 20 to 30 seconds on an Apollo 680 node. This value
does not include preprocessing such as edge detection and edge linking.

The plot in Fig. 10 is perhaps more meaningful. It shows the percent of the parts recognized in
the images versus the percent of the part's boundary exposed. The numbers in the figure adjacent to
each point show the pumber of instances supporting the data. One can see that we obtained reason-
able results even when as little as a third of the part’s boundary was exposed. Of course, these
results depend on the part chosen, but reflect the robustness of the approach.

4. Implementation

In the present implementation, pixel wide edges are extracted from the images using the Canny
edge detector [23]. The slope angle, 6, at each edge point in determined from the edge strengths at
locations of the edge boundaries. More precisely, the slope angle is taken to be the arctangent of the
of the ratio of strength in the y direction to the strength in the z direction. The edge points are
then linked to form contours which are pormalized by unwrapping artificial discontinuities in the
6(¢ ) function due to the branch cut in the arctangent function and by resampling the boundaries at
unit arclengths. The 6-s representation is processed with a one dimensional Canny edge detector to
located critical points of the boundary. Salient configurations are determine by individually match-
ing the segments of the configuration to all the other segments in the set of parts. Then it is deter-
mined if two segments of a configuration ever match st the same relative position and orientation to
other segments of the part or to other segments of other parts. If they do, the configuration is not

considered salient.

§. Conclusion

In the example throughout the paper, we bave used a bin of identical parts since this is a com-
mon mode of presentation of parts in 3 bin. The algorithm, however, is not limited to working with
identical parts and, in fact, can be applied to any bin of parts. (See [18], wherc earlier versicus of
the algorithm were demonstrated on a set of nine different parts.) We believe that the approach thae
we bave suggested is both robust and efficient enough to be used as a solution to the 2-dimensional
partially occluded parts problem. In the future the algorithm will be modified to handled scaled 2-
dimensional untilted parts and reflective parts. We also believe that our use of salient configura-
tions is extendable to other problems, notably, the 3-dimensional occluded parts problem.
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Fig. 18

Segments of exposed part boundary.
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Fig. 2a. Selected segments.
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Fig. 2b. Configuration of segments.
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Fig. 3b. Reverse side.



Fig. 4. Configurations associated with a segment.
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Fig. 6a

Fig. 6b

Boundary of part and its 0 — s representation
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Fig. 7. Comparing segments in # - s space.
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Fig. 8a

Fig 8b

Critical points in the part and image boundaries.
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