Proceedings of

The Fifth Annual

CONTROL ENGINEERING CONFERENCE

Held as part of the Control Engineering

Conference & Exposition
O'Hare Exposition Center
Rosemont, IL

May 6-8, 1986

Conference and Exhibition organized by:
Tower Conference Management Co.
331 W. Wesley St.

Wheaton, IL 60187
(312) 668-8100

CONROL
ENGINEERING.

Ada' in a Manufacturing
Environment

by

Richard Volz
Trevor Mudge
Arch Naylor

The Robotics Research Laboratory
The College of Engineering
The University of Michigan

Ann Arbor, MI 48109
and
Benjamin Brosgol
ALSYS Inc.
1432 Main Street
Waltham, MA 02154

Abstract

This paper identifies software as the key to the computer integrated factory. It
then discusses the problem by illustrating the principal components that one typ-
ically has to integrate in a manufacturing system. Finally, a solution is proposed
that uses Ada software components as standard building blocks. A solution is
proposed, illustrated with some simple examples, that use Ada software com-
ponents as standard building blocks. Finally, the paper summarizes a set of
implementation techniques in Ada compilers that help support the use of Ada in

manufacturing applications.

t. Introduction

The computer integrated factory has been a goal for
the past five years and has been looked upon as the sal-
vation for American industry. Concrete results to date,
however, have fallen far short of expectations. One of
the principal reasons is the complexity of manufacturing
software. Software is the key to successful factory
integration. The difficulties in solving the problem of
building complex manufacturing software systems are
numerous: the diversity of devices and languages used,
the distributed nature of the system, the size of systems
which must be built, and the persistent intractability of
large software systems in general.

Manufacturing software problems are rooted in a
long history of building small (by comparison to what is
needed) stand alone systems with little regard for inter-
facing the devices to computers, much less concern for
compatibility with other diverse devices. The solutions
will also take a long time, and are not amenable to short
term patches. The McKinsey Company has recently
completed a study on the integration of different levels of
CAD/CAM capability into manufacturing systems, and
has concluded that retrofitted evolution has only very
limited success. Only through careful long term planning
for evolution to the ultimate goal will that goal be
attained. The kinds of planning and effort needed are
comparable to those put forth by DoD in its attack on

the large scale embedded software problem that re-:. .
in the development of the Ada programming langua,. ,i,
While manufacturing can and should take advantage of
DoD's efforts, it has sufficient additional software prob-
lems that it must begin its own long range plan on
software problems.

Solving the manufacturing software problem requires
a full spectrum of activity ranging from both corporate
and university research through experimental implemen-
tations and testing. To obtain real solutions to the prob-
lem, it is likely that cultural shifts will be necessary in
both the ways in which automated factories are operated
and in relations between the manufacturer and equipment
vendors. This paper outlines the nature of the software
problem and suggests how Ada can help provide a solu-
tion.

3. The Manufacturing Software Problem

The integrated manufacturing software problem is
strongly related to both the complexity and size of the
system being integrated, and to the diversity of comput-
ers, languages and operating systems being used to
accomplish the integration. As a basis for discussion con-
sider the key characteristics, from a software point of
view, of some of the major kinds of manufacturing dev-
ices.

1Ada is & registered trademazk of the U.S. Government (Ada Joint Program Office).

433

o NC machines
— Programmed in APT like languages.
— Complex controller with only a limited interface
to the outside world.
— Controllers are typically special purpose
devices.

¢ Robots .
— Programmed in VAL, Karel, or AML like
languages.
— Limited interfaces to the outside world.
— Controllers typically built upon general purpose
computers.

¢ Programmable Controllers (PC’s)
— Programmed in ladder logic; limited other
programming capabilities. '
— Currently built out of special purpose
hardware.
— Only limited interfaces to other computers.

e Materials handling equipment
— Typically controlled by a general purpase
computer.
— Variety of languages used, e.g., assembly
language, Fortran, Pascal, C.

e Storage retrieval systems
— Typically controlled by a general purpose
computer.
— Variety of languages used, e.g., assembly
language, Fortran, Pascal, C.

Next consider the block diagram of Fig. 1 which portrays
the kinds of interconnections which are typical of those
desired in the factory of the future. The diagram is
coded to distinguish interacting physical devices, local
electronic communication and factory wide network com-
munication. Symptomatic problems, which are easy to
recognize, are described first. Then, the fundamental
problems underlying these and whose solutions are the
real key to successful future manufacturing software
integration, are identified and discussed.

One of the first symptomatic problems is the inabil-
ity of devices to communicate with one another. Most
manufacturing devices have historically operated in a
stand alone mode, and it is only relatively recently that it
has been recognized that communication interfaces are
necessary. Industry is now rapidly settling on RS-232
and MAP as connection standards, and physical intercon-
nections will be less of a problem in the near future.

However, there is very little standardization of the
logical (applications level) interfaces between the devices,
and, even if physically connected, effective communica-
tion among the software programs on different devices is
difficult to obtain. Frequently, the functions needed for
an application are obtainable only in awkward ways, and
there is generally no capability to modify the software in
the device controllers to provide the needed functions in
an easy-to-use form, even though the device might be
physically capable of doing so. More generally, the
software to control the collection of factory devices does

not exist. No one knows how to program the entire col-
lection of devices.

MTS Controlter

%A %a_

GPC

TRANSPORT SYSTEM (MTS)

Factory
Control
Comoute

Key
GPC — Genera' Purpcse Computer
PC - Progremmatie Controlier
C = Haro wired o special purpote controller
D72 - Erectro mecranicas aevice

“re = Physicat antercomections or motion patis
== = Locs! dets communication

S - MAP networ connection

Figure 1

The programming of machines on the shop floor by
shop floor personnel when they are part of a larger
integrated system, is much more difficult than program-
ming stand alone machines. It is neither clear what con-
straints exist on the operation of a single machine with
respect to others present, nor evident how the program-
mer can program within these constraints. Debugging of
software involving multiple real-time devices is difficult,
and latent errors often appear. Problems frequently can
be traced to misuse of variables across machine boun-
daries, and unexpected side effects can occur and create
new problems as a consequence of fixing earlier problems.

To make real progress in manufacturing software
problems, it is necessary to identify the fundamental
underlying problems and focus attention on solving these.
First, there is a major lack of understanding and defini-
tion of the problem. For example, there is no require-
ments document for the desired system of the future stat-
ing such things as:

e What capabilities should the overall system have?

e What hooks and scars are required for future
developments?

e What is the lifecycle view of the systems?

As a result, vendors can only produce what they think
the industry needs, without any carefully developed
specifications that are consistent with overall integra.;ted
manufacturing needs. Often, as marketing ploys, minor
differences (called advantages or enhancements) are
inserted by competitors into the equipment. Manufactur-
ing equipment, particularly at the software level, are
therefore not available as components. This is a major
stumbling block to integration. Industry cannot afford to
custom design every system to utilize whatever specifica-
tions vendors are currently providing.

A plethora of inadequate languages are currently
used. These appear to have been developed in ignorance
of many important software concepts which have grown
out of the past decade and a half of programming
language research. These (needed, but often missing)
concepts include data abstraction, compile time error
checking, large scale programming support through
separate compilation and modularization, concurrent pro-
cessing mechanisms, and real-time support. They are
concepts that are all realized in some form in Ada. Also,
the languages currently used lack stanaardizauon. Most
importantly, none of these languages address the funda-
mental problem that the systems with which we are deal-
ing are distributed. They typically include no develop-
ment tools that allow one to directly program and debug
distributed systems.

Programmable controllers are a major stumbling
block to future progress. They appear by the thousands
in modern factories and are programmed by skilled
tradesmen rather than manufacturing software profes-
sionals. They are programmed in a relatively simple and
easily understood language, ladder diagrams. While
amenable to being programmed by persons with only
modest training, the resulting programs are quite limited,
particularly in their ability to perform non-binary func-
tions and communicate with higher levels of control pro-
grams on other computers. While the controller industry
has provided a succession of higher level programming
capabilities within PCs, the improvements have only been
incremental and are headed in a direction which will
introduce other problems as well. We name just a couple
of the problems. As higher levels of programming capa-
bilities are added to PC's the skill required of the pro-
grammers will have to increase. Current PC’s are based
on periodic scanning of a large number of input states.
As higher level functions, with arbitrary execution times
are inserted into ladder outputs, the timing of the scans
will be disrupted. Most importantly, as PC’s become
absorbed into larger systems and are accountable to
higher levels of control, it will become impossible to pro-
gram them as stand alone devices; we do not yet have the
mechanisms, hardware or software, by which they can be
programmed in this larger context. In spite of all of these
problems, the concept of a programmable controller is
critical to advanced manufacturing systems, and new
approaches to them must be sought. There are, in fact, a
number of completely different approaches to the
development of programmable controllers which have the

438

potential of offering vastly improved capabilities, both ia
terms of hardware performance and programming capa-
bilities, and which can yet be, at the low end, compatible
with current ladder diagram schemes of programming.

Finally, mechanisms for real-time event driven con-
trol of complex systems are not well understood, and gen-
eral systems for programming them are not available.

3. Toward a Solution

The software problem for manufacturing systems
then, a number of aspects. We are faced with a
mix of programmable devices. Various
programming methods are used. Interconnection of dev-
ices is awkward. Even if these were pot issues, the size
and distributed nature of manufacturing software alone
would make for very serious problems. Solving problems
of this magnitude requires a well thought out plan of
attack extending over a substantial length of time, 10
years in our opinion.

As a basis for developing a plan of attack, we first
state some desired long term goals. We emphasize that
these are conceptual goals only at this point and that
much must be done to mold them into a form which is
achievable as we develop a detailed plan of attack.

has,
heterogeneous

3.1. A Software Components Industry

The first long term goal is the development of a
components industry for manufacturing equipment and
software. With this industry in place, manufacturers
would specify in a formal way the requirements for the
manufacturing equipment they need and the component
suppliers would supply manufacturing hardware ac-1
soitware components which would “plug” into the rest of
the manufacturers system. This is exactly the opposite of
current practice in which the manufacturer assumes the
responsibility for custom designing the hardware and
software interfaces for integration of the system.

For several important reasons to be outlined below,
we will view these components from the perspective of a
control program on a general purpose computer. From
this perspective, the “‘components” are software abstrac-
tions of the real devices [2]. We thus refer to this com-
ponents industry as a software components industry,
although in reality many of the software components do,
in fact, provide interfaces to hardware devices. Of
course, it is possible to have software components which
are truly software alone, e.g., arithmetic or database com-
ponents. The software component view, however, is the
correct one for the purpose of building integrated
manufacturing systems because this software componert
is the only aspect of the component to which the high- .
level control system has any direct access.

A pre-condition for the development of such a
software components industry is the adoption of s stan-
dard language that supports modern software engineering
concepts and has suitable abstraction capabilities. When
one considers other language requirements such as sup-
port for tasking and timing, large scale program develop-
ment and extensibility, there is only one practical choice,

Ads. Furthermore, there will be a major software com-
ponents industry bailt around Ada which can be drawn
upon to support the manufacturing software components
industry proposed here.

With Ads as a base language, the software com-
ponent view can be described more clearly and the
interactions between the industrial manufacturer and the
(manufacturing equipment) component supplier described
in more detail. Figure 2 shows one of the industrial
manufactures control computers connected via a com-
munications network to some manufacturing component.
Of particular interest is the use of Ada packages as the
abstraction mechanism for the component. The package
specification is considered to be part of the control pro-
gram, while the package body is part of the software
component.

Several things derive from this view. First, the
industrial manufacturer designs the package specification
to provide the view of the manufacturing device neces-
sary for the application at hand. Component suppliers
are then given the compiled specification and must pro-
vide not only the required hardware, but a body to the
component package which compatible with the
manufacturer compiled specification as well. Since the
component is now carefully specified, several vendors
might bid against each other for the job. Second, since
the body must reside in the control computer, the sup-
plier must take responsibility for the applications level
communication across the network. The supplied
software component is directly plugable into the
manufacturer’s computer.

Third, since suppliers will have a fixed and standard
framework within which they must deliver components, it
will both be easier to develop custom products and easier
to formulate standards when a class of devices has
reached maturity.

3.2. Using Ada for Software Components

Ada has been expressly designed to support the
software components approach to constructing software
for real-time embedded applications (in particular, see
Barnes p. 286 [3]). The support for separate compilation,
packages, distinct package specifications, and generics are
particularly pertinent. Indeed, many of the companies
currently focussing their efforts on Ada compilers are
likely to redirect those efforts to the production of reus-
sble Ada software components when the acceptance level
of Ada has increased sufficiently.

To provide a more concrete picture of an Ada
software component consider the case of a controller for a
six-degree-of-freedom robot (for further examples see [4]).
It may be defined by the following package specification,

package ROBOT 6 is

Controt Camputer

Control

Program

Component Packege Specification

Component implementation
Network (e.9. MAP)
The
“Sottware
- Oen
Companent c.‘::.w
Device
Figure 2

The package specification is bracketed by “package
ROBOT_8 is” and “end ROBOT_8;" (Ada reserved
words are shown in lowercase bold and variables, types,
procedure names, function names, task names and pack-
age names are shown in uppercase). In the above case
only two procedures are specified—MOVE and HAND.
In general, procedures, functions (typed valued pro-
cedures), variables, and types can be included in a pack-
age specification. The details of the implementations of
the two procedures are contained in the body of the
package. As far as the user of the robot is concerned it
can be manipulated by MOVE and HAND only. These
procedures and the number and type of the arguments
are the complete specification of the user interface. In
terms of Fig. 2 the principal part of these procedures
would reside in the control computer. Implementing the
actions implied by the procedures would require calls
across the network. The important point is that the
unnecessary detail about the robot controller has been
suppressed. This notion of “information hiding” is the
motivation for the package conmstruct in Ada [5]. For
instance, the user is not required to know the bit level
commands that have to be communicated to the stepper
motors, or d¢ motors, that drive the arm. The user also
does not need to know that a coordinate transform is
being done in the controller, or the details of the cross-
network calls. Of course, this example is a very simple
specification. If it were the sum total of the design
specification given to a supplier of robots, the supplier
would have a lot of freedom—perhaps too much. For
example, he would be free to implement his own control
law among other things.

procedure MOVE (X, Y, Z: In REAL; DONE: out BOOLEAN);
proeedure HAND (OPEN, CLOSE: in BOOLEAN; DONE out BOOLEAN);

end ROBOT_6;

A good set of requirements would give the minimum geperic specifications to cover a class of virtual robots.
ingredients that one would expect to fiad in 8 specific- By providing custom package bodies different robots can
tion like the one above. What do you want to know: the be made to appesr the same. Many possibilities exist.
control law—perhaps; bits in the register that determines We have used the example of robots, but the sbove
the position of the third joint—perhaps not. What do applies equally to other types of manufacturing
you want to hide? In most cases you will probably want machinery.

to distinguish between a drill press and a robot, although
at some level of abstraction, say the flow of the
subassemblies through the shop, you may want to regard

them both as servers in & network of queues.

The idea of software specification is an important
step in defining the behavior of the subsystems (com-
ponents) of a manufacturing system. However, there are
important extra-linguistic performance parameters. For

In the case where the control computer is responsible example, reliability and mean-time-to-failure. These
for several robots, it may be inefficient to block on calls types of things cannot be defined within the language.
to MOVE, i.e., to wait until the complete move for a par- An interesting question, and one that the benchmark of

ticular robot has taken place before moving another. (6] starts to answer is the issue of specifications that can-
This need for concurrency can be handled by using a task not be couched in language terms. In particular, execu-
as follows, tion times. The language describes function and sequence

package ROBOT_8 s (and concurrency), but not sequence with respect to 3

procedure COORD (X, Y, Z : REAL)s clock, i.e., real-time performance.
fanction ACK return BOOLEAN;

procedure HAND (OPEN, CLOSE : in BOOLEAN; DONE : out BOOLEAN),
end ROBOT_6;

package body ROBOT 68 Is
task MOVE Is
entry COORD (X, Y, Z: REAL);
entry ACK (DONE : out BOOLEAN };
end MOVE;

procedure COORD(X,Y,Z:REAL)Is
begin

MOVE.COORD (X, Y, Z) ;
end MOVE;

fanction ACK return BOOLEAN is
DONE : BOOLEAN;

MOVE.ACK(DONE}) ;
return DONE;

end ACK;

:roeedm HAND(OPEN, CLOSE : in BOOLEAN; DONE; out BOOLEAN) is

egin

end HAND; s.3. Distributed Programming Capability

task bo (o) It is clear from Fig. 2 that the component vendors

ek . d’ MOVE Is must face the problem of writing programs that cross

end MOVE; machine boundaries. The same will be true for the

’ manufacturers as well, since even in s modest sized

end ROBOT_S; installation there will be multiple control computers

which will have to communicate with each other in &

A software components house would have the manner similar to that shown in Fig. 2. Underlying both
manufacturer’s specification in one hand and the fune- groups of software requirements, then, will be a need to
tionality of the robot controller in the other. The write programs that cross machine boundsries. We
component produced could be viewed ss s software believe that a promising approach to this requirement is &
adapter. Of course the same robot might be used for dif- distributed version of the Ads langusge, that is one in
ferent applications—some where dynamics are important which a single program can be executed on a set of pro-
and other where they are not. These differences can be cessors (7). The point of & distributed langusge is two-
handled by writing different specifications or by msking fold. First, it would reduce the programmer’s view of

437

e RN

Ll

B M v BT e e f

interprocessor communication to interprocess ccmmunics-
tion, which is the programmer’s natural view of commun-
ication; any special application level communication pro-
tocols become transparent to the programmer. It provides
s conceptually cleaner view of the program. (Note that
MAP makes the communication possible, but not
transparent.) Second, s major tool of modern software
technology is extensive compile time error checking. The
single program view of a distributed system would allow
error checking to be done across the entire system instead
of, as is now the case, only on the subsets of a program
residing on a single processor.

3.4. Smart Manufacturing Development Tools

Once there is s distributed software components
industry the software problem for manufacturing will be
significantly eased. However, it will not be eliminated.
There will still be the problem of software that is peculiar
to a given plant and mix of parts. As long as software is
tailored to specific situations there will be a continuing
software problem. A range of software construction tools
are needed. At one end of the spectrum, tools which
allow different levels of shop floor and engineering per-
sonnel to program parts of the system while retaining
overall system integrity are needed. At the other end of
the spectrum, and more ideally, what is needed is a way
to assemble and adapt assemblies of software components
automatically or semi-automatically.

What is important in both cases, however, is that
these tools be developed in the overall framework of the
manufacturing software structure and not be developed
first and then used to force the overall structure into a
suboptimal form.

3.6. Fully Flexible Programmable Controllers

There is a strong need for PC’s which are much
more powerful than those of today. In other words, PC's
need to evolve to some form of Industrial Computer.
First, controllers must be programmable in a powerful
higher level language as well as ladder logic to effect
sdvanced manufacturing controls and communication.
To minimize complexity, this language should be the
same as used for other parts of the system, ie., Ada.
However, this does not mean that everyone must learn
Ada. The user interfaces can be just about anything that
seems appropriate. For example, ladder diagrams are not
ruled out. The design of these user interfaces should be
executed in 8 way to be compatible with constraints
imposed by participation of the controller in a larger con-
trol system.

Finally, we note that there are numerous ways in
which the industrial computer of the future could be con-
structed ranging from extended special purpose processors
as of today to new multi-processor architectures. A likely
profitable direction, however, would seem to be tao adapt
general purpose computers to the task. They easily make
higher level programming languages available and there
are techniques for achieving the equivalent of high scan

rates. It is also straightforward to provide ladder
diagram interfaces to them.

4. Ada Implementation Issues and Strategles

The Ada language has a rich set of facilities for pro-
gramming the kinds of applications discussed in this
paper. Moreover, recent developments in commercial
Ada compilers have been extremely encouraging concern-
ing the efficiency of the generated code. Benchmarks, as
described in [8], are showing that the run-time efficiency
of Ada can match or surpass that of older languages such
as C and Pascal.

As an illustration of the current state of the art, this
section summarizes the major run time system decisions
underlying Alsys’ Ada compilers for the Motorola 68000
family. These are validated Ads compilers running on,
and generating code for, single-processor systems includ-
ing Apollo, Sun and Hewlett-Packard workstations with
the UNIX operating system. Although these are neither
real-time nor distributed systems, an attempt was made
in the design to avoid decisions that would interfere with
a subsequent adaptation to such environments, and work
is currently underway at Alsys on a real-time retarget.

4.1. Principal Design Goals

Efficiency

Efficiency concerns are embodied in the compiler (with
two optimization passes), the binder and the run-time
system. Particular attention was paid to obtaining fast
subroutine linkages, efficient accesses to data, and good
performance in task communication.

Support for large programs

Ada is expected to be used for programs comprising tens
or hundreds of thousands of lines of code, with extensive
data storage requirements. It is important to be careful
of implicit restrictions that may be imposed by the
machine architecture. For example, on the Motorola
68000 there is a limit of 32K to a stack offset; large
objects are therefore not stored in the static part of a
stack frame even if their size is static. Alsys' Ada com-
piler system comprises several hundred thousand lines of
Ada and is bootstrapped through itself, requiring that the
run-time be able to cope with programs that large.
Retargetability '

In the design and implementation attention was paid to
separating the machine independent and the machine
dependent elements. Decisions such as the implementa-
tion of rendezvous were localized to the run-time kernel
so that subsequent modifications would not affect the
compiler.

4.2. Storage Model

The Ada language has s number of features that
require a dypamic scheme of storage allocation at run
ti.me and that permit a variety of implementation tech-
niques.

e Subprograms may be nested, with varisbles from
outer levels visible to inner scopes, and subprograms
may also be recursive. This combination implies a
run-time stack for subprogram data.

e Objects may have dynamically determined sizes.
This implies that a stack frame for a subprogram
with such objects have a dynamic part as well as a
fixed-length part, or that such dynamically sized
objects be stored in a separately managed ares (the
heap).

o Tasks with local data may be created dynamically,
and they may be nested. Since a task’s statement
part can see the names declared in all enclosing
scopes, the storage model implied is a ‘“‘cactus
stack”. Each task has its own stack; sibling tasks
have no access to each other’s stack but do have
access to their parent’s stack.

e The access type facility allows the dynamic associa-
tion of objects with names. Objects may be expli-
citly allocated and deallocated by the programmer.

In addition, there are several issues concerning the
allocation of global (static) storage—the area occupied by
data from library packages:

o Whether there should be a single global area for the
whole program, versus individually addressable glo-
bal areas

e Where the data from package subunits should be
allocated

In Alsys’ implementation, there are a set of global

storage areas, one per library package. Data from pack-
age subunits are allocated with the globals of the ancestor
library unit. Global areas may be merged into one area
under control of the user through an option to the com-
piler (this option will be supported in a future release).

The main program is regarded as being called from
an environment task whose stack length is not bounded a
priori. There is a single “heap” area for the whole pro-
gram; this is used for access type data and for “large”
objects (where “large” is a machine dependent value).
For programs whose size exceeds the main memory limits,
the heap is also used for executable code, since a dynamic
loader is available to bring in non-resident units when
they are called.

Each child task spawned by the program is provided
with a fixed-length stack, allocated from the heap, when
it is activated. The stack length is settable as an option
to the binder; by default it is 16K bytes.

Global data objects are accessed either directly via
an offset from a Global Data register, or, for external glo-
bals, through one level of indirection. In the latter case
the globals of the unit from which the reference is made
contain pointers to the other units’ global data areas.

Up-level references are implemented through a
“display” mechanism. Each task’s stack contains a set of
locations, whose size is the maximum static nesting level
in the program, that contain the stack addresses of the

data currently accessible. The display must be updated
in general on subprogram calls and returns, but since Ada
does not permit subprograms to be passed as run-time
parameters it is possible to implement these updates quite
efficiently (more cheaply, for example, than in Pascal).
Alsys’' compiler implements this more efficient strategy,
as well as static analysis that for many cases completely
avoids display updates.

4.3. Tasking

The principles of the *“‘cactus stack™ approach were
summarized above. The whole program is managed as
one operating system process, with the run-time kernel
responsible for task scheduling, context swapping, etc.
Although an alternative approach was considered, to map
each Ada task to its own operating system process, this
had serious disadvantages. First, UNIX does not allow
processes to share common memory as would be required
by Ada visibility rules. Second, the implementation of
rendezvous through interprocess communication in UNIX
would be too inefficient. A difficulty with having a single
process for the whole program is that a task performing
input/output has the potential to block the entire pro-
cess. Alsys’ implementation avoids this problem for dev-
ices such as terminals.

Ada semantics is fairly flexible concerning the task
scheduling algorithm. Alsys’ implementation allows the
programmer to choose whether time slicing is to be used.
The current implementation supports ten priority levels
but a later release will relax this so that the maximum
priority range used is calculated by the Binder.

The rendezvous implementation is *‘order of arrival’:
whichever of the two tasks is the later to arrive is the one
that executes the accept statement. This has the poten-
tial for saving context swaps. The stack used for execut-
ing the accept statement is that of the entry caller. This
leaves open the possibility of various optimizations of
server tasks. Additional optimizations are made when
the accept body is empty (e.g., when tasks simply syn-
chronize), again avoiding unnecessary context swaps.

4.4. Memory Management

As mentioned earlier, there is a single heap used for
the program. Heap storage is allocated to s program for
various reasons. In some cases there is an explicit request
(e.g., a call of the allocator function). In other cases the
request is implicit: e.g., 8 new task's stack space, or an
object too large to go into some other data area. The
Alsys implementation arranges that space which is allo-
cated from the heap will also be returned to the heap
when it is safe to do so. Thus, when the scope containing
an access type is exited, storage for any objects denoted
by values from that type are reclaimed. Analogously,
when a task is terminated, its stack space is reclaimed
and returned to the heap.

4.5. Exeception Handling

Ada’s exception handling facility allows the program-
mer to deal with unusual events or errors through out of

439

line “‘handlers”’ that receive control and complete the exe-
cution of the block or unit in which the exception was
raised. The philosophy of Alsys’ implementation is that
exceptions should only add run-time overhead when they
are used. Thus the compiler and binder build a set of
tables describing where to find handlers at run time.
This avoids penalizing normal subprogram calls and
returns at the cost of overhead on exception raising and
handling.

Exception handling also has an effect on the run-
time because of its interactions with other Ada features.
Propagation of exceptions out of accept statements influ-
ences the rendezvous implementation. Propagation of
exceptions out of subprograms means that actions to be
performed on exit—e.g., returning storage to the heap—
must be done both for normal and abnormal return.

6. Conclusion

Manufacturing systems can be viewed as, among
other things, large real-time embedded software systems.
Ada has been designed with exactly these kind of systems
in mind. It is our belief that if Ada is adopted as a stan-
dard by s sufficient number of suppliers of manufacturing
equipment, and if Ada is also adopted as s standard of
specification by major manufacturers, then the spiraling
cost of creating and maintaining manufacturing software
can be contained. Furthermore, the concept of software
components can lead to truly flexible automation by per-
mitting the function of manufacturing cells to be quickly
and reliably modified through interchangeable software
components. The increasing sophistication of Ada com-
pilers, particularly in the efficiency of the generated code,
is making this concept a reality.

Although the use of Ada as a standard for manufac-
turing software would represent a quantum jump in solv-
ing the wide variety of problems facing the implementor
of a manufacturing system, there are still some important
language level issues that need further examination. The
principal ones relate to the form and meaning of

distributed Ada programs.
References

(1] Ada Programming Language (ANSI/MIL-STD-1815A),
Washington, DC 20301: Ada Joint Program Office,
Department of Defense, OUSD(R&E), January 1983.

[2] RA. Volz and T.N. Mudge, “Robots are (nothing
more than) Abstract Data Types,” Proceedings of the
Society of Manufacturing Engineers Conference on
Robotics Research, August 1984.

[38] J.G.P. Barmes, Programming in Ada, 2nd ed.,
Addison-Wesley, London, 1984.

[4] G.D. Buzzard and T.N. Mudge, “Object-Based Com-
puting and the Ada Programming Language,” Com-
puter, pp. 11-19, March 1985,

[5) M. Shaw, “The Impact of Abstraction Concerns on
Modular Programming Languages,” Proceedings of
the IEEE, vol. 68, no. 9, pp. 1119-1130, September
1980.

[6] RM. Clapp, L.D. Duchesneau, R.A. Volz, T.N. Mudge
and T. Schultze, “Toward Real-Time Performance
Benchmarks for Ada,” Robot Systems Division
Report, RSD-6-88, Center for Research on Integrated
Manufacturing, College of Engineering, University of
Michigan, Ann Arbor, MI, January 1986.

[7) RA. Volz, T.N. Mudge, A.W. Naylor, and J.H. Mayer,
“Some Problems in Distributing Real-Time Ada Pro-
grams Across Machines,” Ada in wse, Proceedings of
the 1985 International Ada Conference, Eds. J.G.P.
Barnes and G.A. Fischer, May 1983, pp. 72-84.

[8] M. Gart, *“Targeting Ada to 6800/Unix,” 1986 Winter
USENIX Technical Conference, January 15-17, 1986,
Denver, CO.

