VISION ALGORITHMS FOR HYPERCUBE MACHINES!
T.N. Mudge

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109-1109

ABSTRACT

Several commercial hypercube parallel processors have
recently been announced with the potential to deliver
massive parallelism cost-effectively. They open the door
to a wide variety of applications that could benefit from
parallelism. Computer vision is one of these application
areas. This paper develops a general model for hypercube
machines, and uses it to show how vision algorithms can
be executed on hypercubes. In particular, the steps in
the thick film inspection problem are used as a concrete
example. The time needed to complete a typical inspec-
tion is used to determine the performance necessary by a
hypercube machine to be suitable for such inspections.

1. Introduction

Simple computer vision (CV) problems such as
inspecting a printed circuit can easily require the process-
ing of 10M bytes of data in under a second. If the
inspection task is at all complex the processing power
required runs into billions of operations per second.
Therefore, in practice only a reduced version of such
problems is implemented. The required level of process-
ing power is only possible with a high degree of parallel-
ism. This has not been available cost-effectively. How-
ever, several commercial systems offering 100-1000 pro-
cessors in a bypercube configuration have recently been
announced. Intel’s “personal supercomputer,” the iPSC,
is an example. It is comprised of 32, 64, or 128 process-
ing nodes connected in a regular hypercube topology.
The processing nodes are constructed from standard
80286 16 bit microprocessors and 512K bytes of memory.
Connections between adjacent node processors is by
point-to-point 10M bit per second ethernet connections.
I/O is achieved also by a 10M bit per second ethernet
connection that links a system manager and all of the
node processors. A similar machine is available from
Ametek Corporation. The node processor is also a 80286;
however, in addition each node includes a separate 80186
processor to handle internode messages and can have as
much as 1M bytes of memory. Up to 256 nodes can be

1This work was sponsored in part by Army Research Office Con-
tract No. DAAG29-84-K-0070.

incorporated into a system. And, finally, a hypercube
machine is being offered by the NCUBE Corporation. It
bas a custom 32 bit processor for the node processor that
is capable of executing floating point operations. The
connection between adjacent node processors is by point-
to-point bit serial links, and its 1/O structure allows data
transfers to/from the cube array over separate bit serial
links to each node. Its high level of integration allows
systems with up to 1024 nodes to be assembled.

The idea of interconnecting processors in a hyper-
cube array is not new, going back to proposals as early as
1962 [1]). In 1975 IMS Associates Inc. announced a 256
node hypercube made up of 8080’s, but it was never pro-
duced. For the most part however, the idea has remained
unexploited until the construction and demonstration of
the Cosmic Cube at Caltech in 1983 [2]. The hypercube
topology yields a regular array in which nodes are quite
close together: no more than log,V steps apart, where N
is the number of nodes. At the same time the number of
connections from each node to its neighbors is quite low
(also log,N). It thus strikes a balance between a two-
dimensional array in which internode connection costs are
low, at the expense of having the nodes far apart (0{vVN)
steps on average}, and a completely connected array in
which the internode connection costs are high, since there
are O(N2) of them, in order to have nodes only one step
apart. This paper develops a general model for hyper-
cube machines, and uses it to show how vision algorithms
can be executed on a hypercubes. In particular, the steps
in the thick film inspection problem are used as a con-
crete example.

The remainder of this paper is organized as follows.
The next section presents a general model for hypercube
machines. Section 3 outlines the thick film inspection
problem and a set of algorithms to perform it. Section 4
maps those slgorithms onto the hypercube model. The
performance necessary by a cube machine capable of
doing the inspection within the desired time limit is
estimated.

2. A Model for Hypercube Machines

There are two broad classifications for models of
parallel processing: the shared memory model that
characterizes tightly coupled processing, and the distri-
buted memory model that characterizes loosely coupled

Proceedings of the IEEE Workshop on Computer Architecture for

Pattern Analysis and Image Database Management, November 1985,

pages 225-230.

processing. The shared memory model assumes the pro-
cessors have identical access mechanisms to a common
memory. The distributed memory model assumes that
each processor has its own memory and communicates
with others by an 1/O access. Hypercube machines are
distributed memory machines.

Hypercube machines are constructed from N = 2*
identical processors connected through point-to-point
bidirectional links into a hypercube. This hypercube
array is in turn connected to the outside world through
an I/O structure. The order of an N processor hypercube
is given by n, and it is also referred to as an n-cube.
Hypercubes can be constructed and their node processors
labeled with a unique binary number according to the fol-
lowing recursive rule. Form a l-cube as a system of 2
processors connected by a single communication link.
Label one processor with a 0 and the other with a 1. This
is the basis step. The general step constructs an n-cube
from two (n-1)-cubes as follows. First, prefix the node
labels in one of the (n-1)-cubes with a 0 so they are of
the form 0zz - - - zz. Second, prefix the node labels in the
other (n-1}cube with a 1 so they are of the form
12z - - - zz. Finally, connect the two (n-1)-cubes with
communication links between nodes that have labels
differing only in their most significant bit (Fig. 1 shows a
4-cube). Several points are worth noting. Nodes con-
nected by a link have labels differing only in one bit.
Each processor connects tn the cube through n (or log,N)
links. At any point in time up to N links can be in use.

Figure 2 sketches a node processor. For the purposes
of our model we will assume it consists of 8 CPU with a
cache or large register file, main memory and (n +1)
bidirectional DMA channels. The first n of the DMA
channels are connected to the communication links that
joins a node processor to its nearest neighbors in the
cube. The (n+1)}st DMA channel provides a link for
commubicating with the cube I/O subsystem. The chan-
nels are bidirectional and can support broadeasting from
the processor on from 1 up to (n+41) of the links. DMA
actions are modeled as buffer transfers that cycle steal
the bus from the CPU. It is assumed that caching allows
the DMA to proceed so that a fraction a of the internode
communication time can be overlapped with the node
processing; a is termed the degree of transparency. The
I/0 structure is modeled as a channel into and out of the
cube array with a bandwidth of B;, bytes per second.

The time for an algorithm to run on a hypercube is
given by

I(N)=T;+T,+ (1-a) T, +T,, M

where N indicates the number of processors in the cube,
T; the time to input data to the cube, T, the time to
perform the processing at a node, T, the internode com-
munication time, and T, the time to output data. These
last four parameters are also, strictly speaking, functions
of N. Frequently, we are interested in ignoring the
effects of the I/O subsystem. Then,

T(N)= T, + (1-0a)T,. (2)

The communication time is a consequence of having more
than one processor since T,(1)=0, but T, (k) > 0 for
k>1. Of course, if a can be kept close to 1.0 the effects
of T, can be hidden and the overall communication over-
bead, (1- a)7T,, kept to a minimum. The communica-
tion overhead is one of the two principal contributors to
the intrinsic inefficiency of parallel algorithms. The other
is the dependencies within the algorithm that do not per-
mit all the N processors to be used all the time. A node
processing efficiency of less than 1.0 is an indication of
this. This efficiency measure is given by,

T,(1)

N <1 3)

E,(N) =

If the efficiency of the system, excluding 1/O considera-
tions, is given by

T(1
E(N) = NT(N)
then from (2), (3) and the fact that T, (1) = 0, we can
write,
E,(N)
E(N)=1+(1-0)T‘(N) ”
T, (N)

From (4) we can define a pesfectly scalable algorithm as
one where E(N) = 1. In other words, the node process-
ing is 100% efficient,

E,(M)=1 (5)

and the communication overhead is zero,
A-a)T (N)=o0. (6)

Loosely speaking a perfectly scalable algorithm can make
use of large numbers of processors without diminishing
returns.

3. The Thick Film Inspection Problem

To illustrate how a number of typical CV algorithms
can be executed on a hypercube we will consider the steps
in the automatic inspection of thick film (TF) circuits.
These circuits are a network of conductors and dielectrics
printed onto a ceramic substrate. The circuits are popu-
lated with electronic components, but, prior to this, and
as a quality control step, each TF circuit is inspected to
see if it satisfies a set of geometric specifications. The
geometric check, if passed, increases confidence in the
likelihood of the correct electrical operation of the circuit.
The geometric specifications are phrased in terms of a

basic unit of length referred to as a design rule. At
present, typical inspection systems scquire images of TF
circuits that have 10 pixels per design rule. This allows
defects as small as 0.1 of a design rule to be detected; cir-
cuit in a conductor. .

Each TF circuit is imaged as a composite of about
40 frames each composed of 512X512 l-byte pixels to
obtain s resolution of 0.1 of a design rule. This results in
about 10M bytes of data to be processed per substrate.
Currently, the printers that create the TF pattern can
produce approximately obe per second. Thus if a single
automatic inspection device is to handle the printer's out-
put it must process 10M bytes of input data per second.
At present, it is not possible to build a system that can
do this cost-effectively, so the inspection usually relies on
inspecting only a sample subregion of the substrate.

After the data from the imaging device has been
input, the TF inspection problem breaks down into the
following steps.

1. Tonal Mapping. This step is needed if it is
required to adjust for unevenness or imperfections in the
imaging device. It can also be used as part of an
automatic periodic recalibration of the imaging device.

2. Alignment. This step involves trapslating and
rotating the image to a reference position and orientation.
The amount of translation (Az, Ay) and rotation (Af) is
determined by inspecting fiducial marks on the substrate.
We will assume that Az and Ay are less than 3% of the
linear dimensions of the substrate. Further, we will
assume that A# is less than 3°. In current systems, for
performance reasons, this step is performed by mechani-
cally aligning the substrate.

3. [Edge detection. This step applies a simple edge
operator, such as the Sobel operator. Non-maximal
suppression is performed on the resulting edge strength
values to yield pixel-wide edges. An edge following
operation with hysteresis is then carried out to yield a set
of closed contours.

4. Reference check. This step compares the seg-
mented image output from the previous stage with pre-
stored templates to determine if there are any geometric
violations.

5. Error reporting. This final step interprets the
results of the reference checking. Many types of geometri-
cal errors found by the reference check do not cause
failure in the circuit operation; for instance, a small spur
of conducting material. However, the interpretation of
the geometrical errors requires considerable knowledge
about the properties of the TF and its intended opera-
tion. It is important to report them but it is not neces-
sary to reject the circuit. Often non-fatal geometric
errors indicate trends in the manufacturing process that
are harbingers of fatal errors later. Error reporting can

most naturally be implemented as an expert system.
However, in present systems this is not the case, and the
level of reporting is fairly crude.

From the above set of steps, it can be seen that the TF
inspection problem forms a simple paradigm of the CV
process in general. There are preliminary phases of
fconic processing where it is required to work on the
two-dimensional representation of the image, intermedi-
ate level operations such as edge following that work on
non-iconic data structures, and a final interpretive phase
where simple elements of machine intelligence are
required.

4. Mapping the Algorithms onto the Hypercube

The starting point for mapping the steps of Sec. 3
onto the hypercube is to subdivide the image among the
node processors. A natural assignment is to partition the
MXxM image into a Gray coded tesselation of mXm
subimages similar to an n-dimensional Karnaugh map
and then to place each subimage with its like numbered
processor (i.e., M2 = m2N). Figure 3 shows how this can
be done for the hypercube of Fig. 1. This is the data
input step. The remaining steps in the TF inspection
task can then be performed as follows.

1. Tonal mapping. This is a simple byte-wise transla-
tion of the input image and can be done by table lookup.
It is a scalable algorithm since (5) holds for any table
lookup function and (6) holds because there is no inter-
node data movement. The time for tonal mapping is
given by,

m? t,

where ¢ is the time for a node processor to perform an
additive operation. We assume this equals the time to
look up an item in a table.

2. Alignment. As s result of translation followed by
rotation a pixel at location (z,y9) will move to location
(u,v), where

v = (2 + Az) cos{Af) - (y + Ay) sin{Af)
v = (2 + Az) sin(A8) + (y + Ay) cos(Af)

Since, we assume Af to be small and ignore second order
terms these equations can be simplified to

u=1z+ Az - (z + g)Af
v=y + Ay + (z - y)AS.

In other words each pixel must undergo 6 additive and 2
multiplicative operations for the coordinate transforma-
tion. The values ¥ and ¢ should be rounded to nearest
integers. Strictly speaking a resampling phase should be
conducted to resample the aligned image onto an integer
grid. However, rounding is an approximatism to resam-

pling with nearest-neighbor interpolation. For an image
with an initial granularity of 0.1 of a design rule, inaccu-
racies introduced by rounding can be ignored.

We assume that in the worst case the translation
requires every subimage to be transferred to an adjacent
node and that the rotation may also require subimages at
the edge of the image to be transferred to an adjacent
node (see Fig. 4). From our earlier assumptions concern-
ing Az, Ay and A, this sets bounds on the ration m /M

by implying that Az =Ay= 2 <003 and

M
Af =~ -9% < 3°. The data movements between adja-

cent pairs of nodes can proceed simultaneously, therefore,
the time to align the image is bounded above by,

2(3t, + 8,)m? + 6m3; (1 - a)

where ¢, is the time for a node processor to perform a
multiplicative operation and ¢ is the time to move a
byte across a link connecting adjacent nodes. The first
term is the time to create v and v. The second term is
the time for 2 subimage transfers (one for translation and
one for rotation) between adjacent nodes. The factor of 6
arises because we assume 3 bytes need transferring — the
pixel and. u and v.

3. [Edge detection. A Sobel operator requires that the
image be convolved with the two familiar kernels shown
below. Convolution with the lefthand kernel yields the x-
direction edge strength pixels, e, . Convolution with the
right-hand one yields the y-direction edge strength pixels,
¢,. The strengths e, and e, are combined to give the
combined edge strength \/¢,2 + e,2 and the direction of
the edge, arctan (e, /e,). Representing these two values
requires 4 bytes per pixel. Since these values and the
aligned image must exist together, the combined memory
of the nodes must be greater than 5 times the image size
to avoid having to use secondary memory. We will
assume the node memory is sufficient. If multiplication
by two is implemented as repeated addition, the convolu-
tions require 8 additive operations per pixel. The time for
a node to complete these additions is given by, 16m ¢ -+
In order to perform the convolution ob the pixels around
the edges of a subimage, a pixel-wide strip of pixels must
be copied from the four adjacent subimages. In addition,
4 corner pixels must be copied in from two nodes away.
Since movements between pairs of adjacent nodes can
proceed simultaneously, the time for these data transfers
is given by. (4m + 8)¢, .

1] 211 11011

0 2] 0 2

-1 1 -2 1-1 -1]1 011
e, e,

When calculating the edge strength, the square root
can be performed by table lookup for the first 8 bits of
the result followed by one iteration of the Newton-
Raphson method to obtain a 18 bit result. This requires
one sdditive operation, one multiplicative operation (a
divide) and a right shift (divide by two). Assuming the
time for a shift is the same as that for an additive opera-
tion, square root extraction takes m2(2t, +¢,) time
units. With respect to edge direction, we only need to
know if the edge direction is stronger in the y-direction
or the x-direction. The stronger determines the direction
of primary edge strength. This can be accomplished by
testing to see if |e, | > |e¢, | and then checking the
signs of ¢, and e¢,. If comparisons are counted as addi-
tive operations this step takes 3m2t,. The factor of 3
accounts for the need to check signs after comparing
magnitudes.

Each pixel with greater than zero edge strength is a
potential edge point. Non-maximal suppression is used to
thin the number of potential edge pixels to pixel-wide
edges. This can be done by comparing the strength of
each edge pixel to that of the two neighboring pixels that
are orthogonal to its primary edge strength. 1If its
strength is less than either of the neighbors it is dis-
carded. Since every potential edge pixel must be exam-
ined, non-maximal suppression may take as much as
2m? + time units.

Finally, the pixel-wide edges that do not form close
contours of sufficient strength must be removed. A
strong edge pixel is selected that is above a predefined
threshold (7). The pixel-wide edge containing it is fol-
lowed as Jong as no edge pixels occur with a strength of
<7/2. Those lines with no edge pixels above 7/2 are
removed. The remaining edges form closed contours that
separate the different regions of the substrate and form
the pattern that must be examined for geometrical viola-
tion by the reference check. The time to do this contour
generation depends on the number of contour pixels in a
subimage. This can vary from subimage to subimage
resulting in some nodes having more work to do than
others. This class of problems has been discussed in [3]
where they are termed feature dependent slgorithms. If p
is the probability that a pixel is part of a contour we can
estimate the time to generate the contours as pm?t,.
Again, we have assumed comparisons take as long as
additive operations. Collecting all the terms together for
the edge detection step yields the following time,

(23 + p)m2, + m2, +4(m+ 2)t,(1-a)

4. Reference Check. Given the previous steps the
reference check can be accomplished by simple image
comparison with a foreground and s background template
(see Fig. 5). If the contour is not contained between the
templates the substrate fails the inspection. This
operation is perfectly scalable and requires only that each
pixel be compared with two templates prestored across
the nodes templates. The time for reference checking is

thus given by 2m?¢ .

6. Error reporting. Those areas around the contour
sections that fall outside of the templates in the reference
check represent geometric errors in the substrate. This
must be interpreted and appropriate reporting done. The
time taken for this step depends heavily on the sophisti-
cation of the interpretation required. Currently, many
systems simply report the error and its location. The
time to do this can be ignored compared to the_previous
steps. We will assume for the purposes of this discussion
that this is how errors are reported.

We can assemble the times from steps 1 through § int..
the table below.

STEP TIME
0. Input MB,
1. Tonal mapping m3,
2. Aligpment 231, + t,)m2 + 8m?, (1 - 0)

3._Edge detection (23 + p)m?, + m2, + &m + 2, (1 - a)

4 Reference check 2m¥,
—— SR
Total M3B, ¢ (32 + PIm3t, 4+ 3m2, 4+ Y3m? 4 2m + N,

If we assume 1024 processors, no internode commun-
ication transparency, and a substrate image of 10M bytes,
then m? = 10K bytes and the total inspection time can
be approximated by,

10X10°B;, + 3X10°, + 3x10%, + 6X10%; .

If we further assume an 1/O subsystem capable of input-
ting data at 100M bytes/S and node processors capable of
performing additive operations in 1pS, muitiplicative
operations in 10uS, and internode byte transfers in 1uS,
the inspection time works out to be about 0.9 seconds.
This meets the deadline imposed by the circuit printer of
1 second. The node memory needs to be at least 64K
bytes.

5. Conclusions

A model for hypercubes has been developed and its
performance estimated for a characteristic CV task, TF
inspection. There was an element of arbitrariness in
selecting the steps needed for TF inspection; however,
alternative approaches will probably employ very similar
algorithms. The performance figures for node processors
were very comnservative; on the other hand, no account
was taken of various bousekeeping steps that are needed.
Nevertheless, the brief analysis indicates that hypercube

machines should be ideal for low to intermediate level
computer vision algorithms. Future work will determine
their suitability for higher level functions, such as those
that will eventually be found in the error reporting step

References

[1) 3. S. Squire and S. M. Palais, “‘Programming and
design considerations for a highly parallel com-
puter,” Proc. Spring Joint Computer Conf., pp.
395-400, 1963.

[2] C.L. Seitz, “The Cosmic Cube,” Comm. ACM, vol.
28, pp. 22-33, Jan. 1985.

[8] T.N. Mudge and T. S. Abdel-Rahman, “Efficiency
of Feature Dependent Algorithms for the Paralle!
Processing of Images,” Proc. Int'l. Conf. on Paralle!
Processing, pp. 369-373, Aug. 1083.

Z]
0111 1 !
T 10, 111
0100 —oTo1 1100 1101
0040, 0011 1010, 1011
1001
0000 0001 10007 ’
Processor
Nodes
\
intemnode Links

Figure 1. A 4cube.

67/¢

Bidirectional Links

r A N\
93! !
t1]] -—— | | n+1DMA Channels
| I I Node Bus
Cache
| M':r:i:ry
CPU

Figure 2. Model of a node processor.

image of M x M Pixels

00 014 11 10

00

01 < Assign this
Subimage to

11 Node 0111

10

Subimage of m x m Pixels

Figure 3. Assignment of data to nodes.

A\
A©

Figure 4. Effect of rotation on edge subimages.

Contour

Foreground

Background

/4

Figure 5. Reference check templates.

