Interconnecting off-the-shelf microprocessors

by HUMOUD B. AL-SADOUN, O. A. OLUKOTUN, and T. N. MUDGE
University of Michigan
Ann Arbor, Michigan

ABSTRACT

This paper outlines the design and analysis of a crossbar-type interconnection
network that can be used with off-the-shelf MiCroprocessor components to construct
a four-processor/eight-memory module multiprocessor system. The only custom
component is an interconnection (ICN) chip presently being fabricated by the
authors. The ICN chip integrates 4 x 8 crosspoints for a 3-bit bus slice together with
related priority circuitry into a single component. System design using the ICN chip
is illustrated with the Intel 8086 family of microprocessor components. An analysis
of the resulting system is presented. The degradation of performance resulting from
the memory interference associated with multiprocessors is shown to be small
compared to that resulting from the setup time required by the interconnection
logic.

175

Interconnecting Off-the-Shelf Microprocessors 1m

INTRODUCTION

The use of multiprocessors in appropriate situations can im-
prove the performance of a wide variety of computing tasks,
particularly with respect to speed and reliability. Several cur-
rently available microprocessor families provide VLSI compo-
nents that support the construction of multiprocessor systems.
Typically, these components are intended for shared-bus
MIMD multiprocessors. Such systems are composed of a
number of processors which share a common memory by
means of a single shared bus and which may possibly have
local memory. The shared bus can be a bottleneck that offsets
the advantage of having multiple processors if their combined
request rate to the shared memory exceeds the bus band-
width. In this paper we outline the design of an integrated
circuit, the ICN (interconnection) chip, that simplifies the
construction of multiprocessors that are not constrained to
share memory through a single bus. Specifically, the ICN chip
together with off-the-shelf microprocessor support chips
makes possible the construction of a system in which four
processors share eight memory modules through a crossbar
interconnection. Individual copies of the chip integrate the
necessary logic for a 3-bit bus slice together with related prior-
ity circuitry. The ICN chip is presently being fabricated by the
authors and is the successor to two earlier prototypes.’? In
principle the concept can easily be extended to systems with
N processors sharing M memories, subject only to the con-
straint of pin limitations imposed by the technology used to
package the ICN chip. By organizing the interconnection logic
as a stack of slices, there can be considerable replication of
priority logic and crosspoint selection logic; however, reduc-
ing the number of components, rather than gates, and making
the components easy to use are more important consid-
erations from a systems design viewpoint. This is evident from
the typical replication of address logic that results from or-
ganizing memories from slice components.

If a high bandwidth connection to memory is required in a
multiprocessor, there are two major advantages to using a
crossbar organization compared to multistage alternatives
such as Delta networks, cube networks or Banyan networks.?
First, there is the relative ease with which crossbars can be
controlled in MIMD mode. Second, there is the absence of
intra-network interference that arises with multistage net-
works. These advantages are bought at the expense of gate
complexity. In particular, the gate complexity of the crossbar
is O(n?)if N = M = n, and that of the Delta, cube, or Banyan
is O(n log:n); however, in terms of VLSI layout the space
complexity is closer to O(n?) in both cases if logic gates are
discounted,** and higher if priority and related logic are con-
sidered.! Thus, for systems with less than a few dozen pro-

cessors operating in MIMD mode the advantages of a crossbar
connection outweigh its disadvantages.

The remainder of this paper is organized as follows. The
next section describes the operation of a crossbar constructed
from ICN chips and Intel support chips. The section following
the next section develops an analytical model for the per-
formance of multiprocessor systems constructed using ICN
chips. Closing remarks are presented in the conclusion.

A CROSSBAR-BASED MULTIPROCESSOR

As noted, ICN chips can be used to construct a crossbar to
interconnect four processors and eight memories. The cross-
bar allows simultaneous connections between the processors
and the memories. The resulting multiprocessor is dia-
grammed in Figure 1. The crossbar is designed so that it
interfaces directly with Intel 8086 microprocessors augmented
by several support chips; in particular, Intel 8289 bus arbiters
are used to multiplex processors onto multimaster system
buses and avoid contention problems between bus masters.
Each memory port can be regarded as a multimaster system
bus, and each processor can be regarded as a bus master. The
crossbar requires four 8289s to control the access of the four
processors to the eight memories, and since each multimaster
system bus is made up of 40 signal lines, the crossbar requires
14 ICN slices.

CROSSBAR OF ICN O-8PS

Figure 1—Crossbar-based multiprocessor

178 National Computer Conference, 1985

Interface between Processor and Crossbar

In common with most microprocessors, the 8086 lacks the
capability of requesting bus access and recognizing bus grants
from a multimaster bus. Therefore it is necessary to have extra
logic to generate the necessary signals for sending bus re-
quests and receiving bus grants. This extra logic comes in the
form of an Intel 8289 bus arbiter, one of which is associated
with every bus master (processor) in the multiprocessor.
These bus arbiters are all synchronized by BLCK, the com-
mon bus clock.® (See Figure 2 for further details of each of the
four processors of Figure 1.)

The 8086 is unaware of its attached arbiter’s existence and
therefore issues commands as though it had exclusive use of
the system memory. The 8289 monitors its 8086's status lines
(52-S0) to detect the beginning of a bus cycle. At the begin-
ning of the bus cycle the bus controller (8288), which also
monitors the 8086's status lines, generates an ALE (address
latch enable) signal to latch the address information from the
8086. If the processor is in control of the bus (i.e., it has
requested and received a memory), it enables the outputs of
the bus controller (8288) and the address latches (8283), and
the bus cycle continues as usual. If the processor does not have

AN

}
:
Iy

o1/ p——

]

T

J

[T
LT
®
T
< CONTROL 8288 ®
asn
-
= s 5
*—olox -
*—— i S
3)
["4 aes
——efiEr as
—_—ii Lo
e o
——
2 T ®
— _—
€ fg— =
8086 fo0-ams [
s ax olar e
L7 >

Figure 2—Processor details

control of the bus, the arbiter forces the outputs of the 8288
and the address latches into their high impedance state. The
8288 in turn forces the outputs of the data transceivers (8287)
into their high impedance state. At the same time the clock
generator (8284) is prevented from sending a ready signal to
the 8086, which forces the 8086 to enter its wait state after T3
of the bus cycle in progress (bus cycles have four subcycles T1,
T2, T3 and T4). Once the arbiter is granted bus access, it
enables the outputs of the 8288 and the address latches. The
addressed memory port returns an acknowledge signal to the
clock generator when the data transfer is complete. This ac-
knowledge signal causes the clock generator to send a ready
signal to the 8086. The 8086 then exits its wait state and
completes the bus cycle in progress.

When an arbiter detects the beginning of a bus cycle and
does not have control of the bus, it proceeds to request the bus
by activating its BREQ (bus request) line. The BREQ line
from each arbiter is fed into the crossbar. Our application
makes use of the three highest bits of address to determine
which of the eight memories the processor is requesting.
Therefore, it is necessary that the address be latched by the
crossbar’s internal latches and that the connections be estab-
lished within the crossbar before BREQ is activated by the
arbiter (see Figure 3). This sequence of events is ensured by
setting the arbiter in resident bus mode (RESB pin high). This

A20-A2) -BIT LATCH 3-8 OECOOER}—e
e f—3
A2-a1m—f7—p-81T LATCH 3-8 DECODER | ———
23 3
ae 4—3
zo-a1m—tr—oh-e11 Latck 3-8 oECODER |——
s 13)
ar 44—
(zo-aim—J+of 01t Latew 3-8 DECOOER
a3 H + ¥ 4
~ —— 3 s To o 1o
v N %O m
[N
A CROSS-PONT SELECT LINES
s
orEQR
(V)
e ‘,
REQ CROSWaINTS
[0V
s @ 73
[
oa
£
rou o4
e PED MR T e GRS EE9e
PRIGUTIZER 1 4s " 4y
\w—————‘/
REFEATED § THES
M 0o

Figure 3—ICN chip

Interconnecting Off-the-Shelf Microprocessors 179

mode ensures the BREQ will not be activated until after the
ALE (address latch enable) line is activated. Once the cross-
points have been set, the BREQ and BPRN (bus priority in)
lines connect to the prioritizing logic for the memory re-
quested. At the same time the BUSY and data lines (one set
of bidirectional lines PD1,...,PD4) are also connected to
those of the memory selected. A parallel priority resolving
technique is used to decide which processor should have a
memory in the event of a simultaneous request. The BREQ
and BPRN lines of each arbiter requesting a given memory
simultaneously are connected via the crossbar to the appropri-
ate prioritizing logic for that memory. When the BREQ lines
are activated, the prioritizer will return a BPRN active signal
to the arbiter with the highest priority. Its associated pro-
cessor will then take control of the memory as soon as it is no
longer busy (BUSY line inactive). BUSY is an active low
OR-tied signal that is connected via the crossbar to every ar-
biter in the system. Every memory has a BUSY line associated
with it. When the BUSY line becomes inactive, the arbiter
with priority takes control of the memory by activating BUSY
to prevent any other arbiter from taking the memory. The
arbiter maintains its BREQ active throughout the time it is
connected to a memory.

Memory Surrender Conditions

It is possible for a processor to switch between memory
modules from one bus cycle to the next. If we allow an arbiter
to keep a memory between bus cycles, the possibility exists
that a processor could access a busy memory in a subsequent
bus cycle and cause a conflict. This problem could arise if the
location of the present bus cycle address is in a different
memory from the memory addressed during the previous bus
cycle. The arbiter would assume it has control of the memory
and instruct its attached bus controller and 8086 to proceed
with the bus cycle as usual. A conflict would arise if this new
memory is already busy. We have therefore configured our
system so that an arbiter gives up the memory under its con-
trol after completing a bus cycle regardless of whether another
processor is requesting that memory or not (packet switched).
This is done by strapping ANYRQST (any request) high and
CBRQ (common bus request) low. CBRQ is an open col-
lector signal of the arbiter which can function either as an
output or an input, depending on whether its associated ar-
biter has control of a memory. As an output it is sent by a
lower priority arbiter to request a memory from a higher
priority arbiter. As an input it instructs the arbiter presently
controlling a memory that a lower priority arbiter would like
the memory. ANYRQST is a signal of the arbiter that when
strapped high signifies that the arbiter should release the
memory after the end of the current bus cycle. A provision
could be made to control CRQLCK (common request lock)
via an VO port from the processor. Activating CRQLCK
prevents the 8289 from releasing the memory to any processor
having a lower priority. In this way a processor could retain a
memory as long as no other processor with higher prionty
requested it (circuit switched). One would have to make sure,
when using such a provision, that while CRQLCK is activated
all instructions and data reside in one memory.

ANALYTICAL MODEL

The behavior of the multiprocessor system described above
can be approximated by a stochastic process, given the follow-
ing assumptions about its operation. At the beginning of the
bus cycle a processor selects a memory module at random with
probability 1/M (there are M memory modules) and makes a
request to access that module with probability (<1). If more
than one processor requests the same memory module, the
arbitration logic will choose the processor with higher prior-
ity. The other processors will continue to request the memory
module until they are allowed access. The time it takes to
perform this arbitration, i.e., to set up the processor-crossbar
interface logic, is two bus cycles. The connection time be-
tween the processors and the memory modules will last for C
bus cycles. A processor has at most one request waiting to be
serviced at any time. During operation the behavior of each of
the processors is considered to be independent but statistically
identical. The memory access priority assigned to each of the
processors by the prioritizing logic in the ICNs is as follows:
the first processor has the highest priority in the first two
memories, the second highest priority in the second two
memories, the third highest prionty in the third two memo-
ries, and the fourth highest priority in the fourth two memo-
ries; the second processor has the first highest priority in the
second two memories, the second highest priority in the third
two memories, the third highest priority in the fourth two
memories, and the fourth highest priority in the first two
memories; a similar pattern is repeated for the third and
fourth processors.

The behavior of the multiprocessor system. under the oper-
ation assumptions stated above, can be described by using a
discrete-time Markov chain. However, such a chain has an
unmanageably large state space.” To avoid this, an approxi-
mate model can be used. In this study, we will use the equiv-
alent rate model." This model assumes that a memory module
that receives more than one request selects any one of the
requesting processors equiprobably, i.e., all the processors
are modeled as having the same priority. Furthermore, the
model assumes that the steady-state flow of the processors to
the memory modules is equal to the flow of the processors
from the memory modules: the equivalent rate model is an
extension of the steady-state flow model.” The derivation of
the model proceeds as follows: the rate of requesting a multi-
ple bus cycle connection, r, is transformed to the equivalent
rate of requesting a single bus cycle connection. r.,. The
quantity r,,, represents the connection time as a fraction of the
total average processor cycle which contains both the think
time and the connection time. The think time of a processor,
7, is the time elapsed between releasing a memory module
and making the next request for memory connection. Hence,
r.o is expressed as follows:

N
“ T+C

where T =1/r ~1and C' = C + 2. The term C’ includes the
two bus cycles that are needed to set up the processor-crossbar
interface logic. In our case where the crossbar is operating in

180 National Computer Conference, 1985

packet switched mode, C =4 bus cycles. A measure of the
effectiveness of the crossbar is its bandwidth, BW, which can
be expressed as follows:

BW=NU,r,,

where U, is the processor utilization, i.e., the probability that
a processor is thinking or accessing a memory module. Hence,
N U, is the expected number of processors thinking or access-
ing; and N U, r., is the expected number of processors access-
ing, i.e., the crossbar bandwidth. Furthermore, it can be
shown® that

_ Upreg N
BW—M[]—(I‘T)

b5

The above two equations for BW can be solved by iterating
on U,, with N=4 and M =8 (two or three iterations are
usually sufficient). The resulting value for BW is the memory
bandwidth of the system, assuming that the connection time
is C" bus cycles rather than C bus cycles. Therefore, the true
memory bandwidth of the multiprocessor system described
above, BW,, . is given by

r __£ ’
BV',,.,,—C,BV'.

To test the validity of the approximate model described
above, the results of the model are compared to those ob-
tained by simulation. A SIMSCRIPT IL.5 simulation program
has been used to simulate the multiprocessor system. Table I
shows the simulation and the model results for the memory
bandwidth, given different values of the request rate, r. In
addition. the simulated memory bandwidth is compared to the
ideal memory bandwidth of the system, BW,,.;, which is de-
fined as follows:

BW..=4x=-C

T+C

In other words, BW,,,,, is the memory bandwidth obtained
assuming that each of the four processors operates indepen-
dently without interference during memory accesses. Hence,
BW...; can be thought of as the maximum potential memory
bandwidth for the multiprocessor system. The percentage dif-
ference between the simulated BW and BW.,__, is also shown
in Table 1. % Diff is defined as follows:

W — C; ’
%Diﬁ=8 ! deat B:S;:Inulated BW x 100
dea?

The simulation used priorities determined by the prioritizer
logic in the ICN's. nevertheless the model, in which all prior-
ities are equal, produces similar results to simulation. This
arises because the queueing discipline for memory modules
does not affect BW. The results presented in Table I show,

TABLE I—Comparisons between the simulation and the model

results
r | Simulated BW | BW, %D;;
0.1 1.04230 1.03091 | 15.31
0.2 1.49357 1.47896 | 25.32
0.3 1.72489 1.71427 | 31.72
0.4 1.86074 1.85618 | 36.04
0.5 1.95659 1.95026 | 38.86
0.6 2.02529 2.01692 | 40.39
0.7 2.07624 2.08653 | 42.53
0.8 2.1242] 2.10483 | -43.58
0.9 2.14873 2.13527 | 44.79
1.0 2.17244 2.16003 | 45.69

among other things, that the performance of the multi-
processor system is degraded in the region where r is small.
Since the memory conflicts are minimal in this case this de-
gradation is almost entirely the result of the setup time. By
comparing with cases where setup is fixed at zero, it can be
shown that the effects of the memory conflicts become more
critical as r increases. However, even in the case r = 1 the
degradation due to interference never rises above 12%, i.e.,
about 33% of the degradation is due solely to setup (see last
entry in Table I). Finally, measurements performed on a num-
ber of 8086 systems indicate that r = 0.4 is a frequent oper-
ating point.

CONCLUSION

In this paper we have presented a technique for constructing
MIMD multiprocessors using a 3 bit slice component, the ICN
chip. A performance model was presented that showed close
agreement with simulation, and thus would make a useful
design tool for estimating crossbar performance. The main
measure of crossbar efficiency, BW, was shown to be de-
pendent mainly on the setup time in the case of a four-
processor/eight-memory system. In the case where processors
have local memory accessed through a resident bus the values
for r (the request rate to the shared memory) are likely to be
very small if the hit rate to local memory is high. In such
systems a concentrator (N > M) version of the ICN chip
would be more appropriate.

ACKNOWLEDGMENT

The work described in this paper was supported in part by Air
Force Contract No. F49620-82-C-0089.

REFERENCES

1. Makrucki, B. A., and T. N. Mudge. “\'LS] Design of a Crossbar Switch.”
SEL Report No. 149, Department of Electnical and Computer Engineering,
University of Michigan, January 1981

Interconnecting Off-the-Shelf Microprocessors 181

2. McFarling. S., J. L. Turney, and T. N. Mudge. “VLSI Crossbar Design
Version Two.” CRL Report CRL-TR-8-1982, Department of Electrical and
Computer Engineering, University of Michigan, February 1982

3. Wy, C. W. C. “Interconnection Networks,” Computer, 14 (1981), 12, 8-9.

4. Kruskal, C. P., and M. Sair. *The Importance of Being Square.” Pro-
mdinpo/hllﬁAMudlmemadondS, posium on Comp Architec-
ture, JEEE Computer Society, Ann Arbor, Ml, 1984, pp. 91-98.

S. Franklin, M. A. “VLSI Performance Comparison of Banyan and Crossbar
Connection Networks. " Proceedings of Workshop on Interconmection Net-

6.

iAPX 86,88 User's Manua!. Santa Clars: Inte] Corporation, July 1981, PP.
A.111-A.134.

. Skinner, C. E., and J. R. Asher. “Effects of Storage Contention on System

Performance.” IBM Systems Journal, 8 (1969). 4, pp. 319-333,

- Mudge, T. N., and H. B. Al-Sadoun. “Memory Interference Models with

Variable Interconnection Time.™ IEEE Transactions on Computers, C-33
(1984), pp. 1033.

- Yen, D. W. L., J. H. Patel, and E. S. Davidson “Memory Interference in

Synchronous Multiprocessor Systems.” JEEE Transactions on Computers,
C-31 (1982), pp. 1116-1121.

