
Object-Based
Computing and the Ada
Programming Language

G. D. Buzzard and T. N. Mudge
University of Michigan

Developments in several areas of
computer science and engineer-

ing have coalesced during the past
several years into a systems design
methodology known as object-based
computing. The primary benefit of
this methodology is that it raises the
level of abstraction available in the de-
sign process. Among the events that
have encouraged the development of
object-based computing are:

(1) advances in programming lan-
guage design, such as program decom-
position criteria and abstraction mech-
anisms;

(2) advances in operating systems
design, particularly those which ad-
dress data integrity and program
security; and

(3) advances in computer architec-
ture that allow direct hardware sup-
port for many operating system and
language concepts.

Object-based computing is charac-
terized by the extensive use of abstrac-
tion. Resources such as data, logical or
physical devices, and, in some systems,
program segments, may be represen-
ted by abstract types. Instances of
abstract types form the objects in
object-based computing. These ob-
jects are manipulated exclusively by
operations that are encapsulated in a
protective environment commonly
referred to as a type manager or pro-
tection domain.

This work was supported in part by the Air Force Office
of Scientific Research under contract F4962O-82-C-09
and a Kodak Fellowship.

The first step in an object-based
design philosophy is the identification
of appropriate objects. The second
step is the determination of operations
on those objects. For example, con-
sider a part-sorting system. The ob-
jects in such a system may include a
camera, a robot, a frame (describing
position), a set of parts, and bins to
receive the parts. For robot objects,
the set of available operations may in-
clude:

* INITIALIZE-ARM(robotid)
* MOVE(robotid, frame)
* OPEN(robotid)
* CLOSE(robotid)
* GET_FRAME(robotid)

Each operation takes as a parameter
robotid, which uniquely identifies in-
dividual instances of the type robot,
allowing a number of different robots
to be used in the system. All instances
of the same type share some common
behavioral characteristics-in this
case, the set of operations that is ap-
plicable to all robots.
Much of the growing interest in

object-based computing is attributable
to the Department of Defense's com-
mitment to the Ada language project.
Although Ada (DoD's proposed stan-
dard system implementation language
for embedded systems) may not fit all
definitions of an object-based lan-
guage, it does incorporate key con-
cepts. We will explain several concepts
that are central to object-based com-
puting and the extent to which they are
supported by the Ada programming
language. As part of the discussion,
examples are given that have been

0018-9162/85/0300-ODIISOI.00 © 1985 IEEE 11March 1985

drasn fi-om our use of Ada in pro-
e,ramminen a robot-based manufactur-
inc cell.

Object-based computing coIncepts
apply to both hardware and software
svstenms. In softws are sy.stems, the term
object-based describes software en-
vironnments that incorporate the con-
cepts of data abstraction,3 progranm
abstraction), and protection domains.
Objects are represented as indisidually
addressable entities that uniquely iden-
tit, their ossn contents as wsell as the
operationis that may be performed on
themlc. In the case ot the robot object
type, users have the ability to address
specific robot objects individually and
to manipulate their contents in a pro-
tectednmannier thi-ouglh operatioins,
ssuch as MOVE, that are explicitlycde-
fined for Lise oIn robot objects. Users
need Inot be conicerined with sucth de-
tails as object represenitationi.

There are two rmajor goals in devel-
oping object-based softsvare. The first
is to redueethe total life-cycle sottware
cost bv increasing programnmer pro-
ductPisits and reducinig maintenanec
costs. The second goal is to implement
softsare svstems that resist both ac-
cildenital anid mnalicious corruption at-
temapts. Protectioni domains, wnich are
described in the next section, are used
to achieve the latter goal. As sill be
shown, support for both of these goals
is provided bv the Ada language.

Reductions of total life-cycle soft-
ware costs in Ada are aided by the ab-
straction imiechaniismiis provided in the
language. The high level of abstraction
that can be attained helps to increase
programmnCerFproductivity by permit-
ting the constructioni of generalized,
reu.sable soft are units such as the
robot controllci described earlier.
Also, once the interfaces of the ab-
stractions are defined, program devel-
opmaenit ftor t he implemenitation of
each abstraction cani proceed in-
dcependently and in parallel, since the
inmplementation details remain hidden
(abstracted) from the view of the rest
of the svstem. Abstraction aids soft-
ware nmainitainability as well, by coIn-
taiming the efftect ot all changes, except
those involving the intertaces, within
thc mllodLelc hOuSitln the abstractionl.

In hardware, the term object-based
refers to the architectural support pro-
Aided for the abstractions mentioned
above. An essential goal in the devel-
opment of such systems is to provide
an efficient execution environment for
the software systern. Among the com-
mercially available computer systems
that provide support for object-based
computing are the IBM System/38, 6
the Intel iAPX 432,7 and the Plessy

The Ada language provides
constructs to support both data
and program abstraction, as well

as protection domains.

PP250.8 Many of the ideas incor-
porated in the commercial systems
were based on the results of several
unisersity projects (a good history of
this sork is given in Levy9). The most
recent of these projects include Cm* "'
C.mmp,'' and CAP.'2 A common
thread running through all of these
machiines is the use of capability ad-
dressing techniques to implement se-
cure protection domains, which can
theni be appropriately structured to
provide data, program, and device ab-
stractions.

Object-oriented machines are par-
ticularly well suited to applications
that have stringent requirements for
data securitv and program integrity in
a dynamic environment. The high de-
gree of abstraction provided by these
machines also facilitates the intercon-
nectioni of several processors into
tightly coupled mnultiprocessor systems
and/or distributed networks. For ex-
ample, through the use of process/
processor abstraction, Intel has
achieved software-transparent multi-
processing in their iAPX 432 system.
As a further example, Cm* combines
both tightly coupled multiprocessing
and distributed networking concepts
in one system.
As might be expected, the advan-

tages of an object-oriented architec-

ture are not achieved without cost.

Present systems rely on some form of
capability addressing. In current im-
plementations, these addressing mech-
anisms greatly increase the address
generation and translation times, even
when translation "look-aside" and
caching schemes are employed. The
manipulation of capabilities is also ex-
pensive. For example, to copy a capa-
bility requires 10 memory references
on Cm*, 13 and between two and 12,
depending on the addressing mode
used, on the iAPX 432.
The Ada language was specifically

designed not to require an object-
oriented architecture. Virtually all of
the support for object-based com-

puting in Ada is static. For example,
the type checking required by the Ada
language specification may be per-
formed at compile time. Hence, much
of the burden for providing error de-
tection and security is placed on the
program development system. While
this arrangement allows Ada to be
targeted for existing "conventional"
machines, it also places some restric-
tions on the flexibility of the language.

Concepts in object-based
computing

As noted earlier, abstraction plays a
central role in object-based comput-
ing. The Ada language provides con-
structs to support both data and pro-
gram abstraction, as well as protection
domains. Of the two forms of abstrac-
tion, data abstraction is the most wide-
ly used and understood.

Data abstraction. This term refers
to a programming style in which in-
stances of abstract data types are
manipulated by operations that are ex-
clusively encapsulated within the pro-
tective environment of protection do-
mains. In a definition borrowed from
Shaw, 3 an abstract type is defined as a
program unit characterized by the
following visibility properties:

* Visible outside of the module con-
taining the type definition: the
name of the type and the names
and semantic specifications of all

COM PUTER1 2

visible operations (procedures and
functions) that are permitted to
use the representation of the type.
Some languages (e.g., Ada) also
include formal specifications of
the values that variables of this
type may assume, and of the
properties of these operations.

* Not visible outside ofthe module
containing the type definition: the
representation of the type in terms
of built-in data types or other de-
fined types, the bodies of the visi-
ble routines, and hidden routines
that may be called only from with-
in the module.

The constructs for implementing
abstract data types in Ada are "pack-
ages" and "private" (hidden) types. 14
The Ada package effectively places a
wall around a group of declarations
and permits access only to those
declarations that are intended to be
visible. Packages actually come in two
parts, the specification and the body.
The package specification formally
specifies the abstract data type and its
interface to the outside world, along
with other information that may be
necessary to enforce type consistency
across compilation boundaries (Ada
supports the notion of programs that
comprise several separate compilation
units). The body of the package con-
tains the hidden implementation
details.

Consider, for example, the Ada
package ROBOT, whose specification
is shown in Figure 1. This package can
be used to abstract (hide) the im-
plementation details of the type
ROBOT-ARM, which has a physical
device (a robot arm) associated with it.
The operations available for manipu-
lating this device, and even its ex-
istence, will be hidden by the abstrac-
tion (during program development,
the physical robot arm may be repre-
sented by simulation code). Thus the
applications programmer is freed from
having to consider anything other than
generating the code necessary to con-
trol the actions of an abstract device-
the robot arm. Furthermore, the com-
plete logical description of this
abstract device is provided by the

package specification, which is
delimited by "package ROBOT is"
and "end ROBOT;". (Ada reserved
words are shown in bold, while user-
defined and predefined package
names, procedure names, function
names, types, and variables are shown
in upper case.)
The types defined in the package

specification are as follows:

* ROBOT_ARM-the abstracted
data type;

* ARM-MODEL-an enumeration
type listing all of the robot arm
models recognized by this system
(two common robot models are
shown, ASEA and PUMA); and

* FRAME-a 4 x 4 matrix that
represents a homogeneous trans-
formation. It represents the posi-
tion and orientation of the hand
of the robot arm by indicating the
matrix necessary to transform the
coordinate system of the base of
the arm to the coordinate system
in the hand.

The procedures are as follows:
* INITIALIZE_ARM-initializes
an instance of the type RO-
BOT_ARM and moves the arm to
a known starting position. The
output of the procedure is of type
ROBOT-ARM, and the input is
of type ARMvMODEL.

* MOVE-takes as input a RO-
BOT_ARM and a FRAME and
moves the arm and its hand to the
position and orientation cor-
responding to the transformation
given by FRAME. The updated
arm is output, and its "hidden"
state is changed to reflect its new
position and orientation.

* OPEN and CLOSE control the
arm's gripper;

* GET-FRAME is a function that
provides controlled access to the
hidden state, returning a value of
type FRAME.

As noted earlier, the abstracted data
type is ROBOT_ARM. It is the intent
of the package ROBOT that this type
be known only through the subpro-
grams (procedures and functions)
mentioned above and declared in the

F-igure 1. bpecitication tor the pack-
age ROBOT.

visible part of the package specifica-
tion. The visible or public part of the
package specification extends up to the
reserved word "private." Hidden
from public view within the package
body are all of the other procedures,
functions, and data structures that are
necessary to effect movement of the
physical robot arm and to update its
representative data structure.
The fact that the type RO-

BOT_ARM is declared to be "limited
private," and that its definition is
given in the private part ofthe package
specification, means that while sub-
programs in packages external to
ROBOT may possess an object of the
type ROBOT-ARM, they cannot use
it in any way other than as a parameter
to pass to one ofthe routines defined in
the visible part ofthe ROBOT package
specification. Even tests for equality
between two objects of type RO-
BOT_ARM are not allowed outside of
the ROBOT package. Hence, possibil-
ities for programming errors that
directly affect the ROBOT-ARM are
restricted to the domain defined by the
package ROBOT. Moreover, since
assignments to limited private types
are also not allowed outside of their
defining domain, the possibility of
having inconsistent representations for
the same robot arm (e.g., the logical
data structure not reflecting the correct
location of the physical robot) is
eliminated.

March 1985 13

In order to use the ROBOT pack-
age, the user program must first create
instances of the necessary types in its
declarative part, as follows:

ASEA: ROBOT.ROBOT_ARM;
ARM: ROBOT.ARM_MODEL

:= RBT;
TRANS: ROBOT.FRAME;

Notice the use of explicit qualification
("ROBOT.") to name the defining
domain for the types ROBOT-ARM,
ARM-MODEL, and FRAME. This
terminology informs the compiler
that, for instance, the variable RBT is
to be of type ROBOT-ARM, which is
defined in the package ROBOT.

In the user program, subprograms
from the ROBOT package to initialize
and move a robot may be invoked as
follows:

ROBOT.INITIALIZE_ARM(RBT, ARM);
* -- compute a value for TRANS,
* -- the homogeneous transform
* -- describing
* -- the movement required.

ROBOT.MOVE(RBT, TRANS);

The first parameter for both of the
procedure calls, RBT, provides the
logical representation of the robot that
is to be manipulated. The second
parameter of INITIALIZE-ARM
specifies that RBT be the logical
representation ofan ASEA robot. The
only way that any operations on the
data structure RBT may be performed
is by passing it as a parameter to a sub-
program that appears in the visible
part of the package ROBOT. Even
though the user program has full ac-
cess to the type FRAME, which is a
component (not shown) of the limited
private type ROBOT-ARM, it still
may not directly manipulate the
FRAME component of ROBOT_
ARM. That is, external packages are
prevented from directly manipulating
components of hidden record types
(private or limited private), regardless
of the visibility of the components'
types. The data structures, excluding
those that are explicitly declared
private or limited private, along with
the procedures and functions that ap-
pear in the public part of the package
specification, are directly available for

Figure 2. Logical view of data abstrac-
tion.

use by packages external to ROBOT.
Figure 2 provides a logical concep-
tualization of how the package RO-
BOT is used to move an instance of an
ASEA robot. The same "black box"
package can also be used to move any
other valid instance of ROBOT_
ARM.
Through the use of packages and

private types, the Ada language pro-
vides easy-to-use constructs to support
data abstraction. As we have seen,
data abstraction is a powerful tool for
both program development and error
confinement. However, it is not the
only form of abstraction provided by
the Ada language. Program abstrac-
tion provides a different and, in some
senses, a more powerful conceptual
view.

Program abstraction. Programs
and subprograms provide another
common level of abstraction. Pro-
gram abstraction enables operations
on implicit objects. In addition to
hiding the representation of and access
to an object, the object's existence is
also hidden. The result is a more com-

plete form of hiding and, usually, a
more concise interface than data
abstraction.
Program abstraction in Ada is

realized through generic package or
subprogram instantiation. Ada allows
the declaration of generic program
units that serve as templates for pack-
ages or subprograms from which ac-
tual pakcages or subprograms can be
obtained. Generic program units may
have actual parameters that provide
instantiation-specific details of the
template. These parameters can be
data objects, types, or subprograms.
Thus, the parameter associations
allow generic units to do the following:
directly manipulate data objects pro-
vided by the user; create and manage
data structures or logical devices cor-
responding to an arbitrary type sup-
plied by the user; and use abstract,
instantiation-dependent subprograms
made available by the user.

Through their types, the formal
parameters specify the expectations
that the generic unit makes about the
actual parameters that will be supplied
by the user ofthe generic unit at instan-
tiation time. For example, a generic
package that manages stacks might
have a formal data object parameter
of type POSITIVE that indicates the
maximum size of the stack. This for-
mal parameter will be matched by any
actual parameter whose value at in-
stantiation time is an integer greater
than or equal to one. The same generic
package may also have a formal type
parameter of type private that allows
the user to specify the type of elements
that are to be handled by the instantia-
tion of the stack package. This formal
parameter will be matched by any ac-
tual parameter for which, at least, the
(in)equality tests and assignment are
defined; these are the only operations
allowed on data objects whose types
are private.

Generic formal subprogram param-
eters, when used, allow the user to pro-
vide-or select from a library- sub-
programs for use within the generic
unit. In the case of a generic terminal
handler, for instance, subprogram
parameters for SEND and RECEIVE

COMPUTER14

procedures would free the program-
mer from having to accommodate the
differing communication protocols
that exist for various terminal types.
Matching rules for generic formal sub-
program parameters are similar to
those for nongeneric subprogram
parameters. In effect, the generic for-
mal parameters provide a written
"contract" between the writer of the
generic template and the writer of any
program that is designed to use this
template. The terms of this contract
are rigidly enforced by the type-
checking facilities present in the com-
piler.

Generic units allow a higher level of
abstraction than data abstraction, be-
cause the abstracted data type may be
completely hidden within an instance
of the generic package body. The hid-
den data structure is accessed through
internal package variables that are
nonlocal to the subprograms within
the package. Manipulation of the data
structure occurs as a controlled side ef-
fect-strictly contained within the
package body-of the requested oper-
ation. Thus generic units support a
programming style in which the speci-
fied (visible) operations either directly
or indirectly transform a hidden inter-
nal state that depends only on past
operations applied to the initial state of
the system.

The ROBOT package example is
repeated in Figure 3 using program
abstraction techniques. The external
packages are no longer required to
supply the type ROBOT-ARM for
each operation that they invoke on the
arm. Instead, the packages specify the
element of the enumeration type
ARM-MODEL that corresponds to
the arm that they wish to use when they
instantiate the generic package
ROBOT (the generic package extends
from the keyword generic to end
ROBOT;). The generic template is
filled in based on the value of the
generic formal parameter ARM at the
time of instantiation. Hence, the
statements:

package RBT_.ASEA Is new ROBOT(ASEA);
package RBT_PUMA Is new ROBOT(PUMA);

would create instances of the package
ROBOT specifically for an ASEA
robot and a PUMA robot, respective-
ly. A new instance of the package
would be created for each robot in the
target system. Recall that in data
abstraction, only one instance of the
package existed. The logical view of a
system consisting of one ASEA robot
and one PUMA robot is illustrated in
Figure 4.

Implementations for both program
and data abstraction require that cer-
tain procedure bodies contain condi-
tionally executed code segments to ac-
count for the differences between the

type ARM-MODEL is (ASEA, PUMA,

.

generic
ARM: ARM-MODEL;

package ROBOT is
type FRAME is array (1 .4, 1. .4) of FLOAT;
procedure MOVE (DESTINATION: in FRAME);
procedure OPEN;
procedure CLOSE;
function GET-FRAME return FRAME;

end ROBOT;

Figure 3. Specification for the generic
package ROBOT.

numbers of links and the type ofjoints
used in the different robots, and to
allow individual robots to communi-
cate with their respective device driv-
ers. An alternative solution available
in program abstraction is to add sub-
program parameters to the formal part
of the generic package. The actual sub-
programs, which could be made
available to the applications pro-
grammer in the form of a library,
would provide the necessary abstrac-
tions for manipulating their corre-

sponding devices. The user would then
select the appropriate set of actual
parameters for each specific generic
instantiation.
The biggest difference between data

and program abstraction lies in the
program unit that possesses the in-
stance of the abstracted data type. In
data abstraction, the type is possessed
by a program unit that is external to
the unit that manages the type; hence,
the unit that manages the type is com-
monly referred to as an external type
manager. In program abstraction, the
type is maintained within the unit that
manages it; hence, the managing unit
is commonly referred to as an internal
type manager. External type managers

Figure 4. Logical view of program abstraction.

March 1985 15

support a functional programming
style in which the type to be manip-
ulated is passed as a parameter to a
subprogram that performs its opera-
tion without side effects.
The chief advantage of this pro-

gramming style is that it can be mod-
eled more readily using well-known
mathematical techniques, thus open-
ing up greater possiblilities for cor-
rectness proof methods. In Ada, it is
also the case that data objects created
at run-time by the dynamic instantia-
tion of types can be handled by exter-
nal type managers, whereas the instan-
tiation of internal type managers and
the creation of their enclosed data ob-
jects is static-that is, it must occur at
compile time. It can be argued, how-
ever, that internal type managers pro-
vide a much more realistic model of
the real-world objects that the com-
puter program is meant to manipulate,
and that the protection against errors
both at run-time and during program
development is much greater. Non-
generic packages may also function as
internal type managers. However, in
doing so, generality is lost, since the
abstraction would be available for
only one instance.

Intel has provided a powerful exten-
tion to the Ada language for the iAPX
432 processor that allows the program-
ming of dynamic internal type man-
agers. This has been accomplished by
allowing packages to be types, and
hence, allowing them to assume as-
signable values. For example, we could
define a package type ROBOT (Figure
5), create instances of ROBOT for
each different physical robot (Figure
6), declare an array whose elements are
instances of the package type ROBOT,
and then, during program execution,
assign values (package bodies) to the
array elements depending upon which
robots we use (see Figure 7). The pro-
cedures and functions that operate on
ROBOTS are invoked in the manner
shown in the last line of Figure 7.

In Smalltalk, a language that takes
the object-based programming phil-
osophy further than Ada, the concepts
of data and program abstraction have
been rationalized so that objects are all
treated alike, regardless of whether the

objects represent program modules or
data structures. 15 It has been proposed
that these concepts be merged together
in Ada as well.416 In fact, Intel has
already taken an initial step in this
direction with their "package type"
extension to the Ada language men-
tioned above.'7 Extensions such as
package types and those described in
Wegner4 and Jessop16 combine the
dynamic flexibility of data abstraction
with the conceptual and protection
benefits of program abstraction, re-
sulting in a powerful universal abstrac-
tion mechanism. The availability of
such a mechanism relieves the software
designer of the restrictive choice be-
tween adopting a program-oriented or
data-oriented software design method-
ology-a choice that must occur very
early in the design process.

Protection domains. Protection do-
mains, and the inherent security that
they provide, constitute another key
concept. The basis for secure, error-
tolerant execution environments lies in
the principle of system closure. 5 This
principle states that the effects of all
operations on a closed system shall re-

Figure 5. A package type.

Figure 6. Instances of package
types.

main strictly within that system. One
common construct used for providing
system closure is the protection do-
main. 18 Briefly stated, a protection
domain is an environment or context
that defines the set of access rights and
operations that are currently available
to a specific user for objects contained
within the domain. The concepts em-
bodied in protection domains are sim-
ilar to those underlying Ada packages.

Protection domain schemes gener-
ally provide facilities for error confine-
ment, error detection and categoriza-
tion, reconfiguration, and restarting.
Error confinement and security strat-
egies generally involve both process
isolation and resource control. The
basic premise of process isolation is
that processes are given only the
capabilities necessary to complete their
required tasks. By implication, any in-
teractions with external objects (e.g.,
sending messages to other processes)
must be strictly formalized and con-
trolled. Resource control refers to the
binding of physical resource units to
computational objects. Examples in-
clude the binding of processes to pro-
cessors, or the assignment of memory
to currently executing contexts.

These controls ensure that when the
resource units are released or preemp-
ted, all of the information contained
within the unit is returned to a null
state. Information is thus prevented
from "leaking" out of a protection
domain, even if it is left in an area that
eventually becomes accessible to other
users. Error confinement also aids the
program debugging process, since
bugs will be located in modules where
errors are detected. Program mainte-
nance benefits as well, since the protec-
tion domain defines the maximal set of
modules that can be affected by modi-
fying the system. Error detection and
categorization involves dynamic
checking for object type inconsisten-
cies and access constraint violations
during procedure execution. The
categorization of detected errors can
then be used to aid in restoring the
system to a known state. Reconfigura-
tion facilities attempt to restore the
system to an operable state by remov-
ing the failed component-hardware

COMPUTER16

or software. If the reconfiguration at-
tempt is successful, the system is
restarted.

Perhaps the most elegant mechan-
ism for implementing protection do-
mains is capability addressing. While
much can be done at compile time in
languages such as Ada to enforce the
concept of protection domains, there

Figure 7. Assignment of package
type.

are many cases where the dynamic en-
forcement of access rights provided by
capability addressing is useful. As an
example, consider a system in which it
is desirable to grant different rights
(perhaps the ability to invoke a dif-
ferent set of operations) to the various
users of a given object based on infor-
mation presented at run-time. Capa-
bility addressing permits users to
dynamically determine whether they
have indeed been granted the right to
perform a requested operation. Deter-
minations such as this are not possible
at compile time. Compile-time protec-
tion enforcement also lacks the ability
to support the detection of and
recovery from access failures in the
run-time system.
A capability can be thought of as the

name of an object. An object cannot
be accessed-nor its existence de-
termined-unless its name is known.
The capability also contains the access
rights to the object (e.g., read, write,
or capability copy rights; see Figure 8).
The only subsequent modification
allowed outside of the domain in
which the capability is defined is the
restriction of these rights. Capabilities
are created along with their respective

objects. The initial control of the
capability, and hence of the object,
belongs solely to the defining domain.
Consider the case of a user-package
USER in Figure 8-that selects the
package ROBOT of Figure I in a
system employing capability address-
ing. The defining domain for a
variable of type ROBOT-ARM is
ROBOT. In the case of pass-by-
reference parameter association, the
rights of the capability given to the in-
stantiating context are restricted to
"copy" because ROBOT-ARM is a
limited private type. Within the defin-
ing domain, the capabilities may be
amplified as needed. For example, a
variable of type ROBOT ARM is
passed as a parameter to both the
MOVE and GET_ FRAME pro-
cedures. In the case of MOVE,
ROBOT-ARM is a parameter of
mode in out, requiring both read and
write rights. In case ofGET-FRAME,
ROBOT-ARM is an in parameter,
and thus requires only read rights.
The use of capabilities is not depen-

dent on the particular method of para-
meter association used. Rather, in the
case of paramaters passed by refer-
ence, the capability is amplified at the

Figure 8. Capabilities and protection domains.

March 1985 17

to a o%

atuIII

%P i11 '1

tilc f

II tI,'cc It

l-H it

IK,t I

AdapoideVIS good SuIpport for-
Lbothida ta and pr ogranm abStrac-

c H w(ncr,e iii an et t'ort to allosw
Vida tI) he used Cifticienltis onl e\istinitl
I.I.Ihinc s it h cons entionaI arch'itec

Cs, c latic,uia(c has bheen desieined
U equlire ittle dvinamic chcck'In
iii - C'ect j1 nMOSt noticeable In thec
httfco. uipjorl proVsCdCCl tor protecC
mm denta'in andc the lack of a nnlified

"I0.~t Ia10ac1miatchanisnn that Wsould in-
H2IL e1 fcettac,_e uch as packace t\ypes.

I)\15 lhcsc featUres are LISuiallv

inot requilred iin the applicaition area for
s,hich A\da vvas primarily targeted-
emibedded svstcrms. Currenit embedded
se stemis typically have mianyv static at-
tributets: configurations are not miodi-
tied at runlltime; program implemien-
tations are niot changed; anid decvices
are not taken on-i and off line. Henice,
wsithin its intenided applicati'on areca,
the Ada lanouace is suitable for objecct-
based computine on consventional ar-
ch'IteCCttureS.

otciOIL

L ~Is It- Ptc

IHIH4,
I'

References

It Ills~ptehil..n r' I.

Ha ,~~~~~~~~"O Ij

Ile'ts ha, II- Cl t lIa It

ii l cel to III co Li

hit 1 2;K pplt.be

Nia hx cnl thle cdeote(Hi(T

1I I I2 14I1

11I t l i

It 'I *~~~~~~~~~~I0 1

-I
4 .1. .1poT-

k.. A~`ol. anid T. N. MIudge, "Ro-
tot. are (Nothing N1ore Than) Ab-
~tact Data Lvpes,"Proc. SWE Con-
crieon Robotic-s Research, A\ug.

Hi Vol/ f' N. MuILdee, and D. A.
I mew \da as ai Prograrmming

1I [tHaICt tot1 RZoboi based \Manufac-
itvn C: IIJEEF Tr-ans. Siste;ns,
11i11116 ClhetneiiwS, Nos It)ec.

11)54 (t a'pp(2ar).
N ha's "The Imipact of Abstrac

ion C oncerius on NModuilar Program-
Ii11L L_acumta!ces,"'Pr-oc. IELL, Vol.

6 H, N,I.I9, Sept. 1980, pp. 11 19 1130.
I.ll "c,On the Unif'icationi of'

Dta ati ne Proc_rarni Abstractioi]In
.eiL,''IOtl letoalIACvISi'inp. Prt`

/(s o 1 PI-o(,-/IIIIia?ltlf?1 Lan puag,es,
In 983. pp 26 -264.

J. I)enn itt,H Fault Toter anit Oper-
itI'tsent Colnputing SurreCys,
1. N . 4, Dec. 1976, pp. 359 389.

IPX! Svs cot 8 Functional Concepts
hiinl,c G 521 9330 1, IBMJ Cot
LIATIIo hctcr, Nut11 198

7. 11 PX 432 Genieral Data Proc-es sor-Ar-
clitecture Ref. M4anual, Resv. 3,
1t1860 003, Intel Corporation, Santa
Clara, Calif., 1983.

8. D. NI. Englanid, "Capability Concept
Mechanism anid Structure- in Svstemn
250," hIt'! Workshop oni Protection
Iet Operating SystemS, IRIA, Roc-
qtuencouirt. Aug. 1974, pp. 63-82.

9. H. Nil. LesV, CapabilitlY-based Cotin
p/)eterS.vsteins, Digital Pr-ess, Bedford,
INlass., 1983.

10. R. J1. Swsan, S. H. Fuller-, and D. P.
Sieswiotek, "Cm*: A NModular Niulti-

/1ic prcssor," AFIPS Contj. Proc.
Ndlo. 46, 1977/, NCC, pp. 637-643.

11. Ws A. Wvulf aindC. G. Bell, "C.mmp
-A Multi-Mini-Processor," AFIPS

Conif. Proc., Vol. 41, Part II, FJCC
1972, pp. 765-777.

12. R. H. Needham and R. D. H. Wlvalker-,
"The CAP computer and its protec-
tion system,' A CM Si'xth Svinp.
Oper-ating System Principles, 1977.

COMPUTER

-

t-I

II

mI

13. A. K. Jones and E. F. Gehringer, eds.,
"The cm* Multiprocessor Project: A
Research Review," Carnegie-Mellon
University Report CMU-CS-80-131,
Department of Computer Science,
July 1980.

14. J. G. P. Barnes, Programming in
Ada, 2nd ed., Addison-Wesley, Lon-
don, 1984.

15. A. Goldberg and D. Robson, Small-
talk-80: The Language and its Im-
plementation, Addison-Wesley,
Reading, Mass., 1983.

16. W. H. Jessop, "Ada Packages and
Distributed Systems, "Sigplan No-
tices, Vol. 17, No. 2, Feb. 1982, pp.
28-36.

17. Reference Manual for the Intel 432
Extensions to Ada,172283-001, Intel
Corporation, Santa Clara, Calif.,
1981.

18. T. A. Linden, "Operating System
Structures to Support Security and
Reliable Software," Comp. Surveys,
Vol. 8, No. 4, Dec. 1976, pp. 409-445.

Gregory D. Buzzard received the BS and
MS degrees in electrical engineering from
the University of Michigan, Ann Arbor, in
1981 and 1982, respectively. He is currently
pursuing the PhD in electrical engineering
in the area of architectural support for inter-
task communication in distributed systems.

Buzzard is a Kodak Fellow and a mem-
ber of the University's Robotics Research
Laboratory. He is also a member of Eta
Kappa Nu, Tau Beta Pi, ACM and the
IEEE Computer Society.

Trevor Mudge received the BSc degree in
cybernetics from the University ofReading,
England, in 1969, and the MS and PhD
degrees in computer science from the Uni-
versity of Illinois, Urbana, in 1973 and
1977, respectively. He has been with the
Department of Electrical Engineering and
Computer Science at the University of
Michigan since 1977 and currently holds the
rank of associate professor. His research in-
terests include computer architecture, pro-
gramming languages, VLSI design, and
computer vision.

Questions concerning this article can be addressed to the authors at the Center for Robotics
and Integrated Manufacturing, University of Michigan, 2514 E. Engineering Bldg., Ann
Arbor, MI 48109.

March 1985 19

