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Abstract

This paper presents a discrete time model of memory interference in multiprocessor systems
employing multiple-bus interconnection networks. It differs from earlier models in its ability to
model variable connection time and arbitrary interrequest time. The model describes each pro-
cessing element’s behavior by means of a semi-Markov process. It takes as input the number of
processing elements, the number of memory modules, the number of buses, the mean think time
of the processing elements, and the first and second moments of the connection time between pro-
cessing elements and memories. The model produces as output the memory bandwidth, processing
element utilization, memory module utilization, average queue length at a memory and average
waiting time experienced by a processing element while waiting to access a memory. Using the
mode), it is possible to analyze the interaction of the input parameters on the system perfor-
mance. This modeling capability is attained without having to employ a complex Markov chain.
In fact, a four state semi-Markov process is sufficient regardless of the think and connection time
distributions. The accuracy and capability of the model is illustrated.

Index terms—Multiple-bus system, multiprocessors, memory interference, memory bandwidth,
performance evaluation, semi-Markov processes, Markov chains.
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1. Introduction

There have been an interesting variety of proposals for interconnecting processors and
memories in multiprocessors [13]. This paper presents a discrete time model for one of these, the
multiple-bus interconnection network. The model allows the user to quantify the effects of chang-
ing various system design parameters on such performance measures as memory bandwidth, pro-
cessor utilization, memory queue length and waiting time. A number of discrete time models for
multiple-bus systems have been presented in [7, 16, 3, 10, 12, 5]. The model in this paper is the
first to include variable connection time and arbitrary interrequest time. The introduction of
semi-Markov processes to model the processor behavior allows this increased generality without
model complexity. A four state semi-Markov process is sufficient for the model. The use of semi-

Markov processes also simplifies the derivation of the memory queue length and waiting time.
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Figure 1. A multiple-bus system.
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Figure 1 shows a typical multiprocessor system in which B buses are used to interconnect
N processing elements with M memory modules (where B < min(N,M)). The multiprocessor of
Fig. 1 will be referred to as an N X M X B system. The multiple-bus network has a number of
desirable features. First, it is compatible with the prevailing "bus-centered” philosophy implicit
in most microprocessor families of components. Second, the multiple-bus system is modular
allowing easy incremental increase in the number of the processing elements, the number of
memory modules and the number of buses. Finally, the multiple-bus system is fault-tolerant. For

instance, if a bus fails the system still works (provided B > 0), albeit with degraded performance.

The model presented in this paper is an extension of the technique developed in [11] where
semi-Markov processes were first used to model memory interference. We adopt the terminology
of [11] and refer to our model as a semi-Markov interference (SMI) model. In an N X M X B
system three types of memory interference, or memory conflict, can occur. A type one conflict
arises when several processing elements attempt to access an idle memory module simultaneously.
A type two conflict arises when a processing element attempts to access a busy memory module.
A type three conflict arises when one or more processing elements attempt to access an idle
memory module when no buses are available. We follow the two-stage arbitration scheme pro-
posed by Lang et al. [7] to resolve access conflicts. In the first stage, the conflict due to the
memory modules is resolved by M arbiters of the N -users 1-server type. Each of these arbiters
selects equibrobably ome of the processing elements which have outstanding requests to the
arbiter’s associated memory module. In the second stage, the conflict due to the buses is resolved
by one arbiter of the M -users B-servers type. This arbiter assigns the memory requests selected
in the first stage to the available buses. The arbiter makes the assignment in a cyclic fashion,

i.e., on a round robin basis.

The paper is organized as follows: Sec. 2 describes the assumptions that characterize the
operation of the multiprocessor system; Sec. 3 develops the SMI model under the assumptions of

Sec. 2; Sec. 4 concludes the paper by evaluating the SMI model against simulations.
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2. The System Operation Assumptions

The multiprocessor sysiem of Fig. 1 is assumed to be synchronous with a basic time unit of
a bus cycle. A processing element (PE) may be in any of three states: thinking, when it is work-
ing on an internal task with no memory request outstanding; accessing, when it is connected to a
memory module; and waiting or blocked, when it is waiting in the queue of a2 memory module for
that memory to become available. The memory module (MM ) can be in any of two states: busy,
when a processing element is connected to it; and idle, when there is no processing element con-
nected to it. The following notation will be used throughout this paper: a discrete random vari-

able will be denoted by its name with a = above it, e.g., the discrete random variable Z will be
denoted by Z ; the probability mass function (pmf) of z , will be denoted by z(z), i.e., 2(z) =

Pr[Z = z|; the mean value of Z will be denoted by Z; and the n* moment of Z will be

denoted by Z".
System operation will be characterized by the following assumptions:
I The behavior of the PE s can be modeled as identical stochastic processes.

IL The PE'’s think for an integer number of bus cycles. The thinking period of any PE is
characterized by a discrete independent random variable, T.

III. Each PE will submit a memory request after its thinking period, i.e., the thinking time
is the interrequest time. Requests originating from the same PE are independent of each
other. The destination of the request originated from any PE will be uniformly distri-
buted between the M memory modules.

IV. The system uses a two-stage arbitration scheme following that described in [7]. In the
first stage the conflict due to the MM's (first conflict type) will be resolved by M
arbiters of the N -users 1-server type. In the second stage the conflict due to the buses
(third conflict type) will be resolved by 1 arbiter of the M -users B-servers type. The
blocked PE’s will try again to the same module in the next cycle.

V. When the second type of memory conflict occurs, i.e., the MM is busy when requested
by a PE, the blocked PE waits until the connection is completed and then it resubmits
its request to the same module.

VL. The connection time between a PE and any MM is characterized by a discrete indepen-
dent random variable, C, measured in units of bus cycles.
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Empirical evidence reperted in [1, 2, 6], supports the assumptions in the case where C is a

deterministic random variable with a value of one. Further work reported in [8] supports the

assumptions in the more general case where C is a discrete random variable with arbitrary distri-

bution.

In order to obtain numerical information from the SMI model developed later, the values of
M,N, T, C and CZ, must be obtained through measurements or by hypothesis. These quanti-

ties can be regarded as input parameters of the SMI model; knowledge of the full distributions of

f“ and 5 is not necessary for solving the SMI model. A number of performance measures can be
derived from the analytical model. These are: memory bandwidth, BW ; processing element utili-
zation, PU; memory module utilization, MU ; utilization of a bus, BU; average queue length at a

MM, L ; and average waiting time experienced by a PE, W.
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3. The Semi-Markov Memory Interference (SMI) Model

A Markov chain which models a multiprocessor system according to the assumptions out-
lined in Section 2 has an unmanageably large state space, see [1} and [15]. To simplify this we
first adopt a technique presented in [9]. In that work separate identical Markov chains are used
to describe the behavior of each PE, and the coupling between the N chains appears in the tran-
sition probabilities between the states in each chain. Solving the model requires only one of the
chains to be considered which dramatically reduces the solution complexity. Moreover, because
the chains are coupled, independence of PE’s does not have to be assumed, resulting in a more

realistic model (assumption I does not imply independence). The number of states in the model of
[9] can still grow large, in some cases, because it depends on the number of discrete values f" and
5 can take on. This can be avoided, resulting in a further simplification, by replacing the Markov
chains by semi-Markov processes. These have only four states regardless of the distributions for f"

and 5 . In addition, the semi-Markov processes simplify the computation of the average queue

length at each MM and the average waiting time experienced by a PE.

A detailed discussion of semi-Markov processes can be found in [14]. Briefly, a semi-Markov
process (SMP) is a stochastic process which can be in any one of K states 1,2,..., K. Each
time it enters state i it remains there for a random amount of time (the sojourn time) having
mean 7, and then makes a transition into state j with probability pi; - As a special case, a
discrete time Markov chain is an SMP with a deterministic sojourn time of value one. If the SMP
has an irreducible embedded Markov chain that consists of ergodic states, then the limiting pro-

bability of being in state i, denoted by P,, can be expressed as,

o

P,
4 K

Y7, o, (1)

=

where 7, is the limiting probability of state { in the embedded Markov chain. All the SMP’s that
appear in this paper have irreducible embedded Markov chains with ergodic states, therefore,

equation (1) will always be applicable. The rate of leaving state i, \,, is defined as the reciprocal
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of the average time elapsed between two consecutive departures from state i. The rate can be

obtained using the following equation,

N P, m
' —1 — —4 K_-
n 2
' Z": N, @)
1=l

Since the average sojourn time in any one of the states of the SMP’s that appear in this paper is
at least one system cycle, then )\, falls in the range [0,1] and it is possible to view \, as the pro-

bability of leaving state i at the beginning of a bus cycle.

The SMI model uses an SMP to approximate the behavior of a PE which functions accord-
ing to the system operation assumptions given in Sec. 2. Hence, N identical SMP’s will approxi-
mate the behavior of the multiprocessor system. The SMP in this case is depicted in Fig. 2. The
states of the SMP denote the different states of any PE. The first state is the thinking state, 0.
The process enters state 0 and remains there for a duration of time equivalent to the thinking
time of the PE. The mean sojourn time in this state is 7. A memory request is modeled by the
SMP leaving state 0. The destination state depends on the state of the requested MM and also on
whether the memory request is passed by the two levels of the arbitration logic. The second state
is the accessing state, 1. The process enters state 1 if the memory module is idle and the memory
request is successfully passed by the two levels of the arbitration. The process remains in state 1
for a duration equivalent to the connection time between the PE and any MM . The mean value
of the sojourn time in state 1 is . From state 1 the process returns to state 0, i.e., the PE
resumes thinking after it has completed its memory access. The third state is the full waiting
state, 2. The process enters state 2 when the PE requests an idle MM simultaneously with at
least one other request, and one of these requests obtains access to the MM by passing the two
levels of arbitration. In this case the PE has to wait for the full duration of the connection time
between the MM and the selected PE. The full connection time has a mean value of 5,. A
blocked PE will try again to access the MM at which it is blocked as soon as that MM is
released. If it succeeds, the process enters state 1; if other PE ’s requested the same idle memory

module simultaneously and one of these PE's obtains the connection with the MM, the process
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Figure 2 The SMP that describes PE behavior In the multiple-bus system.

reenters state 2; otherwise the process enters state 3. The fourth state is the residual waiting
state, 3. The process enters state 3 when the PE requests a busy MM , or when, due to bus con-
tention, access is blocked to an MM even though it is idle. The PE has to wait for the residual
connection time before retrying to access that particular MM . The mean value for the sojourn
time in state 3 is n7;. The process then enters state 1 if the PE succeeds in accessing the MM ; or
it enters state 2 if the PE requests an idle MM simultaneously with other PE’s and one of these
PE’s manages to obtain the connection with that MM ; otherwise it reenters state 3. Clearly, the
SMP description does not include which module the PE is accessing or which module the PE is
waiting to access. This does not represent an approximation of the PE's behavior because of the
symmetry in this case. The underlying approximation of the SMI model is in describing any PE
behavior independently from the other PE’s while compensating for the coupling between the

PE’s behaviors in the transition probabilities between the states of the SMP (the coupling results
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from the PE’s sharing the MM ’s). The effects of this approximation are explored in detail in[12]

for the unit connection time case.
In order to derive numerical information from the SMI model, the values of N, M , B, the

first moment of f, and the first two moments of C' must be obtained. These quantities can be

regarded as the input parameters to the model. They are defined as follows:

N A the number of PE's

M 2 the number of MM's

B A the number of buses

T A the first moment of T
C A the first moment of c
C? A the second moment of c

The average sojourn times, of the different states of the SMP, can be obtained from the

parameters of the model as follows:

T =
c =1
— =
L-C j=3
2(C-1)

The average sojourn times in the states 0, 1 and 2 arises directly from the definition of these
states. The average sojourn time in state 3, i.e., the average residual waiting time, is taken from
[11].

It is convenient to introduce some terms that will be used in formulating the model. These
terms are: R, BUSY, WIN1, and WIN 2. The term R is defined as the probability that a PE
makes a request to access a particular MM at the beginning of a bus cycle. From our earlier
definitions this is the probability of leaving states 0, 2 or 3 to access a particular MM . Therefore,

R is given by:
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1
R=Tl[)\o+)\2+)\3) (4)

The term BUSY is defined as the probability that a PE finds a particular MM busy at the
beginning of a bus cycle (type 2 conflict). In other words, one of the other (N -1) PE'’s is accessing
that MM and is not on the point of releasing it. Hence, BUSY is the probability that one of
(N -1) PE’s is accessing a particular MM and the accessing PE is not on the point of releasing
the MM . By definition, the probability that a PE is accessing a MM is P,. Thus, the probabil-
ity that it is accessing and will not leave state 1 (release the MM ) in the next bus cycle is

P, - \,. Therefore, BUSY can be expressed as,

N-1

N-1 =
BUSY = —= (Pi-N) = —r (C-1) N ()

The term WIN 1 is the probability that the memory request initiated by a PE passed the
first level of arbitration, i.e., one of the M arbiters of the N-users 1-server type selected it. The
term WIN 1 is derived by the following argument. The probability that a PE will not request a
particular MM is 1 - R; the probability that none of the N PE’s request that MM is
[ 1- R] N. and therefore the probability that a particular MM is requested by at least one of the
PE’s is [1 - ( 1- R) N ]. One of these requests will pass the first level of arbitration, therefore,

the probability that a request from any PE passes the first level of arbitration, p, is given by,
p = 1-{1-R)¥

The expected number of PE’'s which requested that MM at the beginning of a bus cycle is NR .

Therefore, WIN 1 can be defined as follows:

WIN1 = L (6)
Finally, The term WIN 2 is the probability that the memory request initiated by a PE will
pass the second level of arbitration given that it passed the first level of arbitration, i.e., the

arbiter of the M -users B -server type selected the PE after it had been passed by one of the M

arbiters of the N -users l-server type. The term WIN 2 is calculated by conditioning on the
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number of free buses. We need to calculate two quantities. The first, X (k ), is the probability that
the request will pass the second level of arbitration given there are k free buses and that the

request has already passed the first level of arbitration. The quantity X (k) can be expressed as,

X(k) = f: m_in{_ki) [Agl_—ll] pl—l (l—p)M_'

1=l
The factor min (k,i)/i is the probability that if i requests pass the first level then min (i k) will
obtain buses (pass the second level). The factor (}t!—_ll) p' 1 (1-p)¥ is the probability that

(i-1) additional requests pass the first level given that one request has with certainty. The

second quantity, Y (k), is the probability that there are k free buses. The quantity Y (k) can be
derived as follows. The probability that k out of B buses are free is (f] gB* (1-¢)*, where q

is the probability that a bus is busy. The term ¢ can be found through an argument similar to

(P1-)

B . The term WIN 2

that used to derive the term BUSY, and can be expressed as (N-1)

can now be obtained from,

WIN?2 = f} X (k) Y(k) ()
k==l

The transition probabilities between the states of the SMP can be expressed as the following

functions of BUSY, WIN'1 and WIN 2:

1 i=0

(1 - BUSY) WIN1 WIN 2 ji=1 ®)
@ = | (1-BUSY)(1- WIN1) WIN? i=2

BUSY + (1 - BUSY) (1 - WIN?2) i=3

Their derivation proceeds as follows. When the process, shown in Fig. 2, leaves any of the three
states 0, 2 or 3 it enters the accessing state (state 1) with probability e, if the requested MM is
idle and the PE’s request successfully passes both levels of arbitration; or the process enters the
full waiting state (state 2) with probability a, if the requested MM is idle and the PE’s request
fails to be selected in the first level of arbitration and another request for the same MM passed

the second level of arbitration; or the process enters the residual waiting state (state 3) with
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probability oy if the requested MM is busy or the requested MM is idle but none of the buses are

free. The process always enters the thinking state after it leaves the accessing state (ag = 1).

The embedded Markov chain can be solved and the 7's can be represented as functions of
the transition probabilities, i.e., of BUSY, WIN1 and WIN2. The SMP limiting probabilities
can be derived by substituting the limiting probabilities of the embedded Markov chain (7 's) into
equation (1). Therefore, the SMP limiting probabilities can be expressed as functions of R and

the transition probabilities as follows:

ooy MR j=0
moa MR J=1

P, = n,as M R j=2 )
nsas M R j=3

It can be seen from the above equations that we have to solve a set of simultaneous non-
linear equations to solve the SMP of Fig. 2. The non-linearity is introduced because the transi-
tion probabilities are defined as functions of the SMP’s limiting probabilities, while the SMP’s
limiting probabilities are defined as functions of the transition probabilities. An iterative algo-
rithm can be used to solve for R and A\, from which the performance measures discussed earlier

can be derived. The algorithm breaks down as follows:
1. Calculate the average sojourn times of the states using equation (3).
2. Choose an initial value for R in the range 0 < R < 1 (we used R = 1/M), and an initial
value for \; (we used \; = 0).
3. Calculate the terms BUSY, WIN 1 and WIN 2 using equations (5), (6) and (7) respectively.

4. Calculate the transition probabilities using equation (8).

5. Calculate an improved estimate for R by first summing the four equations of equation (9)

to one and then calculating R from

1
('Ioal+ﬂxal+ﬂ202+’lsas)

R =
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6. Calculate an improved estimate for A, from
)‘l = a3 M R
7. Repeat steps 3 through 6 until R and X\, have the desired accuracy®.

The solution for B and A\, may be used to calculate the limiting probabilities of the states
using equation (9). These can in turn be used to calculate the performance measures from the fol-

lowing equations:

BW=NP,
PU=P0+Pl
N
MU=—A-lPl
N
BU=‘—BPl

Ne @z + N3 a3

o
The last equation is the only one that does not follow directly from the definition of the states of
Fig. 2. It can be derived by calculating the expected value of V; in the usual way from the pmf of

l;’. The pmf of V; can be expressed as follows:

P"[W-':("—J')ﬂz‘*‘j’lsl == [;] oy o' ay’

The derivation of the above equations proceeds as follows. The probability that the process moves

from state O to state 1 after making (i—j ) consecutive visits to state 2 followed by j consecutive
visits to state 3 is @'~/ ay’ a;. Since there are ( ;] combinations of these ¢ visits to states 2 and
3 (not necessarily consecutive visits) then the probability that the process moves from state O to
state 1 after making (i -7 ) visits to state 2 and j visits to state 3 is ( ;] a, a;'”’ ag’. The aver-

age value of the waiting time in the queue, W, is calculated from the pmf of the waiting time

1 This is a fixed-point iteration scheme. The Steffensen iteration algorithm was used to accelerate the convergence,
see [4]. No more than four iterations were needed in our experiments.
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described above. Therefore, W can be expressed as follows:

L4

3 (D ama o [(G-5)m+in

t=0 j=0
Nz az + 13 as
ay
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4. Evaluation of the SMI Model

The empirical evidence repdrted in [1,2,6,8] led to the assumptions of Sec. 2 35 a
phenomenological basis for the behavior of a large class of multiprocessors. However, in Sec. 3 an
approximation was introduced to allow the construction of a manageable model. This approxima-
tion was the assumption that the SMP’s for each of the PE’s are independent. In this section we
examine the consequences of this approximation by comparing the SMI model with simulations
based on the assumptions of Sec. 2. The results are all for multiprocessor systems with 8 PE's

and 8 MM ’s, and the effects of varying the other input parameters (T, c R 6—'7, and B) on the

performance measures (BW, PU, L, and W) are shown. The dependence on C? is shown
c?
indirectly through dependence on the coefficient of variation, C,,where C, = (_572 -1

In the first case the connection time between a PE and a MM lasts for one cycle and the
average think time for a PE is zero cycles. Figure 3 shows the simulation results of BW, PU,
L, and W as functions of B. Figure 4 shows the relative percentage error, % Error, between the

simulation’s results and the model’s results. The term % Error is defined as follows:

Results from the model — Results from the simulation

00
Results from the simulation x 1

%Error =

Figure 4 shows close agreement between the SMI model’s results and the simulation’s results. The
utilization measures (BW and PU) were within 7% of the simulation. The queue measures (L

and W) were within 15% of the simulation.

In the second case the connection time between a PE and a MM lasts for one cycle and the
average think time for a PE is one cycle. Figure 5 shows the simulation results of BW, PU, L,
and W as functions of B. Figure 6 shows the relative percentage error, %Error, between the
simulation’s results and the model’s results. Again there is close agreement between the SMI
model’s results and the simulation’s results. In this case the model shows similar accuracy to the
previous case. By comparing Figs. 3 and 5 we can deduce the effect of the average think time T
on the system’s performance. The memory bandwidth, BW, decreased as T increased. The pro-

cessor utilization, PU, increased as T increased. The average queue length and the average
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queueing time decreased as T increased. This agrees with what one would expect, particularly if
the PE’s have a cache and T is the mean time between faults. Both cases one and two are the
same as cases examined in the unit deterministic connection time models (C=1,C, =0)of
[7, 10, 12]. They yield exactly the same results. Both cases also point out the observation that for
systems with B << M the performance is bus-limited, and for systems with B > M /2 the per-

formance is memory-limited.

In the third case the average connection time between a PE and a MM is four cycles and
the average think time for a PE is zero cycles. Figure 7 shows the simulation results of BW,
PU, L, and W as functions of B and C,. Figure 8 shows the relative percentage error, % Error ,
between the simulation’s results and the model’s results. Again there is close agreement between
the SMI model’s results and the simulation’s results. The utilization measures (BW and PU) were
within 8% of the simulation. The queue measures (L and W) were within 15% of the simulation.
This case demonstrates the effect of the variation in the connection time on the system perfor-
mance. The system performance declines as the variation in the connection time, C,, increases.
The memory bandwidth BW and the processor utilization PU decreases as C, increases. While
the average queue length L and the average queueing time W increase as C, increases. This can
be explained from the SMP of Fig. 2. Increasing C, will increase the average sojourn time in state

3, therefore, P4 will increase.

In the fourth case the average connection time between a PE and a MM is four cycles and
the average think time for a PE is one cycle. Figure 9 shows the simulation results of BW, PU,
L, and W as functions of B and C,. Figure 10 shows the relative percentage error,%Error ,

between the simulation’s results and the model’s results.

The last two cases highlight the importance of keeping C, low. Reducing C, from 2 to 0
can increase the BW by about 65% (Fig. 7(a)) and more than halve W. In systems where some
PE’s may be DMA channels that can perform block transfers and other PE's may be simply be
transferring cache lines it may be advantageous to break up the block transfers and/or increase

the cache line size so that C, is reduced.
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