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Abstract

A class of processors which perform local neighborhood or cellular operations has
well-documented applications in image processing. The architectural feature which unites
these processors 1is their use of special-purpose hardware to compute image transformations
based both on the values and on the spatial relationship of pixels in the input image.
Typical operations include 3 x 3 convolution and mathematical morphology. Processing
elements which compute cellular operations have been incorporated in a variety of system
architectures. These range from single-processor, recirculating buffer systems to systems
which have thousands of processors in a four-way interconnected mesh. Another feature
which unites these processors is that they operate on images in the iconic domain. A new
class of non-iconic processor is introduced here which uses image encoding schemes to
reduce the number of operations required for certain classes of operations by between one
and two orders of magnitude.

Introduction

The computation required to solve typical machine vision applications places rigorous
demands on computer architectures for several reasons. The first is the volume of data to
be operated on. For instance, a high quality, monochrome video signal can be digitized to
produce approximately 7.8 Mbytes of data per second, with a single image containing as many
as 256 Kbytes. The second reason is the amount of processing per image required, A
typical machine vision algorithm may require 50 to 100 operations to be performed on each
image to extract the desired information. Third, in high~volume manufacturing
applications, these decisions must be made at a rate of up to several per second. Finally,
there is the constraint on system cost imposed by the market. The combination of these
constraints results in specifications for system architectures which must perform billions
of operations per second at an extremely low cost per operation,

Several aspects of the image processing problem have been exploited to attempt to
achieve the requisite specifications in both absolute performance and price/performance.
The first is that since images regardless of the modality of the sensor, are typically
regular arrays, computer architectures can be constructed which use this feature to
simplify processor architectures, The second is that many image operations can be
formulated as translation invariant operations, thus making it possible to exploit inherent
parallelism and simplify the data flow problem. Thereby, a large <class of useful image
processing operations can be decompogsed into local operations, making it possible to
construct large processors by replicating regular processing elements, called cells, and
interconnecting them in various patterns. The cells themselves differ in internal
architecture from system to system, depending upon the type of computation desired. We
will describe several different cells and the system architectures in which they occur. 1In
addition, a new class of processors will be described which can compute many of the sgame
operations on images with possible increases in efficiency of up to two orders of
magnitude, depending upon the data being processed. This class of processors uses an image
encoding scheme to reduce the amount of data by associating semantics with the scene as
efficiently as possible.

Background

Cellular architectures for image processing have been the subject of research for a
number of years, and several groups have built machines to exploit the inherent parallelism
in image processing. A brief overview of four different types of architectures will be
presented here. More detailed analyses of the strengths and weaknesses of the various
approaches are given in [1}, [2] and [3].

1. Simple cellular. This refers to systems which use a single cellular computation
unit tightly coupled to a recirculating image memory to process data. A diagram of this
type of system is given in Figure 1. Because of its ease of implementation, this

architecture has found the most widespread commercial acceptance. A typical application of
this type of architecture is to compute a 3 x 3 convolution kernel in parallel. An example
of this type of processor is the Vicom VDP which includes software to deconpose an
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arbitrarily sized Finite 1Inpulse Response convolution kernel into 3 x 3 kernels for
implementation on its cellular processor [4]. An example of this type of system
architecture applied to non-linear kernels is the GLOPR machine [5]. This machine, and its
descendants, compute new pixel values based on Golay transformations, in which the binary
pattern formed by the neighbors of a pixel determine its new value [6]. Another example of
this architecture is the PICAP II machine in which the cellular processor is only one of
several special function wunits capable of being attached to a general-purpose data bus
which provides high speed access to memories and mass storage and input/output devices [7].

2. Cellular arrays. Cellular array machines have their processor cells arranged in a
mesh pattern, with processors communicating along the lines of the mesh. An example of
this type of architecture is shown in Figure 2. Images are loaded into the array such that
each pixel occupies a cell. This architecture therefore requires a great number of cells
to be computationally efficient. This is generally made possible by constructing each
processor as a bit serial device, thus allowing multiple processors to be integrated on a
single VLSI chip. Machines constructed on this principle include the Clip4 [8] and the MPP
[97. Loading and unloading images with this type of processor typically represent a
substantial amount of overhead in comparison to the actual time spent processing images.
As a result, these machines are more suited for tasks where a lot of computation is done on
a single image once it is loaded, as opposed to machine vision tasks where many images have
to be processed in sequence.

3. Augmented cellular arrays. Attempts have been made to overcome the interconnection
limitations of the cellular array architecture by augmenting the array with additional data
paths. These are added to allow rapid movement of data across multiple cells., Several
different organizations have been proposed to augment the cellular array [10]. One of the
most interesting is the pyramid. In this arrangement, adjacent processors in the array are
connected directly to processors in the next higher level. These processors are then
connected to processors in the next higher level and so on until all processors are
connected to a single processor which oversees the entire process. The theory is that each
higher level of processor(s) will deal with the data at a higher level of abstraction,
until the information needed to make a decigion about the scene is communicated to the
top-most processor.  This eliminates the need to unload the image and process it further
with a serial processor to extract information. Another example of augmented cellular
arrays is the CAAPP architecture [11] in which a cellular array is augmented with a control
processor capable of accessing the array associatively. 1In this arrangement, decisions
based on processing pixels in a given state can be made by the control processor without
examining the entire image. The ability to feedback global information into the cellular
array facilitates the use of algorithms which require communication between iconic and
symbolic levels of representation. The concept of a content addressable cellular processor
is, in principle appealing but more work needs to be done to determine its applicability to
machine vision.

4. B8ystolic cellular processors, Systolic cellular architectures have shown the most
promise for solving machine vision problems in a cost-effective fashion. The term systolic
refers to the manner in which data flows from memory through the processor and back to
memory. Two of the benefits of this type of data flow organization are its ability to
ensure a good match between the memory and processor bandwidths and its modularity.
Implementation of systolic architectures for a variety of applications were explored by
Kung [12]. The Cytocomputer, shown in Figure 3, is a linear systolic machine composed of a
pipelined cellular processor [13]. Originally, this machine computed only neighborhood
operations based on mathematical morphology but has recently been extended to compute some
3 x 3 linear convolution kernels and to perform data compression and expansion between
iconic and non-iconic image domains.

. C L 3 .

Cellular architectures may differ in organization or function but they will have at
least one thing 1in common: they all operate in the iconic domain. The iconic domain is
defined as consisting of those images in which the image data is represented directly as an
array of pixels. This representation can often be space consuming, but has the advantage
that the spatial relationship between pixels is preserved in the array indices. We will
define as non-iconic those image representations which can be readily obtained from an
iconic image by an invertible mapping, but in which the spatial relationship between data
values is not directly determined by their position in the data structure. Examples of
mappings which map images from an iconic into a non-iconic domain include run-length
encoding (RLE) [4], Fourier descriptors [14] and other edge encodings such  as Hough
transforms [15]. A brief overview of run~list processing approaches to cellular operations
is given in [16]. These mappings are distinguished by the property that they are
isomorphic to the iconic with respect to certain classes of operations. In other words,
for each operation R in the iconic domain there is an equivalent operation R' in the
non-iconic domain which has the same result. Thus an image may be mapped into a non-iconic
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domain, be operated by R', and then mapped back into the iconic domain; the result is the
same as if the iconic version of the image were operated on by R. Depending upon the
particular non-iconic domain selected, these operations c¢an include convolution,
mathematical morphology and general image-image and image-scalar arithmetic. Of course,
the intent is to choose a non-iconic domain that allows the operation of interest to be
performed with much greater efficiency than in the iconic domain. The paradigm here is the
FFT,

Non-iconic image representations should be differentiated from purely symbolic image
representations in which semantics are associated with images. Symbolic representations
imply the loss of spatial information which is still available, albeit in encoded form, in
non-iconic representations. Symbolic representations include high~order labeling operators
such as object or region identification, curve labeling or surface modeling. Non-iconic
domains, however, can be very useful as an intermediate representation when communication
is required between the iconic and symbolic levels, An example of this type of processing
could be used in the formation of Marr's primal sketch [17]. To form a primal sketch, a
cellular processor can be used to generate raw features based on zero crossings, bars,
blobs and terminations. These features can be passed on to a non-iconic processor where
further processing can be accomplished to reinforce the features and tentatively classify
them for a higher level symbolic processor, When the symbolic level processor detects a
tentative feature of interest the information can be passed back down to the iconic level
via the non-~iconic processor - -to modify the program in the cellular processor to suppress
unwanted features and enhance features of interest. This process can iterate until some
desired level of confidence in the feature is obtained.

Non—i ; .

In addition to their value as an intermediate level between iconic and symbolic levels,
non-iconic image representations have the potential to offer significant computational
advantages over iconic representations, The motivation for considering non-iconic domains
is found in the basic paradigm for machine vision as stated in the introduction: to reduce
the amount of data by associating semantics with the scene as efficiently as possible. The
advantage of operating in a non-iconic domain becomes clearer when examined in light of a
generic machine vision algorithm., One of the first tasks in many machine vision algorithms
is to segment the features of interest from the rest of the scene. After this point, the
non-feature pixels, which generally form the majority of pixels in the image, are of no
interest to the algorithm. Cellular processors, due to constraints placed on them by their
design as iconic processors, must continue to operate on every pixel in the image whether
or not it contributes meaningfully to the result. It is at this point that the features of
interest would be encoded and passed on to a non-iconic processor for further processing.
Processing on the features would then continue as if they were still represented in the
iconic domain, with the important exception that far fewer total operations need be
performed to obtain the same result.

Analysis of a program which performs the logical AND of two RLE images shows that the
worst case execution path requires three comparisons and two assignments per RLE start/stop
pair for a total of five operations per pass. The total number of passes through the
program is equal to the minimum of the number of start/stop pairs in the two input images.
If I is the number of pixels in an iconic image, C 1is the compression ratio (ratio of
number of pixels in the iconic image to the number of data items in the equivalent
non-iconic image) and N is the number of edge points in the RLE image which is derived from
the iconic image, then N = I/C and the complexity of the computation of the RLE AND
operation is given by o(AND) = B5KK = FKI/C. The multiplicative constant K arises because
the complexity of atomic operations in the iconic domain may differ from those in the
non—-iconic domain. For RLE and for the operations discussed here, K is typically between
one and two. It is clear from the equation that a compression ratio of less than ten is
required to break even. Thus for this operation and type of encoding, if fewer than one
out of every ten pixels are edge points, the non-iconic processor requires fewer operations
per image than the iconic processor. Results from a study of edge frequency in a circuit
pattern inspection task indicate that the average compression ratio far exceeds ten.
Samples from three different multilayer thick film circuits, imaged at a resolution of
about 10 pixels/design rule with 245,760 bytes of data per image before segmentation
yielded an average of 6486 edge points per image with a standard deviation of 4504 edge
points per image after segmentation using a coding scheme which is equivalent to RLE. This
represents an average compression ratio of about 40, or four times greater than is required
to break even. Because of their geometric nature circuit patterns probably represent an
extreme case in terms of compression ratio. Encoding schemes currently under development
for circuit inspection tasks take advantage of the geometric regularity to reduce the same
image data as in the above example down to an average of 1199 points, with a standard
deviation of 653 for a resulting compression ratio of 205, While this may represent an
extreme example, the principle extends to other types of images in which the average
frequency of feature points yields favorable compression ratios.
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Similar savings can be realized in computation of mathematical morphology operations on
images. It can be shown that there are "2D" morphic operations on RLE representations of
images that are equivalent to the familiar morphic operations such as dilation and erosion
in the iconic domain., Analysis of the computation for RLE images shows that, as in the AND
operation, the number of operations is proportional to the number of edge points. 1In
addition, the structuring elements used to implement the morphic operations do not have to
be decomposed into 3 x 3 or smaller kernels to be implemented in the non-iconic domain, and
ags a _consequence it can be shown that the number of computations needed to perform a
dilation or erosion is also proportional to the number of edge points in the structuring
element. This is in contrast to a cellular processor where the number of computations
needed to perform a dilation or erosion is also proportional to the number of edge points
in the structuring element. This is in «contrast to a cellular processor where the number
of computations needed to perform a dilation is proportional to the total number of
pixels. Another possible advantage 1is that non-iconic morphology allows non-contiguous
structuring elements, which, for some operations, can reduce the number of computations
even further. A description of non—-contiguous morphic operations is found in [18].

Computation of morphic operations in a non-iconic domain 1is a straight forward
application of the rules of morphology. The RLE representation of the structuring element
is translated to each edge point in the RLE representation of the image to be transformed
and then merged using the AND or OR operator. Assuming a worst case of five operations per
edge point and two operations per translation, the number of calculations required to
perform a dilation is: O0(+) = 7NS, where (+) is the dilation operator, N is the number of
edge points in the non-iconic image and S is the number of edge points in the structuring
element. For a large class of shapes, S is proportional to the square root of the total
number of pixels in the iconic version of the structuring element, E, and in the most
pathological case would not grow at a rate of more than twice E. Thus the compression
ratio for structuring elements varies between E and 2E. The relationship of N to the
number of pixels in the iconic image is as in the previous example. Considering the K=2
factor, this yields a compression ratio of, at worst, no more than 25 to break even.
Typically, the figure 1is much lower (between one and two). For a circular structuring
element of radius five, no compression of the input image yields a 20 percent decrease in
the number of operations required to compute a dilation. Thus for the 40:1 compression of
the earlier example, the net result would be a dilated image using one-fiftieth of the
number of operations required for dilation in the iconic domain.

System design
System design for an image processing system incorporating a non-iconic processor with a
Cytocomputer 1is shown in Figure 4. Data would be input either directly into the

Cytocomputer or into a memory buffer. The Cytocomputer would perform filtering and feature
extraction operations and pass the information on to the non-iconic processor through an
encode/decode function. The non-iconic processor would perform its processing and pass the
processed data on to a control processor which would make decisions based on the cues
passed to it by the non-iconic processor. Note that the data paths are bidirectional.
This hierarchical architecture allows adaptive algorithms to be implemented as discussed in
the section on non—iconic image domains.

A proposed architecture for a non-iconic image processing element which calculates
image-image and morphic operations of RLE data is shown in Figure 5. Memories A, B, C and
D contain image operands and results. The a,b and c¢,d register pairs hold the start/stop
points for each image while the e,f register pair acts as an accumulator. When conditions
are satisfied for creation of a result start/stop pair, it is output to the memory through
the h,i registers. The computation is performed by a logical ranker which is connected
directly to a microsequencer which sets the multiplexors and initiates a memory read based
upon the results of the ranking operation. This machine has been simulated in software and
is currently processing images. The instructions which have been executed include a
complete set of arithmetic and logical operations and morphic operations including
dilation, erosion and thinning operators. Extensions to this architecture will include the
ability to handle multiple level state encoded data and types of data encodings other than
RLE.

Conclusions

Non-iconic processors show potential for augmenting current cellular architectures.
While the inability to efficiently handle greyscale data prevents the non-iconic processor
from operating as the sole image processor in all situations, tasks that are inherently
binary can be processed. As a co-processor, the non-iconic machine can be used to increase
the throughput of an image processing system while reducing the total hardware cost over
the equivalent all-cellular machine needed to achieve the same performance. In addition,
computations not possible on a cellular processor, such as Hough transforms and other
edge-based algorithms can be introduced by working in a non-iconic domain.
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Figure 1. Simple Cellular Processor.
A memory (MEM) is tightly coupled to
a cellular processing element (PE).
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Figure 4. Systolic Cellular Processor.

Image data flows from the memory (MEM)
through the controller (PORT) to the
multi-stage cellular processing
pipeline (CYTO).
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Figure 2. Cellular Array Processor.
Cellular processing elements (PE's) are
k-way interconnected to form an array.
Images are loaded through the PE's along
one edge.
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Figure 5. Non—iconic Processor.

Images are input through the memory (MEM)
and processed by the Cytocomputer (CYTO).
Results are encoded (E/D) and passed on
the non-iconic processor {(N-1) for
further processing.
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Figure 5. Non-iconic Processor. RLE data are stored in
memories (A, B, C, D). Memory multiplexor (MMUX) selects
start/stop pairs to be input to register pairs a,b and c,d.
A comparator tree (RANKER) compares the start/stop pairs and
stores the intermediate results in the g,f registers. When
an output pair is calculted, the output multiplexor (OMUX)
loads the result into the h,i register pair, to be then
stored in the memory selected by MMUX.





