TMMitleE,
‘edge,

Robotics and Artificial Intelligence

Edited by

Michael Brady

Senior Research Scientist, Artificial intefigence Laboratory, Massachusetts Institute of
Technology,
Cambridge Massachusetts

Lester A. Gerharat

Chairman and Professor, Electrical, Computer, and Systems Engineering Department,
Rensselaer Polytechnic Institute
Troy, New York

Harold F. Davidson

Consuttant, Department of the Ay
Washington, D.C.

Springer-Verlag Berlin Heidelberg New York Tokyo 1984

Pub ished in cooperatior witn KATO Scienthic Alars Dhasion

M

CAD, Robot Programming and Adal

by
Richard A. Volz? Trevor N. Mudge
Anthony C. Woo Jerry L. Turney
. Jan D. Wolter David A. Gal

1. Introduction

This paper addresses two topics which on the surface are unrelated, the use of CAD to
assist robot and sensor programming, and the use of Ada as the basis for robot programming.
The association between them arises from the fact that they are being combined in an experi-
mental facility. The facility consists of an Intel iAPX 432 multiprocessing microcomputer sys-
tem, a GE TNR500 camera, an ASEA RB 6 robot and a link to a VAX 11/780 off-line computer
system. The facility is being used as a testbed for various robot programming and interface
strategies, and to investigate the utility of object based systems as the computer foundation
of manufacturing cells. Experimental verification of techniques using information extracted
from CAD models to assist in robot programming and the use of Ada are important parts of
the experiment.

1.1. The Use of CAD to Assist Robot & Sensor Programming

Computer aided design is rapidly becoming an integral part of design in many fields of
engineering. The geometries contained in CAD descriptions can also be of use in several ways
to assist the prograrnming of robot and sensor systems and reduce or eliminate their on-line
manual training thus increasing productivity. Two specific uses of CAD are considered here,
the automatic determination of gripping positions and the use of model generated templates
for an optimal template matching scheme for machine vision.

Grip position determination requires consideration of several basic issues: definition of
what constitutes a good grip; specification of the geometrics involved; available knowledge of
the operating procedures and environment; computational efficiency. Typical conditions for a
“good grip” include feasibility, the reachability [1], [2] of the grip position by the robot
without interference [3] between the robot and the object to be gripped, stability, [1], [4] the
nonmovability of the object being grasped under external forces, particularly gravity, and the
area[5])-[7] of contact between the gripper and the object surface. Paul [1] has suggested
that the center of mass of the object being grasped lie on the axis between the fingers during
the grip to minimize the torques applied to the part around the axis of the grip. Asada [5]
has given a different definition for stability: a grip is stable if when a small relative displace-
ment occurs between the part and the hand a restoring force is generated to bring the part
back to its original situation. Asada has also suggested that a good heuristic for maintaining
stability is that the perpendicular projection of the center of mass be near the intersection of
gripper and the object [5). Mason [B] has also suggested uncertainty reduction as an impor-
tant criterion. i

The determination of grasp positions cannot be accomplished based upon geometric con-
siderations of the object alone. Grasp positions depend upon other objects in the vicinity
which might interfere with a particular grasp point as well. Several authors have developed

IThis work is supported in part by the Air Force Office of Scientific under contract number F49820-82-C-0089 and
in part by the Zimmer Foundation.

The authors are with the Robot Systems Division of the Center for Robotics and Integrated Manufacturing, Col-
lege of Engineering, University of Michigan.

techniques for taking into account interfering objects in the vicinity of the initial or final
object position {3], [4], [9]-[11].

This paper addresses both the question of what constitutes a good grip and the computa-
tional issue. In particular, the stability of a grip is viewed from two perspectives, slippage and
twisting of the object in the gripper due to external forces and torques. The latter can also be
heuristically related to uncertainty of positions during the grasping operation itself. Resili-
ence to slippage is expressed in terms of friction effects of the surfaces involved, the shape of
the contact between the gripper and the object and the usual distance of the grasp point from
the center of mass of the object. A new performance measure is introduced to reflect resili-
ence to twisting. In both cases it is found that area is not the critical parameter reflecting
the quality of a proposed grip. A general grasp planning strategy is introduced which, is both
run-time efficient and general in that it can be used in a broad range of applications. The
problem is divided into three parts, one which depends only upon the geometry of the object
to be grasped, one which takes into account a priori geometric constraints, and one which
handles constraints unknown until run time,

The second application of CAD derived information is in the development of visual recog-
nition algorithms for objects whose boundaries cannot be completely determined. Template
matching of the boundary of the part with a model of the boundary has been suggested for
dealing with this problem [12]: if a match with a large portion of the template is made in the
image, it is concluded that the part has been found. Unfortunately, in its basic form, this pro-
cedure requires an excessive amount of computation and can produce a number of false
matches resulting in unreliable recognition. Variations of template matching have been pro-
posed. such as the generalized Hough transforms of Sklansky {13] and Ballard [14].
Ballard's approach does not permit an edge image point to be considered a match unless it
agrees in angle of slope as well as in edge point. While this criterion places a local restriction
on the matching condition, it is not restrictive enough. A typical correct match still produces
a considerable number of large false peaks in the accurmulator array recording the template
edge matches. The approach presented here optimally weights the edges of the template to
emphasize segments of the object boundary distinct from segments of boundaries of other
objects which might be present. This greatly reduces the size of false peaks in a large
number of cases,

1.2. Ada as the Basis for a Robot Programming Language

With the advent of robot-based manufacturing cells, the need for a standard implementa-
tion language to program these cells has grown in importance. The present practice of
designing new robot languages for nearly every new robot may satisty the particular program-
ming needs of each robot, but it is counterproductive from the standpoint of developing
integrated manufacturing cell technology. Standardization is clearly needed. Moreover, the
current high level languages used to implement the real-time requirements of manufacturing
systems lack some of the language tools, such as data abstraction, that facilitate program-
ming in the large. Even the most sophisticated robot, numerically controlled (NC) tool, and
related "manufacturing systems” programming languages presently in commercial use sup-
port neither data abstraction nor other features appropriate for large scale programming
[15], [18]. They are, therefore, unsuitable at the cell integration level. However, the Depart-
ment of Defense's (DoD’s) future system implementation language, Ada®, is an attempt to pro-
vide language constructs which can overcome most of these shortcomings,

Ada was originally developed at the instigation of the DoD [17] for programming embed-
ded systems. Ada is based on Pascal. However, significant extensions make it the first

aAda is a Registered Trademark of the Ada Joint Program Office--DoD.

practical language to bring together important features that include data abstraction,
separate compilation, multitasking, exception handling, encapsulation, and program abstrac-
tion through generics and operator overloading. These extensions make Ada particularly
appealing for programming large scale real-time embedded systems~a situation characteris-
tic of robot-based manufacturing cells. Most importantly DoD's strong support of the
language guarantees a large scale presence in the future. This, therefore, warrants a serious
inquiry into the feasibility of using Ada as a standard implementation language for manufac-
turing cells.)

2. Application of CAD to Robot and Sensor Programming

2.1. Automatic Determination of Gripping Positions

The approach being taken to determine gripping positions for an object is characterized
by the following:

» Extraction of geometric information about the part from a Computer Aided Design
(CAD) system.

» Use of extensive off-line preprocessing to generate a grip-list which can be used to
select a grip at with minimal run-time computation.

= Development of quantifiable criteria for a good grip (which can be related to grip stabil-
ity and configuration uncertainty) and use of the criteria to judge the relative quality of
gripping positi’ons.

Several necessary conditions and evaluation criteria of a good grip are identified below
and algorithms for evaluating a possible grip according to these described. The general stra-
tegy for determining a set of potentially good grips is to use some of the necessary conditions
as filters which eliminate infeasible geometries from consideration. Next a set of potential
grips Is generated and evaluated according to the remaining criteria. The grips are then
ordered according to grip criteria. In a particular situation in which a grip is needed, the
highest ranking grip which does not cause interference with the initial or final surroundings is
chosen. The use of the grip list forms a basis for shifting computation between on line and off
line according to available a priori knowledge of the system, thus minimizing the amount of on
line computation.

2.1.1. Part and Gripper Geometries

A prerequisite for finding gripping positions is the availability of detailed geometric infor-
mation about the part, the robot gripper and the surroundings. Part information is assumed
to be polyhedral and is derived from a description generated on a Computer Aided Design sys-
tem. This information takes the form of a topological and geometrical description of the sur-
faces of the object in terms of faces, vertices, and edges.

Possibly usable surface elements include faces, groups of edges, or vertices. Grips on
sets of vertices only are discarded since such grips are highly subject to rotation when even
small torques are applied. Similarly, grips on combinations of edges and vertices are dis-
carded, as they are highly subject to twisting during a grip. Grips on a pair of faces, a face
and a vertex, a face and an edge, or on pairs of coplanar edges may possibly yield good grips.
For simplicity, however, only grips on pairs of faces are considered initially. Extension to the
other cases is not expected to be difficult. In general, both outside and inside grips are possi-
ble. The algorithms developed initially are for outside grips only, but can be easily extended
to handle inside grips as well.

A typical parallel gripper is considered. The "arm” is assumed to extend to infinity in a
direction extending backwards from the gripper. This model is used for evaluation of

intersections between the hand (and arm) and the part. Further, it is assumed that the
gripper applies a constant force to the gripped object.

2.1.2. Off-Line vs. Op-Line Processing

Grip position determination cannot be performed independent of the environment in
which the part is to be found. Interference calculations must be performed to assure that a
proposed grip causes neither interference between the gripper and the part nor interference
between the gripper and any other objects in the vicinity of the initial and final positions. In a
completely unstructured environment, all of the calculations for determining gripping posi-
tions must take place on-line at run time. The manufacturing environment, however, is sel-
dom completely unstructured, and one can use whatever knowledge is available about the
structure of the environment to allow some of the computations to be performed off-line to
improve run time efficiency.

If one knows at least what parts are to be present, then one can determine off-line a set
of feasible grip positions for each part and rate them in terms of their grippability (see
below). Then at run time the top ranked grip position which does not cause interference can
be selected. If one knows a priori that the part will be found on a flat table (albeit one that
may be cluttered with other pyarts) one can find a set of feasible grip positions for each of the
stable positions [18] which will not interfere with the known table location. This will be a
smaller list than the complete list generated for the part as a whole. If one further knows
that there are no other objects near either the initial or final position of the part, then a
specific grip point can be selected off-line.

The approach taken then, is to generate a list of possible grip points for each stable posi-
tion and rank each of the lists by quality of the grip (as measured by resilience to slippage
and twisting, as indicated below).

2.1.3. Gripping Criteria

The key to operation of the grip determination algorithms are the criteria used to evalu-
ate potential grips and the algorithms for performing the evaluation. Two obvious and fami-
liar necessary conditions and three evaluation criteria are used.

Necessary Conditions

* The faces to be gripped must be nearly parallel, facing away from each other,
separated by less than the opening of the gripper, and opposite each other.

¢ There must be no interference between the hand, the object to be grasped, the initial
surrounding, or the final surroundings.

Fualuation Criteria

* A measure of the susceptibility of the grip to slippage of the object.

* A measure of the twistability of the object during gripping.

* A measure of the gravitational torque which might be applied to the grip.
The following paragraphs discuss the algorithms for each of these briefly.

The first necessary condition is easily enforced by requiring that the inner product of the
outer normals of the faces under consideration be within epsilon of -1, and that the projection
of one of the faces on the other not be null. The separation condition can be directly
checked,

The obstacle evaluation process can be simplified by reducing the 3D intersection prob-
lem to a 2D intersection problem for each potential grasp point. The portion of the part or
nearby objects which lies between the top plane of the finger (in the open position) and the

top of the potential gripping surface is projected onto a gripping plan parallel to the fingers of
the gripper. The result is a 2D figure representing the portion of the part blocking the top
tinger. {(See Figure 1.) A similar projection is used to determine interference with bottom
finger and the base of the hand. On the surface, the idea of using cutting planes correspond-
ing to the hand base and fingers appears the same as that of Laugier and Pertin [3]. but the
algorithm used here to find the obstacles is completely different and more-efficient as the
obstacle checking does not involve an iterative procedure as does theirs. Each potential grip
is partially specified by an approach vector to the object. To check for interference, the hand
is simply slid toward the part along the approach vector until the projection of its fingers and
hand on the grip surface touches the projected obstacles. This is a 2D test which can be com-
pleted quickly. The touch point defines the distance along the approach vector at which the
grip should actually be made. Other interesting parameters of the grip (contact dimensions)
can then be determined from the projection of the fingers on the gripping surface.

Two basic types of slippage {which is related to the stability of the grip) are considered,
translational slippage and rotational slippage. The translational force required for slippage to
occur is dependent upon the normal force and the coefficient of friction. The former is
assumed constant and the latter is a function only of the materials involved. As neither of
these is a function of the grip, translational slippage is not a factor in determining gripping
positions.

The torque required to rotate a part between the fingers of the gripper depends upon the
coefficient of static friction and the shape of the surface gripped. For example, if the surface
of contact is a disk, the torque required for slippage is T = (2/ 3)uNE where u is the coeffi-
cient of friction, N is the normal force and R is the radius of the disk. (See {8] tor more
detail) It is worth noting that torque required for slippage is in some way proportional to the
shape of the surface contact, not the area {as has been used in several other grip determina-
tion schemes). For a good grip one would like to contact dimensions to be large.

The gravitational torque applied which will tend to cause slippage, on the other hand,
should be as small as possible. This torque depends upon the distance of the grip from the

<) Lower
~~ TT—Finger
Planes

Projection
of Obstacles

Figure 1. The portion of the object between planes P; and P, and between Py and P, are pro-
jected onto the gripping plane 7. i

centroid and the orientation of the part and gripper. Since the hand {(and hence the part) will
move through a variety of orientations during a move performed after the grip, the straight-
line distance of the grip from the centroid is used as a worst case measure of gravitational
torque. Torques applied as a consequence of the dynamic motion of the hand with the
grasped object cannot be determined without knowledge of the planned trajectory of motion.
They will also, however, in worst case orientation, depend upoen the distance of the grip posi-
tion from the centroid of the object.

The final criteria used is the susceptibility of the proposed grip position to the
occurrence of twisting during the grip. If one attempts to grasp the object along the long nar-
row pair of faces of the T-bar in Figure 2, it is quite likely that the object will twist in the
fingers of the gripper, particularly if a pneumatic type of grip actuation is used. Gripping at
the T end of the bar would be likely to be more stable, even though it may have smaller area
that the narrow face. The relevant measure in this case is the distance by which the fingers
must be separated for the part to twist out of position. To calculate this measure, the convex
hulls of the 2D contact areas of each finger with the surface of the part are determined. For
each edge of one convex hull, the most distant vertex on the other is found. This is how far
the hand would have to be open to tip over that edge. (See Figure 3). The minimum of these
distances is found and the normal finger separation subtracted. The result is the distance the
hand would have to open to allow the part to twist into another position.

A linear combination of the three measures given above is used to rate the potential grip
points. The method has been fully implemented in PASCAL on VAX 11/780. A typical part with
46 faces, 132 edges and 86 vertices is handled in 35 cpu seconds. The complexity is of order
N? where N is the number of faces.

@ W

Figure 2. Grasping along the narrow pairs of faces is not as stable as grasping the T end.

————— - ———— -
——— ..l../.,.(___. —_———
L i N]
(/ N f
\\ //) dz—dl
\ Vd
AN //

Figure 3. 3(a) shows an object rotated along one edge as would occur during twisting. 3(b)
shows an end view of the same object with the gripper included. The difference dy—d, is the
gripper displacement needed to allow twisting.

2.2. Occluded Part Recognition

In a typical industrial scene, parts may be intermixed, partially occluded, and of unk-
nown pose (position and orientation); however, the types of parts that will be present are
almost always known a priori. From the part geometries in the database, boundary templates
for every stable position of every part are determined, and a set of subtemplates which most
differentiate the parts are identified. We refer to these as salient features. To illustrate con-
sider Figure 4. Figure 4(a) shows the salient features when parts A and B comprise the set of
parts, while Figure 4(b) shows the salient features when parts A and C comprise the set of
parts (salient features are shown as heavy lines). Saliency is formally defined and given a
continuous range. Then the pose of a part that is partially occluded can be accurately deter-
mined if the visible portion of the part matches some set of subtemplates with enough com-
bined saliency.

2.2.1. Template Matching and the Hough Transform

The scene in which the parts appear will be referred to as the application scene. It is
digitized into a two-dimensional array of pixels,] (1<z<M, Isy<N:z and y integer), which
can take on values from a set of gray-levels. The boundary representation of the parts in the
application scene is called the boundary image. Although its machine representation is usu-
ally a compact form, such as a linked list, the boundary image can be thought of as a func-
tion, B (z,y), which is defined on the same domain as I and which has the value one at boun-
dary pixels and zero elsewhere. It is the boundary image against which the templates are
matched to locate the part in the application scene. A template, T (z,y), can also be
thought of as a binary valued function defined similarly to B.

Associated with each pixel in B is an accumulator whose purpose is to record template
matches. This two-dimensional array of accumulators is assumed to be initially zero. A refer-
ence point is selected that is fixed with respect to 7; we used T''s centroid, but any appropri-
ate reference point could be used. A template, T'° (z,y), is formed by rotating T 180° about

SALIENCY

ST
S

Pare A

Part ¢

Figure 4 Salient Features

its centroid. The centroid of T° is placed at a boundary pixel in B and every accumulator
that coincides with a boundary pixel of T* is incremented by one. This procedure is repeated
for each boundary pixel in B. When all the boundary pixels have been visited, the accumula-
tor with the largest value identifies the position of the centroid of template 7 that gives the
best match.

As demonstrated by Sklansky in [13], the function produced in the accumulator array by
the above procedure is the convolution of B with T° which is simply the cross-correlation or
template matching of T with B. Two points arise from this observation, First, the Hough
transform [13] performs the function of a matched filter and therefore is the optimum filter
when B is corrupted by additive white Gaussian noise under a wide variety of criteria. How-
ever, none of these criteria implies that it is optimal for recognizing one shape in the pres-
ence of others (see the discussion on normalized correlation in Rosenfeld and Kak [19]).
Second, the function produced in the accumulator array by the Hough transform is the same
as that produced by template matching. However, the order of operations are different.

Although the Hough transform is an efficient way to perform template matching, it
nevertheless has many of the shortcomings associated with template matching, particularly
in its ability to deal with variations in orientation and scale. For example, to account for vari-
ations in orientation the complete procedure (template matching or Hough transform) must
be repeated for every orientation to be distinguished. In other words, if it is required to dis-
tingin‘sh between orientations that are 1° apart, the procedure must be repeated 360 times,
resulting in 360 accumulator arrays. The best match would then be identified by the accumu-
lator with the largest value in all of the 360 arrays. A similar complexity arises if the scale of
the parts are not known in advance-all sizes of T to be distinguished must be tried.

The next section presents a technique based on an extension of the Hough transform
which uses subtemplates. In addition to Improving the Hough transform by introducing more
local restrictions that decrease the likelihood of false matches, this technique reduces the
complexity that arises from the need to consider variations in orientation. The problem of
variation in scale is not addressed in detail in this paper. k

2.2.2. Subtemplate matching

A set of | 7| overlapping subtemplates, T,, are created from template 7. Each subtem-
plate, Ty, has an associated vector, ¥;, that points to the location of the centroid of T. The
Hough transform can now be modified by requiring that a segment of the boundary image
centered on a particular pixel, b_,-, match T; before ¥; can be originated at bj. The degree to
which 7; matches the boundary segment is reflected by allowing the accumulator pointed to
by ¥; to be incremented by a fractional value (see below). The restriction of matching sub-
templates significantly reduces the subset of vectors that originate from 6]-, In our experi-
ments each T; was 20 pixels in length and 1Trise subtemplates were created for each tem-
plate 7 where | 7| is the cardinality of pixels in T, i.e., each template pixel was part of 10
subtemplates. The choice of the length and the number of subtemplates is application depen-
dent. °

In the process of matching the subtemplates with the boundary it is important to place
the subtemplate in the correct orientation. This can be achieved efficiently if the subtem-
plate and the boundary image segments are represented in their inérinsic coordinate sys-
tems in which the angle of slope, ¥, and the are length along the boundary, s, act as coordi-
nates for pixels [20]. This ¥—s representation allows subtemplates and boundary image seg-
ments to be characterized by functions of the form ¥9(s). An important property of these
intrinsic functions is that a change in orientation, Y., of a boundary in z-y sSpace
corresponds to simply adding ¥ to ¥(s) in ¥~s space.

the weighted subtemplate will respond poorly to the boundaries of other objects.

2.2.4. Results

Figure 5 shows the resuits of applying this algorithm to a scene in which objects are over-
lapping. Parts are found without the need of rotating a template since the subtemplate
matches are matched in a rotationally invariant space. The code is written is the language
"C" and runs on the VAX 11/780. The average time to recognize an object is 45 CPU seconds.

However, no effort has been made as yet to optimize the code.

3. Ada as a Basis for a Robot Programming Language

As indicated in the introduction two major concerns in the development of future robot
programming systems are the complexity of the software to be developed and standardiza-
tion. Ada was expressly designed to facilitate the development and maintenance of large
software systems through partitioning and by DoD decree will to some extend be standard.
Separate compilation while retaining type checking of parameters passed between modules
allows a team of cell designers to work concurrently on the development of separate subsys-
tems. It also allows subsystems to be easily modified without affecting the rest of the
system--an important feature for maintaining the system. Ada relies on data and program
abstraction to simplify the construction of subsystermn interfaces. Most importantly for the
current topic they allow the language to be tailored to a specific application area. Further,
Ada provides multitasking and timing constructs, an essential ingredient in manufacturing
cells where there are typically several computation tasks that need to be performed in real-
time.

3.1. Features of Ada

The underlying philosophy of Ada is centered upon the use of objects for program design.
An object is a data structure? having a unique identifier and an associated set of functions
and procedures that can operate on it [23]. These "operators’ are the only allowed means of

False match. Correct mazch.

[Slope restricted Hough.] [Subtemplates with salient weightings.}
Figure 5. (a) shows a false notch which occurred using the generalized Hough Transform of
Ballard. (b) shows the correct notch determined by our method.

4Thc meaning of the term “object” is not universally agreed upon; our usage is fairly narrow. See [22] for a dis-
cussion of various viewpoints.

Matching starts by choosing a subtemplate, Ur(s), from the template boundary and
attempting to match it against an equal length segment of the boundary image, ﬂﬁj(s). 8,
represents a boundary segment centered at pixel bj‘ To place the subtemplate in the correct
orientation before matching the average angles of orientation, 13.,‘, and 193! for the subtem-
plate T; and the boundary image segment B; are determined by averaging the slope angles of
the points in the subtemplate and boundary image segment respectively. The difference
between the average slope angles, A??ij = 551 - 1—5.“ is a measure of the difference in orienta-
tion between the boundary image segment and the subtemplate. The subtemplate is then
shifted Aﬁij to the same average angle as the boundary image segment before the two are
compared. The shift in ¥ corresponds to an angular rotation of the subtemplate to the aver-
age orientation of the boundary image segment.

A measure of the mismatch between the rotated subtemplate, T;, and the boundary
image segment, §;, is given by the quantity, 7i;. such that:

T T il[ﬂﬂj (Sp)_’a‘r‘(sp)}2
p=

where h is the number of pixels in T; and B;. Using 7;; a measure of the match between a
subtemplate and a boundary image segment is given by the matching coefficient, ¢;;. where:

1
L+7y

cij =

Cy is used to adjust the contribution added to the accumulator. When a match occurs, the
better the match, the larger ¢;; and, therefore, the larger the contribution.

In order to locate the potential center for the part, the vector, bui, associated with the
subtemplate, T;, is rotated by the angle, AYY, and is attached to the edge image section at its
center point. . Assume the cell pointed to by the rotated buvi, is in column, u(%,7), row,
v(1,7). The value, ¢;;w;, is added to the accumulator at location (w(,7).v(1,7)) where w; is
the weight associated with subtemplate T;. The angular difference, ASY, is stored in a linked
list associated with the same cell as the accumulator, this angular information ailows the
orientation of the part to be determined by averaging the angles stored in this list if the cell
is determined to be the template center.

2.2.3. Determining the Saliency of Subtemplates

Each template from the database is matched, via the subtemplate matching scheme
described above, with every other template in the database of possible objects and stable
positions. This results in sets of accumulator values which depend upon the weights of the
subtemplates. These accumulator values are combined into a positive definite form quadratic
in the weights. The weights are then constrained to lie in the region [0,1] and to sum to unity.
The resultant constrained quadratic optimization problem can be solved using the "Nonnega-
tive Least Squares” algorithm described in Lawson and Hanson [21].

The subtemplate weights computed are based on the dissimilarity of the subtemplates to
sections of the boundary of the other objects in the database. Those subtemplates of the
boundary which are dissimilar to other sections of other boundaries are weighted more
heavily. A group of heavily weighted subtemplates makes a larger contribution to the accu-
mulator array and therefore plays a more significant role in determining the potential loca-

) tion of the object when the boundary is fragmented. Weighting the subtemplates can also be
viewed as a method of decorrelating the complete template of the object with the boundaries
of other objects. Since more weight is given to those subtemplates which fail to match sec-
tions of the boundaries of other objects, the matching response of a template composed of

manipulating the object. A number of advantages follow from this "object-based" program-
ming methodology. Objects and their associated functions and procedures form natural
boundaries along which to subdivide systems. In addition, because the structure of a data
type is hidden from all but its associated operators, changes to the structure have a limited
impact greatly simplifying program modification and maintenance. In effect, the data type
can be abstracted and known only through operations on it. Thus, object-based programming
provides a way to implement data abstraction, which, as a result of work in programming
language design during the 1970's, has emerged as a major organizational concept in pro-
gramming languages [24]. Several experimental programming languages have been imple-
mented that were designed containing features to support abstract data types, but, with the
possible exception of Modula-2 [25)] and Concurrent Pascal [28], Ada is the first that is likely
to see wide-spread use. :

Ada provides a construct called a packege.that allows the programmer to encapsulate
objects and their associated functions and procedures. In addition, it has private types and
limited private types that further restrict encapsulation so that objects thus typed, while visi-
ble to program parts, can only be manipulated through procedure and function references.
Together these features permit the programmer to hide data structure implementation and
create abstract data types. The package definition consists of two parts, a specification part
and a body. The specification part introduces the data types, variables and procedures visible
to the user of the package. The body contains the implementation of the package and may be
accessed only by the mechanism stated in the package specification.

Program abstraction is possible through the use of generic packages and subprograms,
and operator overloading. These are a step in the direction of polymorphic function imple-
mentation {27], {28], and they allow, among other things, operations to be defined over a set
of data types, thus providing a broader use of objects. As shall be discussed further, the
object and package concepts address the management and portability of complex software.

Ada also provides a task construct which is a means of dividing a program into logically
concurrent operations with possible synchronization between them [29]. In addition to form-
ing the basis for real-time operations, tasks also provide a means of increasing processing
efficiency in a parallel processor environment. Syntactically tasks bear a resemblance to
packages in the sense that they both have a specification part and a body. However, the
specification part of a task is used solely to declare the synchronization points or entry points
to the task-the entry points indicate where messages are received/transmitted by a task.

3.2. AStrategy for Using Ada

The use of Ada for programming manufacturing cells begins with the definition of objects
for the various physical and logical components in the cell and the interfaces to these objects.
Among these are the problem oriented primatives one would like to have in a robot language.
These objects are embedded in Ada packages. Various mechanisms can be easily imple-
mented to (nearly) automatically make these objects available to the programmer. The robot
programmer can then use these objects and interfaces as though they were part of the
language specification.

To provide a concrete illustration of the use of Ada as the system implementation
language for cell programming, a system consisting of a robot, a vision sensor and a link to a
CAD database is considered in a simplified manner. Four basic object types are defined in
this illustration:

* ROBOT - Provides the basic robot interface.
s POSITION -- Provides a set of data abstractions

for part and robot locations.
« CAD_MODEL -- Provides CAD database access.
« VISION -- Provides an interface to the vision subsystem.

Each of these basic objects is associated with an Ada package. A view of a portion of the main
programs and the specification for each of these basic objects gives an introduction to the
object oriented design approach.

Figure 8 shows a portion of an example main program. The action part of the example
shown is to find a part on the input conveyor', move the robot to it and pick it up. It is
assumed that the set of parts that could potentially appear on the conveyor are assigned to
the variable SET.OF_PARTS. The names of the parts are assigned from a terminal via a com-
mand interpreter (not shown). Details such as following a particular speed profile or the han-
dling of exceptions are omitted since they would tend to obscure the example. It is assumed
that the geometry of the part is available in a CAD database and that off-line utilities using the
CAD information are available to provide recognition information to the vision system and the
location on the part where it can be picked up (the grasp points are defined in a local coordi-
nate svstem of the part itself).

The first part of this example identifies Ada packages which provide data types and ser-
vices to the main program. The with and use clauses are the mechanism by which the robot
environment is made available. (In the program parts shown words in lower case bold are Ada
key words. The upper case words are user-defined, or predefined package, function, pro-
cedure, type or variable names.) The with clause tells the compiler that the programmer
intends to use data types, procedures, and functions defined in the package named after the
with, The use clause tells the compiler that the programmer wishes to reference the data
types, procedures and functions defined in the package named after the use by the names
given in the package definition without including the name of the package as a qualifier. In
general, however, the user might not even have to enter these with and use clauses directly.
The use and with clauses could be placed in a program template with which the user begins.
Alternatively an include pragmaa® could be added to the compiler which would read a file of
with and use clauses and include them in the program. In this way an environment of data
types, and primitive operations tailored to a specific application in this case robots, can be
provided to the user.

The second half of the main program shows use of the data types and functions provided
by the Ada packages for the simple operation described above. The syntax used is similar to
that found in several robot languages and the type and variable names are sufficiently
mnemonic that one can follow the intent of the program with minimal reference to the sup-
porting packages (see below). Note that comments are introduced by a preceding "~ and
they can be placed anywhere in the text stream. In addition, the comments in Figure 8
include one or two numbers in parentheses that are the figure numbers of relevant packages.

FIND is a procedure in the VISION package that finds and identifies a part on an input
conveyor and returns the part's name, a 4%x4 homogeneous transformation giving the location
of a coordinate frame for the part in terms of the robot’s world coordinates and an index of
the stable position in which the part was found. These three items of data are stored as com-
ponents of a record X.

PICK_APP_POINT and PICK_POINT are functions which return (from the CAD database or
utilities acting upon it) 4xX4 homogeneous transformations which express the approach and
grasp points in terms of the coordinate frame for the part. The "*" has been overloaded to
mean multiplication of 4X4 matrices so that the result is the transformation of the

5% pragma is simply a compiler directive.

appropriate point in terms of the world coordinates of the robot. TARGET_LOC holds this
transformation and is the argument of the MOVE function which actually causes robot motion.

Partial specifications for the packages referenced in Figure 8 are given in Figures 7
through 10.

3.3. Discussion of Ada Usage

From the viewpoints of managing complex software, providing an application specific pro-
gramming environment to the user, and achieving language standardization, Ada provides a
number of advantages. These include:

* The use of data abstraction and operator overloading to create well modularized
application specific code helps usability, readability and maintainability.
= The resulting application package can create a reasonable application specific
environment.
* The strong type checking significantly aids debugging.
« The separate compilation features in conjunction with the other features above aids
flexibility and helps portability.
* The expressive power of the language is excellent.
Having these capabilities widely available in a standardized language is very significant as this
can greatly aid in standardizing application specific "languages” and giving them portability.
The portability can be inherited, to a large measure, from Ada. '
_ There are also a number of concerns which have arisen which either are a detraction to
some users or bear further investigation:
* The heavy use of data abstractions creates additional procedure calls and
corresponding overhead which can cause difficulty in a real-time environment.
« BStrong typing can get in the way of what one wants to do.
¢ How usable will Ada really be, even with good environment creation through special
packages, to the noncomputer professional?
* The debugging of robot programs requires close interaction with the programmer.
It is not clear this can happen with Ada.

In theory, the inefficiencies produced by excessive subroutine calls can be reduced with the
inline pragma (a compiler directive which expands the subroutine source code in-line wher-
ever called). Our early experiments with inline supports this theory. Drastic reduction in
computation time has accrued through its use. The strong typing argument has raged for
some time and is not specific to robot or manufacturing cell applications. We believe that as
the size and complexity of a software project increase so does the importance of using strong
typing.

We do not ever expect to see robots on manufacturing cells programmed in Ada by shop
floor personnel. We expect that as more complex arrangements of machines are built and as
better links with CAE/CAD are forged. shop floor personnel will cease to "program’ robots.
Rather they will interact with a program te identify what is to be done next. The actual pro-
gramming will be done in a more generic fashion by a person who has a good mix of manufac-
turing and computer engineering /science in his/her background. A person with this type of
training should be able to deal with a "roboticized Ada".

The debugging issue is one that requires considerable additional research. All Ada imple-
mentations in progress are based on a compile translation while almost all robot program-
ming languages are based on interpretive translation. From the point of view of the program-
mer, however, the robot program may be a separately prepared and debugged entity. What is
really necessary is a fast interactive translate /de bug system. This does not preclude compile
translation, particularly if used in conjunction with a simulator 30}

Recent programming languége research has yielded a number of new concepts which will
aid the program development process. A number of these are incorporated into Ada. Future
languages will undoubtably encompass more of these concepts. However, at present, the con-
siderable resources being put into the Ada effort by the DoD coupled with its orientation
toward real-time embedded systems makes us believe it will be a significant factor in the
future.

4. Summary

The sections above describe three aspects of work being incorporated into an experimen-
tal robot /vision/CAD system. At the present time the distributed control of the robot, a prel-
iminary vision system based on standard SRI [31] techniques (however, trained from CAD
generated data), and grip position determination are all complete and individually working.
Integration into the complete system is expected to be accomplished by January of 1984. The
occluded part recognition system is working standalone on a VAX 11/780. It has recently
been discovered that the algorithms are amenable to parallel computation.r This will be
explored in the future as the occluded part recognition system in incorporated.

with POSITION; use POSITION; -- Make the procedures, functions
with CAD_MODEL; use CAD.MODEL; -- and data types defined in the named
with VISION; use VISION; -- packages available to create a robot
with ROBOT; use ROBOT, -- environment for the programmer.

procedure MAIN is

. N: INTEGER; : — Number in set of parts.
-- Input from terminal.
SET_OF_PARTS: PART_SET (1..N); -- Set of parts that could potentially

- appear on the conveyor.
-- Input from terminal (9).
X: PART; -- Data about the part found (10).
TARGET_LOC, PICK: FRAME; -- Coordinate frames for the part
-- and its grasp point (7).
begin CALIBRATE; ‘-- Calibrate the robot before starting (8).

SET.SPEED (FAST); -- Set robot speed fast for motion

-- to approach point (8).
X:= FIND (DECISION_TREE (SET-OF_PARTS));

-- Find and identify the part (9,10).
PICK:= PICK_APP_POINT (X.NAME, X.STABLE_POS);

- Approach point from CAD d/base (9).
TARGET_LOC:= X.LOCATION * PICK; -- Express approach point

- in world coordinates (7).
MOVE (TARGET-LOC); -- Move to approach point (8).
SET_SPEED (SLOW); -- Set robot speed slow for final

-- motion to grasp point (8).
PICK:= PICK_POINT (X. NAME, X.STABLE_POS);

-- Get grasp point from CAD database (9).
TARGET_LOC:= X. LOCATION * PICK; -- Put in world coordinates (7).

MOVE (TARGET_LOC); -- Move to grasp point (8).
CLOSE_GRIP; -- Grasp part (8).
end MAIN;

Figure 8. Outline of the Main Program Controlling the Robot.

package POSITION is

type COORD is new FLOAT;

type ANGLE is new FLOAT,

-~ COORD and ANGLE are declared "new" float|ing point types.

— This way they will not be confused with other FLOAT's.

type FRAME is private;

~ FRAME is the representation of one coordinate system in terms of another.

function BUILD_FRAME(X,Y,Z: in COORD; R,3,T: in ANGLE) return FRAME;

— Allows FRAME's to be constructed from lower level primitives. Necessary

— since FRAME is private and its structure cannot be directly accessed.

function "*' (A, B: in FRAME) return FRAME;

— This function expresses the coordinate frame represented by B in

— terms of the one in which A is represented, i.e., it is a transformation.
private

type FRAME is array (1..4,1..4) of FLOAT; — A 4X4 homogeneous transformation.
end POSITION

Figure 7. Package Specification for Coordinate Frames and Related Operations.

with POSITION; use POSITION;

package ROBOT is
SLOW: constant ;= 0.1; -- Fine motion speed.
FAST: constant .= 1.0; -- Approach speed.
subtype SPEED is FLOAT range 0.1..1.0;

-- Bound speed for safety check.
procedure CALIBRATE; -- Calibrate the robot arm prior to use.
procedure MOVE(DESTINATION: in FRAME);

-- Move to a point given by applying

-- the transform represented by FRAME.
procedure OPEN_GRIP;
procedure CLOSE_GRIP;
procedure SET_SPEED (SPD: in SPEED);

end ROBOT;

Figure B. Package Specification for ROBOT.

with POSITION: use POSITION:
package CAD_MODEL is
type PART_ID is private;
type D_INFO is private;
type DECISION_INFO is access D_INFO;
type PART_SET is array {INTEGER range <>) of PART_ID;
type STABLE_POSITION is private;
type S_POS_SET is array {(INTEGER range <>) of STABLE.POSITION:
function DECISION_TREE (S: in PART.SET) return DECISION_INFOQ;
function STABLE _POS_SET (PART_NAME: in PART.ID) return S_POS_SET;
function PICK_POINT (PART_NAME: in PART_ID;
STABLE_POS: in STABLE_POSITION) return FRAME;
function PICK_APP_POINT (PART.NAME: in PART.ID;
STABLE _POS: in STABLE_POSITION) return FRAME;
private
type PART_ID is new STRING (1..8);
—Eight character part identifier
type STABLE_POSITION is new INTEGER;
--Index of stable positions.
type D_INFO is -- Node in binary tree.
record
VALUE: FLOAT;
LLINK: DECISION_INFO;
RLINK: DECISION_INFO;
end record;
end CAD_MODEL;

Figure 9. Package Specification for CAD_MODEL

with CAD_MODEL; use CAD_MODEL;
package VISION is
type PART is
record
NAME: PART_ID;
LOCATION: FRAME;
STABLE_POS: STABLE_POSITION;
end record;
function FIND (D_T: in DECISION_INFO) return PART;
-- Identifies the part, its location and the position it is in.
end VISION;

Figure 10. Package Specification for VISION.

(1]
(2]

(3]

(5]
(8]

(7]

(9]

(10]
[11]
[12]
(13]
[14]
[15]

(18]

(17]

(18]

[19]

(20]

References

R. P. Paul, "Modelling, trajectory calculation, and servoing of a computer controlled
arm,” AIM 177, Artificial Intelligence Lab., Stanford Univ. , Nov. 1972,

R. H. Taylor, "The synthesis of manipulator control programs from task-level specifica-
tions," AIM-282, Artificial Intelligence Lab., Stanford Univ., 19786.

C. Laugier and J. Pertin, Automatic grasping: a cuse study in accessibility analysis.
Bazga, Italy : NATO-Advanced Studies Institute on Robotics & Artificial Intelligence,
June 1983.

P. Brou, /mplementation of high-level commands for Tobots (M.S. Thesis). Dept. of
Electrical Engrg. and Computer Science, MIT, Dec. 1980.

H. Asada, Studies in prehension and handling by robot hands with elastic Singer. Univ.
of Kyoto, 1979.

J. Wolter, T. C. Woo, and R. A. Volz, "Gripping position for 3D objects,” Proc. of the 1982
Meeating of the Industrial Applications Soc. , pp. 1309-1314, Oct. 1982.

C. Laugier, "'Industrial robots," Proc. 11th Int'l Symp. , Oct. 1981.

M. T. Mason, Manipulator grasping and pushing operations (Ph.D. Thesis). Dept. of
Electrical Engrg. and Computer Science, MIT, 1982.

T. Lozano-Perez, "'The design of a mechanical assembly system,” Al TR 397, Artificial
Intelligence Lab., MIT, 1978.

T. Lozano-Perez, ''Automatic planning of manipulator transfer movements,”’ JEEE
Trans. on Systems, Man, and Cybernetics, vol. SMC-11, no. 10, Oct. 1981.

M. Wingham, Planning how to grasp objects in a cluttered environment (M. Ph. Thesis).
Univ. of Edinburgh, 1977.

W. A. Perkins, A model-based language for manipulator control,” /EEE Trans. on Com-
puters 27, pp. 126-143, 1978.

J. Sklansky, "On the Hough technique for curve detection,”” [EEE Trans. on Compauters,
vol. C-27, no. 10, pp. 923-926, Oct. 1978,

D. H. Ballard, "'Generalizing the Hough transform to detect arbitrary shapes " Pattern
Recognition, vol. 13, no. 2, pp. 111-122, 1981.

K. G. Shin, Comparative study of robot programming languages. Center for Research in
Integrated Manufacturing, Univ. of Michigan, (to appear) 1983.

W. A. Gruver, B. 1. Soroka, J. J. Craig, and T. L. Turner, ""Evaluation of commercially
available robot programming languages,” Proc. of the 19th Int'l Symp. on ndustrial
Robots & Robots 7, pp. 12-58 to 12-66, April 1983.

Ada Programming Language (ANSI/MIL-STD-18154). Washington, D.C. 20301 Ada Joint
Programming Office, Dept. of Defense, OUSD (R&D), Jan. 1983.

M. A, Wesley, "Construction and use of geometric models," Computer Aided Design,
1980.

A. Rosenfeld and A. C. Kak, in Digital Picture FProcessing. New York, NY: Academic
Press, 1976.

H. G. Barrow and R. J. Popplestone, 'Relational descriptions in picture processing,”

(21]

(22]

(23]

(24]

(25]

(28]

[27]

(28]

(28]

(30]
(81]

Machine Intelligence, vol. 8, pp. 377-396.
C. L. Lawson and R. J. Hanson, in Solving Least Squares Problems Prentice-Hall, Inc. ,
1974,

T. Rentsch, "Object oriented programming,” Sigplan Notices, vol. 17, no. 9, pp. 51-57,
Sept. 1982,

E. I Organick, A progranmimer’s view of the Intel 432 system. Santa Clara, CA 95051:
Intel Corp., 1982.

M. Shaw, "'The impact of abstraction concerns on modern programming languages,”
Proc. of the IEEE, vol. 88, no. 9, pp. 1119-1130, Sep. 1980.

N. Wirth, in Programming in Modula-2 (2nd ed.). Berlin, Germany: Springer-Verlag .
1982. .

P. B. Hansen, in The Architecture of Concurrent Programs. Englewood Cliffs, NJ:
Prentice-Hall, 1977.

R. Milner, "'Theory of type polymorphism in programining,” Jour.. of Computers and
Sysiem Sciences, vol. 17, pp. 348-375, 1978.

D. 1. Good and W. D. Young, ""Generics and verification in Ada," Sigplan Notices, vol. 15,
pp. 123-127, Nov. 1980.

E. 3. Roberts, A. Evans, Jr., C. R. Morgan, and E. M. Clarke, "'Task management in Ada - a
critical evaluation for real-time muiltiprocessors,” Software - Practice and Experience,
vol. 11, pp. 1019-1061, 1981,

3. J. Kretch, ""CAD/CAM for robotics;" Ro&ot 7 Conf., March 1982.

G. J. Gleason, ''Vision module development,’ Ninth Report, NSF Grants APR75-13074 and
DARTB-27128, SRI Projects 4391 and B4B7, Stanford Research Institute, Menlo Park, CA,
pp. 9-16, Aug. 1979.

