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Unifying Robot Arm Control

TREVOR N. MUDGE, seNior MEMBER, IEEE, AND JERRY L. TURNEY

Abstract—A unified approach to three stages of robot arm control is
presented based on the Newton-Euler equations of motion. The stages
unified are resolved motion, gross motion, and fine motion. Apart from
the conceptual advantage, this unification can require less computation
than-if the three stages are computed separately. In particular, fewer
computations are required for arms with no more than about a dozen
joints (a number unlikely to be exceeded for most arms, at least in the
near future). Computation times are estimated assuming the computing
elements are fabricated from current (very large-scale integrated circuit)
(VLSIC) technology. It is also shown how friction can be incorporated
into the unified approach. The concept of “‘pseudo-force’’ is introduced
to relate fine motion to the Newton-Euler equations.

INTRODUCTION

N WHAT FOLLOWS, the term ‘‘robot arm’’ or “‘arm’’

will refer to a chain of links open on one end and animated
by ‘‘actuators’’ (aterm which refers to the hydraulic valves.or
electric motors responsible for driving the arm) located at each
joint between links. A robot arm is often referred to as a
manipulator, but the term arm is used here for brevity. The
last link in the open chain will be referred to as the “‘*hand”
here, although ‘‘end effector’’ is also common terminology.
The-first link of the chain which is generally- immobile and
fixed in space will be referred to as the ‘‘base’” of the arm.
Joints are assumed to be rotational in order to avoid unduly
complicating the discussion. Prismatic joints can be dealt with
without any conceptual changes. Fig. 1 illustrates a typical
robot arm (Unimate’s PUMA 600).

Controlling a robot arm is-a complex task that can be
conveniently divided into the following four stages.

1) Trajectory Planning: In this stage the arm’s path
through space is:determined. Depending on- the application,
this may involve obstacle avoidance strategies.

2) Resolved Motion: In this stage the arm’s trajectory is
resolved into the component joint motions.

3) Gross Motion: In this stage torques and forces are
derived that are required by the joint actuators to generate the
joint motions computed in stage 2. Typically, these torques
and forces form the basis of a control law that incorporates
some type of negative feedback.

4) Fine Motion: In this stage torques and forces are
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Fig. 1. PUMA 600 showing joint angles.

derived that are required to generate the incremental joint
motions necessary once the arm is close to its goal.

In this paper a unified solution to stages 2, 3, and 4 will be
presented. Several algorithms, notably the resolved motion
method of Whitney {1], the Newton-Euler (N-E) equations of
motion first developed by Walker and Luh [2]-[6], and the
static forces of Paul [7] are all merged into one unified
algorithm, In-addition, it is also shown how friction can be
incorporated into this unified approach. The trajectory plan-
ning stage will not be covered in this paper. Representative
schemes for trajectory planning are those of Paul [8] or the
collision avoidance method of Perez and Wesley [9].

The purpose of control stages 2, 3, and 4 is to maintain the
motion of the arm along the trajectory derived in.stage 1 by
applying corrective compensation through the actuators to
adjust for any deviations of the arm from the desired arm
trajectory. If a ‘‘perfect physical’’ model for the arm could be
defined and if the model could be *‘solved’’ rapidly enough to
output control signals at a rate compatible with the desired arm
motion, there would. be no need for feedback in the control
strategy. A perfect physical model would, however, have to be
one which accounted for, among other things, gravitational
and inertial loading, friction, link flex, not to mention all
possible external perturbances. Clearly, such a model requires
an impossible amount of computation. Indeed in view of the
need to include external perturbances, just defining the model
is impossible.
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Since a complete model is impossible, the question is then,
how sophisticated should the model be that is incorporated into
the control strategy, and to what extent should the feedback
compensate for errors in modeling. The appeal of most
presently used control methods is that they ignore almost all
the physical details of the arm! and still obtain reasonable
control. However, rigid links are required, and lighter and
more flexible links cannot be used because of the impossibility
of determining how they would behave when most of the arm’s
physical properties are ignored. Another penalty one pays for
such ignorance of detail is the need for large actuators to
“force’” the arm when it is least willing to move along the
desired path, especially when large accelerations are required.
A disadvantage of using large actuators to force the arm in its
motion is made worse by the fact that employment of large
actuators in the links near the hand result in an exponential
increase in actuator size as one moves toward the base: the
lower actuators must be able to move those in the upper links.
This problem can be circumvented to some extent by placing
the actuators in the base; however, the complexity of the
drives required by this solution are a limitation. A further
penalty for ignorance of detail is lack of speed. In order to
maintain control of an arm by methods that ignore significant
physical properties, it is necessary to operate at much slower
rates than physically possible. Consequently, present control
~nthods have resuited in the development of relatively slow
robots that are unable to handle payloads of more than a few
percent of their mass. For example, the PUMA 600 is limited
to a payload of 5 Ib and a tip speed of 1 m/s.

Limitations are also found in present solutions of the fine
motion stage of arm control. For example, inserting a peg into
a hole is a characteristic task required of the arm. Chamfering
the peg to aid insertion is the most primitive approach to
solving this problem. The remote compliance control tech-
nigue [11}, {12] is more sophisticated; it, in essence, places
flex in the hand. It has had considerable success. However; to
solve the general problem of fine motion during delicate
operations of the hand, an active scheme is needed that
explicitly models the arm in this stage of control [13}.

In our opinion, one improvement to the present shortcom-
ings of arm control is to include more of the physics of the arm
in the model than is presently used. The physics of the arm is
well understood [21-16], [14]. A more accurate model in the
control loop offers greater versatility than the presently used
control techniques as we shall show in the next section. One
can determine the arm’s gravitional loading, inertial loading,
and friction, and can also model arm flex, allowing the use of
much lighter and more efficient arm designs. However, the
technique goes further. Inputs from hand sensors (devices
which measure external forces and moments exerted on the
hand by the external world) are easily incorporated into the
model. This incorporation allows the model to adjust for the
gravitational and inertial loading of the payload and to react to

! For example, the PUMA 600 arm control is splif into six independent
subsystems {one per joint). No attempt is made to incorporate explicitly the
effects of dynamic coupling between the joints. This and other effects must be
compensated for by using negative feedback in the form of positional plus
derivative control in each subsystem [10].
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external forces and moments. As an offshoot of the preceding,
during the fine motion stage of control, false or ‘‘pseudo-
forces’” and ‘‘pseudo-moments’’ can be artificially generated
and summed into the sensor inputs from the hand. The arm
will exert forces or moments to compensate for these pseudo-
force and -moment inputs. Thus the arm can be made to exert
any desired force and moment vectors by incorporating
oppositely directed pseudo-force and -moment vectors into the
hand inputs [6].

If a more accurate model of the arm is used, the amount of
computation associated with controlling the arm can be a
serious obstacle to meeting real-time constraints. However,
we have shown that current VLSIC technology will allow the
fabrication of cost-effective special-purpose processors that
can overcome this difficulty. In particular, we have shown that
if the control strategy is based on a model employing the N-E
equations of motion, real-time constraints can easily be met
assuming control stages 1 and 2 are computed off-line [10],
{15]. The assumptions about stages 1 and 2 can be restrictive
in those applications where the arm does not make repetitive
motions because each new motion will, in general, require a
new trajectory. Thus the stages of control will have to be
completely recomputed for each motion. Unless stages 1 and 2
can be computed ‘‘onthe fly,”” a set of precomputed solutions
will have to be stored. If the number of possible trajectories is
large, this approach is impractical.' As will be shown, unifying
stages 24 results'in a need for fewer computations for arms
with no more than about a dozen joints (a number unlikely to
be exceeded for most arms, at least in the near future). This
allows stage 2 to-be calculated on the fly, thus reducing the
restrictions on applications that do not make repetitive
motions.

The next section introduces some necessary notation before
explaining how stages 2-4 of robot arm control can be unified
using the N-E equations. The final section adds some
conclusions and comments about future work.

UNIFYING ROBOT ARM CONTROL

Notation

The paths along which the 7 joints of the arm of # links
move during the arm’s motion can be collected into a set of
paths known as the arm trajectories. For arms with only rotary
joints, such as the PUMA 600, the trajectories can be specified
with respect the relative angles between the joints. These
trajectories will be referred to as the relative joint angle (RJA)
trajectories, and will be represented by a time-dependent
vector of angles between joints @ (¢). For an n-jointed arm this
vector will have n components. See Fig. | for an illustration of
these angles for the PUMA arm. Discrete time points along the
trajectories into which the trajectories may be divided for
control purposes are called ‘‘set points,”” e.g., at time f=17
the set point is the vector of # values given by 8 (7). The first
and second time derivatives of the RJA frajectories are the
RIJA velocities, & (¢) and RJA accelerations & (¢), respectively.

Each link 7 of the arm has its own coordinate frame fixed in
the link and referred to as the jth frame. The coordinate system
of each link is located at the end farthest from the base (see
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Fig. 2.

Fig. 2). A unit vector along the z axis of the ith frame and
represented in the ith frame is denoted by z;, similarly for unit
vectors along the x and y axes. An alternative representation
will sometimes be used in which the unit vector along the z
axis of the /th frame is denoted by (1,),, similarly for the x and y
axes. By convention, joint / is at the i — Ith origin and §; is
taken about z;_,.

Matrices and tensors are represented in upper case type,
while vectors are in boldface type. Unless otherwise stared
vectors will be treated as column vectors. Greek indices are
used to denote components of a vector or matrix, and the
‘‘summation convention’’ is employed, i.e. repeated indices
are assumed summed over all three coordinates. For example,
the inner product between vectors ¢ and b can be written in
two ways: in matrix notation as &'b and in terms of the vector
components using the summation convention a.b.(= a.b, +
@b, + ab).

R/ represents a three by three rotation matrix which maps a
vector from its representation in the jth link coordinate frame
to its equivalent in the jth coordinate frame. Some well-known
properties of rotation matrices represented in this notation are

(R =(R/)'=R/. 1

A superscript ¢ denotes a transpose of the matrix.
A rotation between coordinate frames / and j can be written
as a chain product of rotations between successive frames:

Rj:'xR!j+3RjHj+2 Rg+1i. (2)

In general, with the inverse defined by (1) and R, defined as
the identity, one obtains the relation R*R,’ = R/ for all
integer values of k.

Vectors rotated into the base (i = 0) frame will be starred in
order to shorten and clarify notation. For example, z,* is
equivalent to Ry'z;. Matrices are represented in the base frame
will be similarly starred.

Rotations operate on a vector product in the following
fashion:

Rji(b;x ¢y =R,/'b;x R/e; ©)

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. [A-20,NO.6, NOVEMBER/DECEMBER 1984

Coordinated frames.

where b; and ¢; are any vectors—a vector product transforms
like a vector under rotation.

Finally, we define the QF matrices. The QF matrices have
the property that 0% = x; X ¢, 0% = y; X ¢, and Q%; =
z; X ¢;. The action of a vector cross product is contained in
these matrices. This notation is borrowed from guantum
mechanics. The QF matrices are

00 0 00 1
=10 0 -1 o= 00 0
o1 0 ~1.0 0
0 -1 0
Q=1 00 )
0 00

The Newton-Euler Equations

The N-E equations represent a fairly detailed model of the
dynamics of a robot arm. However, other formulations
provide similar detail. A comparison was made between the
N-E set of equations and several other arm formulations in
[5], [6]. The N-E set was found to be equivalent but
computationally much more efficient than any of the other
formulations [7], [16], [17]. The equivalence of the N-E
formulation to the other formulation is to be expected since all
physical assumptions are the same. The N-E equations are
listed in the form presented in [6]. This form is slightly more
computationally efficient than the original form of Walker and
Luh [2]:

wy=0, ay=0, a;=9.8 m/s? (%)
@j=R/ W +3z;_ ) 6
o =R/ e+ w1 X213+ 81z 1) U]
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A= (@507 + ()0 (@), 0" ®)
a;=Ari+R/a;_, 9
a;=AF+r)+ R/ 'a;_, (10
fi=ma;+ R/ fiy (11
n=Tr {AK(QM) }up), + mF+r)Xa+r xR/,
+R/'ny (12)
=Rz )'m; (13)
cos &; =—cos ¢; sin sin ¢; sin §;
R, \'= |sin 8, cos ¢; cos §; —sin ¢; cos §; | (14)
0 sin ¢; cos @;
Bl Pl P
2
qu 0 IQXX
0

Several ideas can be gleaned from these equations without
becoming intimidated by their apparent complexity. We have
assumed in presenting the foregoing equations that we are
dealing with an arm having only rotary joints such as the
PUMA of Fig. 1. The 8;, 8;, and §; are components of the RJA
trajectories, the RJA velocities, and the RJA accelerations,
respectively (see earlier definition), i.e., 04¢) is the trajectory
for a single joint.

Equation (6) develops w;, the angular velocity of the ith joint
as seen in its own frame. Notice that this equation is recursive
in that it contains terms from the next lower joint which are
rotated by rotation matrix R;~! from the lower [ — lth joint
into the ith joint location. This recursion just reflects the
simple fact that the angular velocities add together as one
proceeds up the arm from the base to the hand. The same can
also be said of the following equations: (7), which defines the
angular acceleration a; of the ith joint; (9), which defines the
linear acceleration a; of the ith joint; and (10), which defines
the center of mass acceleration d; of the ith link. They are all
recursive and represent the kinematics of the arm; i.e., they
define the geometrical motion of the arm rather than the actual
forces and moments needed for such motion. The matrix A; in
(8) is an acceleration type matrix and is a combination of w;
and «;. It contains Coriolis and centrifugal accelerations. The
term r; is a distance vector from the ith joint to the / + Ith joint
represented in the ith frame (alternatively, from the i — 1th
origin to the ith origin, see Fig. 3).

Once the kinematics of the arm is calculated, the motion of
the arm is defined, and the forces f; and moments n; needed to
cause the required motion can then be determined. This is
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accomplished in (11) and (12) which represent the dynamics of
the arm. These equations are recursive going down:the arm.
This reflects the fact that forces and moments: felt by the 7 +
Ith link. are passed down to the .ith link. When i = n,
indicating the uppermost, or hand,: link, then f, and a,
represent forces and moments acting on the hand. If the hand
is equipped with hand, wrist, or joint sensors [18] the forces
and moments acting on the hand can be determined and
incorporated into the model by setting f, and n, to the values
determined by the sensors. Notice how naturally forces and
moments that the hand ‘‘feels’” are incorporated into a model
based on the N-E equations of motion.

The K; matrix is an inertial matrix, and m; is the mass of the
ith link. The torque 7; needed by ith actuator to achieve the
desired motion is obtained by projecting the component of the
moment #; onto the ith actuator axis R/~ 1z;_,. Recall z; | is
the axis of the ith actuator represented in the i — Ith frame.
The application of R/~ rotates it into the ith frame.

In summary, the N-E equations provide a method for
calculating the kinematics (angular and linear velocities and
accelerations) of the arm using the RJA trajectories, the RIA
velocities, and the RJA accelerations. The computation
proceeds from the base to the hand. Once the kinematics have
been determined, the N-E equations provide a method by
which the dynmaics of the arm (forces and moments) can be
computed. This part of the computation proceeds from the
hand down. The forces and moments felt by the hand may be
incorporated through all the joints down to the base. Fig. 4
illustrates how the computations proceed.
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Fig. 4. Arm kinematics and dynamics.

Resolved Motion

Once the trajectory of the hand has been determined to
avoid collisions and actuator limitations (trajectory planning
stage), it becomes necessary to resolve this hand trajectory
into the RIA trajectories in order to use the N-E equations,
which are based on the RJA trajectories, to calculate the
actuator torques needed to drive the arm. The term “‘resolved
motion’’ was coined by Whitney when he originally proposed
the technique [1]. Our approach determines the RJA accelera-
tions & given the hand link’s acceleration trajectory a,.
Whitney originally proposed resolving velocities. Clearly, the
two methods are equivalent provided appropriate initial
conditions are given; however, resolving velocities does not fit
in with the N-E equations as conveniently.

The first step in resolved motion is to determine how each
infinitesimal joint motion (accelerations in our case) affects the
infinitesimal motion of the hand. A linear mapping exists
between the infinitesimal joint motion space and the infinitesi-
mal hand motion space. This mapping is defined by a
Jacobian. The Jacobian can be calculated explicitly or, as we
shall show, can be “‘strobed”” out of the N-E equations. The
basic idea behind strobing results from the following observa-
tion: the ratios of infinitesimal hand accelerations to infinitesi-
mal joint accelerations are the elements of the Jacobian matrix.
Therefore, if the nonlinear components of the accelerations are
deleted from the N-E equations to linearize them, and if one of
the RJA accelerations is set to one and the rest are set to zero,
the result will be a column of the Jacobian. (Once the
equations have been linearized, we are no longer restricted to
infinitesimal RJA accelerations and can use unit vectors.) Thus
successive columns of the Jacobian can be strobed out of the
N-E equations with unit RJA acceleration vectors. The
resulting linear equations relating the linearized hand accelera-
tion to the RJA accelerations can be solved to yield the RJA
accelerations. Note that a unique solution can only be
guaranteed if n = 6. Unique solutions for arms with more
joints require further constraints.

First we will develop the linear relation beiween the
hand’s acceleration and the RJA accelerations using the N-E
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equations. Equations (6), (7), and (9) are given now in an
equivalent but modified form for discussion:

@ =R/ Nw;_+8:z; 1) (16)
ai:‘RiiMl(C‘ivl+“’i—l><zi«léi+5izi~l) )
ai:ng(wixri)+a,<><r,t+R,»i‘la,;1. (18)

The hand linear and angular accelerations are specified in
Cartesian coordinates in the base (zero frame) during the
trajectory planning stage; however, in order to employ (16)-
(18), these must be converted to the hand or nth frame. This
conversion takes 18n multiplications and 12n additions for
both the a, and «, vector using a rotation on each vector at
each link.

For convenience in the discussion that follows, the con-
verted linear and angular hand acceleration vectors, a, and
a,, are concatenated into six vector ac, = [§]. At any
time along the hand’s trajectory, one finds that the hand’s
angular and linear acceleration can be written in terms of
linear and nonlinear contributions that are functions of 8 and
3. The terms involving @, in (17) and (18) represent nonlinear
Coriolis and centrifugal accelerations. Omitting these terms,
we obtain the linear relation

ac, =D a9

where D is an n by n *‘distance’” matrix. This is the linear
relation between the hand’s acceleration and the joint angular
acceleration promised earlier. Now an input unit vector &,
where all components are zerc except for one—for example,

3:(5h 523 8.33 T, 36)13(1’ Oa Oy Ty {))’ (20)

can be used to strobe out columns of the D matrix from the
linearized N-E equations.

We will now show that the D matrix, when represented in
the base frame (D*), is equivalent to Whitney’s Jacobian J [1],
confirming our assertion that the foregoing procedure is the
same as resolved motion.

Theorem: D* = J where

* * %k
J= [ L0 4 n-1 . @21
zo*xpofé* zz*xplﬂ* PRV zn~f$><prz—vln*
and
7B (T A S O (22)
(see Fig. 3 for an illustration of p;®%).
Proof: The linear part of a,'™ from (19) is
"= R gy Byt ) (23)
which, when expanded by recursion, yields
2 R, 'z;10;.
i=0
Applying a rotation into the base frame, Ry”, results in
0% = R, " = E Ryi=iz,_ 131‘: 2 zi 1*51'- (24)
j=0 i=0
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From (18) the linear part of @, using recursive expansion is
an]in — anlin X Iy + Rnn‘ l(an‘ 1lin X Py 1)
+Rn"'anqn‘Z(an-}“nxrn—l)"'"'. (25)

Combining rotation matrices with (5) and distributing the
rotation across the cross product with (7), one finds

anlin: anlinx rn+Rnn~lan‘llin ann— lrn‘]
+Rnn‘2an~2]in><Rn”‘2rn—2+ cee
Now expanding a,"™ using (23) and gathering terms of the
same d; gives

anﬁn:Rn"‘lznvl ><r,,8,,+R,,”‘zz,,_2

x(rn+Rn"‘1rn~l)5nvl' o

=3 (R, 1210, % > R,ry).
=0

me=i

Applying a rotation into the base frame, R,", to both sides
yields

n n
an“n*=R0”an“n:E (Roi'lzi’lx E Romfm5m> .

i=0 m=i-1

From the foregoing definition of p;_"*, this is

n
a, "= 7 ¥ X pi "
=0

(26)

Combining (24) and (26) by concatenating the a,,* and a,,* into
ac,*,

f
> 2%,
i=0

@ *
we | ¥ | o
act = [a ] .
" E Zi ¥ X Ppi*9
=0

J,
- zO* zl* e anI*
X P ZuoFXPYE T X P
3,
Rotating both sides of (19) into the base frame allows one to
conclude that D* = J. L

Once D has been determined through the strobing process,
the RJA trajectory can be calculated. Equation (19), however,
relates the RJA trajectory to the /inearized hand accelerations.
The precalculated hand accelerations can be linearized by
subtracting out the nonlinear Coriolis and centrifugal terms.
These nonlinear terms can be generated recursively using d; as
mputs:

"0 = R o " @y X 2 18)) (28)

nonlin

ainonlin = @; X {19; X )+ ainonlin Xri+ R,’i“ lai. i (29)

This vector can be subtracted from ac,, (the precalculated hand

1559

accelerations) to obtain a relation linear in 8:

ac, —ac,"™"n = qc, "= D§. 30)

Now, using Gaussian elimination, one can solve for .

The resolved motion stage requires the following computa-
tions. Determining ac,™"" takes 44n multiplications and 39 n
additions. It takes 24 multiplications and 19 additions to
determine the e;"* and @;" at each joint. In strobing the ith
joint the calculations proceed from the ith joint to the hand.
This process of strobing results in (24n(n + 1))/2 multiplica-
tions and (19n(n + 1))/2 additions. See Table I for a
breakdown. As noted (30) can be solved for é(t) using
Gaussian elimination. Gaussian elimination takes (n3/3) +
(n?/2) — (5n/6) multiplications and (n3/3) — (n/3) additions
for the elimination and (#2/2) + (n/2) multiplications and (n?/
2) — (n/2) additions during the back solving. The D matrix
becomes singular when the arm is asked to execute impossible
motion, such as overreaching. D also becomes singular when
two joints are aligned in such a way that either joint could
make the desired contribution to the hand’s ac, six vector. In
the case of the first type of singularity, the arm trajectory
could be constrained to its legal bounds in the trajectory
planning phase. In the case of the second type of singularity, a
policy might be established whereby the joint closer to the base
is allowed to perform the needed motion, while the joint closer
to the hand is maintained at its previous value of velocity and
acceleration during the backsolving process. This prevents any
breakdown in the solution even though a singularity may exist
in D. A complexity analysis for the resolved motion is given in
Table 1.

Applying the results of Table I to the PUMA of Fig. 1 yields
a computation count for resolved motion of 982 multiplica-
tions and 790 additions (n = 6). Closer inspection reveals that
many of these computations are unnecessary because of the
simple form of the arm vectors r;. The net result is that the
computation count can be reduced to about a third of that
predicted by the complexity analysis, i.e., about 330 multipli-
cations and 270 additions. If this computation is mapped onto
the single chip processor discussed in [10], [15], the computa-
tion time per set point works out to about 205 us.

Gross Motion

In the process of determining the RJA accelerations 3, the
kinematics of the N-E equations are essentially determined.
The w,, the o;""™ and the @;""" are calculated, and the o; and
a; can be determined with relatively few steps. The o;"™ and
a;™ can be determined from partial terms used in finding the D
matrix. To be precise, it requires 3n(n + 1) multiplications
and 3n? + 9n additions to compute the «a;, 4;, and a;.

The next step is to determine the dynamics of the arm using
(10)-(15). The torques 7; obtained from (13) are the torques
needed to move the arm along the desired trajectory. The
computational complexity of this calculation is given in Table
II.

Friction can be modeled in the standard way as Coulombic
static friction and Coulombic dynamic friction where the
frictional moment is proportional to the force normal to the
axis of the actuator, i.e., 7%= g ;7™ and when
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TABLE 1
COMPLEXITY ANALYSIS FOR RESOLVED MOTION
Terms multiplications additions
ac, converted to hand frame 1i8n i2n
©; 9n n
o Ponlie 11n 8n
Ai nonlin 6n 9n
Arn+Rla_, 18n 15n
subtotal from ac, "onlin 44n 39n
aih" O r21+1} 7n§g+l)
uilmx - Bn g«ﬂ) 3n r21+1)
a;" x i+ R e, M%‘LQ Mgi—i)-
¢ 5
subtotal for D ?ﬁlzn—tll _i?_n_(gn_til
s 2 S
Forward solving %- + EZ_ ~§62 % ~~2—
. ¥ n p* n
Backsolving 5 + 5 EY
s 5 s P
n’ 2, 221 D7 opts 178
Total 3 +13n°+ 30 3 +10n%+ n

TABLE I
COMPLEXITY ANALYSIS FOR GROSS MOTION
N-F terms multiplications additions
8 2n 4n
@y, 0, Ay, 8 3n{n+1) an?+0n
;8 12n 9n
fi 9{n-1) 9(n-1)
Tr (AKX én 3n
m{r+E) X & 6n 3n
% RV 15n 9n
Rl 9n 6n
add n parts 0 15n
friction 2n 2n
Total 3n%+841~9 3n*+69n-9

motion starts 7, = pg..... £ In addition, viscous friction
can be included where the force is proportional to the velocity,
7,V = 75,-. In-all cases, the N-E formulation provides- the
force f; and the moment n; applied to the actuator i, along with
the ‘angular velocity ; and the angular acceleration §;. Thus
models depending on these variables for Coulombic and
viscous friction (such as the ones given earlier) can easily be
employed. Even if friction is highly nonlinear and does riot fit
any model, lookup tables containing friction forces for various
forces, moments and accelerations can be used. The tables
may be experimentally determined prior to arm assembly.

In the gross motion stage the N-E equations must incorpo-
rate a control loop to compensate for the shortcomings of the
model (see earlier discussion). A possible control strategy is
explained later. It is adapted from the one proposed by Lee
et al. [19].

The Lagrangian equations [14}, a computationally ineffi-
cient alternative to the N-E equations, are useful in that they
reveal a relation between the actuator torques 7 (represented
here as an n-vector) and the RJA trajectories 8, velocities 4,
and accelerations 9:

7=M(@)3 + C@, 3)+ G(d). 31

These terms are implicitly calculated in the N-E algorithm.
For discussion  purposes, assume that C, the nonlinear
centrifugal and Coriolis terms, and G, the nonlinear gravita-
tional terms, can be calculated close to their true values. Then
(31) can be linearized by subtracting C and G from 7 to obtain
.riin.

7.5 = M(d,)d,.

The subscript g refers to the actual or sensed values of the RIA
trajectories, wvelocities, and accelerations. In the case of
torque, it refers to the net value. The subscript d will refer to
the desired ‘or calculated values.

If when one inserts the resolved RJA trajectories values into
the N-E algorithm, one adjusts 8, by adding in sensor
measured terms

0, V=8,+k,(3,~8,)+k,(3,~8,)=8,+ k.0, + k,a., (33)

feedback is introduced. The e subscript represents error,
indicating in this case, that RJA velocity and positional error
are fed back. ~

With the adjusted 8, the Newton-Euler algorithm gives a
relation:

7,0 =M(@3,)@,+ k,8,+ k,d,).

(32)

(34

The value of the torque at the actuators 7, is an approximation
to the desired, or calculated, torque. Subtracting (32) from
(34), one obtains

74— 7,0 = M3,)(, + k.9, + k,d,) 3%

a system-of damped harmonic equations with zero steady-state
error. The.coefficient k, must be chosen large enough 1o
achieve the. *‘stiffness’’ necessary for precise motion but not
too large to promote instability. The coefficient k, must be
chosen to produce a damped response. Wu and Paul {18] have
shown that k, should not be taken as constant but rather £, is
inertial load dependent and hence is 8 dependent. Rather than
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calculate k,, tables could be provided to look up k, values. The
tables would not be excessively large since the load varies little
over wide angles.

The complexity analysis for the gross motion stage is given
in Table II. Applying the results of Table II to the PUMA of
Fig. 1 yields a computation count for the gross motion stage
483 multiplications and 513 additions (n = 6). Again, closer
inspection reveals that many of these computations are
unnecessary because of the simple form of the arm vectors r;.
The net result is that the computation count can be reduced to
about a third of that predicted by the complexity analysis, i.e.,
about 170 multiplications and 180 additions. If this computa-
tion is mapped onto the single chip processor mentioned
earlier, the computation time per set point works out to about
120 ps. Combining this with the set point time for the resolved
motion stage gives a computation time of about 325 ps. In
other words, resolving the motion between consecutive set
points and calculating an adjusted torque to achieve that
motion requires about 1/3 ms. This compares favorably to
present controllers [10].

Fine Motion

During the terminal phase of arm motion when RJA
velocities and accelerations are small, Coriolis and centrifugal
terms need not be calculated. Inertial linear and angular
accelerations no longer need be calculated. In addition, gravity
terms may be updated less often since angles are not varying
rapidly. Assume the fractional time for gravitational updates is
¢. (Table I displays the contribution of these terms.) To
achieve the desired motion of the hand the resolved motion
part of the gross motion stage can still be used. However, it
should be applied to the hand’s linear and angular velocity
rather than the acceleration. This is what was originally
proposed by Whitney [1].

To achieve desired output moments or forces by the hand
for use in insertion and tool manipulation, pseudo-forces and -
moments can be introduced into the equations. The computer
can generate force and moment inputs to the hand which do not
acutally exist. The arm responds by compensating for these
artificially introduced forces and moments. For example,
suppose it were desirable to scribe a straight line on a sheet of
metal with a 1 N force. The trajectory can be planned so as
to move the hand with constant velocity holding the scribe
perpendicular to the metal, and the arm can be tricked into
believing a — 1 N force is pushing against it by setting f,=
Jfrana = — 1 N. The arm reacts by pushing with an extra 1 N
force in an effort to maintain its trajectory against the pseudo-
force (see Fig. 5). The advantage of the pseudo-force
technique is that it requires no extra computation and ‘‘falls
out”” of the N-E model in a natural way.

In the following the pseudo-forces and -moments concept
will be shown to be equivalent to an alternative fine motion
strategy, the static forces and moments developed in Paul [7].
Assume the arm is static and that gravity has already been
compensated for. Equations (11) and (12) can be written

fi=Ri* fisy (36)

n=rX R+ R Iy 37

TABLE 11

COMPLEXITY ANALYSIS FOR COMPLETE FINE MOTION

Terms multiplications additions
©; on n
[ ¥l gn¢ Bn¢
Ay fn 3n+6n¢
D matrix __A_Mn(;n\ jﬁ_ﬁﬁgni“z
Forward solving %S %2~ %‘ n_: v%
Backsolving %z+w D;‘%
onne) B(ne1)
mafey 12n¢ gn¢
f; 9(n~1) 8{n~-1)
Tr {AKLQY 6n 5n
m(r,ﬁﬂs x af [3std né
n 15n 24n
friction Zn 2n
Total 5‘113:&» 3662:') ~ %3+15n2+3LéOn_9
+{(2n3+%7n) ’ +{{%2+§-§n)

Fig. 5. Employing pseudo-forces to push against surface,
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Through recursion, pseudo-forces and -moments input at the
hand can be passed down to the ith coordinate frame (since the
pseudo-forces and -moments are introduced in the hand frame,

f n = f pseudo and n, = npseudo):

fi:Rinfpseudo {38)
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n=r;x Rinfpseudo'+ Rii+ lri» 1 X Rinfpseudo
+ 0 R, XRt‘"fpseudo- (39)

In terms of a matrix equation, we can express the contribution
of the force fiseudo OF moment #p.,4,, €xperienced at the hand,
to the force f; or moment n; as

j} - Rinxn Rinyn Ri”zn
n; 0 0 0

[f pseudo ]
npseudo

Pi-i"=r+ R+ R,

where p;_," is given by
42

See Fig. 3. Note that representation is in the ith frame, not in
the base frame. This is identical to the results obtained by Paul
71

The fine motion portion of the algorithm along with its
complexity analysis is detailed in Table III. Included in the
analysis is on the fly resolved motion. As before, the total
computation count is for one set point. For a PUMA arm the
number of multiplications is 415 + 225¢, and the number of
additions is 763 + 117¢. Again, simplifications allow us to
reduce these numbers to about a third, i.e., 140 + 75¢
multiplications and 260 + 39{ additions. On the processor
mentioned earlier, this requires about (140 + 40¢) us per set
point. Recall that ¢ is typically a small fraction.

CONCLUSION

A unified approach to three stages of robot arm control has
been presented. The unification is based on the N-E equations
of motion. Apart from the conceptual advantages of this
unification, there are computational savings over treating
stages 2, 3, and 4 as separate computations. In particular,
fewer computations are required for arms with no more than
about a dozen joints (a number unlikely to be exceeded for
most arms, at least in the near future). Coupled with recent
advances in VLSIC technology, this now makes it possible to
perform stages 2, 3, and 4 on the fly. In other words, current
real-time constraints (updating a set point each millisecond)
can be met even if the trajectory changes each time the arm
moves. Of course, computations for the trajectory planning
stage must still be done off-line.

In the future, extending the accuracy of the arm model
appears promising. Improving the model improves the overall
performance of the arm. The underlying philosophy we are
promoting is to employ smart sensors and computers to
improve the performance of the arm rather than relying on
highly rigid arms with precision joints driven by large
powerful motors. Trends in current technology suggest that
this philosophy will result in cheaper higher performance
robots, simply because of the dramatic cost reductions being
achieved in the VLSIC technology central to both the
production of computer chips and solid-state sensors. No such
comparable improvement in technologies associated with
other aspects of robot arm fabrication is occurring.

Pi ("X R/"x,
Rinxn
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Finally, a considerable amount of research is to be done on
trajectory planning algorithms. Once again, the dramatic cost
reductions being achieved in VLSIC technology (in particular
memory fabrication) suggests that table-lookup techniques
may play a role in meeting real-time constraints.

Pi-1"X Ry,

Pi- ("X R/"z,
Rinyn

Rinzrz

(41)
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