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Abstract

In this paper, an approach is described for recognizing and locating partially hidden objects in an image. In
the approach, templates are formed from the edge contours of the objects sought. Segments of each template
are matched to segments of the edge contours of the image. A Bayesian approach is used to decide the proba-
bility an object has been located given that matches occur.

Introduction

A problem of great practical interest in machine vision is the recognition of objects that are partially hid-
den. As an application, imagine a kit of parts dumped on a table to be used in assembly, or a bin of parts from
which a part must be extracted. In both of these cases it is likely that some of the paris will be partially hidden
from the view of the camera.

Algorithms that are appropriate for solving this problem are numerous. Among these are the following:
Duda and Hart [DuH72] used & version of the Hough transform to locate edge contours of objects in an image.
The Hough technique is essentially histograming in multidimensional parameter space. It is useful, but many
times finds false locations for objects. Perkins [Per78] looked for straight line and circular arc segments that
he referred to as "concurves” in the slope angle-arclength representation of the edge contours of an image.
With this approach he was able to locate objects thal were overlapping as long as the overlap was not excessive.
Ballard [BalB1] used a restricted form of the generalized Hough approach. He formed a template from the edge
contours of the part he wish to locate and then compared edge points of the template to edge points of the
image. He assumed that they matched if they had the same slope. Drawbacks to this algorithm are that tem-
plates have to be maiched at all angles requiring considerable computation, and many false matches occur
between the template points and the image points with the result that false locations can often be determined
for objects. Bolles and Cain [BoC82] used an approach referred to as “local feature focus” in which features
such as corners and holes were located in the image. Graphs connecting these features were formed and graphs
formed from featlures of known objects were compared to those of the image. The algorithm relied on special
features. Segen [SegB3] matched extrema in curvature in the edge contours of the image to extrema in the
contours of the templates. His algorithm was computationally simple but relied on the location and determina-
tion of curvature for a few extrema points. Turney et al [TMV83],[TMVB4  matched fixed length template con-
tour segments to image edge contour segments of the same length in a space where the slope angle of a con-
tour is parameterized by its arclength. Templates segments were weighted according to their “saliency”. The
algorithm was able to recognize objects even when they were heavily occluded, but require a large amount of
computation. Bhanu and Faugeras iBhFazl} use a relaxation approach to recognize objects. They approximated
the template and the image boundary by boundaries composed of straight line segments. The algorithm was
computationally intensive.

In [TMV83],[TMVB4] emphasis was placed on the context in which an object is found. In industrial applica-
tions one generally knows the number and exact shape of the objects that are to appear in a scene, and it is
advantageous to use this information to distinguish objects. This paper presents preliminary resulls from an
algorithm that also uses this contextual information.

Bayesian approach

Before describing the algorithm itself, consider the following situation. Assume thal an edge contour of an
object appears in an image with its location and orientation about the origin as in Fig. 1a. In the terms of signal
detection theory one might say that this contour represents a signal, S¥, which has been sent to the camera.
Any other orientation or shift of this contour or any contour of another object that might appear in the image
would represent a different signal, S*, sent to the camera. Assume that F in Fig. 1b is the only portion of S°
that is seen or received by the camera due to occlusion, noise or bad lighting. The question of interest is, "What
is the probability that S°was sent given that R is received?” Denote this conditional probability by P( S° | R }.
From Bayes rule this can be rewritten as:

o _ _P(rR1S5°)P(S%
P(s iR)-zP(Rts")P(S") (1)

Note that the sum in the denominator is over all possible signals that might have been sent. Assume that R is
composed of two fixed length nonoverlapping segments, 7, and r,, as shown in Fig. 1b. The reason for this res-
tricted assumptlion will become obviocus later. It will be assumed that under the condition that a signal S* was
sent the reception of r; is independent of the receplion of r,. It will alsc be assumed that the reception of
these segments depends only on the segments of the signals S* that correspond to the r;. Call these segments
s}, using the subscript j to indicate the correspondence. Then
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(a) : (b)

Figure 1. Signal sent and signal received.

P(R|S')=P(ry|sj)P(rz|s}) (2)

And Egn. 1 becomes:
P(ry|sP)P(r2|s2)P(S°)

P(S° | R)= _ . :
( R YP(ry sy )P(rzls})P(SY) 3)

Segments s} and s} could have been sent from different objects and could have accidentally aligned to pro-
duce the received signal, 7, and 75, but since there is generally a low probability of accidental alignment it will
be assumed that s} and s} were sent from one object.

The probability P(r; | s}) can be estimated as follows: P ( r; | s}) is the probability that r; is received
given that s} was sent, which in other words is the probability that noise distorted s} intor;. One can assume a
noise modef for the image and then based on the type of edge detector employed in locating the edge contour,
one can determined a function to estimate P ( R

Even though the probabilities can be estimated it would still take a prohibitive amount of time to calculate
the terms in the denominator in the above expression; therefore, it is necessary to approximate. The numera-
tor of Eqn. 3 will generally be small unless r; and r, are simultaneously close to s? and s§. Assume that this is
the case, ie. thatr, ~s? when 7, ~ s2, and denote the resulting denominator as DJ,,

DY = LP(ryvs [ s§)P(rz3s8 [ s3)P(S%) (4)
i

Since ng is no longer a function of r; and 5, one could calculate D% ahead of time, but as a simplification
assume a further approximation. Assume that for any term in DY where s} and s} are simultaneously close to
s? and s2 respectively the term P(rys? [ s )P (rpesf | s} ) is equal to one and to zero otherwise. This
approximation can be used to overestimate the size of the D% and hence provide a lower bound on the proba-
bility. With these approximations Df; can be calculated off-line and from DY, the probability P( S° | R ) can be
estimated during run-time.

In practice because of occlusion, one does not know the segments s? and s§ that will be received as ry and
Ty and it is necessary to calculate a denominator DS, for each possible pair of segments s and s of the signal
Sﬁ The method of determining D2, for all u and v is discussed in the section on training later in this paper.

Storing the denominators requires considerable memory space. Since a segment can be centered around
each point on the contour, a large number of denominators must be caleculated and stored ahead of time. For N

possible segments taken two at a time N-1 denominators must be stored. If three segments, s,°. s2, sg

1}?8 beeg conjidered a more accurate estimate of P( S% | R )} could be obtained but at the expense of storing
N‘la N- denominators. This is why only two segments have been considered in the above development.

This Bayesian approach of estimating whether or not a signal has been sent given the reception of a pair of
Segments is used together with the malching approach to locate partially hidden objects. The matching
approach is discussed in the next section.

Matching segments

To locate an object, segments of the template edge contours are matched to segments of the image edge
contours. The approach used has been discussed in detail in [TMY83] and [TMV84], but is briefly repeated here
for completeness.
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In this approach, the template and image contours are represented in two spaces, in normal cariesian
ngace and in slope angle - arclength space, or #-s space. (Slope angle - arclength space is discussed in
[Bal82].) The template and image contours in both the ¥—s space representation and cartesian space are parti-
tioned into segments of fixed arclength.

Matching is performed in ¥—s space since it is more efficien! than matching in cartesian space. Ab-s
representation of the template segment (shown highlighted in Fig. 2) is moved along the s axis so that ils
center is aligned with the center of the image segment to which it is to be compared. The templale segment is
then shifted in the ¥ direction so that the mean ¥ value of the template segment has the same mean ¥ value as
the image segment. This ¥ shift {(see Fig 2) measures the average slope angle difference between the template
and image segments and will be relerred to as the “angle of match” The difference in ¥ is found betlween
corresponding points of the template and image segment. The sum of the squares of these differences is used to
measure the similarity of the two segments. If they are similar, they are assumed to match.

If the template and image segments match in §-s space, the match is recorded as follows: In cartesian
space a vector from the cenler of the template segment to the template centroid is determined. This vector is
is rotated by the "angle of match” and translated so that iis tail is centered at the same location as the center
of the image segment (See Fig. 3a.) The location of the head of this vector represents a potential location of the
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Figure 3. Storing a record of the match.
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centroid of the template in the image. Each pixel location in the image has an associated list. If the head of
the vector falls on a particular pixel, a record containing the identity of the template segment and the “angle of
match” is stored in the list at that pixel location (See Fig. 3b.)

Training

In the algorithm presented in this paper the denominators for the conditional probabilities of an object are
trained off-line. The template of the object to be trained is matched to templates of all of the objects (including
itself) that might appear in the image at all orientations and locations. From this matching information one can
determine the denominators of the conditional probabilities.

The object whose conditional probabilities are to be determined is termed the trainin object. As belore let
Dy, denote the denominator term for the conditional probability when r.~s0 and r,%s5 where s and s0 are
segments of the training object. The calculation proceeds as follows: The segments of the template of the train-
ing object are matched to the segments of the template of one of the objects. After matching, the list of
records at each pixel location is examined. If the list at a pixel location or the list of any nearby pixel contains
a record of a match by segment s2 and a record of a match by s at roughly the same angle of match, then D2
is incremented by 1. After all lists generated for this match have been examined they are disposed of and the
template of the training object is matched to the template of the next object generating new lists of match
records. These lists are again analyzed, and so forth unti! all other objects have matched and all possible contri-

butions to DS, have been counted.

Locating partially hidden objects

In locating an object, the segments of the template of the object are matched to the segments of the con-
tours in the image, using the approach discussed previously. When a template segment of the object matches a
image segment, a record of the match is stored in a list associated with a pixel at the location of a possible cen-
troid of the template. Then the list at that pixel and of all neighboring pixels are examined to see if there is any
previous record of a match with another template segment at the same match angle.

If such a record exits the denominator DS, is looked up in the training table using the identity of the two
template segments the one just stored, s2 and the one previously stored, s’} as indices. The proba-
bility, P( SV | r =5 r,~s0), can be calculated from D2,. If this probability is large enough an attempt is
made to fit the template to the image. If the template fits sufficiently well, the object is assumed to have been

found. If not, matching continues until the object is found.
Results

Fig. 4 shows the contours of the set of objects that were used during training.

Fig. 5 shows an example of the joint conditional probability, P{S% | r, %s,g, 7,75 ). The bullet indicates the
center of segment s,f. A vertical line is drawn from each opossibie center of s;”. The length of the line is propor-
tional to the joint conditional probability P( S° ! T, NS ,r,,Ns,,O) that one would obtain if s® were centered
about each of these possible locations. Note that since s, is a straight line segment any choice of 5.2 along the
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Figure 4. Training set.

SPIE Vol 521 intelligent Robots and Computer Vision (1984)/ 111



same straight section would yield a low conditional probability (as indicated in Fig. 5 by the vertical lines of
zero length originating from these points), since the reception of two such segments would not provide enough
information to determine which object in the training set had been sent.

In the algorithm, several objects can be searched for simultaneously. Fig. 8 shows some preliminary
results when two objects were sought. Total recognition time for both objects was 80 seconds. The objects were
located repeatedly by different pairs of segments, r, and r,. When an object was located the template was
drawn at the predicled position and orientation. No attempt was made to determine a final “best” fit for either
of the objects. Note that no false locations were determined.

Summary

In this paper it has been shown that a Bayesian approach, together with template segment matching in a
special space can be used as an effective approach to locate partially hidden objects. Efforts will be made to
improve the speed of this algorithm, and to extend the approach Lo the recognition of scaled and Lilted partially
occluded parts. Work is also underway to extend this approach to three dimensions to aid in the location of
parts from depth map information.
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Figure 5. Joint conditional probability.

Figure 6. Objects located.
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