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Memory Interference Models with Variable Connection Time

T.N. MUDGE anp HUMOUD B. AL-SADOUN

Abstract — This correspondence develops two discrete memory inter-
ference models. These models, the equivalent rate model and the Markov
chain model, provide for variable connection times between processors
and memories if these times can be characterized by a discrete random
variable X. The equivalent rate model, which is the simpler, requires only
the first moment of X, while the Markov chain model requires the first and
second moments. The models yield estimates of the bandwidth BW, the
probability of acceptance P,, and processor utilization U,. Both models
give good estimates of BW when the coefficient of variation C, of X is
small. When C, reaches 2.0 the Markov chain model still shows an error
of less than 4 percent while the equivalent rate model exhibits a 50 percent
error that, unlike the Markov chain model, continues to increase with
increase in C,. Finally, it is shown that BW drops significantly with in-
crease in C,, suggesting that processor-memory transfers should use a
fixed block size if memory conflict is to be minimized.

Index Terms —Markov chains, memory bandwidth, memory inter-
ference, multiprocessors, performance evaluation.

1. INTRODUCTION

This correspondence develops two discrete time models of the
memory interference that occurs during memory access in a multi-
processor system. These models, termed the equivalent rate (ER)
model and the Markov chain (MC) model, provide for variable
connection times between processors and memory modules if these
connection times can be characterized by a discrete random variable
X. The models assume a synchronous multiprocessor having N pro-
cessors and M memory modules. The processors share the memory
modules through an N X M crossbar interconnection network. The
whole system is synchronized with a system clock whose period is
referred to as “the system cycle.” The discrete values taken on by X
are in units of system cycles. A processor—-memory transfer typi-
cally involves an initial cycle to allow for decoding the address of
the memory module and resolving any interference followed by
subsequent (=1) data transfer cycles. To minimize the loss in useful
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accessing time due to the “setup” cycle, the average connection time
should be made as large as possible.

The literature contains a number of memory interference models
for multiprocessor systems (see [1]-[11]). In these studies system
operation is approximated by a stochastic process as follows. At the
beginning of the system cycle a processor selects a memory module
at random and makes a request to access that module with proba-
bility r (=1). If more than one request is made to the same memory
module, it will choose one at random; the other processors will retry
in the next cycle. A processor has at most one pending request
waiting for access at any time. The behavior of the processors is
considered to be independent but statistically identical. A processor
that obtains a connection to a memory module at the beginning of the
system cycle will release that module at the end of the cycle.

A model for the system described above results in a Markov chain
having an unmanageably large state space (see [1] and [4]). One of
the main themes of the work in {1]-{11] is to develop models which
avoid this complexity while maintaining reasonable agreement with
simulation results. This is done by further simplifying the assump-
tions of the system behavior. The models develop equations for the
memory bandwidth BW, the probability of acceptance P,, and in
some cases processor utilization U,. In [10] a classification has been
proposed for these models according to the approach used in their
formulation. The classes are: probabilistic models typified by the
models in [2],(3],[7]-[9],[11], and [12]; rate-adjusted proba-
bilistic models typified by the models in [5] and {6]; queueing
system models typified by the models in [4] and [7]; and steady state
flow models typified by the model in [10].

In addition to the above discrete time models, continuous time
models have been proposed. These are typified by the models in [ 13]
and {14], in which the memory—processor connection time is de-
noted by an exponentially distributed random variable and the pro-
cessor interrequest time is also denoted by an exponentially distrib-
uted random variable. Therefore, unlike the discrete time models,
these models can accommodate variable connection times provided
the times can be approximated by an exponentially distributed
random variable." However, continuous time models are usually
less accurate than discrete time models when discrete time events
are being modeled 167, [17].

II. THE SYSTEM OPERATION ASSUMPTIONS

A processor can be in any of three states: thinking, when it has no
outstanding request to memory (it might be performing local pro-
cessing); accessing, when it is connected to a memory module; and
waiting, when it has a pending memory request waiting to be ser-
viced. The memory module can be in one of two states: busy, when
it is being accessed by a processor; and idle, when it is not being
accessed. The following assumptions further characterize the opera-
tion of the system.

1) Processors’ requests for memory form independent statisti-
cally identical stochastic processes.

2) At the beginning of a system cycle a processor in the thinking
state or one that has just completed a memory access makes a request
to access a memory module with probability r.

3) If more than one processor issues a request to a particular
memory module, that memory, if idle, will choose a processor at
random to get the connection. The other processors will retry to the
same memory module in the next cycle. Requests to busy memories
will also retry to the same memory in the next cycle.

4) The requests originating from the same processor are indepen-
dent of each other. In each case a memory module will be chosen
at random from the M memory modules with equal probability, i.e.,
with probability 1/M.

'These models also considered the case, not considered here, of multiple-bus
interconnections rather than a crossbar. Until recently no simple discrete time
model existed for this [15].

0018-9340/84/1100-1033501.00 © 1984 IEEE



1034

5) The connection time, in units of system cycles, between a
processor and a memory module is determined by a discrete random
variable X, which has a probability mass function f(i), i.e., f(k) =
PriX = k].

Assumptions 1)-4) are common to all the discrete models men-
tioned earlier. Empirical evidence to support their adoption can be
found in [3]~[5} among others. Assumption 5) is the key difference
between the models mentioned earlier and those developed here;
thus, the models developed in this paper depend on the extent to
which connection times can be approximated by a random variable
X having a probability mass function f(i).

In order to derive numerical information from the memory inter-
ference models developed later, the values of M, N, r, and the first
two moments of X must be obtained through measurement or, if it
is considered satisfactory, by hypothesis. These quantities can be
regarded as the inputs to the models.

The performance measures that will be derived from our models
are: memory bandwidth BW, the probability of acceptance P.,, and
processor utilization U,. These quantities can be regarded as the
outputs of the models. The memary bandwidth is defined as the
expected number of busy memory modules seen by a random arrival
after the system reaches its steady state or, equivalently, the ex-
pected number of accessing processors seen by a random arrival
after the system reaches its steady state. The probability of accept-
ance is defined as the probability that a memory request is accepted.
Finally, processor utilization is defined as the fraction of time a
processor spends thinking or accessing a memory after the system
has reached steady state.

I11. MEMORY INTERFERENCE MODELS

A. Equivalent Rate Model (ER Model)

This model is a modification of an approach first presented in {18]
to study the behavior of multiprocessor systems in which each
processor has a private cache memory. The processor—-memory con-
nections were assumed to be a fixed number of system cycles — the
time needed to transfer one cache line. A probabilistic model
(see [10]) was used to compute BW, and an equivalent value for r
(the equivalent rate) was derived from the fixed number of system
cycles needed to transfer a line and the probability of requesting a
line transfer. In our ER model the foregoing approach is retained;
the main differences are, first, that the equivalent rate is modified
to take into account the fact that processor—memory transfers take
a variable number of system cycles and, secondly, that the proba-
bilistic model is replaced by the steady state flow model (see [10])
because it produces a smaller error.

The derivation of the equivalent rate r,, proceeds as follows.
The average connection time in units of system cycles can be
expressed by

N
X =2ifl),
i=1
i.e., the first moment of the random variable X (S is the maximum
connection time). From assumption 2) the thinking time is geo-
metrically distributed. Therefore, if T is the average thinking time,
it follows that

= 1 —r
T =

~

The equivalent rate can now be defined by
X
Feg = = =,
X+T

This is the fraction of time a processor is accessing memory as-
suming no interference. The BW can now be obtained by solving the
following two equations iteratively:
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Fig. 1.

The Markov chain for a processor {assumption 3a)].

BW = NU,r.,

a5 050 (-5

As will be shown, the ER model captures the average BW behavior
of multiprocessor systems only if the coefficient of variation® C,, is
zero. It introduces inaccuracies in those cases where there is
randomness in the connection time because it does not take into
account the second moment of the connection time. The ER model
is not appropriate for determining P, because the flow model of | 10}
that gives rise to the above equations implicitly has P, = U, =
BW /Nr.,.

B. Markov Chain Model (MC Model)

The Markov chain which models a multiprocessor system accord-
ing to the assumptions outlined in Section II has an unmanageably
large state space (see [1] and [4]). The MC model dramatically
reduces the size of this state space by making two further sim-
plifying assumptions. The first assumes it is sufficient to describe
the behavior of only one processor. Within the framework of the
original assumptions this is sufficient to describe the complete sys-
tem behavior because all processors are assumed independent and
statistically identical [assumption 1)]. When a processor is:blocked
in an attempt to access a memory module after placing a request, it
enters a series of waiting states for the residual service time of
that module. The residual service time (RST) of a memory module
is the time remaining before the currently accessing processor re-
leases the memory module. The second assumption, similar to that
used in the rate adjusted probabilistic models (see [5] and [6]),
assumes that the processor waits for the RST before placing a new
and independent request with a probability of 1.0. The request is
directed to any memory module independent of the particular
memory it was previously blocked at. This assumption, 3a), is a
relaxation of assumption 3) which requires that resubmission be to
the same memory. The above two assumptions allow simplification
of the Markov chain but usually cause an overestimate of the
memory bandwidth of the system being modeled.

The Markov chain, shown in Fig. 1, defines a processor’s behav-
ior if assumption 3a) is used. When a processor is in state i it is
accessing a memory module and it needs i more cycles before
releasing the connection. After one cycle in state { the processor
always moves to state i — 1, indicating it needs / — 1 more cycles.
Thus, there is a single transition from state i (1 < i = §) to state
i — 1 with a probability of 1.0. The set of states {i} are accessing
states. When a processor is in state 0 it is in the thinking state and
it may be performing local processing. When a processor is in state
i it had a memory request blocked and must wait i cycles before it
can resubmit the request. After one cycle in state i the processor
always moves to state { — 1, indicating it must wait / — 1 more
cycles. Thus, there is a single transition from state id<i=$%to

¢, = (standard deviation of X)/{expected value of X) =
ST ———— a— ——
V(XD / (X)) — | where X and X7 are the first and second moments of f(i),
respectively.
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state 7 — 1 with a probability of 1.0. The set of states {7 } are waiting
states. The transition probabilities «;, B;, a:, and B; are defined by
the following equations:
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ning of any system cycle, while r (=R) is the probability that a
processor makes a request at the beginning of any system cycle

{1 -r i=0

a; =

Pr[a request is made and accepted and needs i cycles) 1=i=

B: = Prla request is made to amemory that has an RST of i cycles] l=i=<

— «a; ,

@ = Prla request is accepted and needs i cycles] = - 1<i=<§
B: = Pr[a memory has an RST of i cycles | a request was made to it] = % 1=i=<S$.

If the processor is in the thinking state, i.e., state 0, one of three
possibilities can occur at the beginning of the next system cycle:
the processor continues in the thinking state with probability
a, (= 1 — r); the processor accesses a memory module for the next
i cycles with probability a,, i.e., the processor enters state i ; or the
processor is blocked for the next i cycles with probability B, i.e.,

(1 = Py f(i) = Pr{a memory request is blocked and the proc.

1 — B' = Prla processor requests a memory that is idle]

PH'I

the processor enters state . The same three possibilities can occur
if the processor is about to end its connection period at the beginning
of the next system cycle, i.e., when the processor is in state 1. On
the other hand, if the processor is at the end of its waiting period,
i.e., it is in state 1, and since assumption 3a) requires the re-
submission of blocked requests with a probability of one, only one
of two possibilities can occur at the beginning of the next system
cycle: the processor gains access to a memory module for the next
i cycles with probability a;, i.e., the processor enters state i; or the
processor is again blocked and must wait for the next i cycles with
probability B, i.e., the processor enters state i. There is no transi-
tion from state 1 to the thinking state, i.e., state 0, because of
assumption 3a).

Let P; be the limiting probability for state i, then the following
definitions will be useful in the remainder of this paper:

given that the processor is thinking or has just finished accessing
[assumption 2)]. The above expression for P, is similar in form to
the probability of acceptance of a memory request in the proba-
bilistic models of [2] and [3], and can be deduced by similar argu-
ments. From the above definitions the following terms can be
developed. These terms will be used to derive the transition proba-
bilities of the MC model.

which obtains the memory and blocks the request needs i cycles]

= Pr[a busy memory seen by a proc. has an RST of i cycles].

The transition probabilities for the Markov chain of Fig. 1 can now
be expressed as follows:

a=1—-r

R=Pr [a request is made at the beginning of any system cycle]

r(P1 +P0)+PT

e

P

M N
=ﬁ[1 - (1 - R/M)]

Prla request is accepted by an idle memory at the beginning of a system cycle]

B 2pr [a processor is still accessing at the end of a system cycle]

N
= 2 Pi
=2

Fay .
B = Pr{processor k requests amemory that is busy)

N

= 2 Pr{ processor j is still accessing a memory at the end of a system cycle]

J=1
JEk
_vB _(N-1B
- M M '
j®k
1t follows from assumption 1) that B, is independent of k, thus we

can define
B 2B, 1=k=N.

One important distinction should be noted: R is the probability that
a processor makes a request (including resubmissions) at the begin-

aierwz'n(l—B,)f(i) ISISS
Bs = r(1 = B')(1 = Pun) f(S)
— &;
o = - I=i=<$
r
E,.:% 1<is<S. (2
1)

The limiting probabilities for the states can be written as follows:
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P (Se)]
Po= (1 — ao)(z a')

n-(2e)7

Since the above 2§ + 1 equations must add to one, it follows that:

I=i=3S.

R = 4 (3)

Sila; + B) + za,

=1 — Qo=

From the definitions of B’, B, and (2), B can be expressed as
follows:

5 5 A R
B=2P = (E(i - 1)a,-)-—
i=2 =1 r
Substituting in the above equation for «; from (2) allows B to be
expressed as the following function of R:
(X — 1)P.nR

B = _ 4
N~-1
1+ X — DP.uR

Substituting (2) into (3) results in the following equation:
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IV. SIMULATION RESULTS

A simulation, written in SIMSCRIPT I1.5, of multiprocessor sys-
tems operating according to the assumptions given in Section II was
run for different probability mass functions f(i), and different val-
ues of r. The results were compared to results calculated from the
ER model and the MC model. The comparisons were made for
different sized systems. Fig. 2 shows the results obtained from a
32 X 32 system (see [19] for additional results). The graphs com-
pare BW. The “%error” shown in the figure was defined as

Model BW — Simulated BW
Simulated BW

X 100.

Yoerror =

Six different distributions for the connection time were used. All
the distributions had the same expected value X = 4.0 but their
coefficient of variation C, ranged from 0.0 (i.e., fixed connection
time) to 2.0. As can be seen from the figure, both models gave
results within 4 percent of the simulation for small C,. The MC
model remained within this error bound, but the ER model showed
a monotonic increase in error with increase in C,. In the case of
C, = 2.0 the error was as large as 50 percent. Similar results are
obtained if P, or U, are compared.

The poor performance of the ER model, which continues to
worsen as C, increases beyond C, = 2.0, confirms the importance
of using the second moment of the connection time distribution
in calculating BW (see [5]). The error in the MC model is due
to assumption 3a) being used in place of assumption 3). As noted,
the simulation works according to the assumptions of Section II,
in particular assumption 3). The key difference between
assumptions 3a) and 3) is that in 3a) blocked requests for memory

1

R =

By defining the second moment of the connection time distribution
in the normal way, i.e., X? = P i? f(i), the above equation can
be written

(1 - ’-\.’—.M‘JB) [}? + (1/r = 1)Pu +

w - 1)PW,-,,R§i(i -1

v 27 f(i)J

need not be resubmitted to the memory from which they were pre-
viously blocked. This is clearly unrealistic, but our experimental
evidence indicates that the effect on the quantities BW, P,, and U,

1

R =

The equations for P,;, [(1)], for B [(4)], and the above equation form
the MC model. They can be solved by iteration. In the experiments
reported in the next section a fixed-point iteration on the value of R
was used. Solution typically required 4 iterations (with a maximum
of 8) when an initial value of R = r was used. Higher order itera-
tions schemes could be used but were found unnecessary within
the scope of our work. The value for memory bandwidth BW, the
probability of acceptance P,, and processor utilization U,, can be
calculated from the following:

S
BW = N(P, + B); P,= (1 — B)Puu: =1- 2P
=1

These equations follow from the definitions of Section 1I. It can be
seen from (5) that R depends on, among other things, the inverse of
X?. Therefore, it follows from the above equations, that both BW
and U, depend on the inverse of X?. Furthermore, it can also be seen
from (5) that R is independent of S. Thus, the underlying Markov
chain of the MC model need not be finite. Finally, it is easy to show
that the MC model properly subsumes the rate-adjusted model of
Hoogendoorn (see [5], [10]), which corresponds to the case where
X is a deterministic random variable of value 1, i.e., X = 1 and
X2 = 1.

(1 - A—L;;—}-B) [7 + (1/r = D)Pun +

(3)

N — HP,.R (X2 - Y)}
M 2

is quite small —less than 4 percent error in all cases. Furthermore,
as mentioned earlier, the relaxation of assaumption 3) to that of
3a) makes possible a manageable model. Finally, the error is com-
parable with the empirical evidence reported in earlier work [3]—[5]
that led to the assumptions of Section II as a phenomenological
basis for the behavior of a large class of multiprocessors of the type
discussed here.

Fig. 3 shows explicitly how BW varies with C, while X is held
constant at 4.0. As can be seen, by just varying C, from 0 to 2.0 the
BW can drop by as much as 40 percent for high request rates
(r = 1). In fact, in the case where C, = 2.0 the BW drops to the
point where only 13 of the 32 memory modules are busy even where
r = 1. This agrees with the interpretation, based on (12), that was
made at the end of the last section where it was concluded that BW
would decrease if X2 (or C,) increased. The most obvious con-
sequence of BW depending on C, in this way is that transfers be-
tween processors and memories should be restricted to fixed blocks,
or nearly fixed blocks in which variations in size are rare, if maxi-
mum BW is to be achieved.

V. CONCLUSION

This correspondence has developed two discrete time models of
the memory interference that occurs during memory access in a
multiprocessor system when that access can have a variable du-
ration. The first of these models, the ER model, is the simpler model
and, according to comparisons to simulations, provides accurate
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astimates of the values for P,, BW, and U,, if C, is small. The second
of these, the MC model, is the more complex model but, according
to comparisons to simulations, provides accurate estimates of the
values for P,, BW, and U,, for a wide range of C,. The ER model
requires the values of M, N, r, and X as inputs. The MC model
requires, in addition, the value of XZ. The explicit dependence of the
MC model on X? (and hence C,) can be observed in (12). This was
confirmed empirically; specifically, it was shown that BW decreases
with increase in C,. The fact that the second moment is an important
feature of memory interference should not be completely un-
expected as the behavior of similar systems, e.g., networks of
queues, also depend on the variance of underlying stochastic pro-
cesses (in the case of queues, it is the variances of the interarrival
time and service time).
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