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ption must completely specily
the manufacturing cell in guestion This implies
petween the compenents of
the cell, implicit and expheit, must be accounted

the functional description
tr each other Rate and

consistent from sender to

ription  must be easily
‘evels of detail It must be

zuage. hierarchical t B n-teve! understanding of the
descriplion. manufacturing entire cell without the b rden of excessive detail it
must also e to gain 2 detailed
understand ticular component of the

cell

1t shouid be possible to develop a simulation of the
system from its description. either by executing

functional description Tan be buill Vanufacturing cells the description directly, or Dby providing 2
contain a number of complex subsystems whose transiation method whereby the description 1S
operations and interactions must be uniformly transformed into a seres of simulation statements
described, such a: types and quantiies of which can then be executed

programmabie contra C\C machines, material At present, ilis possible to give quite specific functional
handling and storage robots, and a hest of descriptions of each component of a manufacturing cell
other general- and special-purpose equipment  Bach These descriptions take the form of manufacturer’s
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such unit requres a different set of time-sequenced specihcations, wiring diagrams. shop floor layouts, and
inputs and outputs in order 1o perform its function so forth However. it difficult to combine these
These inputs and outpuls can ulilize discrete 1/0 lines. descriptions mto a coherent set of spectfications at the
analog channels, or synchronous and asynchronous manufacturing cell fevel, particularly one amenable Lo
comrmunication protocols Fach of these simulation

communication med:ia

strategies

Manufacturing cells make parts A potentially extensive switable level of detad
.

database must be maintamed to accurately reflect the languages are In widespr

must meet differing rate
requirements and requre differing error recovery

One way of achieving 2 uniform set of functional
descriplions 18 through a system deseription language

which can completely deseribe a manufacturing cell at a

Suych gystem description

.ad use For example. iIBV's

current states of ail parts flowing thro zh the cell as pDL 1} 15 a procedural fhigh-level language used 1n

well as the current state of all unitz in the cell The writing software specifications As another oxampte, the

heterogeneous nature the cell dictates widely 13D0OS Project s 2] Pl PSA 15 a database-orented
H

differing data representations, access requirements, high-level  language used

and access rates

In view of the preceding. w¢ believe that a lunctional is possible to define a regul

description of any manufacturing cell should possess at

least the following attributes
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U Ada s a regisiered s rademark o oo S Government Ada joint a diag mmmducal represe

Program Office.

.n describing arbitrary

information systems Through use of such a language 1t

that can be applied equall

ar descriplive methodology

ytoa broad class of systems

In this paper we examunt the use of the United States

Government language Ad

describing manufacturing
arc obtained by a nierarchical

multiple levels of detail
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cells Descriptions  at
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transforming the Ada descriplion into e simulator of the
system is also described

It is well known that decomposing a difficult problem
into several simpler subproblems allows & solution lo be
obtained when direct methods fail  The problem is
broken into scveral subproblems, the subproblems are
solved. and the problem solution is defined in terms of
the subproblem solutions If  the subproblems
themselves are difficull, they are broken into smaller
subproblems This decomposition continues unll the
\individual subproblems can be solved

We apply this techmque to the problem of generating
functional descriptions of manufacturing cells. utihzing
two complementary descripive Tformals In the
diagrammatical decomposition formatl, we present a
diagram of the funcltional description The hierarchical
decomposition is shown as a series of nested diagrams,
and directed hnes between elements of the diagram
describe the data and control flow  This formal allows
the reader to obtain a quick, intuwbive understanding of
the manufacturing cell being described In the
procedural decomposition formatl, we present an
equivalent functional description written in a procedural
description language based on the Ada programming
language The hierarchical decomposition is shown as a
series of nested packages and task rendezvous describe
the data and control flow The  procedural
decomposition is much more detailed and gives the
reader a complete functional decomposition of the cell
being described

This hierarchical concept imposes a greal deal of
structure on the description process While the task of
generaling a compiete descripion of & large
manufacturing cell remains formidable, the method of
hierarchical decomposition provides a way of
systemalically generating correct functional
descriptions to any desired level of detail

Both methods are illustrated in greater detall beiow

DIAGRAMMATICAL DECOMPOSITION

The basic unit of diagrammatical decomposition 1s the
boz (see Figure °) There are a number of inputs to a
box, a number of sufputs from the box and a function,
mapping the inputs o the outpuls, performed by the
box This procedure 1n which a box operates on its
inputs to vield its outputs is central to our hierarchical
decomposition scheme The first, or top. level of
decomposition 1s a description of the manufacturing
cell, and the inputs and outputs are the actual inputs
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and outputs of the cell. Since we are describing the
total operation of the cell and wec are describing the
function of the cell only. we do not distinguish at the
level between physical objects and date objects which
are operated on by the system. this partitioning occurs
only al the bottommost level of decomposition

in order to perform the hierarchicel decomposition we
also consider the box to be an entity which enclosec o
particular level of decomposition In this hght the
exterior and interior of a box relate to Uhe
dccomposition operation in the following way

The exterior of a box describes the current level of
decomposition This description takes the form of a /0
block. which we define to be a common descriptive uny
consisting of a description of the function performed by,
a hst of inpuls to. and a hst of outpuls from the b
representing the current level of decomposition 1In
olher words, the DIO block of the box exterior
completely describes the current level of decomposition
to the reader In Figure ©, the depicled box resides ot
the first level of decomposition  The inputs arc parf 7
and part 2 the outpul is parf 3 and the functicon
performed by the box is the assembly of part . and part
2 lo produce parl 3 Thus level of decomposition docs
not describe how the assembly 1s to be performed. oniy
that it 1s to take piace ’
The interior of a box contains a collection of subbozes
Lach subbox i1s described by a DIO block as stated
previously. The collection of subboxes forms the next
leve! of decomposition; their D!IO blocks, taken together.
form the same functional description as the DIO block of
the enclosing box, the critical difference being that the
subbeos DIO blocks are more detailed

One of the subboxes is designated as a contral subboex
and 1tz furnction 1s to serve as a manager of control and
dala flow within the box by specifying. if required, the
order i which the other functional subboxes should be
invoked, what inputs they should be invoked with, and
what outputs they should relurn to realize the
description of the enclosing box's DIO block

In Figure 2, the box of Figure I has beern operned to
revea! the subboxes inside We call the process of
opening & box a decomposition step The functiona!
subboxes f; , fp . and fa represeat the three
operations "pick up part 17, “pick up part 2, and “join
parts’ Together these three operations reahze thc
description of the enclosing box The dashed lhnes
represent inputs and outputs belween subboxes which
are jocal to the box interior, while the solid hncs
represent inpuls originating from and oulputs destined

Part 3
Part 2
Part 1

{

Hake Part3

Figure 1: Box Exterior

Part 3
pert 24
Part 1
Control
}———’Q L
J ‘1 1¢
t1 f2 f3

Figure 2: Box Interior
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for the box exterior While it is possible to think of [,
and f, happening concurrently, f3 must wait for them
to complete before proceeding This flow of control is
determined by the control subbox, as indicated by the
broken lines

It is easy to see how one recursively descends in the
hierarchical decomposition by opening subbozes to
reveal other subboxes contained within them. This
process conlinues until a level of decomposilion 18
reached at which further partitioning is unnecessary In
cur example. a subbox whose DIO biock specifies the
operation “close gripper on robot arm 17 1s probably not
amenable to further decomposition We can view the
successive decompositions of a cell as a tree which
represents a collection of descriptions at different
levels of detail The leal nodes of each subtree whose
root is identical to the root of the tree itself correspond
to a single description

We emphasize the difference between hierarchy of
decomposition  and merarchy of control Our
hierarchical decomposition 1s primarily a description of
a manufacturing ceil As such. the functional boxes are
abstractions and do not n general have physical
counterparts in the cell itself. At some level of
decomposition, however, the functicnal boxes should
correspond to physical entiies portions thereof or
control program procedures, and the inputs and
outputs are associated directly with the terminal
subboxes

PROCEDURAL DECOMPOSITION

The diagrammatical decomposilion method provides an
elegant way of decomposing a manufacturing cell
However, in its present form it does not provide much
information about the timing and synchronization of
interactions between subboxes. Secondly, it1s difficult
to represent a great amount of detail In a concise
manner Finally, it is not immediately obvious how to
simulate the actual cell directly from  the
dragrammatical decomposition To deal with these
problems we use a procedural decemposition tanguage
Lo describe the hierarchucal decomposition.

Procedural Decomposition Language

s

We represent the fun
decomposition a3 Ada tas

functional urits of the dia

nal units of the procedural
ks just as we represent the
mmatical decomposition as
boxes We have chosen tasks instead of procedures or
functions because a task a more general construct
Tasks can execute 1n parallel and thus provide a more
natural description of simultaneous events than
sequential constructs do

At a given level of decomposition. a task must convey
the following nformation First, 1t must show the
interconnection with other tasks by characterizing the
inputs and cutputs of the task and by describing how
these inputs and outpuls are synchronized with each
other and with those of other tasks Second, the task
must provide a description of the function it represents
In general, these two classes of information are
intermixed inside the task

Whenever a step in the decomposition is made, a task 1s
replaced by a set of tasks whose combined input.
output, and synchromzation characteristics subsume
those of the original task  This expressly allows the set
of tasks to exchange input, output, and synchronization
information among themselves In Figure 3. task A 1s
replaccd by tasks B, C. and D Task B s also shown to
output some local information to task C
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Inputs Outputs

Figure 3. Results of Decomposition Step

The Ada language provides a passive encaps
mechanism called a packag
inside a package and isolated from or made v
other tasks outside the package as desired We place
the tasks generated by the decomposition step in a
package and make therm visible to the interface task
whit o
the decomposition intc packages provides for a
understandable description and allows portion
large description to be compiled separately. In T2
5 package P surrounds tasks B, C.,and D

The process of decomposition continues by performi

decomposition steps on tasks and encapsulal:

The inputs and outpuis destined for the original task
must now be dispersed to and collected from the set of
tasks which replaced it In order to isotate other parts

the description from changes required by a

decomposition step and to provide a mechamsm for
dispersing and collecting the inputs and outpuls. we
introduce the artifice of an interface task which serves
as a buffer between the other tasks in the description
and the ta
dees nothing more than present iis inputs to
tash

It

s of the current level of decompaosit

and present their outputs al its outputs In't
task A s replaced by tasks B, C, and D as before but
s s introduced to provide an interface belween
and the rest of the description

e Tasks can be

~ remains outside the package. This partily
¢

el

s of each such decomposition 1n a package This
s i1n a tree of packages as seen in frgure 6 At
e point 1L becomes unnecessary to decompose 3

Inpute Cutputy jrpets Sutputs
! ' I
i AT
: ! Pl ;
| !
:,»..!____.M e T

Figure 4 Interface Task
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Figure 6 Package Tree

task any further. we call such a task a terminal task

Simulation Considerations

A simulation of a manufacturing cell descmbed 1n the
procedural description language can be realized by
observing that the description of inter-task relations
using Ada tasking constructs as the basis for the
description actually provides the basis for simulaticn
control software which supports & process oriented
simulation scheme

Ve can replace the function descriptions in the terminal
tasks with process oriented simulation statements
These are generally very simple constructs, such as wail
statements to simulate the passing of time while the
function represented by the task iz performed We alsc
need lo add some support soflware to meanage the
process oriented simulation, such as scheduling
routines, clock managers, and so forth In thus fashion a
simulation of the manufacturing cell can be easily
obtained

Sometimes it is also possible to replace the terminal
function descriptions with real control software to
supervise directly the operation of an actual
manufacturing cell. Consider the different types of
entities that can be represented by the task nputs and
outputs. Actuzl parts, such as those being constructed
by the manufacturing celi, are represented by certan
types of data objects. Other data objects represent
control signals required to operate the cell. Still other
objects represent pieces of data essential to the
execution of the simulation It is important to partition

the inputs to tasks representing real control software in
such a manner that a task receives only those inputs
which 1t could logically receive in the actual
manufacturing cell environment

Procedural Decomposition Language Imptementation

In order to maintain a closc relationship between the
diagrammatical and procedural  decompositions, we
have standardized the usage of Ada in thc procedural
decomposition languagc in the {ollowing way

As previously stated the functional umte of the
procedural decomposition are represented as Ada tasks
Each such task has the form shown in Figure 7 A task
is 1dentified according to the following nanung
convention Each task name consists of the wdentifier ¢
followed by a number of subscripts, eg f ;. The
number of subscripts indicates the lewvel  of
decomposition at which the task resides The value of a
subscript differentiates between tasks at a particular
level For examplc. tg indicates the first task of the
decomposition which resides at level ©  After a step in
the decomposition s made. tge indicates the third task
of the set which replaced task le This process
continues lo an arbitrary number of levels  For
notational brevity we shall use I, to represent a task al
an arbitrary level of decomposition

The task specification contains a DIO block and & hist of
entry points lo the task The DIO block performs the
same function for tasks as for boxes, that s, it
describes the function, inputs, and outputs of the task
It 1s implemented in the form of Ada comments The
inputs to the task are represented by / and outputs
from the task are represented by 0, entries in the DIU
block Fach entry consisis of a list of items input to or
output from the task

FBach task has at least two entry pomnts which arc
invoked by the Ada rendezyous mechan starf. at
which point the inputs required by the ta s histed n
\he DIO block are accepted, and stop. at which point the
outputs generated by the task as histed (i the DIO biock
are returned Additional entry points accessed by other

task £, 1s
- DIO¢t,
-- description 1=
- inputs are /,
- outputs are G
entry stari (/)
entry stop (G}

entry
end t,
task body £, 1=
bezin
loop
accept start {/;} do
LOCALL, = 1.
end start.

LOCAL_O, = F{LOCALT) .

accept stop (0,) do
0, .= LOCAL_O; .
end stop.
end loop;
end ¢, ;

Figure 7. Task Implementation
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tasks in the same package are also listed in the
specification

The task body contains statements which realize the
tunction of the box as described in the DIO block. The
task body 1s in the form of an infinite loop. The start
rendezvous accepts the inputs to the task and makes a
local copy of these inpuls in LOCALI; This 1s done
because the actual paramneters are accessible only in
the body of the accepl statement The task then
performs its function as described in the DID block
indicated by the function F, which represents a series of
executable statements operating on the local copy of
the inputs and ytelding a jocal sgt of outputs in
LOCAL_D,  The task may rendezvous with other task
the same package in order to carry out £, Finally. the
stop rendezvous returns the outputs of the task by
copying them from the local outputs Following this. the
task joops to accepl a new set of inputs This repetitive
sequence of accepling inputs performing the function
and returning oulpuls s called a cycle

When a step in the decomposition is made, the task
sure 71s replaced by the one shown in Figure
B, and a of . named t,¢ through L, 18
generated general, n will be different for each
decomposition step Figure g shows the general form
for each of these tasks by describing task t,;, where
0<y<n  The relationship between the original task and
{he interface and generated tasks 1s governed by the

three relalions

shown in

0.,

o

.
H

that the collective function of the generated
al te the function of the original task and
e inputs and outpuls of the generated

e

-~ gdescriplion 12
-~ inputs are [,
- outputs are G

task body £, 13
begin
foop
accept start {/;) do
LOCALL, = 1.
end start,

t, o start TLOCALL) .
t; o stop (L OCALDY .

accept stop (0,) do
0, = LOCAI_D,
end stop.
end loop.
end ¢, .

Figure B Interface Task Implementation

tasks subsume the inputs and outputs of the original
task

The set of tasks is enclosed in a package named p; 88
shown in Figure 10 The naming convention for
packages is identical to that for tasks, a package name
is given the same subscripts as the that of the original
task There are two parts to an Ada package as shownin
Figure 100 the specification and the body Everything
that is to be accessible to the exterior of a package
must be Listed in the package specification; everything
else 1 the package body 1s hidden from wview Thus the
package specification only contains a description of the
control task, it is the only task that must be wisible, for
it wiil be invoked from a task in a different package atl
the next higher level of decomposttion. The remaining
tacks are invoked from the control task, or can invoke
each other. and thus need not be wvisible outside the
package

The interface task 1s \dentical to the original task
except that the statements representing the function Fy
are replaced by start and stop rendezvous calls to the
generated task b We have arbitrarily given fe the
job of sequencing the execution of the remaining tazks
in p, . therefore we call it the control task. The control
rask body 15 shown in Figure ‘0 and is similar to the
original task; the difference is that the function
performed, Fig . consists primarily of start and stsp
rendezvous calls with the rest of the tasks inp, Each
of these rendezvous passes the subset LOCAL L ; of local
inputs LOCALL, required by & and returns the subset
LOCAL.D, ; of focal outputs LOCAL_D, generated by t;
This 1s shown in Figure 10, where the subset function
\ndicates the appropriate subsel

There is a similarity in form between the generated task
t,; and the original task ¢, This similarity allows
further decomposition steps to be taken by repiacing
£ ; with an interface task and by generaling a set of
replacement tasks enclosed in a new package by, This
process of decomposition continues until the terminal
ievel of the decomposition is reached At this level each
task contains statements to perform or describe the

task t, ;18
-~ DIO L, ;
-- description is
- inputs are Iy
-~ cputputs are O ;
entry start {/, ;).
entry stop (G, ;7 :
entry

end t, ;.

task body t, ; 1S
begin
loop
accept start {/, ;) do
LOCALy; = 1y
end start]

LOCALD, ; = Fuy {LOCALL ;) .

accept stop {(4 ;) do
0,; = LOCAI_DO, ;5
end stop.
end loop.
end t,; ;

Figure 9 Cenerated Task Implementation
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packug(‘ F Ot
task £, ¢ I8

end ¢, ¢
end p,
package body p, 18
--DIOt, ¢
task body £, ¢ 13
begin
loop
accept start {/) do
10CAILD, =1 .
end start,

t,, startisubset (LOCAI_L))
t,, stop{subset (LOCAL_D)}

accepl stop {()) do
0, =L.OCAI_O)
end stop,
end loop
end f, ¢ .

task ¢, ;1

enc t,; .

- Dot

task boay ¢ ; ¢
begin

end !, ; .

end p,

Figure -0 Generated Tasks with Enclos Packazc

functions that can no longer be subdivided Thus the sel

By inciuding appropriate simulaticn statements al the
terminal level 1t 15 possible to generate a simuiation cf
the operation of the cell

SIMULATION METHODOLOGY

In conventional process-oriented discrete  event
simulation systems a number of simulatior. processes
appear to execute in parallel In fact. oniy one such
process is execuling al a given time, and that process
continues to execute until it chooses to stop, at which
time the simulation system schedules another process
for execution. This process-oriented simulation scheme
utilizes one master simulation clock and a hst of
processes that are scheduled to run at various
simulated times. The simulation scheduler, when
informed that the currently executing process wishes to
relinquish control, adds the previously active process to
the list of waiting processes, chooses the process with
the smallest simulation clock value, and executes it
Since only one process executes at a given time, it 1s
never necessary to roll back simulated time in the
course of a simulation

In a parallel discrete-event simulator 1n whiieh there are
many processes exceuling concurrently a single master
simulation clock no Jonger suffices Consider twe
processes A and B which are excouting simultancousiy
Suppose A schedules another process Clarun at Lime i,
and subsequenUy gives up control  Assume Cturne o
to be the next proccss that 1< activated. with the miaste:
simulation clock sct te ty I H whith w shll runrang
schedules another proc D te ran at Limic £y owhery
tp<t, . we are faced with the problem of having Lo rofl
back the simulation clock to by and undoimng whatever (
has had a chance to do in the interval o] It e
evident that we must provide a mechamsm for
managing the master simulation clock irvan appropriate
manner to avold this roliback

We have developed such a mechamsm Jor usc with our
descripion system  As previously stated Ada tasks
represent  tho functicnal  umits of the procedurs!
decompositior Pessibly executing an parallcl  these
tasks mmust mutually managce the measter simudlation
clock We supply each task with aloca! simulation clock
in addiion to the master o global cluck  bBach tack
consults its own lecal clock te determine its coursc of
action. the local clock thus completety determines o
task's view of simulation tme  Thez local clock s
synchronized with the master clock whoenover the task
invokes one of the primitives explained below

Fach of the tasks mus! be able to advanec its focal clock
and rendezvous with other tasks as reguired to carry
oul the simulatior  The following four primilives are
sufficient
Wait.
A task wishes 1o advarce its local clock by « given
amount  Whern it
locat clook wil ¢ by the ospecfiod
time

Lask rosumics

Intend to Rendezvous
A task wishes lo rendezvous with another tesk In
this case boith the mmvoker s jo clock and the
loca! ciork of the tlask having execuled the
correszponding arcepl may regure apdeting Wnen
the rendezvous takes place both tasks waill bave
their local clocks set to the Jarger of Lthe ormginal
local clocks

Intend to Accept

A lask wishes to accepl & rendezvous with ancther
task In this case botk the invoker's joeal clock
and the local clock of the Lask having executed the
corresponding rendesvous may require updating
When the ronderveus takes place both taske will
have their tocai ciocks sel te the larger of the
or:gina; iocal ¢3oCKs

Relinquish.

A task wizshes tc rehnguish  conlro! wilhioutl
specifying a time at waeh LS lo resunic
Exccution of the task will rezwme al & future time
after olher tasks have been given a chance o run.
ite local clock will be set equal to the new global
clock Inclusion of this primitive 1s necessitated
only by a lack of mulutasking support 1n our
current Ada run time system

The executing tasks are managed as follows At any
given instant there are a number of executing tasks as
well as a number of tasks waiting to execule at specific
times FEach such task 1s called a client task and 1s
described by a state, which identifies whether the task
s running or in one of several walt states, and a
wakeup. time, which gives the global clock value at
which time the task wishes to resume running Thereis
also a simulation controller which serves as a scheduler
for the chent tasks and contamns entry points 1n the
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form of accept statements, for each of the actions Listed
above

Whenever a task needs to perform one of the four
actions, 1t performs a rendezvous with the sirnulation
controller which changes the state of the task from
running to a wait state 1f the desired action Is Cwait”,
then the simulation controller calculates the ume at
which the task should resume executing, based on the
task's local clock and desired wait interval, and updates
the wakeup.iime for that task As long as there are still
other running tasks no further action is takem the
remamnder of the running tasks are allowed to continue
This 15 the key concept that removes any requirement
of roliing back the master clock Only when there are
no more running tasks will the simulation controller
examine the list of wailing processes, determine the
new global clock value from the waiting task with the
smaliest wakeup tume. and resume running all wailing
tasks whose wakeup times are equal to the new global
clock The simulation controller also sets the local
clocks of all resumed tasks equal to the current global
clock, the tasks nenceforth reference their local clocks

The intend to rendezvous” and “intend to accept’
primitives are managed somewhat differently. 3ince a
rendezvous requires two parties. a task indicating an
intent to rendezvous without a corresponding partner
tack having previously indicated an intent to accepl, or
vice versa, is suspended and 15 not allowed to resume
execution until the partner task 1ssues 1ts intent to
complete the rendezvous. Once both tasks have
indicated their intent to repdezvous the simulation
controller updates their wakeup_times to the larger of
the Lwo task local clocks and places them in @ wall
state The tasks are then resumed as in the preceding
paragraph Note that tasks patred through a
rendezvous are resumed at the same time due to thewr
\dentical wakeup-Limes Recause of the asymmelnc
nature of the Ada rendezvous in which the task issuing
an accept does not Know the identity of the task making
the rendezvous it 1S necessary to queue tasks which
have indicated an intent to rendezvous with a target
task until that target task indicates an intent to accept
The gueueing discipline 1s FIFO and is provided in the
simulation controller

Finally, the “relnquish” primitive places the task in an
indefinite wait state  When the simulation controller
next updates the zlobal clock the task will be resumed
with ils local clock set to the new global clock The
wakeup ume of the Lask is undefined and plays no part
in the calculation of the new global time

CASE STUDY

Utilizing our method of hierarchical decomposition we
have generated & description of a machining cell which
s shown in Figure The manufacturing process
involves machining preformed metal stock by milling.
turning. and rotling threads The cell contains (wo
robote loading and unloading 2 CNC mull, ONC lathe, and
roling and gaging machines. Both robots have two sels
of grippers sc that a finished part may be unlcaded
from a machire and a new part inserted into the same
machine without the need for moving the robot between
these operations. The mill and lathe occasionally
require the first robot to exchange dull tools tor sharp
cnes: the tool carriers are similar in size to the parts
and may be handled with the same grippers

The hierarchical description comprises three levels
The first level describes the operation of the complete
cell, and hsts the inputs and outputs to the
manulacturing cell as a whole. For example, aninputis
»gtock”, which describes the metal stock the cell takes

= (=]
=
]

Treesd
roller

Cell outpt

Gage

J—
Ceil inpit

| Gage
fools | ‘\

intermediate
odpn

.

Figure 1. Machining Cell

in and an output is “goad_parts", which describes a
properly manufactured part which the cell puts out
The second level provides more detail and sphits the box
into a control subbox plus five functional subboxes
Milling and gaging.
A description of the first thurd  of  ih
manufacturing cycle, o which the first rcoo
accepts parts from a parts presenter and cause
the parts to be milied and gaged

il

e

Turning and gaging.
4 description of the second thurd of the

manulfacturing cycie in which the first robotl causes
the parts to be turned and gaged

Thread rolling and gaging.
A description of the final  third of the
manufacturing cycle which the second robetl
causes the threaded portion of the parts to be
roiled and gaged

Mill tool change.
A description of the mill tool changing procedure
which s regquired after a given number of parts
have been mulled

Lathe tool change.
A description of the tathe tool changing procedure
which ¢ required after a given number of parts
have been turned

The corresponding diagrammatical decomposition is
shown in Flgure "2, where {he directed hines indicating
control  flow between the control and functional
subboxes have been omitted for clarily
The execulion sequence of these functional subboxes i3
determined by the control subbox  Note Lhal the
miiling and turning portiens of the part cycle must e
performed sequentially in the order stated since both
the mull and lathe are served by the same robot  This
restriction does not apply to the thread rolling portien
of the cycle since Ls <orved by the second robot LS
natural, therefore, to write the control subbox as Lwo
independent tasks, each of which controls one of the Lwo
robots Further. the tool change operations and the
machining operations are mutually exciusive, and the
control subbox must prevent the milling and turning
control tasks from executing while any tool changes are
in progress

The third and final level of decamposition splits cach of

the first three level 2 subboxes above into more

subboxes The tool change cycle s not further
decomposed SO thal level 2 represents the terminal
tevel for tool change portion of the description  This
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illustrates that portions of the description may be more
detailed than others depending on the needs of the
modeler For instance, the milling and gaging subbox s
further decomposed into a level 3 control subbox and
twelve terminal subboxes —One of these subboxes
simulates the acceptance of input stock by the first
robol  Thus s simulated through the task that
represents this subbox which advances its local clock by
an amount of time indicative of the time needed for the
robot to accept the part from the part: presenter and
updates some valuesina data structure to indicate that
a new part has been obtained The task representing
Lhie subbox is shown in Figure 3

--specification identification is gel_green_parts.
--decomposition identification 1§ f.3.3.
--decomposition level is 3
--specification type 1s functional,
--superior is milhng-and_gaging.
--siblings are {

-- level. 3a control,

- move_to_parts_presenter.

- move_lo_mill,

- unload.milled._parts,

- load_mill,

-- mill.

-- move_lo.gage.

-- unload_gaged_parts.

- load_gage.

- gage.

- move_to_parts_disposer,

-~ dispose_bad_part),

-~-description 1s

-- Oblains two green parts from parts presenter,
-- placing them into the two lower grippers
--end description;
--input list is

- (stock).
--control list is

- (make_parts);
--oputput list is

- {green_parts);

-- Part of input list
-- expanded for clarity.

task body get_green parts is
localentity. access: entity_record.access,
part_number: natural = 1;
local.clock: time := O,

begin

-- Deline task to sched {ggp—port identifies the task)
sched activate{ggp—port).
put_line{"get_green_parts start’).

loop

— Indicate intent to rendezvous

sched 1La(ggp_port‘local._clock)‘

- Receive updated local clock from sched
- when OK to continut

port_ggp recv{local_clock).

-- Perform accept

accept start;

-- Record event at current local ime

comment{ Accepting part from parts presenter’).

- Generate new entity {part)

localentity_access = new entity.record.type.

local_entity_access part.description processaniliatcg
= true,

local_entity_access part.description part.rodc
.= part.number,

part.number "= part_number = *.

-- Indicate wait

sched waxt(ggp_port,local_clock.present.part_xmn b
— Recerve updated local clock from sched

-~ when OK to continue

port_ggp recv/localclock).

- Set "part unloaded” attribute
local_entity_access paridescription
parts_dpresenter_unloaded = true,

— Indicate intent to rendezvous
sched lta(ggp_por&,loca!__cloc}-:)
- Receive updated local clock from sched
— when OK to continue
porLgzp recvilocalclock),
-- Perform accept
accept sLop(outpuLﬁnuty_access
out enuty__record_access)
do
output_entity_access = localLenlily_access,
end stop.
end loop,
end get_green parts.

Figure 13 Sample Task

The DIO block hsts the description. inputs, and outputs
of the task

The other two level 2 functional subboxes controlling the
manufacturing cycle are decomposed 1N exactly the
same fashion The milling and turning portion of the
cell may produce parts at a facter or slower rate than
the thread relling portion of the cell. a bounded buffer
has been provided to mode! an ntermediate part
storage unit The simulation 1s capable of stopping the
first robot when the capacity of intermediate storage 1s
exceeded, and of starting it again when the number of
parts in storage has been reduced

The output provided by Lhe execution of the description
is shown in Figure 14 It consists of a time-ordered
series of event reports and additional information about
the state of the simulation Lines of the form
“task_name: processing” indicate that the task
identified by task_name has just received a new set of
inputs and is starting to perform the function outlined
in its DIO block Every control task in the description
indicales the start of a cycle in this manner

Lines of the form “time: event” indicate that event

occurred at time on the global clock For example, the
mill was started 24 time units after the start of the
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simulation at time zero. Thus these lines give a time-
ordered view of the simulation.

In addition, the level 2 control tasks output a block of
information at the completion of every cycle, which lLists
the contents of the various stations in the cell In
particular, the contents o! the stations in the mill and
jathe portion of the manufacturing cell are ljsted at the
end of the milling and turning cycle. The part residing
in each station is listed along with the current
attributes of the part Attributes help describe the
state a part is in at a given time during the
manufacturing process, for example, the condition of
being milled is an attribute 1f a parl possesses an
attribute a corresponding indicator is set true,
otherwise it is set false. In Figure 14, the mill is shown
to contain a part on which processing has been initiated
(P1), which has been anloaded from the parts presenter
(PPU). and which has been loaded into the mill (ML)
The part does nol possess any other attributes at this
stage of the manufacturing cycle. The rest of the
stations are shown to be empty

The description is executed until the desired amount of
data has been obtained about the manufacturing cell. It
is a simple matter to change the time required to
perform the various activities and obtain multiple
simulation runs. 1t 1s only slightly more difficult to
change the model by modifying the description and the
atfected task bodies and to compare results for
different cell configurations

CONCLUSIONS

We have shown how the well-known i1dea of hierarchical
decomposition can be applied to the problem of
supplying detailed descriptions of an arbitrary
manufacturing cell, and how a suitable choice of a
procedural decomposition language makes possible the
simulation of a manufacturing cell so described

A further area of investigation would involve defining
and providing a procedural decomposition language that
can generate Ada-based descriptions and simulations
directly
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