MS84-493

Robots Are (Nothing More Than)
Abstract Data Types

abstract

During the past decade, data and program abstractions have emerged as a major
organizational concept in programming languages. They offer particular advantages for
large programming problems. Robot programming is no exception. These concepts can be
used to program a robot-based manufacturing cell. Using an experimental robot-based
manufacturing cell as an example, a strategy for robot programming based on Ada is
described. The central features of Ada, data abstraction and program abstraction through
generics and operator overloading are illustrated. The principal advantages and difficulties
of data and program abstractions as they may be realized through ADA are summarized.
(Ada is a registered trademark of the Department of Defense.)

authors

R.A. VOLZ T.N. MUDGE
Professor Associate Professor
University of Michigan University of Michigan

Ann Arbor, Michigan

conference

Robotics Research: The Next Five
Years and Beyond

August 14-16, 1984

Bethlehem, Pennsylvania

iIndex terms

Robots
Robotics
Automation
Programming

-

o [ECHNICAL PAPER

Society of Manufacturing Engineers * One SME Drive ¢ P.O. Box 930
Dearborn, Michigan 48121 ¢ Phone (313)271-1500

2

ABSTRACT

During the past decade, data and program abstractions have emerged as a
major organizational concept in programming languages. They offer particular
advantages for large programming problems. Robot programming is no excep-
tion. This paper describes how these concepts can be used to program a robot-
based manufacturing cell. Using an experimental robot-based manufacturing cell

as an example, a strategy for robot programming based on Ada! is described.
The central features of Ada, data abstraction and program abstraction through
generics and operator overloading are illustrated. The principal advantages and
difficulties of data and program abstractions as they may be realized through
Ada are summarized.

I. INTRODUCTION

With the event of robot-based manufacturing cells, the need for an imple-
mentation language with modern software tools to program these cells has grown
in importance. Unfortunately, the current high level languages used to imple-
ment the real-time requirements of manufacturing systems lack critical language
tools, such as data abstraction, that facilitate programming in the large. Indeed,
even the most sophisticated robot, numerically controlled (NC) tool, and related
"manufacturing systems” programming languages presently in commercial use
support neither data abstraction nor other features appropriate for large scale
programming [Shi82, GSC82, VMG84]. They are, therefore, unsuitable at the cell
integration level.

This paper discusses the use of data and program abstractions for program-
ming sensor-based robot systems. It is shown that abstractions provide a natural
method of expression for robot and sensor operations and that is is possible to

'Adais a registered trademark of the Department of Defense.

MS84-493

develop a problem oriented syntax through their use. The concepts are illus-
trated through the programming of an experimental robot cell consisting of a
robot, a TV camera and a link to an off-line Computer Aided Design (CAD)
database from which grip position and vision training information are obtained
for the parts to be manipulated. The system is programmed in the new DoD
language Ada [DoD83|.

Ada was originally developed at the instigation of the DoD for programming
embedded systems. Examples of embedded systems are, to quite one of the
designers of the language, »those for process control, missile guidance or even the
sequencing of a dishwasher” ([Barg4] p.xi). We would add to that list robot-
based manufacturing cells. Ada is based on Pascal. However, significant exten-
sions make it the first practical language to bring together important features
that include data abstraction, separate compilation, multitasking, exception han-
dling, encapsulation, and program abstraction through generics and operator
overloading. These extension make Ada particularly appealing for programming
large scale real-time embedded systems--a situation characteristic of robot-based
manufacturing cells. Through fully validated compilers have only recently
become commercially available, DoD’s strong support of the language guarantees
a large scale presence in the future.

I.. DATA AND PROGRAM ABSTRACTIONS

During the past decade, data and program abstractions have emerged as a
major organizational concept in programming languages [Shag80]. Abstract data
types are defined in terms of the operations on the data rather than the storage
structure of the data and the implementation of operations, both of which are
hidden. Generally the abstract data type consists of a program unit that has two
major parts: 1) a section that contains the names visible outside the program unit
i.e., the name, type and header of all operations permitted to use the representa-
tion of the type, and 2) a section that contains the actual representation of the
data type in terms of built-in or other defined data types together with the
implementation of the operations allowed on the data. This second section is nei-
ther visible nor accessible outside of the program unit. The only ways a user
may access the data are by the operations defined on it.

This data hiding provides a number of advantages important to large scale
programming, including:

¢ hiding implementation details irrelevant to the application
e localization of implementation, making changes easier to perform

e reduction in the likelihood of accidental changes to the data by unre-
lated program segments

e improvement in the readability of the code.

These advantages are important to any large programming problem. Robot
programming, particularly the programming of the complex sensor-based robots
of the future, is no exception.

MS84~493

Expressing the motions of robot systems requires a number of high level data
structures such as homogeneous transformations, joint coordinates, video images,
image features, physical object parameters, tactile images, tactile image features,
etc. The representations of many of these data structures are often similar and,
if unrestricted access to them is allowed, all of the problems abstract data types
were designed to protect against can easily occur. The arguments for using
abstract data types for these structures is the same as in any large program.

Robots, sensors and other peripherals may be also viewed as abstract data
types. Indeed, this is the natural way to view them. Typically, devices are
attached to a computer through a rather narrow interface with a well defined
protocol for communication between the computer and the device. A “device
driver” is then written to present a usable interface to the user. The device
driver is similar to the concept of an abstract data type in that it provides a visi-
ble interface to a device which cannot be accessed directly. However, device
drivers usually act more as information transferring agents than as operations on
the device. With a reorientation of the notion of a device driver, perhaps
through a layer of software on top of it, this software interface can appear as a
set of operations on the device, i.e., the device can be viewed as an abstract data
type.

Program units are the basis for another level of abstraction. With program
abstraction operations are defined on pseudo-objects rather than real objects.
Then when the operations are needed for a real object a copy of the abstracted
program is ”instantiated” with the pseudo-object replaced by a real object. In
this way, if the same operation is required for several different object types, dif-
ferent real instances of the program may be created by instantiating the
abstracted program for each of the different types. It is less apparent where pro-
gram abstraction fits in the context of robot programming. However, it has been
studied both with respect to representation for different robots and with respect
to a vision system for robots, and the concept will be illustrated later.

Data and program abstractions also can provide a basis for both tailoring
the language to a problem oriented syntax and extending it to include new sen-
sors, control functions or even access to CAD databases. The high degree of
modularity accompanying the use of abstractions also suggests that it should be
easler to extend the system to include different robots or port the software onto a
new computer system.

Several experimental programming languages have been implemented that
were designed containing features to support abstract data types, but, with the
possible exception of Modula-2 [Wir82] and Concurrent Pascal [Bir77], Ada is the
first that is likely to see wide-spread use. These concepts are thus being tested
through use of Ada.

II. ADA FOR CELL PROGRAMMING

Ada has been expressly designed to facilitate the development and mainte-
nance of large software systems through partitioning. Separate compilation
allows a team of cell designers to work concurrently on the development of

MS84-493

separate subsystems. It also allows subsystems to be easily modified without
affecting the rest of the system--an important feature for maintaining the system.
Ada relies on data and program abstraction to simplify the construction of sub-
system interfaces. Further, Ada provides multitasking and timing constructs,
essential ingredients in manufacturing cells where there are typically several com-
putation tasks that need to be performed in real-time.

In this section we describe in a general way the important features of Ada
and a strategy that can be used for developing a robot and sensor programming
system based on the use of Ada. The strategy and example described are based
on the experimental system developed at the University of Michigan. The system
is being used as an experimental vehicle for testing algorithms which link CAD to
~ robot and sensor operations and for testing object-based architectures (see below)
for robot/sensor systems. As of this writing, a vision system, a robot system, and
algorithms for CAD-based vision training and determination of grip positions are
functional. (The example below will illustrate some of these features while indi-
cating the use of Ada.)

A. FEATURES OF ADA

The underlying philosophy of Ada is centered upon the use of objects for

program design. An object is a data structure? having a unique identifier and an
associated set of functions and procedures that can operate on it [Org82]. These
”operators” are the only allowed means of manipulating the object. A number of
advantages follow from this "object-based” programming methodology. Objects
and their associated functions and procedures form natural boundaries along
which to subdivide systems. In addition, because the structure of a data type is
hidden from all but its associated operators, changes to the structure have a lim-
ited impact greatly simplifying program modification and maintenance. Thus,
object-based programming provides a way to implement data abstraction.

Ada provides a construct called a package that allows the programmer to
encapsulate objects and their associated functions and procedures. In addition, it
has private types and ltmiled privale types that further restrict encapsulation so
that objects thus typed, while visible to program parts, can only be manipulated
through procedure and function references. Together these features permit the
programmer to hide data structure implementation and create abstract data
types. The package definition consists of two parts, a spectfication part and a
body. The specification part introduces the data types, variables and procedures
visible to the user of the package. The body contains the implementation of the
package and may be accessed only by the mechanism stated in the package
specification.

Program abstraction 1s possible through the use of generic packages and
subprograms, and operator overloading. These are a step in the direction of
polymorphic function implementation [Mil78, GoY80], and they allow, among
other things, operations to be defined over a set of data types, thus providing a
broader use of objects. An example is given in a later section. As shall be

2The meaning of the term "object” is not universally agreed upon; our usage is fairly narrow.
See [Ren82] for a discussion of various viewpoints.

ME84-493

discussed further, the object and package concepts address the management and
portability of complex software.

Ada also provides a task construct which is a means of dividing a program
into logically concurrent operations with possible synchronization between them
[REMS81]. In addition to forming the basis for real-time operations, tasks also
provide a means of Increasing processing efficiency in a multiple processor
environment. Syntactically, tasks bear a resemblance to packages in the sense
that they both have a specification part and a body. However, the specification
part of a task is used solely to declare the synchronization points or entry points
to the task--the entry points indicate where messages are received/transmitted by
a task.

The program and data abstraction capabilities of Ada can give rise to a large
number of procedure calls which in turn add processing overhead to the program.
Ada provides an inline pragma (a compiler directive which expands the subrou-
tine source code in-line wherever called), thus eliminating some of the entry /exit
overhead associated with procedure calls. The effectiveness of the pragma has
not been widely tested as yet.

B. A STRATEGY FOR USING ADA

Manufacturing cell programming or robot programming with Ada depends
upon three central ideas:

1. The use of Ada’s data and program abstraction.
2. The use of Ada's extensibility.
3. The use of Ada’s real-time multitasking capabilities.

The use of Ada for programming manufacturing cells begins with the definition
of objects for the various physical and logical components in the cell and the
interfaces to these objects. Among these are the problem oriented primatives one
would like to have in a robot language. These objects are embedded in Ada pack-
ages. Various mechanisms can be easily implemented to (nearly) automatically
make these objects available to the programmer. The robot programmer can
then use these objects and interfaces as though they were part of the language
specification.

To provide a concrete illustration of the use of Ada as the system implemen-
tation language for cell programming, a simplified version of the system men-
tioned above, consisting of a robot, a vision sensor and a link to a CAD database,
is considered. The example also illustrates a related activity which we believe
will be of great importance in the future and which impinges on the current
paper: the use of CAD information for driving cell operations. Our goal is for the
cell to be able to manufacture any part within some reasonable class without
human intervention. In other words, the cell will be able to automatically adapt
to a particular type of part once the part has been identified by the vision sys-
tem. In addition, in contrast to present practice, there will be no loss of produc-
tion time due to training either the robot or machine vision system [Hil80, Gle79,
Per81]. Information to allow the vision system to identify a part and to allow
the rest of the cell to perform the appropriate operations on the part is derived

MS84-493

from a CAD database. Therefore, it is a prerequisite that all the parts to be han-
dled by the cell have been designed using 2 CAD system.

Four basic object types are defined in this illustration:
e ROBOT -- Provides the basic robot interface.

e POSITION - Provides a set of data abstractions

for part and robot locations.

)

¢ CAD_MODEL - Provides CAD database access.

¢ VISION - Provides an interface to the vision subsystem.

Each of these basic objects is associated with an Ada package. A view of a por-
tion of the main programs and the specification for each of these basic objects
gives an introduction to the object oriented design approach.

Figure 1 shows a portion of a sample main program. The action part of the
example shown is to find a part on an input conveyor, move the robot to it and
pick it up. It is assumed that the set of parts that could potentially appear on
the conveyor are assigned to the variable SET_OF_PARTS. As mentioned ear-
lier, the cell automatically adapts itself to handle any one of the set once it has
been identified by the vision subsystem. The names of the parts are assigned to
SET_OF_PARTS from a terminal. This information is transmitted to procedure
MAIN by a command interpreter (not shown). Details such as following a partic-
ular speed profile or the handling of exceptions are omitted since they would tend
to obscure the example. It is assumed that the geometry of the part is available
in a CAD database and that off-line utilities are available to provide recognition
information to the vision system (see next section) and the location on the part
where it can be picked up (the grasp points are defined in a local coordinate sys-

tem of the part itsell)[WVW84].

The first part of this example identifies Ada packages which provide data
types and services to the main program. The with and use clauses are the
mechanism by which the robot environment is made available. (In the program
parts shown, words in lower case bold are Ada key words. The upper case words
are user-defined, or predefined, package, function, procedure, type or variable
names.) The with clause tells the compiler that the programmer intends to use
data types, procedures, and functions defined in the package named after the
with. The use clause tells the compiler that the programmer wishes to reference
the data types, procedures and functions defined in the package named after the
use by the names given in the package definition without including the name of
the package as a qualifier. In general, however, the user might not even have to
enter these with and use clauses directly. The use and with clauses could be
placed in the program template with which the user begins. Alternatively an
include pragma could be added to the compiler which would read a file of with
and use clauses and include them in the program. Both of these mechanisms
would provide to the user an environment of data types and primitive operations
tailored to a specific application, in this case robots.

MS84-493

with TEXT_IO;

with POSITION; use POSITION;

with CAD_MODEL; use CAD_MODEL;
with VISION; use VISION;

with ROBOT; use ROBOT;
procedure MAIN is

- Make the procedures, functions

— and data types delined in the named
— packages available to create a robot
= environment for the programmer.

N: INTEGER; — Number in set of parts.
begin
GET(N); —input from terminal.
declare
)
®

SET_OF_PARTS: PART_SET (1..N);

X: PART;
TARGET_LOC, PICK: FRAME;

—~ Set of parts that could potentially
— appear on the conveyor.

— Data about the part found (4).

— Coordinate frames for the part

— and its grasp point (2).
°
.
begin
CALIBRATE;
'y
®
SET_SPEED (FAST);

— Calibrate the robot before starting (5).

— Set robot speed fast for motion
= to approach point (5).
X:= FIND (DECISION_TREE (SET_OF_PARTS));
= Find and identify the part (3,4).
PICK:= PICK_APP_POINT (X.NAME, X.STABLE_POS);
~ Approach point from CAD d/base (3).
— Express approach point
— in world coordinates (2).
— Move to approach point (5).
-~ Set robot speed slow for final
= motion to grasp point (5).
PICK:= PICK_POINT (X. NAME, X.STABLE_POS);
— Get grasp point from CAD database (3).
- Put in world coordinates (2).
— Move to grasp point (5).
— Grasp part (5).

TARGET_LOC:= X.LOCATION * PICK;

MOVE (TARGET_LOC);
SET_SPEED (SLOW);

TARGET_LOC:= X. LOCATION #* PICK;
MOVE (TARGET_LOC);
CLOSE_GRIFP;
end;
end MAIN;

Figure 1. Outline of the Main Program Controlling the Robot.

The second half of the main program shows the use of the data types and
functions provided by the Ada packages for the simple operation described above.
The syntax used is similar to that found in several robot languages and the type
and variable names are sufficiently mnemonic that one can follow the intent of
the program with minimal reference to the supporting packages (see below).

MS84-493

Note that comments are introduced by a preceding ”--” and they can be placed
anywhere in the text stream. In addition, the comments in Figure 1 include one
or two numbers in parentheses that are the figure numbers of relevant packages.

FIND is a procedure in the VISION package that finds and identifies the
part on the input conveyor and returns the part’s name, a 4X4 homogeneous
transformation giving the location of a coordinate frame for the part in terms of
the robot's world coordinates and an index of which stable position the part was
found in. These three items of data are stored as components of a record X.

PICK_APP_POINT and PICK_POINT are functions which return (from the
CAD database or utilities acting upon it) 4X4 homogeneous transformations
which express the approach and grasp points in terms of the coordinate frame for
the part. The "*” has been overloaded (see below) to mean multiplication of
4% 4 matrices so that the result is the transformation of the appropriate point in
terms of the world coordinates of the robot. TARGET_LOC holds this transfor-
mation and is the argument of the MOVE procedure which actually causes robot
motion.

Partial specifications for the packages referenced in Figure 1 are given in
Figures 2 through 5.

The POSITION package defines the type FRAME to be a 4X4 matrix for
use as a homogeneous transformation (Figure 2). This type is intended to be
used to represent various coordinate systems which will occur during the pro-
gramming of a robot task in terms of other coordinate systems. While the 4x4
homogeneous matrix representation is most common for coordinate systems, it is
not the only possibility. The POSITION package simply provides a standard
interface to the programmers. The implementation can be changed, even placed
in special hardware, without the robot programmer having to change any code.
The use of the attribute private means that the programmer cannot use any
knowledge of how the data types is to be implemented. The function definition
%" gives meaning to the operation * in the context of two variables of type
FRAME. This process is called overloading of the operator *. The implementa-
tion of the function (not shown) will implement a multiplication of two 4X4
matrices. The special structure of the homogeneous transformation might be
taken into account in the implementation, but this is of no concern to the pro-
grammer, who need only be concerned with using the function [Mud81, MVAS82].

The package CAD_MODEL provides an interface to the off-line CAD system
(Figure 3). This kind of package is not part of standard robot systems, but is an
important part of our research on integrating robot programming and CAD.
Several kinds of information can be derived from the CAD system. The vision
system (see next section) calculates a set of features (area, perimeter, number of
holes, etc.) from the image of the part and, to identify the part, uses a decision
tree calculated from the set of parts which might be present. In other systems
the decision tree is obtained by on-line training of the vision system. However,
the decision tree can be precalculated from the part descriptions in the CAD
database and stored for use by the programming system. Similarly, grasp points

M584~493

package POSITION is

type COORD is new FLOAT;

type ANGLE is new FLOAT,;

— COORD and ANGLE are declared “new” floating point types.
~ This way they will not be confused with other FLOAT's.

type FRAME is private;
— FRAME is the representation of one coordinate system in terms of another.

function BUILD_FRAME(X,Y,Z: in COORD; RS, T: In ANGLE) return FRAME;
— Allows FRAME's to be constructed from lower level primitives. Necessary
- since FRAME is private and its structure cannot be directly accessed.

function "+” (A, B : in FRAME) return FRAME;
— This function expresses the coordinate frame represented by B in
— terms of the one in which A is represented, i.e., it is a transformation.

procedure UNBUILD__F‘Y%AME(A: In FRAME; X,Y,Z: out COORD; R,S,T: out ANGLE);
— Complement of BUILD_FRAME.

private
type FRAME Is array (1..4,1..4) of FLOAT; - A 4X 4 komogeneous transformation.
end POSITION;

Figure 2. Package Specification for Coordinate Frames and Related Operations.

for the parts can be precalculated.

The functions of CAD_MODEL access the database holding the required
values, and the data types defined provide the views of the data required by
other packages. PART_ID and PART_SET provide data types for identifying
one or a set of part(s). Each part will typically have a set of stable positions in
which it may lie. These may also be determined off-line from the CAD database.
The example shows the stable position identified by an integer index, though,
since the type is private, this fact may not be used by the rest of the program.
The stable position is part of the information returned by the VISION system
and is used by PICK_APP_POINT and PICK_POINT to determine the relative
position of the approach and grasp points of the part. The function
STABLE_POS_SET returns the set of stable positions in which a given part may
be found. DECISION_TREE returns the decision information which is used by
VISION as the basis for distinguishing a set of parts from one another. The deci-

sion information is a binary tree pointed to by a (pointer) variable of access type
DECISION.

The VISION package provides the interface to the vision subsystem (Figure
4). It uses the data types and interfaces provided by CAD_MODEL. The type

MS84-493

~10~-

with POSITION; use POSITION,;

package CAD_MODEL 1s
type PART_ID is private;
type D_INFO Is private;
type DECISION_INFO is access D_INFO;
type PART_SET is array (INTEGER range <>} of PART_ID;
type STABLE_POSITION s private;
type S_POS_SET Is array (INTEGER range <>) of STABLE_POSITION;
function DECISION_TREE (S: in PART_SET) return DECISION_INFO;
function STABLE POS_SET (PART_NAME: in PART_ID) return $_POS_SET;
function PICK_POINT (PART_NAME: In PART_ID;
STABLE_POS: in STABLE_POSITION) return FRAME;
function PICK_APP_POINT (PART_NAME: in PART_ID;
STABLE_POS: in STABLE_POSITION) return FRAME;

private

type PART_ID is new STRING (1..8);

— Eight character part identifier.
type STABLE_POSITION is new INTEGER;

— Index of stable positions.

type D_INFO 1s — Node in binary tree.
record
VALUE: FLOAT,;
LLINK: DECISION_INFO;
RLINK: DECISION_INFO;
end record;
end CAD_MODEL;

Figure 3. Package Specification for CAD_MODEL.

PART that it defines has three components: the name of the part, a coordinate
frame giving its location in terms of the world coordinates, and the stable posi-
tion in which it was found. The function FIND causes a picture to be taken and
returns a variable of type PART giving the pertinent information about the part
found.

Finally, the ROBOT package provides a simple interface to the robot (Fig-
ure 5). The intended operation should be obvious from the procedure names
chosen.

One principal advantage of this system is its modularity and extensibility. If
a new sensing or algorithmic capability is added, one need only insert a new
package for it, insert the appropriate use and with clauses to make the addition
available to the user, and recompile the system. If one wishes to make the pro-
gram available to run with a different robot (of sufficient physical capabilities to

MS84~-493

-11-

with POSITION: use POSITION:
with CAD_MODEL; use CAD_MODEL;:
package VISION is

type PART is
record
NAME: PART_ID;
LOCATION: FRAME;
STABLE_POS: STABLE_POSITION;
end record;

function FIND (D_T: In DECISION_INFO) return PART;
— Identifies the part, its location and the position it is in.

end VISION;

Figure 4. Package Specification for VISION.

handle the problem) only the package ROBOT need be changed. A standardiza-
tion of the package interface specification, then, could lead to ready availability
of ROBOT packages for a wide variety of robots and simplify porting of pro-
grams from one robot to another.

IV.PROGRAM ABSTRACTION

A major objective of software management is in the ability to reuse algo-
rithms that have been implemented previously. However, an undesirable attri-
bute of strongly typed languages is the inability of type independent operations
to be used on a variety of conflicting data types. Ada allows a form of program
abstraction in which subroutines or packages (called generic subroutines or pack-
ages) take parameters which are the data types to be manipulated. The Ada
source code is then expanded as necessary to implement the desired subroutine or
package for each data type desired. The expansion process, called instantiation,
is similar to macro expansion.

Generics are not limited, however, to operations which are independent of
the data-types involved. Ada generics can adjust for broad classes of objects by
using the with clause and by passing functions as parameters during instantiation.
In this way operations which are specific to the data type given as a generic for-
mal parameter can be inherited.

MS84-493

~12-

with POSITION; use POSITION;
package ROBOT 1s

SLOW: constant == 0.1; — Fine motion speed.
FAST: constant := 1.0; — Approach speed.
subtype SPEED is FLOAT range SLOW.FAST;

— Bound speed for safety check.
procedure CALIBRATE; — Calibrate the robot arm prior to use.
procedure MOVE(DESTINATION: in FRAME};

- Move to a point given by applying

— the transform represented by FRAME.
procedure OPEN_GRIP;
procedure CLOSE_GRIP;
procedure SET_SPEED (SPD: in SPEED);

end ROBOT;

Figure 5. Package Specification for ROBOT.

~ The concept of generics raises several interesting questions. One is whether a
generic robot package can be defined and instantiated for specific instances of
different robots. To test this on a limited scale the use of generics in a vision
system was examined. Contemporary vision systems utilize a list of nearly forty
features which could be useful in distinguishing parts from one other, inspecting
parts or guiding specific assembly operations. Most vision systems calculate sub-
sets of four to twelve features from this list. Because of the limited amount of
time, no vision system calculates the entire list at run-time. Selection of the
proper subset is, therefore, crucial for an efficient solution. Furthermore, dif-
ferent applications require different subsets.

To obtain a vision system which could be easily adapted to a variety of
vision tasks, a library of routines to calculate all features from an
INTERMEDIATE_FEATURE_VECTOR could be established. Next, a generic
FINAL_FEATURE_CALCULATION procedure could be written in which the
FINAL_FEATURE_VECTOR is defined only in terms of the number of features
desired. This is illustrated in detail in [VMG84]. However, little advantage was
seen to be gained.

V.SUMMARY AND CONCLUSIONS

The future development of automated manufacturing cells will be increas-
ingly linked to the integration of cell components amongst themselves and with

MS84~493

-13~-

higher level computer aided engineering functions. This integration will depend
upon increasingly complex and sophisticated computer systems. The program-
ming of these systems will require modern software techniques such as data and
program abstraction. This paper has outlined data and program abstraction use
as the basis for developing manufacturing cell software and illustrated this with
the implementation of a computer vision module via Ada.

From the view points of managing complex software, providing an applica-
tion specific programming environment to the user, and achieving language stan-
dardization, Ada provides a number of advantages. These include:

e The use of data abstraction and operator overloading to create well
modularized application specific code helps usability, readability and
maintainability.

o The resulting application package can create a reasonable application
specific environment.

e The strong type checking significantly aids debugging.

o The separate compilation features in conjunction with the other
features above aids flexibility and helps portability.

e The expressive power of the language is excellent.

These advantages are not surprising. They are exactly what computer scientists
have been predicting for several years. Having these capabilities widely available
in a standardized language, however, is very significant. Indeed, it is this stan-
dardization of Ada that can greatly aid in standardizing application specific
"languages” and giving them portability. The portability can be inherited, to a
large measure, from Ada. ‘

Generics, on the other hand, while of great use in dealing with common data
structures over different primitive data types, was of less utility than originally
expected in the application specific uses for which it was examined. It is possible
to instantiate an application specific vision module, as shown above. Similarly,
one could conceive of using generics to manage the production of code for dif-
ferent robots--just instantiate the code for the robot you want from some generic
package. However, since in both the vision case and in the multiple robot case
the controlling algorithms are different, one would have to pass in to the generic
package (as parameters) the functions which perform the calculations specific to a
given instantiation. While feasible, this eliminates much of the advantage to
using generics. The resulting principle advantage would be an enforcement of a
standard way of dealing with all features in the vision system or all robots in a
multiple robot situation.

MS84-493

I .

There are also a number of concerns which have arisen which either are a
detraction to some users or bear further investigation (some of these reflect Ada
implementation only, not data abstraction in concept):

e The heavy use of data abstractions creates additional procedure calls
and corresponding overhead which can cause difficulty in a real-time
environment.

e Strong typing can get in the way of what one wants to do.

e How usable will Ada really be, even with good environment creation
through special packages, to the noncomputer professional?

e The debugging of robot programs requires close interaction with the
programmer. It is not clear this can happen with Ada.

o The integration of systems involving multiple processors does not per-
mit Ada communication and synchronization mechanisms to be fully
utilized.

The use of the inline pragma was tested in our implementation of the vision sys-
tem. By using snline for the most frequently used low level routines the compu-
tation time was reduced by a factor of nearly four. This must not be taken too
seriously, however. The architecture of the iAPX 432, the computer used in our
work, makes it particularly susceptible to inefficiency on context switching.
Thus, the inline improvements in our experiments are probably much greater
than will be obtained in general. Further investigation on the effectiveness of the
expansion should be carried out. Also, the Ada inline pragma causes all invoca-
tions of a procedure to be expanded, while for memory management purposes,
the programmer might find it more convenient to be able to selectively expand
procedure calls.

The strong typing argument has raged for some time and is not specific to
robot or manufacturing cell applications. We believe that as the size and com-
plexity of a software project increase so does the importance of using strong typ-
ing.

We do not ever expect to see robots on manufacturing cells programmed in
Ada by shop floor personnel. We expect that as more complex arrangements of
robots. sensors and other machines are built and as better links with computer
aided engineering and computer aided design database are forged, shop floor per-
sonnel will cease to "program” robots. Rather they will interact with a program
to identify what is to be done next or which option to choose in responding to an
exception. The actual programming will be done in a more generic fashion by a
person who has a good mix of manufacturing and computer engineering/science
in his/her background. A person with this type of training should be able to deal

MS84-493

-15-

with a "roboticized Ada”.

The debugging issue is one that requires considerable additional research.
All Ada implementations in progress are based on a compile translation while
almost all robot programming languages are based on interpretive translation.
From the point of view of the programmer, however, the robot program may be a
separately prepared and debugged entity. What is really necessary is a fast
interactive translate/debug system. This does not preclude compile translation,
particularly if used in conjunction with a simulator.

Interprocess communication in our experimental system did not really use
the synchronization mechanisms of Ada; the communication was necessarily han-
dled through low level I/O drivers. This points to a major limitation in nearly
all approaches to the integration of multiple smart devices, that is, the need to
deal with all devices via explicit I/O and program the devices in (often) different
languages (PL/M and assembly language in our case). Often the processes with
which one wants to communicate or synchronize exist on separate processors and
the language communication and synchronization mechanisms do not extend
across machine boundaries. Consequently, we feel there is a strong need for a
system integration language which can extend across machine boundaries.
Whether or not Ada is suitable for such extensions is currently under investiga-
tion.

Recent programming language research has yielded a number of new con-
cepts which will aid the program development process. Data and program
abstraction have been incorporated into an experimental system through use of
the Ada programming language. Experience to date with them has been quite
favorable, though the need for a distributed language is beginning to emerge.

VI. REFERENCES

[Bar84] J. G. P. Barnes, Programming in Ada, (2nd Edition), London, England:
Addison-Wesley, 1984.

[Bri77] P. Brinch Hansen, The Architecture of Concurrent Programs, Engle-
wood Cliffs, NJ 07632: Prentice-Hall, 1977.

[DoD83] Ada Programming Language (ANSI/MIL-STD-1815A), Washington,
D.C. 20301: Ada Joint Program Office, Department of Defense,
OUSD(R&E), January 1983.

[Gle79] G. J. Gleason, ”Vision Module Development,” Ninth Report, NSF
Grants APR75-13074 and DAR78-27128, SRI Projects 4391 and 8487,
Stanford Research Institute, Menlo Park, CA, Aug. 1979, pp. 9-186.

[GoY80] D. I. Good and W. D. Young, ”Generics and Verification in Ada,” Sig-
plan Notices, Vol. 15, Nov. 1980, pp. 123-127.

[GSC82] W. A. Gruver, B. I. Soroka, J. J. Craig and T. L. Turner, "Evaluation of
Commercially Available Robot Programming Languages,” Proceedings

MS84-493

-16-

of the 13th International Symposium on Industrial Robots & Robots 7,
April 1983, pp. 12-58 to 12-68.

[Hilgo] J. W. Hill, "Survey of Commercial Vision Systems,” Industrial Automa-
tion Group, May 1980.

[Mil78] R. Milner, "Theory of Type Polymorphism in Programming,” Journal of
Computers and System Sciences, Vol. 17, 1978, pp. 348-375.

[Mud81] T. N. Mudge, "Special Purpose VLSI Processors for Industrial Robot-
ics,” Proceedings of the IEEE Computer Society’s 5th International
Computer Software & Application Conference, Nov. 1981, pp. 270-271.

[MVAS82]T. N. Mudge, R. A. Volz and D. E. Atkins, "Hardware/Software Tran- -
sparency in Robotics Through Object Level Design,” Proceedings of the
Society of Photo-optical Instrumentation Engineers Technical Sympo-
sium West, SPIE 360, Aug. 1982, pp. 216-223.

[Org82] E. I. Organick, A Programmer’s View of the Intel 432 System, Santa
Clara, CA 95051: Intel Corp., 1982.

[Per81] W. A. Perkins, A Computer Vision System that Learns to Inspect Parts,
General Motors Research Laboratories, Research Publication GMR-3650,
June 1981.

[REMS1]E. S. Roberts, A. Evans Jr., C. R. Morgan and E. M. Clarke, "Task
Management in Ada - A Critical Evaluation for Real-Time Multiproces-
sors,” Software--Practice and Ezperience, Vol. 11, 1981, pp. 1019-1051.

[Ren82] T. Rentsch, "Object Oriented Programming,” Sigplan Notices, Vol. 17,
No. 9, Sep. 1982, pp. 51-57.

[Sha80] M. Shaw, "The Impact of Abstraction Concerns on Modular Program-
ming Languages,” Proceedings of the IEEE, Vol. 68, No. 9, Sep. 1980,
pp. 1119-1130.

[Shig2] K. G. Shin, A Comparative Study of Robot Programming Languages,
Center for Robotics and Integrated Manufacture Report RSD-TR-17-82,
Univ. of Michigan, Ann Arbor, MI 48109, Nov. 1982, 50 pp.

[VMG84]R. A. Volz, T. N. Mudge and D. A. Gal, "Using Ada as a Programming
Language for Robot-based Manufacturing Cells,” IEEE Transactions on
Systems, Man and Cybernetics, (to appear).

[Wir82] N. Wirth, Programming in Module-2, (Second Edition), Berlin, Ger-
many: Springer-Verlag, 1982.

(WWV82] : v

J. Wolter, T. C. Woo and R. A. Volz, "Gripping Position for 3D

Objects,” Proceedings of the 1982 Meeting of the Industry Applications

Society, Oct. 1982, pp. 1309-1314.

MS84-493

