The 1983 Conference on
The Johns Hopkins University.

Information
March,

and Systems,
pp. 733-741.

Sciences
1983.

Object-based Computer Architectures

T. N. Mudge, G. D. Buzzard, D. J. Verhaeghe, J. Hill and D. C. Winsor
Dapartment of Eiectrical and Computer Engineering
Univarsity of Michigan
Ann Arbor, Ml 48109

Absiract--There has been a slzable increase of interest
in abject-based computer systems recently. Much of
this increase is attributable to DoD's masslve commit-
ment to the Ada language project. Though Ada (DoD's
proposed standard language) may not fit everybody's
definition of an object-based language, it does incor-
porate key object-based concepts. In this paper we
attempt to characterize these systems and the underly-
ing concepts of the object-based design methodology.
We also present case studles of two commerclafly avall-
able abject-oriented computers and point to issues
which require further study.

|. INTRODUCTION

The term "object-based" has been used rather
loosaly in several different contexts. In this paper we
will characterlze ohject-based computer architectures
and discuss some of their major implications. While we
will not attempt to rigidly deflne the phrase "object-
basad" as it relates to computer systems, we will explain
several object concepts and show how they are applied
to computer systems. It should be neted that it is actu-
ally the design methodology that is object-based, and
that object-based computer systems refer either to sys-
tams which have been dasigned using this methodology,
or to systems which provide development cycle and/or
run-time support for object-based concepts. This is,
perhaps, most easlly illustrated in terms of software sys-
tems. There it describes software environments which
incorporate the concepts of data and program abstrac-
tlon [1], and protection domains [2] through the use of
“objects.” Objects are singly addressabie entities that
unlquely identify their contents. In terms of the IAPX
432's Ada Implemantation [3, 4], objects are generally
grouped into packages that provide abstractlons for
elther programs or data. Smalitalk objects [5] also pro-
vide abstractions, but in a slightly different manner.
Implemantations of both Ada and Smailtaik objects will be
discussed later. In terms of hardware, the phrase
"object-based” is often used ta refer to the architec-
tural support provided for data and program abstraction,
and protection domains. One aspect of this support can
be exemplified by an architecture where the primitive
operations for memory management, process dispatching,
Interprocess communication, or other operating system
type features are provided by the hardware. In this
type of system the implementaticn details of the memory
pool, pracess dispatching, or interprocess communication
mechanisms are hidden; and a concisae interface In the
form of Instructions which aperate on the objects
corresponding to the respective mechanisms s
presentad to the software operating system. Ancther
meaning which has been attached to cbject-based sys-
tems refers to systems where the object-based design

This work was supported In part by the Alr Force Offics of Sclen-
tific Ressarch under contract FA9620-82-C-0089 and a Kodak Felow-
ship.

methedology has been used to actually specify the
architecture. When carriad to an extreme, this idea has
some very powerful implications. When design automa-
tion tools become sufficlently sophisticated, one might
be able to economically customize individual batches of
VLS| processors towards specific operations which
appear unusually often In a given (limited) application.
This concept is closely related to the
hardware /scftware transparency issue which will be dis-
cussed shortly.

There are two major goals in developing cbject-
based software. The first is to reduce the total life-
cycle software cost. This entsils both increasing pro-
grammer productivity and reducing malntenance costs.
For reducling maintenance costs though, abject concepts
alone may not suffice; the syntax used in the program-
ming anvironment must be such that It maps very closely
to a concise natural language description of the system.
The second goal, is to Implement software systems which
regsist both accidental and malicious corruption attempts.
Protection domains are used for this purpose.

The major goals for developlng object-based
hardware are to provide an efficient execution environ-
ment for the software system. A very attractive addition
to this goal, however, would be to design the system in
such & manner as to be able to extend the abstraction
mechanism to effect a hardware/software (HW/SW)
transparency. The availability of HW/SW transparency
would allow system designs to proceed without regard
far the final placement of the HW/SW boundary. The
entire system could be described by a suitable system
implementation language, impiemented In software (as far
as physically possible), and then after sufficient perfor-
mance data was acquired appropriate modules could be
shifted to a hardware implementation. If the design
methodology was implemented in the development
environment with sufficient sophistication the migration
from software to hardware would not requlre any code to
be rewritten, and the interface would already be specl-
fied. The hardware interface could occur at one of three
lavels: bus level, similar to current arithmetic coproces-
sors such as the Intel 8087; memory (1/Q) level, like
many existing 1/0 devices; or, concelvably, at a level
internal to the CPU involving an actual change In the CPU
architecture.

There are a few commerclally available computer
systems which incorporate various object-based con-
cepts. The most notable of these systems, the Intel
iAPX 432, and the |BM System/38 [6] will be described
in case studies which appear later in the text. Thae
PP250 [7] wes designed by Plessey Telecommunlications
Research Laboratories for applications In telephone
switching systems. As such, It had 1o meet very
stringent reliability standards requiring the Inclusion of
software error detection and recovery facilities, which
were achieved through the use of a capability [8]
machanism. Another commercial entry is the Apollo net-
work system [9]. It employs an object oriented network

trev
Typewritten Text
The 1983 Conference on Information Sciences and Systems,
The Johns Hopkins University. March, 1983. pp. 733-741.

operating system which supports a total address space
of 29% bytes. This space is comprised of an object name
of 64 bits which is unique in both space and time, and an
address space of 32 bits within each object. Several
unlversities have alse developed systems which employ
abject-based concepts. The most recent projects In
this group Include Cm* [10], C.mmp [11] and CAP [12].
Like most of their predecessors, these machines utilize
capability addressing techniques to Implement secure
protection domains. These protection domains (pack-
ages In Ada) can then be appropriately structured to
provide data and program abstractions.

Ob ject-based machines are particulardy well suited
to applicatlons which have stringent requirements for
data security and program Integrity. The high degree of
abstraction provided by the architecture also facilitates
the Interconnection of several processors into either
tightly couplad multiprocessor systems and/or distri-
buted networks. Through the use of process/processor
abstraction Intel has achleved software transparent mul-
tlprocessing in their iAPX 432 system. In addition, the
Cm* gystem provides an example employing both tightly
coupled multlprocessing and distributed networking con-
caepts in one systam.

Of course, all of the benefits of an object-based
system do not come without their price. All present sys-
tems rely on some form of capability addressing. In
current implementations these addressing mechanisms
greatly increase the address generatlon and translation
times, even when translation look-aside and caching
schemes ara employed. For example, to copy a capabil-
ity on Cm* requires ten memory references [13], and on
the IAPX 432 nine memory referengas are required.

The following sectlon discusses some key “objact”
concepts and thelr implementations in more detail. Sec-
tion [l contains case studies of twa commerclally avail-
abla systems, the Intel IAPX 432 and the IBM Sys-
tem/38. Concluding remarks, including comments on
areas of further research, are mada in section IV.

H. OBJECT-BASED CONCEPTS

Abstraction plays a central rols in the object-based
design methodology and, henca, occurs at many levels.
The most common of these levels being data, programs,
and in the case of Apollo-type network systems, entire
programming environments. Of these, data abstraction Is
the most widely used and bast understood.

In terms of Ada, data abstractlon provides the user
with a "private” (hidden) type and operations on objects
of that type [14]. Mary Shaw gives a more expansive
definition of an abstract data type [1]. An abstract
data type consists of a program unit that includes the
following information:

Visible outside the type definition: the name of the
type and the names and routine headers of all
operations {procedures and functions) that are per-
mitted to use the representation of the type; some
languages {e.g. Ada) also Include formal specifica-
tions of the values that vatlables of this type may
assume and of the propertias of the operations.

Not visible outside the type dsfinition: the
rapresentation of the type in terms of built-in data
types ar other defined types, the bodies of the visl-
bla routines, and hidden routines that may be called
only from within the moduls.

-

The efficient use of abstract data types requires
substantial support from the programming language.
Some of the more important areas of support include:
naming and scope rules, type checking (including across
compllation boundaries If separate compilations are sup-
ported), formal specification notations, and distributed
properties. Enforcement of naming and scope rules Is
often implemented through the use of protection
domalns, which will be discussed later., Type checking
between actual and foimal parameters Is more complex
for abstract data types because new types may be
deflned during the compilation process. Notations for
formal specifications of the abstract data types must be
provided so that the users of the types are provided
with all necessary information. Finally, support must be
provided by the abstract data types for any type-
spacific interpretations required by the wvarious con-
structs of the programming language, such as storage
allocation and synchronization.

The construct for Implamenting abstract data types
In Ada is the package. The Ada package [15] effec-
tively places a wall around a group of declarations and
only permits access to those declaratlons which were
Intended to be visible. Ada packages actually come In
two parts, the specification and the body. The package
speacification formally specifies the abstract data type
and its interface to the outside world. The body of the
package contains the hidden implementation details. The
relationship between Ada packages and objects (in the
context of the IAPX 432) will be discussed in the iAPX
432 case study.

Data absiractlon in Smalltalk aiso fits the definition
given above. Nowszver, the implementation is very dif-
ferent. Data abstraction is very integrally related to the
concept of Smalltalk objects [5, 18], so a brief introduc-
tlon to objects will precede the references to data
abstraction.

In Smalttalk all information is reprasented in the form
of objects. An object is defined as a package containing
Information and descriptions of all the manipulations that
may be performed on the informaticn. The manipulation
of information is controlled by the passing of messages
between objects. A Smalltalk message is defined as a
selection of one partlcuiar manlpulation of an object.
The object containing the Information to be manipulated
is called the receiver of the message. When an ohject
recelves a message, it examines a symbolic name con-
tained In the message called a selector. The selector
names the desired manipulation, but it does not specify
how it is to be performed. The description of how the
manipulation is to be parformed Is contained in the object
itself. In Smalltalk, the programmer sends a message to
invoke a manipulation Instead of calling a procedure.
Howevaer, the sending of a Smalltalk message differs from
a procadure call In that the message only names the
manipulation while a procedure contains the detailed
steps to be performed in the manipulation. Another
important difference s that In a conventional
procedure-oriented system the same manipulation is per-
formad each time a named procedure is called, while
sending Smalltalk messages with the same selectors
(same names) to different objacts may result in different
manipulations, since it is the receiver which determines
exactly what manipulation is t0 be performed.

In additien to a selector, a message may contain the
names of other objects that take part In the manlpula-
tlon. These names are called the message arguments.
For example, if the object is named "student,” the

S

programmer might send a message with the selector
"abuse."” The message could also contain an argument
which spacifies how the student is to be abused.

The description of a single type of manipulation of
the informatfon in an object is called a method. A method
is similar to a procedure in that it describes a sequence
of actions to be performed, but unlike a2 procedure it
cannot be separated from the abject. Methods may only
be performed as the result of receiving a message. Thus
a method cannot call another method directly; it must
send a message to the object containing the method.

Smalltalk objects use the concept of data abstrac-
tion. From "outside” an object the oniy thing that can be
done is to send It a message. The details of its informa-
tion and its methods are hidden. An object's set of mas-
sages that it can raceive are called its protocol. The
external view of an object is strictly limited to its proto-
cal. Internally, an object consists of its methods and a
sat of variables that refer to other objects. These vari-
ables are called the object's private variables. The
methods and the private variables are analogous to the
procaedures and the data in a procedure-~orientad system.
Howavaer, the distinction between procedures and data is
localized strictly to the inside of the object.

Programs and subprograms provide another common
level of abstraction. Program abstraction provides
operations on structures of objects where the rapresen-
tation of the structure as wall as access to tha object
itself are hiddan from the user. This provides a stronger
form of hiding than data abstractlon since access to the
objact as well as its structured representation is hldden.

Program abstraction in Ada Is realized through gen-
eric package Instantiation. The generic package is really
a template for packages which will accept abstractions
{usually data, but in the case of Intel's extended Ada it
could be another package) as actual parameters. This
rapresents a slightly higher level of abstraction than
data abstraction, because the structure of tha objact(s)
being manipulated is completely hidden within the pack-
age body. The hidden object structure is accessed
through the internal non-local variables of the oparations
deciared in the package specification. Manipulation of
the object structure occurs as a contralled side effect,
which Is strictly contained within the package hody, of
the raquested operation. In this manner, generic program
abstraction supports an environment in which the speci-
fied (public) operations either directly or indirectly
transform a hidden Internal state which depends only on
past operations applied to the Inltial state of the system.

While it Is apparent that Smalltalk objects have
already met the definition of program abstraction, we
have not shown how the relationship between objects of
similar characteristics can be exploited. This is essen-
tial if the concept of program abstraction Is to have any
significant practical value. When program abstraction is
efficiently Implemented It leads to the elimination of
redundant programming effort (e.g. a sort routlne need
be written only once, regardless of the different types
of objects to be sorted) and a reduction of maintenance
costs (a.g. improvements to our sort routine are made In
only one piece of code). Operations on objects of dif-
ferent types, but with similar characteristics, are real-
Ized through the use of classes and instances.. A class
is a description of a type of object, while an instance is
an object of a particular class. Every object is an
Instance of a class, and it is possible to have multiple
instances of a particular class. The methods of an

object are found in its class, so all instances of a partic-
ular class have the same protocol. The class may also
specify some of the private variables for objects in the
class, These are called class variabies and they are
shared by all instances of the class. A class of objects
may also include private variables which are spacified
individually for each instance. These are cailed instance
variables. All instances of a class have the same number
of instance variables, but their values may differ
between instances. A Smailltalk program is, then, crgan-
izad as a set of class templates which define all user
defined object classes. The class templates include the
class names, instance variabie names, and methods. A
method Js described by its message pattern, which
specifies the selector used to invoke it, its temporary
variable names, which specify dynamic local variabies,
and a sequance of expressions.

We have seen that the concepts of data and pro-
gram abstractlon in Smalltalk are essentially one In the
same. It has been proposed that these concepts be
merged together in Ada as well [14]. In fact, Intel has
already taken a big step in thls direction with their
extensions to the Ada language [16]. The merging of
pragram and data abstraction concepts would result in a
unified abstraction mechanism that would eliminate two
relatively orthogonal concepts. The software designer
wouid then be relieved of the artificial cholce between
program-crlented or data-oriented pragramming metho-
dologies. -

A higher, though perhaps less sophisticated, level of
abstraction is provided in the Apollo computer system
[9]. Apollo provides an object-oriented network operat-
Ing system to coordinate the user's access to network
wide facilities. Objects are used to represent programs,
data files, or even entire programming environments. The
network global object spaces are selectively mapped
into a process virtual address space on a given node of
the system. The objects are network wide; whereas, tha
processes are all on a particular noda running on behaif
of a particular user. The address space mapping
represents the only primitive in which processes can
relate to objects. For the most part the operating sys-
tem and all higher level views of the system relate to
objects rather than processes.

Protection domains, and the inherent security that
they provide, are ancther key object concept. The basls
for secure and error-tolerant execution environments lies
in the principle of system closure [2]. This principla
basically states that the effects of all operations on a
closed system shall remain strictly within that system.
One common construct used for providing system closure
Is the protection domain [17]. Briefiy stated, a protec-
tian domain Is an environment or context that defines the
set of access rights that are currently available to a
specific user for objects of the system. Capabllity
based addressing schemes are the most efficient known
mechanism for implementing protection domains.

Protection domain schemes generally provide facili-
ties for arror confinement, error detection and categori-
Zatlon, reconfiguration, and restarting. Error confinement
(and security) strategies generally involve both process
isolatlon and resource control. The basic premise of pro-
cess igolation is that processes are given only the capa-
bilitias necessary to complete their required tasks. This
implies that interactions with any external objects (e.g.
sending messages to other processes) must be strictly
formalized and controlled. Resource control refers to the
binding of physical resource units to computational

objects. Examples of this Include the binding of
processes to processors, or the assignment of memory to
currently executing contexts. The idea here is to
ensura that when the resource units are released, or
preempted, that all infermation contained within the unit
is returned to a null state. This prevents any information
from "leaking' out of a protection domain by being inno-
cently left in an area that will eventually become acces-
sible to other users. Error conflhnement also alds the pro-
gram debugging process, since bugs should be located In
the same module which contains the resulting error. Pro-
gram maintenance also benefits since the protection
domain defines the maximal set of modules which could
be affected by a modification to the system. Error
detection and categorization invoives dynamic checking
for object type inconsistencies and access constraint
violations In executing procedures. The categorization
of detected errors can then be used to aid in restering
the system to a known consistent state. Reconfigura-
tlon facilities attempt to restore the system to an oper-
able state by removing from service the failed com-
ponent, be it hardware or software. If the reconfigura-
tion attempt is successful, the system is then restarted.

The most efficlent known mechanism for Implemant-
ing protectlon domalns is the capability mechanism.
While much can be done at compile time to enforce the
cancepts of protection domains, there are many cases
whera a dynamic snforcemant mechanism is essantial.
The real-time sharing of data between programs provides
an obvious example. But compile-time protection
enforcement also lacks the ability to support the detec-
tion of, and recovery from, failures In the run-time sys-
tem. A brief description of the capability mechanism fol-
lows In the next paragraph.

A capability can be thought of as a name of an
object. An object cannot be accassed (and, in fact, its
existence cannot aven ba determined) unlass its name is
possessed. The capability also containg the access
rights to the object {(e.g. read, write, or capability copy
rights). The only subsequent modification allowed Is the
restriction of these rights. Capabillities are created
along with their respactive objects. The initial control of
the capability, hence the object, belongs solaly to the
creating context. Speclfic implementation details are
given In tha case studies.

1. CASE STUDIES

A. Intal iAPX 432

The Intel IAPX 432 is an object-based microcom=-
puter system, developed in an effort to curb the rising
costs of software. Measured as a percentage of total
system costs, the cost of software has been rising
dramatically for the past several years. Intel attributes
much of this increase to four common requirements that
are characteristic of modern software systems [19]:

(1) Demand for systems embodyinhg many large pro-
grams with complex interactions.

(2) Demand for Increased system securlty.

(3) Demand for efficient concurrent programming sup-
port.

(4) Demand for truly transparent muitiprocessing, where

changing the number of precessors In the system
does not require any software modifications.

The object-based design methodologies embodiad in, and
supported by, the iAPX 432 provide solutlons for these

problems. Furthermore, It is hoped that the underlying
architectural support for object-based programming
methodologies will help to provide the environment
nacassary to aid in controlling the rise of software
costs.

Al information in the IAPX 432 system is
reprasanted by typed objects. An object is defined by
the foliowing four characteristics [20]. First, an object
is a data structure containing organized information.
Objects also define the set of operations which may be
performed on themselvas. In fact, these are the only
operations that are allowed. The third characteristic of
iAPX 432 abjects is that they are referenced as a single
entity, regardless of the length of the cbject. Finalily,
every abject has a unique label that contains the infor-
mation about its type.

Objects are implemented as a collectlon of one or
more segments. Segments are of variable length, and
come In one of three hardware recognized forms, access
only, data only, or a combination of both. Segment types
are identifiad by header information which Is stored in
the segment itself, but Is virtually {in the address sense)
Invisible to the software. In the case of .combination
segments, the location of the boundary between the
access and data parts Is also stored with the type.
Access segments {or parts of segments) can contain
only access descriptors or null entries. Access descrip-
tors are the "capabilities” in the IAPX 432 system. Data
segments contain all of the other Information in the sys-
tem, including things such as instructlons or process
status informatlon.

The abiiity of the hardware to identify access seg-
ments Is one of the key mechanisms used by the IAPX
432 to enforce protection domain security. Any
attempts to modify access segments can be closely
monitored. The security mechanisms Inherent In the IAPX
432 architecture are not limited to the above, however.
As an example, we will consider the protection against
exacuting data. The currently executing process refer-
ences Instructions via two Indices, ohe of which is an
instruction pointer that provides an offset intc the
current Instruction object. The other is an index which
selects a capability that determines the current instruc-
tion object from the domain object (described later).
Since the physical base address of the currently exe~
cutlng Instruction object is cached on chip and since
length bounds checks are automatlcally performed by the
hardware on all memory references, Instruction fetching
type consistency Is guaranteed by checking the object
type of the instruction object referenced by the indexed
capabllity, This needs to be done only when the current
Instruction object index is modified, that is, only when an
intersegment branch is executed.

There are a number of hardware {microcode, actu-
ally) recognized objects in the iAPX 432 which are pri-
marily used to suppert the object-based concepts dis-
cussed in section Il. This Includes objects which
represent instructions, protection domains, activation
racords, processes, and even physical processors. Two
of the more interesting ones are tha context and domain
obJects; these represent activation records and protec~
tion domalns, respectlvely. The domain objects and con-
text objacts are used to realize the concept of type
managers, the system's primary mechanism for imple-
menting data and program abstraction concepts. Type
managers ara modules that provide information hiding (or
data encapsulation) by containing a data structure and
all the necessary procedures to manlpulate that data

structure. By allowing only a strictly controlled set of
procedures to be invoked from outside of the protection
domain {i.a. the domain cbject), the implementation of the
data structure and the procedures which diractly mani-
pulate it ara effectively "hidden'’ from the outside world.
The domain object represants a type manager's static
structure via an object complex (a tree-like structure
objacts, in this case, with the domain object as Its root).
This object complex incorporates instruction objects and
data objects, referenced via the domain object access
segment, which contains all oblect references in the
domain, both public and private. The private references
are completely inaccaessible to objects outslde the
domain, and thus, realize data abstraction. Since the
domain object contains the data object and all the
Instruction objects that operate on it, we can see that
standard Ada packages map directly onto domain
objects. Additionally, since all generic Ada packages are
instantiated at compile time, each Instantiation is
represented by its own unigque domain cbject.

The context object contains the dynamic run-time
information which describes the execution envircnment
of an invoked procedure; thus every activated procedure
In the system has a context ohject associated with it.
When a procedure is called, a context obhject is automat-
fcally created; conversely, when a procedure returns,
the context object is automatically destroyed. intel pro-
vides an extenslon of Ada in the form of package types.
Through the use of the hardware-supparted domain and
contaxt objects, package types can be passed as
parameters to other packages [18]. This allows dynami-
cally defined antitias, such as dynamic generic package
Instantiations, to be easily handled In the iAPX 432. For
example, a user may wish to write a procedure that
manipulates objects of an unknown arbltrary structure
by performing very general operations on them, e.g., &
garbage collection algorithm. Standard Ada requires all
types to remain static, and to be known at compile time.
The IAPX 432, through Intel's extended Ada, supports
dynamic applications using arbitrary types directly.
Another possibility is for an operating system to dafine
its 1/O davices as packages types. Then, as devices
are added or removed, the system could dynamically
reconfigure itself without operator intervention.

To enforce system sacurity, Intel employed capabll-
ity addressing in the 1APX 432, All of the object refer-
ences for a glven protection domain exist in the domain
object's access segment, or Indirectly, In access seg-
ment oblects which are referenced from the domain. In
order to Impiement the domain object as a single object
and still allow for public and private reglons, Intel uses
an object refinement mechanism. This allows a contigu-
ous saction of an object to be treated as a whole object
In terms of capability rights. Thus whan a domain object
Is referenced by an "outside” procedure, the calling pro-
cedure will be using a capability for the public refinement
area of the domain access segment. By prohibiting
capabllities for the private area to he given out, that
area will remaln Inaccessible from outside the domain. In
the public area, capabilities reside for the Instruction
objects that are public Informatlon.

One of the design decisions that is interesting to
compare among object-based systems Is the Implemen-
tatlon of the addressing scheme. Addressing in the IAPX
432 is accomplished through a serles of Indexed table

look-ups, similar to segment tables in a segmented-

memory architecture. Address translation is a two level
mapping. A system-wide table known as the object table
directory exists at a Xknown, physlcal address. This
table represents the first level of the mapping process
and contains the base addressas of all the object tables
in the system (maximum of 4096). Object tables

represent the second level of the mapping process and -

contain object descriptors for all the objects assoclated
with that object table. Roughly speaking, there [s one-
to-one correspondence between processes and object
tables. The object descriptors found within the object
tables contain a 24-bit physical base address, length,
type, and other information for thelr respective objects.

A data reference In the iAPX 432 instruction stream
consists of a 16-bit access selector and a 16-bit dis-
placement [21, 22] (see figure 1). The access selector
is run through a content-addressable memory (CAM) and
if a mateh occurs, the base address of the object Is
obtalned. The 16-bit displacement is then applied and
the data element retrieved. if there is no match, then a
rather lengthy address translation takes place. The
access selector is broken up into a 14-bit displacement
and a 2-bit gelect field. The two bits selact one of four
entered access segments (EAS's), which are in on-chip
registers. These EAS's hold access descriptors (AD's,
capablilities) for access segments. The 14-bit displace-
ment provides an index into the selected segment to
obtain the AD for the requested data object. Once the
physical base address for the data object Is translated,
the 16-bit offset from the Instruction stream is added to
it to select the actual byte{s) referenced. The above
description implicitly Included the transiation of two AD's,
one for the access segment, the other for the actual
data object. Each one of these translations consists of:
using the flrst 12-bit field in the AD to index into the
object table directory to select a object descriptor for
an object table; then using the other 12-bit field in the
AD to Index into the specified object table and select a
object descriptor for the desired cbject, either the
access segment or the data object. The above address-
ing scheme provides a total virtual address space of 29°
bytas, this comprises the 212 object tables which can
each contaln 212 object descriptors for objects that are
up to 212 bytes in length. However, at any one Instant
of time a process's logical address space s limited to
232 pytes. This is because there are only four (22) EAS
registers which hold AD's for access segments that each
contain 2'% AD's for the actually addressable objects
which are up to 2'€ bytes in length.

One can see from the diagram that six off-chip
memcry references are needed to retrieve a piece of
data If its address Is not available in the cache. Once
tha AD for the access segment is retrieved from the
appropriate on-chip EAS register, three memory refer-
ences are needed to obtain the AL for the data object.
Two more references are then required to get tha base
addraess of the data object and finally, one more gets the
actual plece of data. Once an object Is referencad, its
base address and length are stored in the cache. Qnce
the object is cached, the number of memory references
needad for data retrieval is reduced to two. While secu-
rity Is strongly desired in today's compiex software sys-
tems, It is seen that the addressing of information in
such a secure system can lead o complex and lengthy
address translation mechanlsms.

LN
N

‘N

LS

B. IBM System/38

The IBM System/38 was designed for general pur-
pose data processing, supporting both batch and time-
sharing environments. System/38 is almed toward busi-
ness applications rather than numerically intensive
scientific applications. Consequently, the aystem needs
to provide functions such as task management, Inter-
task communication, and high-level data-base manipula-
tions. The System/38 provides this support at the
hardware/architecture level. This high-level machine
interface is implemented through the use of objects.
High-ievel machine instructions are provided that manipu-
late ohjects rather than simple data types such as byte
strings. This allows the execution of complicated func-
tions such as Inter~task communication to be performed
with just one instruction.

There are two major types of objects in the Sys-
tem/38, system and program objects. System objects
are used to perform machine functlons such as
message-queuing, process Initiations, and /0 opera-
tions. Program objects are used for operations such as
operand accessing, branching, and exception handling.
System and program objects, respectively, will be con-
siderad in more detail in the following two paragraphs.

All system objects support data abstractlon to some
extent. This is done by implamenting every system
object with a functionai portion and an associated data
space--an exception to this is a space abject which
contains an assoclated space only. The functional por-
tion of the object vuniains information concerning the
operations allowed on the object and the microcode
needed to perform those operations. This Is analogous to
the type manager concept supported in the Intel iAPX
432,

Peointer data objects contain pointers which are
used to access both system and program objects. A
speciflc type of pointer, the system pointer, is used to
access a system object. It can be in one of two modas:
resolved or unresolved. In the unresolved state the sys-
tem pointer containg the name of an object. When an
unresolved system pointer is referenced, a search is
made In a context object to assoclate a location with
the object name. This location is then placed in the
pointer, changing its state to resclved. Each process
has a name resolution list, which specifies which context
object(s) to search when resolving system pointers.
This Is useful for easlly changing the environment for dif-
ferent instantiations of the same process. Additionally,
data peinters, which are used to access data In objects,
can also be unresolved [23]. Using unresclved data
pointers allows programs to operate on data whose attri-
butes are dynamic. This Impiles that executing code can
operate on dynamically changing data types, as on the
iAPX 432. Thus, the usa of unresolved pointers In the
System/38 allows for a form of program abstraction.

The System/38 uses a form of capabllity address-
Ing to enforce system security requirements. Pointers
and user profiles (UP) together form the capability for an
ohject. All processes execute under control of a
spacific UP. This user profile contains the authorization
list for all permanent objects owned by the glven user.
Pointers basically provide the addressahbillty for an
object, while the UP decides if a module has the author-
ity to perform the desired operation. To increase

efficiency, the rights information contained in the UP is
alffowed to be passed into the system pointer. If this ia
done, the UP can no longer retract authorization for
specific modules. Thus, the abllity to place an object
authorization in an system pointer is itself an authoriza-
tion which may or may not be granted by the UP.

The IBM System/38 employs a segmented page
type memory architecture. Pages are 612 bytes long
and segments are from 128 to 32K pages. The virtual-
to-physical address mapping Is a two-level mapping
scheme, similar to the past memory architectures from
IBM. The hash table is the first level of mapping and pro-
vides an Index into the page directory (see figure 2).
Tha page directory is the second ievel of mapping and
yields the most significant bits of the physical address.

An operand referenca in the System/38 is a lengthy
process, as In the IAPX 432, in the instruction stream,
an operand field specifies an entry into both the object
definition table and the object mapping table. The object
diractory table entry ylelds a 4-byte object descriptor
and, opticnally, an extenslon of this descrptor. The
object mapping table provides a 6-byte virtual address
for the required system pointer. The virtual address Is
then run through the virtual address translation mechan-
ism. The 39 most significant bits are run through a hash
genarator which outputs an index into the page direc-
tory. The page directory contains a linked list of virtual
page addresses for all entries having identical hash
codes. The page directory gives a page address which,
when concatenated with the nine least significant blts of
the virtual address, vields a physical address. This
address provides the system pointer which contains the
virtual address for the data object. After passing this
address through the virtual-to-physical address transla-
tlon mechanism, the physical address of the cperand Is
obtained. As In the iAPX 432, the use of a capability
addressing schame to ensure tight system security leads
to lengthy address translations.

IV. CONCLUSION

In this paper we have characterizad object-based
computer architectures. This was done by illustrating
kay concepts with examples drawn from hardware and
software systems. The concept of an object was illus-
trated rather than defined to avold asscclating yet
another definition with this term. A case was made for
object-based systems reducing system development
costs and providing a secure axecution environment.
These benefits require the use of an elaborate address-
Ing mechanism which significantly increases address
generation time. Quantifying this trade-off is the first
step ih evaluating object-based computer architecturas.
Davalopment of the techniques necessary for this quan-
tification, and the evaluation of any changes in the
architecture that may result, prasent important research
issues.

V. REFERENCES

[1] Shaw, Mary, "The Impact of Abstraction Concerns
on Modular Programming Languages,” Proceedings of
the IEEE, Vol. 68, No. 9, September 1980, pp.
1119-30.

y

[2] Denning, Peter J., "Fault Tolerant Operating Sys-
tems," Computing Surveys, Vol. 8, No. 4, December
1976, pp. 359-84.

[3] iAPX 432 Gensral Data Processor Architecture
Reference Manual, Revision 2, 171860-002, Intel
Corporation, Santa Clara, California, 95081, 1082, -

[4] Referencea Manue! for the Ada Programming
Language,
171869~G02, Intel Corporation, 3065 Bowers Ave-
nue, Santa Clara, California 95051, 1981.

[6] Robson, David, 'Object-Oriented Software Sys-
tems,” Byte, August 1981, pp. 74-88.

[8} iBM System/38 Functional Concepts
GA21-9330-1, IBM Carporation, 1982,

{7] England, D. M., "Capability Concept Mechanlsm and
Structure in System 250," International workshop on
protection in operating systems, IRIA, Rocquencourt,
August 1974, pp. 63-82.

[8] Fabry, R., "Capability-based Addressing,” CACM, Vol.
17, No. 7, July 1974, pp. 203-12.

[8] Apolio Domain Architecture Manudl, Apallo Computer
Inc, 18 Alpha Road, Chelmsford, Massachusetts
01824,

[10] Swan, R. J., Fuller, S. H,, and Siewlorek, D. P., "Cm*:
A Modular Multi-Microprocessor," AFIPS Conference
Proceedings, Vol. 46, 1977 National Computer
Conference, pp. 637-43.

[11]wulf, W. A. and Bell, C. G., "C.mmp - A Multi-Mini-
Processor,” AFIPS Conference Proceedings, Vol. 41,
part il, FJCC 1872, pp. 7BS-77.

[12]Needham, R. H. and Walker, R. D. H., "The CAP com-
puter and its protection system,” ACM &th Sympo-
sium on Operating System Principles,

1977.

[18]1Jones, Anita K. and Gehringer, Edward F. (eds.), "The
CM* Multiprocessor Project: a research review,”
Department of Computer Sclence, Carnegie-Melion
University Report CMU-CS-80-1317, July 1980.

[141Wagner, Peter, "On the Unification of Data and Pro-
gram Abstraction In Ada,” ACM Conference Record
of the 710th Annual ACM Symposium on Principies of
Programming lLanguages, January 19383, pp. 256~
a4.

[16]Bames, J. G. P, Programming In Ada, Addison-
Wesley Publishers, London, 1682,

[18]Rsference Manual for the Intel 432 Extensions to
Ada, 172283-001, intel Corporation, 3065 Bowers
Avenue, Santa Clara, Caiifarnia, 95051, 1981.

{17]Linden, Theodore A., "Operating System Structures
to Support Security and Rellable Software," Com-
puting Surveys, Vol. 8, No. 4, December 1976, pp.
409-45.

[18]1The Xerox Learning Research Group, "The Smalltalk
80 System,” Byte, August 1931, pp. 36-48.
[19])Introduction to the IAPX 432 Architecture,

171821-001, Intel Corporation, 3065 Bowers Ave-
nue, Santa Clara, California, 950581, 1981.

[20]/8PX 432 Object Primer, 171858-001, Rev. B,
Intef Corporation, 3065 Bowers Avenue, Santa
Clara, California, 95051, 1980.

[21]Hemenway, Jack and Grappe!, Robert, "Understand
the Newest Processor to Avoid Future Shock,”

Manual,

Electronic Design News, April 29, 1981, pp. 129~
a8.

[22]Buddes, David L., Calley, Staven R., Domenik, Stephen
L., Goodman, Allan L., Howard, James D., and Imel,
Michael T., “"The Execution Unit for the VLS| 432
General Data Processor,” JFEE Journal of Solid-
State Circuits, Vol, 8C-186, No. 5, October 1981, pp.
514-21.

[23]liiffe, J. K., Advanced Computer Design, Prentice-Hall
International, London, 1982, pp. 363-78.

[24]iB0 System/38 Technical Developments,
0237-1, 18BM Corporation, 1980,

GB80-

s
LS

g

av

T
302lqo s¥d
a1
| 3 T
St AN
552IPPY |
Joalqo TeotTboT
5STW
ayoe)
ITH
S 9Yyoep :
I.I.lllll — 0z
HND

|easuiay pueliadg
ws[ueyoap Buisssippy ZEV Xdv! [91Y)
1 ®4nbi4

Instruction Stream

' Instruction

2 bytes 2 bytes 2 bytes

L

Cperation| Optional | Operand Operand
Code Operator | Field 1 Field N
Extender O=N=4
Field
{ -
4 bytes
X
Obhject
oDV Description
-— 3
QDT variable —4 Optiona.l index
- hatl J 1
Extended b
OES ’ Object
Description |)
6 bytes
il '— P
Object .
OMT Location
))) T
L §
. Virtual Address
of System Pointer
Page Address 9 bits
ODT = Object definition table l
ODV = ODT directory vector Hash
Generator
OES = ODT entry string
OMT = Object mapping table Hash Index
Table
Page Directory
___——+Page Address
—>
v |
Frame Byte
Figure 2 . Identifier |Offset
IBM System/38 Addressing Mechanism
Operand Retrieval \ /
V

Physical Address
of System Pointer

