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Summar

This paper outlines the background of teach-
ing needs that led to the development of an assem-
bly language interpreter for teaching assembly
language. The interpreter, called ZIP for 280
interpreter program, is small enough to be used by
a student on a modest sized Z80 based system. It
greatly facilitates understanding the 280 assembly
language by allowing the student to learn it
interactively. It can also be used as a debugging
tool. An overview of the interpreter is given;
its syntax and operation are discussed.

1. Introduction

A sequence of three courses is being offered
by the Electrical and Computer Engineering (ECE)
Department and the graduate program in Computer,
Information and Control Engineering (CICE) at the
University of Michigan. to educate students in
the use of microprocessor-based digital systems
design [1). Design is taught in the context of
microprocessors and other related very large scale
integrated (VLSI) components, ineluding ROM and
RAM memory chips, PLAs, timers, sequencers, PIOs,
SI0s, multipliers, and floating point attached
processors. These VLSI components are taken prin-
cipally from the Zilog 280 family, the Advanced
Miero Devices Am2900 family, and the Intel 8086
family. The three courses are: ECE 365-~Digital
Computer Engineering, ECE 366--Digital Computer
Engineering Laboratory, and ECE u466--Digital
Design Laboratory. ECE 365 is 1intended for
Jjuniors, ECE 366 for seniors, and ECE 466 for
seniors or first year graduate students. These
courses have been substantially upgraded from
their original form, and more sophisticated
material has been included. This has made the
courses considerably more difficult for students,
particularly at the entry level--ECE 365-- where
they are first exposed to assembly language. To
reduce this difficulty several teaching aids are
being developed. Principal among these is ZIP, a
280 interpreter program. An alternative solution
to reducing the difficulty of the courses would be
to spread the course load over more courses, how-
ever the need to keep faculty teaching loads to a
reasonable level precluded this approach.

The following few paragraphs outline the his-
tory of the three courses, how they have been con-
tinually upgraded to reflect developments in the
digital systems design field, and by implication
how this has led to a much more demanding teaching
and learning environment. In particular, one that
needs teaching aids such as ZIP.

2. Background

Originally, in the period 1968 through 1978,
365 and 366 were taught using five PDP8
minicomputers--four for ECE 365 and one for 366--
and a number of attache case "logic lab"™ kits that
contain a 5 volt power supply, push buttons,
switches, built-in sockets for ICs, wire, wire
strippers, pliers, logic probes, and a selection
of TIL logic. Assembly programming and logic
design were introduced in 365, and I/0 programming
and projects involving interfacing hardware to
PDP8s were introduced in 366.

During the first part of the same period 466
was an infrequently taught lab course in advanced
digital design projects. In the mid 19703 466
was revived and updated to include ' projects
involving PDPI6 Register Transfer Modules (RTMs)
as well as the then new Intel SIM8-0| system--an
Intel 8008 based s3single board computer [2].
Furthermore, a link was established to MTS (Michi-
gan Terminal System--the campus wide computing
facility) where utilities such as c¢ross-
assemblers, editors, etc., were available. This
allowed rapid software development outside the lab
for projects involving RTMs or the SIM8-01. This
reduced the time needed in the lab, allowing more
efficient use of the lab resources. The success
of this link prompted the development of aimilar
facilities for 365 and 366.

By 1977 the demand for 365 and 366 had grown,
and both courses, which still relied on PDP8s,
were very much outdated. It was felt that the
courses needed updating and that modern
microprocessor-based equipment was needed in their
labs., Therefore, a proposal [3) to fund new lab
equipment was submitted to NSF wunder their
Instructional Scientific Equipment Program. It
was successful, and together with matching funds
from the University of Michigan put about $29,000
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at our disposal to develop a "Microprocessor Based
Computer and Digital Systems Design Laboratory'.
The proposal called for 12 lab atations to be
built by us and shared by both 365 and 366. Each
station was to be constructed around a Motorola
MEK 6800D2 kit, a I16Kx8 bit RAM board, a low cost
CRT-keyboard terminal, and a cassette tape
recorder. These lab stations were to be used in
conjunction with the logic lab kits, However, a
gift of 870,000 from the XYCOM Corporation of
Saline, Michigan allowed us to acquire ready made
microprocessor development systems for the lab
stations to be used in conjunction with the logic
lab kits., As a result, 10 of XYCOM's Z80 based
development systems--RacPac 3905s-~-were purchased
and introduced into 365 and 366 during 1979. In
addition, three printers were obtained--two Okida-
tas and one DEC Centronics. We considered the
RacPacs to be a better cholice for lab stations
than our proposed home built unit as they had much
more capability (see later), they were tried and
tested, they were in industrial quality packages,
and they came complete with the normal complement
of software for a development system. These
advantages allowed us to get the labs operational
much more rapidly than would have been the case if
we had had to stay with our original proposal.
Furthermore, additional funds were recently pro-
vided by the ECE Department to purchase two more
RacPacs in the fall semester 1980.

In 1979 it was felt that 466 had also become
dated. Therefore, funds were raised within the
department to develop four state-of-the=art 1lab
stations for 466. Building the stations was begun
by 466 students as an in-class project. Hardware
development was completed during the winter semes-
ter 1980. Hardware validation and software
development are are in progress. The stations are
based on the Intel SDK86 evaluation kit, which
includes an 8086 microprocessor, and Am2900 bit
slice components. We have termed the stations
29/86 systems, Larger logic lab kits have also
been built to be used in conjunction with the
29/86 systems.

Table | (tables and figures are at the end of
the paper) shows how enrollments have grown in the
last five years and the projected enrollments for
the next three years. In spite of this growth we
have actually been able to increase the number of
hours each student has in contact with a lab sta=
tion in both 365 and 366. This was achieved by
increasing the number of stations from the PDP8
days, and by opening the lab for longer hours. In
the case of 365 and 366 a single lab is used con-
taining all 12 RacPacs. The 1lab is open 80
hours/week allowing each student {n both classes
about 4.5 hours/week contact time., This s up
from the 1,5 hours allowed when the PDP8s were
used.

The next section gives more details about the
course that makes the heaviest use of ZIP, The
RacPac system on which ZIP runs is also outlined.

3. Digital Computer Engineering--ECE 365

A3 noted earlier this course is intended as a
foundation course for students in the area of

microprocessor-based digital system design as well
as a service course for those students whose main
focus of interest is in other areas of electrical
engineering. This 1last requirement means the
course has to be self contained. There are four
hours of classes/week not including labs. The
course class material centers on digital computer
organization, assembly language, and logic design,
with particular reference to microprocessor-based
systems. Concepts in the classes are reinforced
by a series of eight carefully chosen lab experi-
ments that use the RacPac systems and logic lab
kits. The course lecture material is in contrast
to a more traditional course on digital system
design in two important ways:

First, emphasis is placed on using micropro-
cessors and other VLSI components such as PLAs,
ROMs, RAMs, PIOs, SIOs, and timers as system com-
ponenta. GCate level logic design {3 discussed in
much less depth than {3 usual in a more tradi-
tional treatment. Topics such as minimizing of
combinational logic and state reduction in sequen-
tial machines are only briefly mentioned, whereas
design techniques that use PLAS and ROMs are
emphasized.

Second, not only is assembly language taught
but so is the use of the RacPac operating systenm,
the editor, loader, and other utilit, programs
used in system development on the RacPac., This
represents a considerable increase in the amount
of software taught compared to that taught in a
traditional treatment of digital system design.
Qur experience so far has shown this extra
software to be an obstacle to covering the range
of material that we feel constitutes a minimum for
such a course. Assembly language appears to give
the most difficulty to students, therefore, we
have started to develop some teaching aids to help
students learn assembly language more rapidly.
Chief among these is ZIP. Students get a copy of
this interpreter for use as a self-teaching aid
and as a debugging tool. Development of ZIP has
been funded by the University of Michigan's Center
for Research on Learning and Teaching. At the
time of writing Version | is in use.

ZIP pregently runs on the RacPac 3systems.
Each system comprises a CRT, a keyboard, dual sin-
gle density Shugart 8% disk drives, an RS232
interface, and connections for a printer and an
EPROM burner. The logic 1is built on two boards
designated 3744 and 3745. The 3744 (CPU) board
contains the Z80 CPU, 32Kx| bytes of dynamic RAM,
4Kx1 byte EPROM containing the bootstrap loader,
two parallel input/output (PIO) chips, two serial
input/output (SI0) chips, a counter/timer chip
(CTC), a CRT controller (CRTC) chip, and a 2Kxt
byte atatic RAM to hold the CRT screen. The 3745
(expansion) board contains 64Kx| byte dynamic RAM,
a floppy disk controller chip, EPROM burner con-
trol logic, and parallel printer control logic.

In the next section an outline of ZIP's syn-
tax and its operation will be presented.
4. Qverview of ZIP

ZIP disassembles specified segments of memory
and displays the corresponding code with symbolic
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operation codes and absolute addresses. Interpre-
tation of the code can be performed one instruc-
tion at a time, or in normal sequence until a
specific "trigger" condition is met. The instruc-
tion to be interpreted next 1s displayed in
inverse video to distinguish it from the other
code displayed. The CPU registers are always
displayed along with the condition code flags.
When an instruction is interpreted any CPU regis-
ters or flags that are changed are displayed in
inverse video to distinguish them from the
unchanged ones. Similarly, certain memory loca-
tions that are changed are also displayed in
inverse video (see later). Interpreting single
instructions clarifies their operation for the
novice. Interpreting a program enables the user
to relate the program's text (static) with the
program's execution (dynamic)., This is probably
the single most difficult relationship that the
novice must learn to visualize. The "trigger"
concept, which was borrowed from logic analyzers,
makes the interpreter a particularly powerful
debugging tool. Blocks of code can be executed
until a trigger condition, or a simple logical
combination of trigger conditions becomes true.
The conditions are specific values of, or rela-
tions between, memory 1locations, registers, or
flags.

The layout of the screen is shown in Figure
|. The column on the left shows memory locations
in hex (4 hex digits). Alongside these are one to
four byte instruction codes also in hex (Z80
instructions can be from one to four bytes {n
length). Further to the right, the instruction
codes are shown in their disassembled form. For
example, consider the line covered by the shaded
rectangle in the left center. At the left 1is a
memory location (90EE hex). This location and the
subsequent one contain the bytes 10 hex and F7 hex
respectively (the 280 has byte oriented address-
ing)}. These disassemble to the 280 instruction
"DJNZ 9OET"~~ decrement register B and jump if B
13 non- zero to location 90E7. MNotice that
addresses of operands or targets of jumps are not
disassembled but are left as absolute addresses.
To disassemble these would require access to the
symbol table created when the program was assem-
bled. In order to keep the first version of ZIP
simple the ability to recover symbolic addresses
was omitted.

ZIP automatically determines data areas in
memory by examining Jjumps, subroutine calls and
returns, and when necessary their targets. Memory
locations that contain data rather than instruc-
tions have their contents displayed as two hex
digits in the same column as the symbolic instruce
tion codes.

The right hand side of the screen displays
the contents of the Z80's CPU registers, the top
four items on the stack, thirty two bytes of
memory, and the command line.

There are eight 1 byte CPU registers: A, F,
B, C, D, E, H, L. These are displayed at the top
right of the screen. For example, the second row
at the top right shows the contents of A in hex
(88), the contents of F in hex (33), followed by

the contents of A in binary (10001000} and the
contents of F i1 binary (00110011). The binary
display is wuseful for checking bit operations,
shifts, and rotations, The F register is not a
general purpose register, instead it holds six |
bit flags that show condition codes. Their posi-
tion is shown in the binary display of F by the
header "SZ¥H*PNC® at the extreme top right (see
(4] for their meaning). Immediately below the |
byte CPU registers are the 16 bit CPU registers:
IX, IY, SP, PC. 1IX and IY are index register, SP
is the stack pointer (points to top of stack), and
PC i3 the program counter. The register pairs BC,
DE and HL can also be regarded as 16 bit registers
and the format of the display has been set up to
allow this view. To the right of the 16 bit
registers appears the two special | byte registers
I and R. Below the 16 bit registers appears the
top four stack items. These items are one word,
or two bytes each, thus in Figure |, for example,
the top of stack is at location F3F8 hex (see con-
tents of SP) and the top item is the 16 bit quan-
tity OBED. The bytes of the top four words of
stack are shown the order in which they appear 1in
memory; left-to-right corresponds to low-to-high
memory addresses. The stack grows towards low
memory. The apparent reversal of the bytes in
each word is accounted for by the Z80 convention
that words are stored with their most significant
byte at the higher memory location.

Below the stack display a user selected 32
byte area of memory 1s displayed in hex. Finally,
below that the command currently being entered by
the user is shown.

The shaded rectangles in Figure | indicate
inverse video. Thus the instruction to be exe-
cuted next is the DINZ mentioned above. In addi-
tion, the contents of the H and L registers are
shown in inverse video indicating that the most
recently executed instruction--"INC HL"-=caused
their contents to be altered. If any of the
memory locations already displayed on the screen
had been altered they would also be shown in
inverse video. 1In theory, the contents of the R
register should be shown as changing at each step
because R i3 a counter bumped during each instruc-
tion execution, that is used to form the refresh
address, To avold distraction R i3 never shown in
inverse video.

The command line is displayed with an inverse
video square alongside it to distinguish it. The
particular command shown in Figure | reads: begin-
ning with the current instruction (the DJNZ) exe-
cute the program until the contents of register A
and B have been equal three times. The command i3
terminated with a carriage return; the return ini-
tiates ZIP's interpretation of the command line.
The display scrolls so that the next instruction
to be interpreted (i.e. the instruction displayed
in inverse video) is always kept in the middle of
the screen.

Figure 2 shows the syntax of ZIP's command
structure in standard BNF notation. HNon-terminal
symbols are shown bracketed by "<"™ and "%,
Rewriting rules are identified by "::=" ; the
lefthand side can be rewritten as one of the
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alternatives on the righthand side. The alterna-
tives are separated by "}", The remaining symbols
are the terminal symbols that appear in the com-
mands. Spaces can be used freely to aid readabil-
ity. The syntax is intentionally simple, and in
fact can be parsed by a finite state machine.
Simplicity was a prerequisite for two reasons.
Firat, size was an issue; we eventually want to be
able to use it in smaller systems. Second, the
program was to be written by two students with
limited programming experience.

When used in conjunction with the RacPac sys-
tems ZIP is loaded and run from a floppy disk
operating system. Execution begins by querying the
user with:

"Start Address?"

The user should respond with a 16 bit hex address
indicating where in memory the interpretation
should begin., The 280 allows computed jumps (e.g.
JP (IX), see [4)). Version | of ZIP cannot handle
these. If any of these are present in the region
of memory to be interpreted a further message is
displayed as follows:

"You are using Computed Jumps!®

If this is the ocase the interpreter may try to
1isassemble areas in memory that are data areas.
This 1s not critical so the user is allowed to
proceed if he/she wants to. At this point ZIP is
~eady to receive any of the commands of Figure 2.

The first production in Figure 2 gives the
rajor command classes. The first of these
sransfers interpretation to a specific location.
Tor example:

GO 10BY .

‘ransfers the flow of interpretation to location
1084 hex. The next alternative allows the modifi-
sation of registers or memory locations. For exam-
sle:

SE IX=99AE

ilets the contents of the IX register to 99AE hex.
.See the second production "<modify> ::=" for
»ther alternatives.) The third alternative of the
irst production specifies which 32 bytes of
emory appear on the screen display. For example:

DI 4F68

lisplays the 32 bytes beginning with the byte at
.ocation 4F68 hex. The fourth alternative to the
‘irst production identifies the most important
:1a3s of commands. They define the trigger condi-
:ions. For example:

B = @A77D
:auses interpretation until the contents of regis-

.er B equals the contents of location A77D in
wenmory. Or for example:

F = 0XXIX1

causes interpretation until the flags S=0, P=z), -

and C=1 (the other three can be either 0 or |).
The simpler forms of this class of commands
specify interpretation of the next fixed number of
instructions, for example:

10 return

causes the next 10 instructions to be interpreted
( return indicates a carriage return). The sinm-
plest form is Jjust a carriage return--interpret
the next instruction. (See the fourth production
"<trigger_condition> ::=" for more details.) The
command ON turns on a large display of memory
locations that temporarily fill the screen with a
memory map beginning with the 32 bytes of memory
usually displayed in the normal screen format.
The command OF turns it off, reverting back to the
normal format. The command AU causes the auxili-
ary register set to be displayed. The command UA
causes the normal register set to be displayed.
The command OL causes the old values of the
registers--as they were when the last trigger con-
dition was satisfied--to be displayed, The com-
mand N causes the new (current) values of the
registers to be displayed. Finally, the command
QU quits the interpreter.

5. Conclusion

ZIP, an assembly language interpreter, has
been outlined. The ocircumstances that led to its
development have al3o been described. Version |
of ZIP is running and in use in the lab. In addi-
tion, we plan to use the interpreter in conjunc-
tion with in-class CRT monitors to explain
instructions and to 1illustrate assembly language
concepts,

Several enhancements are planned for Version
2. These include provisions to handle interrupts,
computed jumps, the ability to specify more com-
plex trigger conditions, and a "history" function
to allow the easy recall of recently used com-
mands,
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H YEARLY ENROLLMENT FIGURES i
i Data Estimates i
] i

COURSE ! 1975 ¢t 1976 { 1977 { 1978 ¢ 1979 1980 ! 1981 ! 1982
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'ECE 366} 68| 71 70 67 961 114 120} 120!

| ECE 466 ! 4g 1 4y 47 48 51 | 54 1 60 | 60 !

Table |
=007 LS PLISH BC SZ#HaPNC
#00e DS PUSH DE A28 23:F 10001000 00110011
200? ES PLUSH HL E: 00 13:C 00000000 00011000
20DA DD ES PUSH IX D: 82 40:E 10000011 01000000
900C FD ES PUSH 1Y H:B8 3E L 01100101 00111110
FODE 21 4F 22 LD HL, 24F
F0E1 FD 21 45 F=2 LD IY, F245 IX: 1220 SP:F3F&s 1I:.11
POES 04 02 LD E, 02 IY: 1413 FPC: 90EE R:4C
S0E7 7E LD A, (HL)
S90EE FD 77 00 LD (IY). A STACK: EDO2 9024 0000 &00F
YO0EB FD 23 INC 1Y
9Q_ED,W_..2_.3., INC HL MEMORY:
4 e TUDUNZ.  soE7 7000: 72 03 00 20 29 31 30 43
FOF O FU 21 82 Fg LD 1Y, F882 7008: 20 20 44 44 20 G 20
$O0F4 DD 21 00 90 LD IX, 9000 7010: 30 32 20 20 20 20 4C 44
SOFE  0& 04 LD E, 04 7018: 20 20 20 20 20 20 28 4%
P0FA  T7E LD A, (HL)
POFE FD 77 00 LD (IY). A A=B 5@
PUFE 32E Z2A LD A, ZA
2100 FD 77 01 LD (I¥Y+01), A
2102 DD 7E 0O LD A (IX)
21046 CD SC 24 CALL 945C
2109 FD 72 02 LD | (IY+02),D
“10C FD 72 02 LD (IY+0Z2), E
Figure |, Screen Layout.
<command> ::= GO<hex><hex><hex><hex>|<modify>i{<display>|<trigger_condition>|ONiOF AUJUAIOLINQU
<modify> ::= SE(reg):<hex><hex>{SE(doubleﬁreg):<hex)<hex><hex><hex):SE<memory)=<hex>(hex)
<display> ::= DI<memory>
<trigger_condition> ::= <condition><{taill>i<tail>
<condition> ::= <reg><relation><rhs_reg>|<{double_reg><relation><rhs_ double> |
<{memory><relation><rhs_| memory>'F <bit><bit><bit><bit><bit><bit>

<reg> i:i= A|BICiDIEIHIL
<relation> i:= =i={<i>i<i>
{rhs reg> ::= (reg)‘(hex><hex> <memory>
<double reg> ::=z BC!DE!HL|SPIPCIIX|IY
<rhsqdo§ble> B (double_reg) <hex><hex><hex><hex> | <{memory>
<memory> ::= @<hex><hex><hex><hex>
<hex> iz 01 11213141...1F
<taill> ::= return|:<number>return
<tail> ::= <number>return
<number> ::= <hex>!<hex><hex>|<hex><hex><hex>|<hex><hex><hex><hex>
<bit> 1= 010X

Figure 2. ZIP's Syntax.



