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ABSTRACT

This paper presents the preliminary
specification for a very large scale
integrated (VLSI) circuit implementation

of a single chip processor for dedicated
numerically intensive applications. In
particular, the numerical processor is
intended for the real-time control of a
robot arm. The architecture of the pro-
cessor is outlined, and preliminary tim-
ing figures are given. The control stra-
tegy for the control of a robot arm is
discussed. Pinally, the results of a
functional simulation of the processor
executing part of a control program are
presented.
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INTRODUCTION

This paper presents the preliminary
specification for a very large scale
integrated (VLSI) circuit implementation

of a single chip processor for dedicated
numerically intensive applications. Cir-
cuit densities commensurate with levels
of integration projected for the mid-
1980s are assumed. The proposed numeri-
cal processor (NP) is suitable for real-
time control where sophisticated control
strategies require very large numbers of
high precision arithmetical operations to
be performed for every input/output tran-
saction. In particular, the NP |is
intended for the real-time control of a
robot arm. The NP functions as an

attached processor of a general purpose
minicomputer. Conceptually, it 1lles
between Floating Point Systems®’ AP120B

(F179],
oriented
Intel 8087

a high performance numerically
attached processor, and the
(paB0], a single chip

*This work was supported in part by an
unrestricted grant from Fairchild Camera
and Instrument Corp.

numerically oriented attached processor

in the 1Intel 8086 family of components
[In79). All three work with £floating-
peint numbers. The NP differs from the

AP120B by being much simpler, less flexi-
ble, slower, and by having a smaller word
size (32 bits versus 38 bits). It

differs from the 8086 by having its own
on chip program memory, input/output
buffers to facilitate real-time applica-
tions, and two independent function
units. - However, the 8087 has a more

flexible number format,and can deal with
several variants of the IEEE floating
point standard up to and including the 80
bit format.

The motivation for this work arose during
the planning of a multirobot assembly
system at the University of Michigan
(LM80]. This system is shown in Figure
1‘
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Figure 1. Multirobot System.

Most of the major hardware components of
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this system are in place and operational.
Those components shown surrounded by bro-
ken 1lines represent future extensions.
Consideration of the computing needs of
such a system leads to the idea of
"application~directed” machines to per-

form the tasks of vision and real-time
arm control. Processors to do this are
shown in -Figure 1 as blocks labeled

“Attached Processor™. The one at the top
left 1is for vision and the other two are
for robot arm control. The NP discussed
in this paper is intended to satisfy the
requirements of an attached processor for
robot arm control. The additional
specification that the NP be realized as
a single chip processor arose out of a
desire to develop a substantial project
to test out the VLSI systems design pro-
gram at the University of Michigan. How-
ever, a prototype will be constructed
from low power Schottky TTL components to
allow the robotics work to be decoupled
from the VLSI work. This preliminary
study assumes the NP will be implemented
in nMOS because our present expertise is
in this technology. However, our even-
tual aim is to investigate the design of
the NP in a faster technology that still
has the density of integration associated
with nMOS. A prime candidate is the I3L
(Isoplanar Integrated Injection Logic)
technology developed by Fairchild Cor-
poration.

This paper is organized as follows. The
next section discusses the architecture
of the NP, Section 3 discusses the
intended application of the NP--robot arm
control. Section 4 presents the simula-
tion result from a functional simulation
of the NP. Section 5 is the conclusion.
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Figure 2. Numerical Processor.

ARCHITECTURE

Figure 2 shows a
proposed NP,
follows:

block diagram of the
The major components are as

1. A 32 bit
unit (AU).

floating point adder

2. A 32 bit floating point multi-
plier unit (MU).

3. A 256x32 register file (RF).

4. A 32x32 bit input buffer (IB).
5. A 32x32 bit output buffer (0B).
6. A 1Kx50 bit program memory (PM).

7. A 4x10 bit program counter stack
(PCS).

8. A 1x50 bit program memory data
register (PMDR).

9., A 16 bit loop counter (LC).
10. Condition code logic (CC).

A preliminary gate level logic design and
layout of an nMOS realization of the
chip, using the design rules given in
(MC80], indicates that 50% of the area
will be occupled by the AU, MU, RF and
PM. The other components occupy less
than 10% of the area, and the buses, con-
trol signal lines, and bonding pads
occupy the remaining 40% of the chip. An
estimate, based on a logic gate count, of
the number of active devices reguired by
the chip indicates that 90% will be con-
tained in just four of the components--
the AU, MU, RF, and PM. The estimate
shows 16K devices are required for the
AU, 32K for the MU, 16K for the RF, and
55K for the FM. The estimate €for the
total device count works out to be 1S0K.
This {s well within projections for sin-
gle chip systems in the mid 1980's. At
that time 1 million devices/chip are
anticipated (PS80].

The floating peint number format used in
the design study is the 32 bit proposed
IEEE standard described in ([Co79]. In
this format a normalized nonzero number X
has the form:

S E-127
X = (-1) %2 x1.F
where,

S = sign bit

E = 8 bit exponent biased by 127

F = 23 bit fraction which,
together with an implicit
leading 1, yields the



significant

ﬂl.---ﬂ

digit field

Both the AU and the MU were designed to
handle this normalized format. However,
the rounding modes, rounding precision

control, infinity arithmetic, denormal-
ized arithmetic, most of the €£loating
point exceptions, and the various

extended formats called for by the pro-
posed standard were not considered in the
design of either the AU or the MU,
Naturally, inclusion of any of these
features would increase the complexity of
both the AU and MU, and estimates of the
device count would have to be adjusted
accordingly.

The AU is a three stage pipeline with the
first stage performing fraction align-
ment, the second stage performing £frac-
tion addition, and the final stage per-
forming normalization. Alignment is per-
formed using an 8 bit subtractor with
full lookahead to determine the number of
shifts needed followed by a 5 (= [log,
247) level 24 bit barrel shifter to exe-
cute the shifts. Fraction addition is
performed using a standard 24 bit binary
adder structure with partial carry looka-
head across groupings of 4 bits. Normal-
i{zation is performed using another 24 bit

barrel shifter. The basic machine cycle
(M-cycle) 1is targeted at 500 nS. Each
stage of the pipeline completes its task

within an M-cycle, thus when the AU is in
streaming mode--operands are being fed to
it as fast as possible--it produces a
result every 500 nS. The. AU is con-
structed from standard NOR/NOR PLAs {pro-
gram logic arrays--see (MC80]) having an
estimated delay of 50 nS. This is fast
enough to be used as a building block in
the construction of an alignment stage--
potentially the most time consuming of
the AU's three stages--that can operate
within 500 nS. It is also fast enough to
construct the binary adder for the frac-
tion addition, as well as the barrel
shifter for the normalization stage.

The MU is alse a three stage pipeline
with the £irst stage performing partial
product generation and carry-save addi-
tion, the second stage performing carry
propagation addition to produce the
unnormalized 48 bit product fraction, and
the final stage performing normalization,
truncation to 24 bits, and exponent addi-
tion. The design of the multiplier |is
quite standard (see [Ku78]). Stage one
uses a tree of 3-input to 2-output
carry-save adders, implemented with PLAs
as the basic building block. With a tree
height of 8 (= logz;24 71) and 50 nS
delay per PLA the 500 nS time limit for a
pipeline stage is easily met (generating

the partial products requires only an
array of AND's and adds only 15 nS to the
delay time). Stage two wuses a 48 bit
adder with full lookahead. The lookahead
is across groups of 4 bits, and is per-
formed by lookahead units that are real-
ized as PLAs. The lookahead units them-
selves produce group propagate and group
generate signals which feed another level
of lookahead units. This process is con-
tinued in the standard fashion to produce
a lookahead tree of height 3 (= [ log, 48
7). The total time to add is thus
(3x2)x50=150 nS plus the delay through a
full adder (50 nS). The third stage per-
forms normalization using a shife
register--normalization after multiply
never requires more than a one position
right shift if numbers are represented in
the format above. The £final step in
stage three--exponent addition--is per-
formed using a simple 8 bit ripple carry
adder. The effect of normalization on
the exponent {is also accounted for by
reusing this adder.

Notice that in both the design of the AU
and the MU very conservative timing estl-
mates were used. The only critical parts
are stage one of the AU (alignment) and
stage one of the MU (the carry-save adder
tree).

The PM is to be realized as a 1Kx50 bit
dynamic memory. The design is based on
the standard single transistor dynamic
memory cell (see [CB80]). The memory is
organized as 50 "planes® of 32x32 cells.
The PM is addressed using a 4x10 bit pro-
gram counter stack which allows con-
venient subroutine 1linkage between sub-
routines nested up to three deep.
Refresh for the memory {s achieved by
cycle stealing every 16th instruction
fetch (this has not been taken into
account in the performance figure of the
next section). The refresh address is
kept in a 5 bit counter that 1is incre-
mented every l6th M-cycle. The PM can be
regarded as being a writeable control
store, i.e., programming the NP is essen-
tially done at the microcode level. The
instruction format is shown in Figure 3.
There are two basic types of instructions
distinguished by the leftmost two bits.

Type 1 control the AU and MU indicating
which registers in the RF are the sources
for their operands and which registers
are the destinations for their results.
Flelds SAl and SA2 indicate sources for
the AU, and field DA indicates a destina-
tion for the AU's result, Similarly for
the Mu--see Figure 3. Provision is made
to specify a no-operation for the AU
and/or the MU. Since both the AU and the
MU are three stage pipelines and since it
takes one M-cycle to move data to these
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Figure 3. Instruction Formats.

units (see later), the destination £field
information is not needed by the control
logic until four M-cycles after the
source field information. To account for
this both the destination flelds of the
PMDR are piped through their own four
stage delay lines before being decoded by
the control logic. The leftmost two bits
must also be piped through a £four stage
delay to allow the control logic te
determine whether or not to ignore the
output of the . destination field delay
lines. This technique for controlling
pipelines is explained in more detail in
[K°77]o

Type 2 instructions control data
transfers from the head of the IB FIFO to
registers in the RF, as well as from the
registers in the RF to the tail of the OB
FIFO (specified by fields IB and OB in
the format of Figure 3). Type 2 instruc-
tions also handle branching. A 10 bit
next address field (NA in the format of
Figure 3) is stacked on the PCS iIf the
condition indicated by the CC field is
met. Conditions 1include: 1IB full; OB
full; result of add positive; result of
add negative; result of add zero; always
true, i.e. an unconditional branch.
Detection of the conditions is performed
by the condition code logic--CC in Figure
3. To use the NP efficiently type 2
instructions should be kept to a minimum.

instruction format |is
very "horizontal™ allowing concurrent
operation of the AU and the MU to be
specified. The 3job of taking advantage
of this potential for concurrency is left
entirely up to the user. This means that
program preparation is quite complex If
maximum use is to be made of the NP.
However, as stated in the introduction
the NP is fntended for dedicated

Notice that the

environments where it is likely to exe-
cute only a very small set of programs.
The development of these programs should
be considered as part of the overall sys-
tem design. As noted earlier, this
approach to program development is more
in line with microcode development than

-standard program development.

The RF is a 256x32 bit static memory. The

design 1is based on the standard six
transistor static memory cell {see
{ovgo}l). It is organized as 256 32 bit
registers. The registers share a single

32 bit wide output bus and a single 32
wide input bus (see Figure 2). The out-
put bus connects the registers to the two
AU {nputs, to the two MU inputs, and to
the tail of the output buffer, 0B. Dur-
ing type 1 instructions the use of the
output bus is multiplexed. Data is moved

from the RF registers to the two AU
inputs and the two MU inputs in four
steps--one step per input. The complete

transfer takes an M-cycle; each step
takes 125 nS. The input bus connects the
output of the AU, the output of the MU, °
and the head of the IB to the RF regis-
ters. As with the output bus, during
type 1 instructions, the input bus |{is
multiplexed. Data is moved from the AU
output and the MU output in two steps,
one step per output. The complete
transfer takes an M-cycle; each step
takes 250 nS.

Figure 4. PUMA 600 Robot Arm.



For data to make a round trip E£from a [Lw80a].
register through a function unit and back

to a register takes five M-cycles. (4) Gross motion control. The actuator
torques T ( a six vector) required
The IB and the OB are 32 word FIFQ to achieve the previously determined
buffers £for input and output respec- é and § are computed using an itera-
tively. In the case of the IB, data can tive set of equations [LWw8ob],
be added to the tail and removed from the [TM80). . Because this stage
head asynchronously, unless the buffer is represents a potential computational
full. Adding - to the tail is under the bottleneck, we have chosen to bench-
control of an external cleck which need mark our NP processor using it. The
not run synchronously with the chip tim- equations are shown in more detall
ing. This requires a synchronizer cir- in Figure 5. Where o and g4 are
cuit. Designing correctly operating angular velocity and scceleration; s
synchronizers can be very involved; how- i{s the linear acceleration; f, , and
ever, it need not be since the problem n the force and torque at—the ith
has been thoroughly studied in (SC79]. oint; r, and R, , the distance from
The operation of the 0B is also asynchro- the (i—Tﬁth orT%in to the ith origin
nous in a similar fashion. and center of mass, respectively. J
is an inertial tensor about the (i-
Finally, the PM and the PCS can be loaded l1)th axis. All vectors and tensors
through the input port to allow the chip ., are represented in frames fixed in
to function as an attached processor. the ith frame. The actuator torques-
: are obtained from the torques n, by T;
ROBOT CONTROL = Ei—. n; . See [TM80] for more
detaiis.
As mentioned earlier, the design philoso- (S5) Flne Motion (Accommodation). To
phy of the NP is orlented toward dedi- achleve the flInal hand adjustment,
cated numerically intensive applications. techniques similar to the one
A practical example of this type of described in [PS76] are normally
application is the control of a robot arm used. We plan to employ a new
where the arm response is limited by the method that makes use of the same
complexity of control computation. In dynamic equations used in the gross
particular, we are interested in using motion phase.

the NP in the real time control of a
robot arm, specifically, the Unimation

PUMA 600. It is a six 1link arm having PVl SR N WP
all revolute joints and is illustrated in .
Figure 4. g - Tral O W A T WAL PR
The overall control strategy for an arm PR A e N
such as the PUMA 1involves five basic .t ‘o1
stages. These stages are as follows. gomepag By AT Ay AT Ly
. - Lol Lo}
(1) A path planning stage. The user ﬂx'ﬂi‘“tﬂt"tlﬁhl‘!i"l Lt A Lig
sSpeclities a  sequence of points
tgtough which the grm's hand ghould (a)y = (oy 3y)yy = loy Jy)y, ead statlarly for y and &
move. This stage of the strategy and vhere
determines a carteslan space hand el ) we -0, agu v 9,
trajectory which passes through the ot hld
user specified points without oo wo oq, .(,2.,:, w0, - a,
exceeding actuator torque limita- ' T ’
tions ([WL78]. gy = 3y gy o8, -(.i..:)
(2) Orientation matrix falculation.
Orlentation matrices A. of the ith t el el - -
link with respect to th® base, or Ay s x'y %z
zeroth, frame are determined (DH55].
These are used in stages 3 and 4. 3 . R, g‘qzo: a8,
(3) Trajectory transformation. The
carteslan coordinate hand trajectory LM LA A k1Y

given in terms of the anqular velo- vhare I 13 the inertial tensor of the ith link about the

city, @ and linear velocity, v. .

must be ~converted into equiyaT%nt (3-1)eh axte.

joint angular, velocities , @ and

accelerations ¢ (six vectors for

the PUMA arm). There are several Figure S. Equations of Motion.

approaches to this problem (Whé9],



SIMULATION RESULTS

To illustrate the effectiveness of the NP

a functional simulation was performed
using APL., The iterative set of equa-
tions for computing the actuator torques

were used as a benchmark (see Figure 5).
These were programmed for the NP, A
listing of the program is given 1in the
Appendix. The NP is operating at its
maximum rate when both function units are
in streaming mode. In this mode it is
producing the results of two floating-
point operations every M-cycle, i.e. it
is operating at a rate of 4 MFLOPS. Our
simulation showed that about 73% of the
time the function units produced results,
{.e. the NP was operating at an average
of 2,93 MFLOPS for this benchmark. To
achieve this considerable time was spent

hand optimizing the program (see Appen-—
dix). Scheduling two pipelined function
units is time consuming. Support

software to help with this aspect of pro-
gram preparation is being considered.

CONCLUSION

The encouraging performance figures of
the simulation indicate that the NP would
be a valuable component for the designer
of real-time systems who is faced with
compute bound bottlenecks., Further simu-
lation is being performed using the
remaining components of the control stra-
tegy as benchmarks, and the addition of
another function unit to perform recipro-
cals is being planned. The ultimate suc-
cess of this study depends on whether or
not the detailed circuit design can be
carried through successfully to realize
the NP as we have specified it.

The authors would like to thank Profes-
sors Dan Atkins and George Lee for thelr
advice and comments.
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APPENDIX

Below is a partial listing of the program
to compute the actuator torques, i.e. one
step through the lterative set of equa-
tions shown in Figure S. The program is
in symbolic form. The left hand column
indicates the program step. The second
and third column indicate the activity of
the multiplier and adder respectively.
Zeroes indlcate no activity, 1. e. the
corresponding function unit is not ini-
tiated at that time step. All the
instructions are type 1, or type 2 no-
operations.

The program was assembled to correspond
to the format of Figure 3 with symbolic
names being assigned to specific regis-
ters in RF. This assembled form of the
program was used to drive the functional
simulation of the NP.

A few comments are in order about the
variables used in the program below.
First, 6 dot refers to 6 , - and @ dotdot
refers to . Primed variables and
variables followed by A or B are tem-
porary variables. Other variables names
are self explanatory. For example, M2
refers to the mass of link 2, R2Z refers
to the center of mass coordinate of 1link
2, and J1XX refers to the xx component of
the inertial tensor J for link 1.
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