a9 United States

Roberts et al.

US 20110093654A1

a2y Patent Application Publication (o) Pub. No.: US 2011/0093654 A1

43) Pub. Date: Apr. 21, 2011

(54)

(735)

(73)

@

(22)

(1)

MEMORY CONTROL

Inventors:

Assignee:

Appl. No.:

Filed:

David Andrew Roberts, Burton-On
Trent (GB); Trevor Nigel Mudge,
Ann Arbor, MI (US); Thomas
Friedric Wenisch, Ann Arbor, MI

Us)

The regents of the University of
Michigan, Ann Arbor, MI (US)

12/588,592

Oct. 20, 2009

Publication Classification

Int. Cl1.
GO6F 12/08
GO6F 12/00

(52) US.CL .. 711/105; 711/136; 711/133; 711/E12.001;
711/E12.022

(57) ABSTRACT

A data processing apparatus 1 comprises data processing
circuitry 2, a memory 8 for storing data and a cache memory
5 for storing cached data from the memory 8. The cache
memory 5 is partitioned into cache segments 12 which may be
individually placed in a power saving state by power supply
circuitry 15 under control of power control circuitry 22. The
number of segments which are active at any time may be
dynamically adjusted in dependence upon operating require-
ments of the processor 2. An eviction selection mechanism 35
is provided to select evictable cached data for eviction from
the cache. A cache compacting mechanism 40 is provided to
evict evictable cached data from the cache and to store non-
evictable cached data in fewer cache segments than were used
to store the cached data prior to eviction of the evictable
cached data. Compacting the cache enables at least one cache
segment that, following eviction of the evictable cached data,

(2006.01) is no longer required to store cached data to be placed in the
(2006.01) power saving state by the power supply circuitry.
1
CPU ”~~
30 18
2] = =
| Access Monitoring | TLB |
data not
37 /| used signal
40 35
\\ //
cache eviction 10
compaction select
power cache
control aflocation
/ Controller \ T
7 ~ 3
22 20 25
5
fJ
DRAM cache
low power
segment | { segment | | segment | | segment memory
~ ~ ~ = Y
12 12 12 12 8
power |15

supply

Patent Application Publication Apr. 21,2011 Sheet 1 of 9 US 2011/0093654 A1

CPU o~
30 18
2] = =
Access Monitoring TLB
data not
37 /] used signal
40 35
\\ //
cache eviction 10
compaction select
power cache |
control allocation
/ Controller \ T
{ ~ N
22 20 25 ,
5
rJ
DRAM cache 1
low power
segment | | segment | [segment| | segment memory
=~ =~ ~ TS ~
12 12 12 12 8

power |15
supply

FIG. 1

Patent Application Publication Apr. 21,2011 Sheet 2 of 9 US 2011/0093654 A1

50

write eviction/
writeback

eviction

garbage

garbage Write —- collect
collect A Vo © eviction/
writeback

read write
~—

read

viction
- reefj/ \kead /

58
v = invalid V = valid
d = not dirty D=dirty
r = not reclaimable (non-evictable) ’ R = reclaimable (evictable)

FIG. 2

Patent Application Publication Apr. 21,2011 Sheet 3 of 9 US 2011/0093654 A1

START

Y

]

select evictable |, 100
cached data

PR R

il

cache |y 110
A compaction

¥
place cache segments that 120

are not required into a power
saving state

FIG. 3

Patent Application Publication

Eviction selection

Apr. 21,2011 Sheet 4 of 9

START

US 2011/0093654 Al

cache access interval

150

access fo NO

cached data?

cache access
interval
>

threshold?

increment confidence

160
counter

confidence counter

confidence threshold?

165

>

NO

YES

select accessed data

I 170
as evictable

FIG. 4

Patent Application Publication

Cache allocation

START

Apr. 21,2011 Sheet 5 of 9

US 2011/0093654 Al

4

access o
data in memory?

memory
access interval
<
memory access interval
threshold?

~ confidence counter
>

confidence threshold? -

200 '}

increment confidence | 220 J
counter :
230

NO

NOC

allocate accessed
data to cache

- 240

FIG. 5

Patent Application Publication

Cache allocation

Apr. 21,2011 Sheet 6 of 9

US 2011/0093654 Al

(victim selection)
candidate segment: = segment | 250
with most non-evictabie data
!
254
252
does select ri:valid
.~~~ candidate segment location for -
»ha\{g Caat;ict)r:‘\gahd allocating data
256 258
does YES| selectclean
hcandildate segrrt\e&t evictable, location |~
ave ﬁg?:t’ig:))c abie, for allocating data
260 262
does :
candidate segment JES evicstz;tijloet ?tlg%tion
have dirty, evictable ’-
location? ’ for allocating data
268 264 |
n — 266 S e
candidate segment: |- any more write back dirty,
=segmentwith | YES segments not in evictable, data from
next-most power saving selected location
non-evictable data state?

NO

power up segment and
select invalid location
for allocating data

1

allocate data to

270

selected location

2721

END
FIG. 6

Patent Application Publication

Cache compaction

NO

START

allow non-evictable data

will eviction

0 be cached in fewer

t
N‘BMS’?

YES

Apr. 21,2011 Sheet 7 of 9 US 2011/0093654 Al

275

source segment: = segment having | 277
least non-evictable data

Y

destination segment: = segment | 279
having most non-gvictable data

Y

evict evictable data from source s 281

segment

/

mark evicted-from locations as | 1 283

invalid

move non-evictable data from 285
source segment fo destination S

segment

287

-l

can more

data be transferred fo
another segment?

YES

US 2011/0093654 Al

4]

Apr. 21,2011 Sheet 8 of 9

203

Patent Application Publication

Patent Application Publication Apr. 21,2011 Sheet 9 of 9 US 2011/0093654 A1

[NVmemory |

|
|
F S T -t

4 t 13 Y 5
write window N
_____ l — ~ —time
B 7 read
Teset window
last cache stil\?ucst,l%ri\ts next cache
compaction o evictable : compaction
state FIG. 9
DRAM DIMM module 5
_____________________________ s
|
| |
' 12 I -12
| DRAM | | DRAW 4 oRAM |7
12 |
I {
' T T 1 :
' ‘ | 430
| . .
! Reclaim Bits Snoop Mini-Rank Buffer /
| (addressable) [unit (MRB) |
400 | 32 KB/1 GB Rank !
! & | address !
420 A reset 410 A4
FIG. 10
CPU cPU P2
..... Control |20
1/ 2] LB TLB Processor
| |
12~ Reclaim Bit | - 400
Memory Controller ~ a
410 \\— . orage 450
Snoop Unit History s
DRAM _P]MMS ~ NV Modules
i Y b
'l Mini-Rank J:/12 ! [NVmemory | |
5[Mini-Rank J'/12 ' [_NVmemoy] '8
|
|

US 2011/0093654 Al

MEMORY CONTROL

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] This invention relates to the field of data processing
devices. More particularly, the invention relates to data pro-
cessing devices having a memory for storing data.

[0003] 2. Description of the Prior Art

[0004] Itis known to provide data processing systems with
amemory for storing code and data. In such systems, memory
power consumption can be an important issue. For example,
dynamic random access memory (DRAM) can contribute up
to 35% of total energy consumption in some systems.
Memory power consumption is a particularly important issue
for server systems, where cooling costs should be kept low,
and for battery powered devices, where it is desirable to
prolong the battery lifetime.

[0005] Non-volatile memory technologies are now avail-
able which consume much less idle power than DRAM. For
example, for flash memory devices static power consumption
is of the order of tens of microwatts per gigabyte of stored
data, as opposed to hundreds of milliwatts per gigabyte for
DRAM. However, for non-volatile memory devices the
access latency is several orders of magnitude greater than for
DRAM. This means that replacing DRAM with flash
memory, for example, would severely affect system perfor-
mance, wasting energy as tasks would be completed more
slowly. This is particularly important for write accesses, as for
example, DRAM can be written to in 55 ns, compared with 35
us for multi-level cell phase-change random access memory
(PCRAM), 200 us for single-level cell NAND flash, and 800
us for multi-level cell NAND flash. This means that at present
non-volatile memory cannot be used as a direct replacement
for DRAM memory.

[0006] Ye et al have proposed a hybrid memory system in
“Prototyping a Hybrid Main Memory Using a Virtual
Machine Monitor”, Proceedings of the 26” International
Conference on Computer Design, ICCD 2008, 12-15 Oct.
2008, Lake Tahoe, Calif., USA, pages 272 to 279. They
propose a system having a first-level memory of conventional
DRAM and a second-level memory comprising non-volatile
memory such as flash memory. However, they report that in
order to prevent system performance being degraded by more
than 10%, at least 75% of'the total memory capacity must be
made up of DRAM. This does not provide significant energy
savings.

[0007] The present invention seeks to address this problem
and provide a memory system which has a low power con-
sumption but which also provides rapid access to stored data.
[0008] Zheng et al have proposed a DRAM system parti-
tioned into “mini ranks” (see Microarchitecture, 2008.
MICRO-41. 2008 41* IEEE/ACM Symposium on, 8-12 Nov.
2008, pages 210-221).

SUMMARY OF THE INVENTION

[0009] Viewed from one aspect the present invention pro-
vides a data processing apparatus comprising:

[0010] data processing circuitry for processing data;
[0011] a memory for storing data for use by said data pro-
cessing circuitry;

[0012] a cache memory comprising a plurality of cache
segments and configured to store cached data from said
memory;

Apr. 21,2011

[0013] power supply circuitry for selectively supplying
each of said cache segments with power;

[0014] aneviction selection mechanism for selecting evict-
able cached data for eviction from said cache memory;
[0015] a cache compacting mechanism configured to per-
form cache compaction by evicting said evictable cached data
from said cache memory and storing non-evictable cached
data in fewer cache segments than were used to store said
cached data prior to eviction of said evictable cached data;
and

[0016] power control circuitry configured to control said
power supply circuitry to place in a power saving state at least
one of said cache segments that, following eviction of said
evictable cached data by said cache compacting mechanism,
are not required to store cached data.

[0017] The present technique provides a system having a
memory for storing data and a cache memory for storing
cached data from the memory. The cache memory is parti-
tioned into a plurality of cache segments which can selec-
tively be supplied with power by power supply circuitry. The
power supply circuitry has a fine-grained control over the
power supply to each cache segment. This is useful, because
the present technique recognises that typically only a small
amount of data will need to be accessed regularly by the data
processing circuitry. Most data stored in the main memory is
accessed infrequently. On the few occasions that a large
amount of data is being used by the data processing circuitry,
alarge number of cache segments can be powered up and used
to store cached versions of this data. However, when this data
is no longer needed, the power control circuitry can control
the power supply circuitry to place cache segments that are
not required to store cached data in a power saving state in
which power is conserved.

[0018] The present technique also provides the system with
a mechanism for managing cached data in a way that ensures
that data which is used infrequently by the data processing
circuitry is not stored in the cache unnecessarily and that
power efficient use is made of those cache segments that
remain powered. This mechanism comprises an eviction
selection mechanism for selecting evictable cached data for
eviction from the cache memory to the main memory, and a
cache compacting mechanism configured to perform cache
compaction by evicting the evictable cached data from the
cache memory and storing non-evictable cached data in fewer
cache segments than were used to store the cached data prior
to eviction of the evictable cached data. When cached data is
evicted from the cache, the cache compacting mechanism
packs the remaining data into fewer, more densely packed,
cache segments so that at least one cache segment is no longer
required to store cached data. The at least one cache segment
is then placed in a power saving state by the power control
circuitry. This dynamic adjustment of the number of active
cache segments enables the cache memory to store a large
amount of cache data when necessary (so that data can be
accessed more rapidly than if the data was stored in the
memory), while also being able to conserve energy by pow-
ering down unused cache segments when only a small amount
of cache storage capacity is needed.

[0019] The memory typically has a lower static power con-
sumption per amount of stored data than the cache memory.
This means that if frequent access to data by the data process-
ing circuitry is not necessary, then power can be conserved by
evicting that data from the cache and storing the data in the
memory only.

US 2011/0093654 Al

[0020] Furthermore, in the case where the memory may
have a higher energy consumption per memory access than
the cache (e.g. for PCRAM memory devices), energy can be
conserved by reducing the number of memory accesses.

[0021] After evicting the evictable cached data from the
cache memory, the cache compacting mechanism may be
configured to move at least some non-evictable cached datato
a different cache segment, such that fewer cache segments are
required to store the non-evictable cached data than were
required prior to eviction of the evictable cached data.

[0022] Although it is possible that in some situations an
entire cache segment of cached data is evicted to the main
memory at the same time, in most cases when data is evicted
from a cache segment some non-evictable cached data will
remain in that cache segment. In such cases, then the number
of'cache segments required to store the remaining cached data
can be reduced by moving at least some non-evictable cached
data to a different cache segment. In this way, non-evictable
cached data scattered across several cache segments can be
packed into fewer, more densely packed, segments. This
enables more cache segments to be powered down following
cache compaction.

[0023] When the power control circuitry controls the power
supply circuitry to place at least one cache segment in a power
saving state, the at least one of said cache segments may
comprise all of the cache segments that, following eviction of
the evictable cached data by said cache compaction mecha-
nism, are not required to store cached data. This obtains a
greater power saving.

[0024] Thedata processing apparatus may further comprise
an access monitoring mechanism for monitoring a cache
access interval between successive accesses to cached data
stored in the cache memory. Monitoring cache access inter-
vals means that the management of cached data can be done
intelligently in response to the actual operation of the system.
By knowing the actual access timings for data, the system can
control the cache memory to cache only the energy-efficient
working set of data used by a particular application that is
currently active, while data not being used by the application
is retained in the low-power main memory.

[0025] The eviction selection mechanism may be config-
ured in various different ways. These techniques may be used
individually, or in combination.

[0026] One technique for eviction selection is that, when
cached data is accessed from the cache memory, the eviction
selection mechanism is configured to select the accessed
cached data as evictable cached data in dependence upon
whether the cache access interval monitored by the access
monitoring mechanism is greater than a cache access interval
threshold. In this way, infrequently used data can be identified
and selected for eviction. Reviewing whether cached data
should be evicted each time that data is accessed from the
cache provides an efficient way of implementing the eviction
mechanism without affecting system performance.

[0027] The eviction selection mechanism may be config-
ured to: increment a confidence counter if the cache access
interval is greater than the cache access interval threshold,
and select the accessed cached data as the evictable cached
data if the confidence counter is greater than the confidence
threshold. This algorithni helps to ensure that cached data
accessed at intervals that are consistently greater than the
cache access interval threshold are selected for eviction.
Maintaining the confidence counter avoids data accessed

Apr. 21,2011

once with an unusually long inter-access interval, but which is
normally used more frequently by the processor, being
evicted from the cache.

[0028] Particularly useful values for the cache access inter-
val threshold are: at least a read latency of the memory, and at
least a write latency of the memory. Ifthe inter-access interval
to a particular piece of data in the cache is greater than a read
or write latency of the main memory, then the demand for that
piece of data can be satisfied even if the data is not cached and
is stored only in the memory. Thus, by setting the cache
access interval threshold to have a minimum value of either
the read or write latency of the memory, it is ensured that the
cached data is the data for which system performance would
suffer if it was not stored in the cache memory.

[0029] A similar technique to the eviction selection tech-
nique may be used to determine whether a particular piece of
data should be cached in the first place. In this case, the access
monitoring mechanism is further configured to monitor a
memory access interval between successive accesses to data
stored in the memory, and the data processing apparatus fur-
ther comprises a cache allocation mechanism configured,
when data is accessed from said memory, to select said
accessed data for allocation to said cache memory in depen-
dence upon whether said memory access interval monitored
by said access monitoring mechanism is less than a memory
access interval threshold. If the memory access interval for a
particular piece of data is less than the memory access interval
threshold then this means that the processing speed would be
quicker if that data is cached than if it is stored in memory
only. Therefore, the data would be selected for allocation to
the cache memory so as to improve system performance.
[0030] Inone example of the cache allocation mechanism,
the mechanism is configured to increment a confidence
counter if said memory access interval is less than said
memory access interval threshold; and select said accessed
data for allocation to said cache memory if said confidence
counter is greater than a confidence threshold. This mecha-
nism ensures that pages with memory access intervals that are
consistently too short to be satisfied by main memory are
cached in the cache memory.

[0031] Again, useful values for the memory access interval
threshold include: at least a read latency of said memory, and
at least a write latency of said memory.

[0032] When the cache allocation mechanism allocates
data to the cache memory (for example, following a cache
miss), it selects a cache segment and cache location for stor-
ing the newly cached data. The cache allocation mechanism
may select a cache segment and location in a way that pro-
motes cache compaction by favouring segments that are not in
the power saving state over segments that are currently pow-
ered down, thus avoiding turning on new chips.

[0033] Locations in currently powered-on cache segments
may be selected in the following order of preference: invalid
locations, then clean locations storing evictable data, then
dirty locations storing evictable data. Of the clean or dirty
locations, a particular location can be selected using a least
recently used (LRU) or random selection algorithmi, for
example. A new cache segment is powered up if no locations
are available in an already powered segment. Since data is
preferably allocated to already powered cache segments, this
causes the powered-on cache segments to become more
densely packed with data. Selecting invalid or clean locations

US 2011/0093654 Al

in preference to dirty locations helps to reduce the number of
write backs and thus reduces bus traffic and prolongs the
memory lifetime.

[0034] One way in which the allocation mechanism may be
configured to perform victim selection is by executing the
following steps:

(1) setting as a candidate cache segment the cache segment
having the most cache locations storing non-evictable cached
data;

(ii) selecting from said candidate cache segment an invalid
cache location;

(iii) if (i1) is not possible, then selecting from said candidate
cache segment a clean cache location storing evictable cached
data;

(iv) if (ii) and (iii) are not possible, then selecting from said
candidate cache segment a dirty cache location storing evict-
able cached data;

(v) if (1), (iil) and (iv) are not possible, then setting as said
candidate cache segment the cache segment having the next-
most cache locations storing non-evictable cached data, and
repeating steps (ii), (iii) and (iv);

(vi) if (1), (ii1), (iv) and (v) are not possible, then controlling
said power control circuitry to bring out of said power saving
state a cache segment that is currently in said power saving
state, and selecting as said candidate cache location an invalid
cache location of the cache segment that has been brought out
of said power saving state.

[0035] Another way in which the eviction selection mecha-
nism can be implemented is to configure the eviction selec-
tion mechanism to select cached data as said evictable cached
data if said access monitoring mechanism determines that an
interval since the last access to said cached data is greater than
a predetermined threshold. This means that data which has
not been accessed for some time by the data processing appa-
ratus is marked for eviction. Data may stop being accessed if,
for example, the data processing apparatus is inactive or idle
for a period, or if the application being executed by the data
processing apparatus changes. The selection of evictable
cached data based on the determination of the interval since
the last access may be performed periodically by the access
monitoring mechanism.

[0036] It is also possible to configure the data processing
circuitry to provide a signal to the eviction selection mecha-
nism indicating that a subset of cache data will no longer be
used by the data processing circuitry, and to configure the
eviction selection mechanism to be responsive to that signal
to select said subset of cache data as said evictable cache data.
In this way the data processing circuitry can notify the cache
if it is no longer going to use some cached data. Providing this
signal to the eviction selection mechanism enables the evic-
tion selection mechanism to select that data for eviction
sooner than if it had to wait until a predetermined period of
time has passed to discover that the data is no longer being
used. Subsequent cache compaction can then improve the
energy efficiency of the cache.

[0037] The data processing circuitry may also provide a
signal ‘pinning’ cached data in the cache so that it never gets
evicted. This could be used, for example, to prevent streaming
data that is known to be accessed and then deleted soon
afterwards from ever being written back to main memory.
Avoiding unnecessary writes to memory can improve the
lifetime of the memory, especially where the memory com-
prises a memory technology such as flash memory, which can
be erased only a limited number of times.

Apr. 21,2011

[0038] The cache compacting mechanism may be config-
ured to perform the cache compaction periodically. It is par-
ticularly advantageous to arrange for the cache compaction
performed by the cache compacting mechanism to be inde-
pendent from the selection of evictable cache data by the
eviction selection mechanism. This enables the cache com-
pacting mechanism to take a more global view of cache
compaction and makes the cache compaction more efficient
than if cache compaction was performed immediately every
time data is selected for eviction.

[0039] One way of making the cache compacting mecha-
nism more efficient is to configure the cache compacting
mechanism to determine whether eviction of the currently
selected evictable cached data would allow the non-evictable
cached data to be stored in fewer segments than are currently
being used. Cache compaction is then performed if it is iden-
tified that eviction of the evictable cached data would allow
the non-evictable cached data to be stored in fewer cache
segments. If there is not enough evictable cached data to
enable at least one cache segment to be placed in the power
saving state, then the cache compacting mechanism does not
perform cache compaction since eviction of the evictable
cached data would not provide a power saving and would
merely result in the access times to that data becoming longer,
thus slowing down any processes that require access to the
evictable data. If this is the case, then the evictable cached
data is retained in the cache memory so as to retain the quick
access time for future accesses. The cache compaction
mechanism waits until there is enough evictable cached data
to allow the non-evictable cached data to be stored in fewer
cache segments before performing cache compaction.
[0040] Oneway in which the cache compacting mechanism
may be configured to perform cache compaction is by execut-
ing the following steps:

(1) identifying whether eviction of said evictable cached data
would allow said non-evictable cached data to be stored in
fewer cache segments than are currently being used to store
said cached data; and

(1) if it is identified that eviction of said evictable cached data
would allow said non-evictable cached data to be stored in
fewer cache segments than are currently being used to store
said cached data, then performing steps (a) to (e):

(a) selecting as a source cache segment a cache segment
having the fewest cache locations that are storing non-evict-
able cached data;

(b) selecting as a destination cache segment a cache segment
having the most cache locations that are storing non-evictable
cached data;

(c) evicting evictable cached data from said source cache
segment and setting as invalid cache locations the cache loca-
tions from which said evictable cached data is evicted;

(d) transferring at least a portion of said non-evictable cached
data stored in said source cache segment to at least one cache
location of said destination cache segment, each said at least
one cache location being one of an invalid cache location of
said destination cache segment and a cache location of said
destination that is storing evictable cached data; and

(e) repeating steps (a) to (e) until no more cached data can be
transferred to another cache segment.

[0041] This algorithm acts to pack non-evictable cached
data into fewer segments. Non-evictable cached data is
migrated from cache segments storing less non-evictable
cached data to segments storing more non-evictable cached
data until such migrations are no longer possible, whereupon

US 2011/0093654 Al

any segments that are no longer required to store cached data
will be placed in the power saving state by the power control
circuitry. When data is evicted from a cache segment then the
evicted data may need to be written back to memory before
the corresponding cache location is set to be an invalid cache
location, as the evicted data could have been modified by the
processor.

[0042] The compaction algorithni described above could
be modified to transfer any evictable data in the source cache
segment to another cache segment rather than invalidating the
evictable locations. The evictable data could replace invalid
or less frequently accessed non-evictable cache locations in
other occupied cache segments.

[0043] The data processing circuitry may generate data, or
read data from a backing store (e.g. a disk) during its data
processing operations. If this is the case, a warm-up perfor-
mance lag can be avoided by arranging for the cache to store
the data generated by the data processing circuitry when it is
first generated. Infrequently used generated data can then
gradually be demoted down to the low-power memory. Plac-
ing generated data in the cache initially helps to avoid the
performance hit that would occur if the data was not cached
(since otherwise several further accesses would be required
before the data would be placed in the cache). A bit in the page
table entry can be set to indicate that a page of data has been
allocated to the cache but not to memory. This bit indicates
that when this data is evicted from the cache then it will need
to be written back to memory.

[0044] The eviction selection mechanism, the cache com-
pacting mechanism and the access monitoring mechanism
may be implemented in various different ways. For example
they could be provided by at least one of a memory manage-
ment circuitry for managing the cache memory and the
memory, a dedicated cache compaction circuitry for manag-
ing cache compaction (but not necessarily other cache func-
tions), software algorithnis executed by the data processing
circuitry, and software algorithnis executed by a management
processor. It will be appreciated that a combination of these
options is also possible, for example one of these mechanisms
could be implemented by software algorithnis implemented
by the data processing circuitry, while other of the mecha-
nisms are implemented by a dedicated cache compacting
circuitry.

[0045] It will be appreciated that various different tech-
nologies could be used for the cache memory and the
memory. A particularly advantageous technology to use for
the cache memory is dynamic random access memory
(DRAM), as the access times for DRAM are several orders of
magnitude less than for non-volatile memory technologies.
Furthermore, DRAM can filter accesses to a memory which
has a higher access energy (e.g. PCRAM).

[0046] The memory may comprise at least one of: dynamic
random access memory having a lower static power con-
sumption per amount of stored data than the dynamic random
access memory of the cache memory, flash memory, mag-
netic random access memory (MRAM), and phase change
random access memory (PRAM). These memory technolo-
gies all have a much lower static power consumption per
amount of stored data than the DRAM used in the cache
memory, and so by using one or more of these technologies as
the main memory the power consumption of the system can
be reduced. It will be appreciated that multiple types of
memory technology could be used for the memory.

Apr. 21,2011

[0047] The cache memory and the memory may be
arranged in separate memory modules.

[0048] Alternatively, the data processing apparatus may
comprise at least one hybrid memory module, each hybrid
memory module comprising a plurality of cache locations of
the cache memory and a plurality of memory locations of the
memory. Using a hybrid memory module can help to reduce
the bus bandwidth required to transfer data between the cache
memory and the memory. In a hybrid memory module, data
may be transferred internally between cache locations and
memory locations, rather than requiring data to be sent by a
system bus to a separate memory module.

[0049] The hybrid memory module may be arranged to
comprise a plurality of blocks, each block comprising at least
some of the cache locations and at least some of the memory
locations. In this arrangement, each block of main memory
locations has a local cache for caching data from that block of
memory locations.

[0050] Itisalso possible to arrange that the hybrid memory
module comprises a plurality of blocks, at least one of the
plurality of blocks being a memory block dedicated to pro-
viding memory locations and at least one of the plurality of
blocks being a cache block dedicated to providing cache
locations. In this way, caching of data from the memory
locations of the hybrid memory module is managed centrally
in the cache block. Having separate cache and memory blocks
may be advantageous if a memory technology such as flash is
used. Flash memory typically has only a limited lifetime
because data may only be erased from each flash memory
location a limited number of times. For this reason, flash
memory devices often use wear levelling techniques to cycle
the order in which the flash memory locations are used so that
for each location the probability that that location is used
within a given period of time is the same. Generally, wear
levelling will be implemented more efficiently in a large
block of flash memory locations than in separate smaller
blocks, and so a hybrid memory module comprising dedi-
cated memory blocks will be able to exploit the wear levelling
better than a hybrid module with blocks having a mixture of
cache locations and memory locations.

[0051] The apparatus may be arranged to comprise:

[0052] an eviction status bit store for storing a plurality of
eviction status bits, each eviction status bit being associated
with a corresponding cache location of said cache memory
and having an evictable state indicating that the correspond-
ing cache location contains evictable cached data and a non-
evictable state indicating that the corresponding cache loca-
tion contains non-evictable cached data; and

[0053] access monitoring circuitry for monitoring access to
cache locations of said cache memory and maintaining said
eviction status bits in said eviction status bit store; wherein:

[0054] said access monitoring circuitry is configured to set
all of said eviction status bits to said evictable state following
cache compaction being performed by said cache compaction
circuitry;

[0055] said access monitoring circuitry is responsive to a
read to a read target location occurring within a read access
window to set the eviction status bit corresponding to said
read target location to said non-evictable state;

[0056] said access monitoring circuitry is responsive to a
write to a write target location within a write access window
to set the eviction status bit corresponding to said write target
location to said non-evictable state; and

US 2011/0093654 Al

[0057] said evictable cached data is cached data stored in
cache locations for which the corresponding eviction status
bit is in said evictable state when said cache compacting
mechanism performs said cache compaction.

[0058] This technique for identifying evictable data uses
little storage overhead, as only a single status bit per cache
location is needed. Also, when a location is accessed only a
single bit is modified by the access monitoring circuitry.
[0059] The eviction status bit store and access monitoring
circuitry may be provided as part of a memory module that
forms part of said cache memory. This is advantageous
because it means that the cache memory is easily scalable. If
more cache memory locations are required, then one or more
extra memory modules can be added to the cache memory.
Since the eviction status bit store and access monitoring cir-
cuitry are provided as part of the memory module(s), the
cache memory will now contain the storage and monitoring
circuitry appropriate for handling the increased number of
eviction status bits corresponding to the increased cache
capacity.

[0060] The eviction status bit store may include an eviction
status history store for storing a plurality of sets of eviction
status history bits, each set of eviction status history bits
having values corresponding to values of the eviction status
bits at a respective instance in the past. By periodically storing
copies of the eviction status bits for later access by the control
algorithms, it is possible to determine longer inter-access
intervals. This information could be used, for example, to
help avoid thrashing that can occur if a particular piece of data
keeps being evicted from the cache and then re-allocated to
the cache soon afterwards.

[0061] Viewed from a further aspect, the present invention
provides a data processing apparatus comprising:

[0062] data processing means for processing data;

[0063] memory means for storing data for use by said data
processing means;

[0064] cache memory means for storing cached data from
said memory means, said cache memory means comprising a
plurality of cache segment means;

[0065] power supply means for selectively supplying each
of said cache segment means with power;

[0066] eviction selection means for selecting evictable
cached data for eviction from said cache memory means;
[0067] cache compacting means configured to perform
cache compaction by evicting said evictable cached data from
said cache memory means and storing non-evictable cached
data in fewer cache segment means than were used to store
said cached data prior to eviction of said evictable cached
data; and

[0068] power control means configured to control said
power supply means to place in a power saving state at least
one of said cache segment means that, following eviction of
said evictable cached data by said cache compacting means,
are not required to store cached data.

[0069] Viewed from another aspect, the present invention
provides a method for a data processing apparatus comprising
data processing circuitry for processing data, a memory for
storing data for use by said data processing circuitry, and a
cache memory comprising a plurality of cache segments and
configured to store cached data from said memory; said
method comprising the steps of:

[0070] selecting evictable cached data for eviction from
said cache memory;

Apr. 21,2011

[0071] performing cache compaction by evicting said
evictable cached data from said cache memory and storing
non-evictable cached data in fewer cache segments than were
used to store said cached data prior to eviction of said evict-
able cached data; and

[0072] placing in a power saving state at least one of said
cache segments that, following eviction of said evictable
cached data, are not required to store cached data.

[0073] The above, and other objects, features and advan-
tages of this invention will now be apparent from the follow-
ing detailed description of illustrative embodiments which is
to be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0074] FIG. 1 schematically illustrates a data processing
apparatus according to an example embodiment of the
present technique;

[0075] FIG. 2 shows a state diagram indicating changes in
the state of a cache memory location;

[0076] FIG. 3 shows aflow diagram illustrating a method of
cache management according to one example of the present
technique;

[0077] FIG. 4 shows a flow diagram illustrating an eviction
selection algorithni according to one example of the present
technique;

[0078] FIG. 5 shows a flow diagram illustrating a cache
allocation mechanism according to one example of the
present technique;

[0079] FIG. 6 shows a flow diagram illustrating a method
for selecting a cache location for allocating newly cached
data;

[0080] FIG. 7 illustrates a cache compaction algorithni
according to one example of the present technique;

[0081] FIGS. 8(a), 8(b) and 8(c) illustrate example con-
figurations of the cache memory and main memory according
to examples of the present technique;

[0082] FIG. 9 shows a technique for selecting data for evic-
tion;
[0083] FIG. 10 schematically illustrates a cache memory

module adapted to store eviction status bits indicating the
eviction status of cache locations; and

[0084] FIG. 11 depicts an arrangement in which eviction
status bit storage and an access monitoring mechanism are
provided separately from the cache memory module.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0085] FIG. 1 schematically illustrates a data processing
apparatus 1 according to one example embodiment of the
present technique. It will be appreciated that, as well as the
elements illustrated in FIG. 1, the data processing apparatus 1
could comprise further parts that have not been illustrated for
clarity.

[0086] The apparatus 1 comprises a processor 2 coupled to
a DRAM cache 5 and a memory 8 via a system bus 10. The
cache 5 is partitioned into cache segments 12, each cache
segment comprising cache locations for storing cached ver-
sions of data from the main memory 8. The cache 5 is powered
by a power supply 15 which has fine-grained (e.g. individual)
control over the power supplied to each cache segment 12.
[0087] The main memory 8 is a low power memory having
lower static power consumption per amount of stored data
than the DRAM cache 5. The memory 8 may include flash

US 2011/0093654 Al

memory, magnetic random access memory (MRAM), phase
change random access memory (PRAM) and/or low-power
dynamic random access memory (DRAM having a lower
power consumption per amount of stored data than the
DRAM forming the cache 5). It will be appreciated that the
low power memory 8 may comprise more than one type of
memory technology.

[0088] The processor has virtual memory management
hardware, such as a translation lookaside buffer (TL.B) 18. A
controller 20 is also provided for managing the storage of data
within the cache 5 and the memory 8. The controller includes
a power control mechanism 22 for controlling the power
supply unit 15 to selectively place individual cache segments
12 ofthe DRAM cache 5 in one of a normal state in which data
may be stored by the cache segment, and a power saving state
in which the power consumption is reduced compared to the
normal state. The power control mechanism 22 is configured
to control the power supply unit 15 to selectively power down
any segments that are not required for storing cached data.
When more data needs to be stored in the cache 5, then
segments can be brought out of the power saving state and
placed in the normal state.

[0089] The controller also includes a cache allocation
mechanism 25 for controlling the allocation of data to the
cache 5. The low power memory 8 consumes much less power
per amount of stored data than the DRAM cache 5. However,
the time required to access data from the memory 8 is much
greater than the time for accessing data from the cache 5.
Therefore, if the access latency of the memory is greater than
the interval between successive accesses to a piece of data
then it will be more efficient to store that piece of data in the
cache 5 than in the memory 8. The cache allocation mecha-
nism 25 therefore selects data for allocation to the cache 5 in
dependence upon the frequency at which data is accessed by
the processor 2. To implement this, the processor may be
provided with an access monitoring mechanism 30 for moni-
toring the interval between successive accesses to a piece of
data stored in the cache 5 or the memory 8. The access
monitoring mechanism 30 may be implemented as hardware
or software. The cache allocation mechanism 25 selects data
for allocation to the cache in dependence upon the inter-
access interval monitored by the access monitoring mecha-
nism 30. When data is to be allocated to the cache 5, the cache
allocation mechanism 25 selects a cache location for storing
the newly cached data. The cache allocation mechanism 25
selects cache locations from already powered cache segments
12 in preference to cache locations from cache segments 12
that are in the power saving mode. Within a cache segment 12
that is in the powered on state, the cache allocation mecha-
nism 25 selects a cache location for storing the newly cached
data with the following order of preference: an invalid cache
location, a clean cache location storing evictable cached data,
and a dirty cache location storing evictable cached data. If no
such cache locations are available in a powered cache seg-
ment 12, then the power control mechanism 22 controls the
power supply unit 15 to bring one or more cache segments 12
out of the power saving mode and supply these segments with
full power so that they can store some of the allocated data.
The operation of the cache allocation mechanism will be
described in more detail below with reference to FIGS. 5 and
6

[0090] Once data has been allocated to the cache 5, the data
may be accessed more rapidly by the processor 2. However,
maintaining that data in the cache 5 consumes more power

Apr. 21,2011

than would be the case if the data was stored only in the
memory 8. Therefore, the system has mechanisms for moni-
toring whether it is still necessary for data to be cached in the
cache 5, or whether it may be evicted and stored only in
memory 8. An eviction selection mechanism 35 is provided to
select cached data for eviction. The eviction selection mecha-
nism 35 has several techniques for selecting data for eviction.
In one technique, the eviction selection mechanism 35 is
responsive to a cache access interval monitored by the access
monitoring mechanism 30 to select data for eviction. This
technique for selection of data to be evicted will be described
below with reference to FIG. 4. The eviction selection mecha-
nism 35 could also select data for eviction in dependence
upon an interval since the last access to cached data (this
interval can be monitored by the access monitoring mecha-
nism 30). Data that has not been accessed for an interval that
is greater than a threshold time could be selected for eviction,
so as to remove data that is not longer being used by the
processor 2 from the cache 5. Another way in which data can
be selected for eviction by the eviction selection mechanism
35 is that the processor 2 could provide the eviction selection
mechanism 35 with a signal 37 indicating that one or more
pieces of data within the cache will no longer be needed by the
processor 2. The eviction selection mechanism 35 can be
responsive to the signal 37 to select this data for eviction. A
similar signal could be used by the processor 2 to signal to the
controller 20 that cached data should never be evicted to
memory 8.

[0091] When data is selected for eviction by the eviction
selection mechanism 35, then this data is marked as evictable
(or reclaimable) by the controller 20. However, when selected
the evictable data is not evicted from the cache right away.
This is because a separate cache compaction mechanism 40,
independent from the eviction selection mechanism 35, is
provided for controlling compaction of the DRAM cache 5.
The cache compaction mechanism 40 acts to evict evictable
data from the cache 5 and to rearrange the cached data within
the cache 5 so that the non-evictable data is packed into fewer
segments 12 than had been used prior to eviction. Following
cache compaction by the cache compaction mechanism 40,
one or more segments 12 of the cache 5 will no longer be
required for storing cache data, and so these segments may be
placed in the power saving state by the power supply unit 15
under control of the power controller 22. By selecting data for
eviction in dependence upon the data currently being used by
the processor 2, and performing cache compaction periodi-
cally so as to evict data selected as being evictable and con-
solidating the cached data into fewer cache segments 12, the
number of active cache segments can be varied dynamically
in dependence upon the requirements of the processor 2 so as
to conserve power where possible without affecting the per-
formance of the system.

[0092] The controller 20 can monitor the current status of
different cache locations within the DRAM cache 5. One way
in which the controller 20 can do this is by maintaining state
information indicating the state of each cache location. FIG.
2 illustrates a state diagram indicating changes of state for a
location with the cache 5. In this example, the controller 20
maintains three bits for each location: a valid bit V indicating
whether or not the location is currently being used to cache
data from the memory 8, a dirty bit D indicating whether or
not the cached data has been changed by the processor 2
without changing the corresponding data in the memory 8,
and a reclaimable bit R indicating whether or not the data at

US 2011/0093654 Al

that location has been selected for eviction by the eviction
selection mechanism 35. In FIG. 2, nodes 50-58 represent
possible combinations of state bits for a particular cache
location. In each state, an upper case letter indicates that the
state bit has been set, while a lower case indicates that the
state bit has not been set.

[0093] When a cache location is not currently being used to
cache data, then it is invalid and so is in state 50 of FIG. 2. In
this state, the valid, dirty and reclaimable bits are all not set.
Once data is allocated to the cache location then that location
becomes valid and so the state of that location moves to state
52 where the valid bit is set. Subsequent reading of the data
from that location by the processor 2 does not change the state
because the value of the data does not change. However, if the
processor 2 writes to the cache location then the state of the
location changes to state 54 where the dirty bit becomes set.
Ifwhile in states 52 or 54 the data within the cache location is
selected for eviction by the eviction selection mechanism 35
then the reclaimable bit R is set and so the state of the location
moves to state 56 or 58 as shown in FIG. 2. While in the
reclaimable state, the cached data remains accessible to the
processor 2. It is only when the cache compaction mechanism
40 performs a cache compaction (or garbage collection) pro-
cess that the reclaimable data is evicted from the cache. When
data is evicted, if the dirty bit D has been set then the data will
also be written back to memory 8. When data is evicted from
a cache location then that cache location becomes invalid
again and all state bits are cleared, returning to state 50. Note
that if evictable data in states 56 or 58 is accessed by the
processor 2, then that data may be unselected by clearing the
reclaimable bit, thus reverting to non-evictable states 52 or
54.

[0094] FIG. 3 shows a flow diagram illustrating a cache
maintenance method according to one example of the present
technique. At step 100, the eviction selection mechanism 35
selects data stored in one or more cache locations as evictable
cached data. The evictable cached data may not all be selected
at once, as the eviction selection mechanism 35 may select
data in different ways, for example in dependence upon cache
or memory access intervals monitored by the access monitor-
ing mechanism 30, or triggered by signal 37 provided from
the processor 2. Independent from the selection of evictable
cache data, but at some time later, the cache compaction
mechanism 40 performs cache compaction in step 110 of
FIG. 3. Steps 100 and 110 are linked by a dotted line in FIG.
3, indicating that although the cache compaction step 110
follows the selection of evictable cache data at step 100, the
cache compaction 110 is independent of the selection of
evictable cache data 100 and so does not necessarily follow
immediately after the selection of evictable cache data. In the
cache compaction step 110, the cache compaction mecha-
nism 40 evicts evictable cached data from the cache 5 and
stores non-evictable cached data (i.e. data from locations
where the reclaimable bit is not set) into fewer cache seg-
ments than were being used to store the cache data prior to the
eviction of the evictable cached data. The flow then proceeds
to step 120 where the power control mechanism 22 controls
the power supply unit 15 to place into a power saving state at
least one cache segment that is not required to store any cache
data, following eviction of the evictable cached data. While it
is possible that only a subset of the cache segments 12 that are
no longer required are placed in the power saving state, a
greater power saving will be achieved if all cache segments
that no longer are needed are powered down. As cache main-

Apr. 21,2011

tenance is an ongoing process that is continuously carried out
by the mechanisms of the controller 20, then after step 120
flow returns to step 100 where further cached data is selected
for eviction.

[0095] An example of the operation of the eviction selec-
tion mechanism 35 in conjunction with the access monitoring
mechanism 30 will now be explained in further detail with
reference to the flow chart shown in FIG. 4. The access
monitoring mechanism 30 monitors the interval between suc-
cessive accesses to cached data within the cache 5. If the
inter-access interval becomes greater than the access latency
of'the low power memory 8 (whether that is a read latency or
a write latency), then it is no longer power-efficient to main-
tain that data within the cache 5. Since in this case the lower
power memory 8 can satisfy the demand for that piece of data,
a power saving can be achieved (without unduly affecting
system performance) by storing the data in the memory 8 and
evicting the data from the cache 5. However, since the cache
access interval may vary somewhat while data is repeatedly
accessed by the processor 2, it is not desirable to select data
for eviction as soon as the cache access interval becomes
greater than the access latency of the memory 8. Instead, the
eviction selection mechanism 35 is configured to select data
which is consistently being accessed at intervals greater than
the access latency of the memory 8 for eviction from the cache
5. The method shown in FIG. 4 achieves this.

[0096] First, at step 150 the eviction selection mechanism
35 determines whether there is an access to cached data. The
eviction selection mechanism 35 waits until there is an access
before proceeding to step 155, at which it is determined
whether cache access interval, that is the interval between the
current access and the most recent access to the same data, is
greater than a cache access interval threshold. To ensure that
the cache 5 and memory 8 are used efficiently, it is useful to
set the cache access interval threshold to have a minimum
value of the read or write latency of the memory 8. If at step
155 it is determined that the cache access interval is not
greater than the cache access interval threshold, then flow
returns to step 150 where the eviction selection mechanism 35
again waits for another cache access. If, however, at step 155
the cache access interval is greater than the cache access
interval threshold, then at step 160 a confidence counter is
incremented by the eviction selection mechanism 35. The
confidence counter indicates the number of times that the
accessed data has been accessed at an interval greater than the
cache access interval threshold, and so is a measure of how
confident the eviction selection mechanism 35 is that the
accessed data can be evicted from the cache 5. Next, flow
proceeds to step 165, where it is determined whether or not
the confidence counter is greater than a confidence threshold
value. If the confidence counter is not greater than the confi-
dence threshold, then flow returns to step 150 where the
eviction selection mechanism waits for another cache access.
However, if at step 165 the confidence counter is greater than
the confidence threshold, then at step 170 the access data is
selected as evictable. This can be done, for example, by
setting the reclaimable bit (as shown in FIG. 2). Flow now
proceeds back to step 150 where the mechanism again waits
for another access to cached data. Note that when data is
selected for eviction by the eviction selection mechanism 35,
that data continues to be accessible to the processor 2 as it is
not actually evicted from the cache 5 until cache compaction
is performed.

US 2011/0093654 Al

[0097] As well as, or instead of, the mechanism showing
FIG. 4, the eviction selection mechanism 35 can also select
data for eviction if the access monitoring mechanism 30
determines that an interval since the data was last accessed by
the processor 2 has become greater than a predetermined
threshold. Also, the eviction selection mechanism 35 can be
responsive to the data not used signal 37 provided by the
processor 2 to select evictable data. Thus, the eviction selec-
tion mechanism 35 identifies candidate data for eviction.

[0098] The method showninFIG. 4 selects data for eviction
based on whether or not the access intervals for that data have
been consistently greater than an access interval threshold,
which will typically be set to be an access latency of the
memory 8. A similar principle can be used to implement an
algorithm for allocating data to the cache, as shown in FIG. 5.
FIG. 5 shows a flow chart illustrating a method of cache
allocation performed by the cache allocation mechanism 25.
Just as data is evicted from the cache once the cache access
interval becomes repeatedly greater than a cache access inter-
val threshold, the cache allocation mechanism 25 selects data
for allocation to the cache once a memory access interval
becomes repeatedly less than a memory access interval
threshold. This threshold would typically be set to be the
access latency of the memory or greater. Note that the higher
the threshold value, the more likely it is that data will be
allocated to the cache, so for systems where quick processing
times are crucial then a higher threshold value should be
selected than for systems where low power consumption is
the most important criterion.

[0099] The cache allocation method shown in FIG. 5 oper-
ates each time data is accessed from memory 8. At step 200 it
is determined whether a memory access has occurred. When
a memory access occurs, then it is determined at step 210
whether or not the memory access interval (that is, the interval
between the current memory access and the previous memory
access) is less than a memory access interval threshold. If this
is not the case, then flow returns to step 200. Ifthe inter-access
interval is less than the memory access interval threshold then
flow proceeds to step 220 where a confidence counter is
incremented. At step 230 it is determined whether the confi-
dence counter is greater than the confidence threshold, and if
this is the case, then at step 240 the access data is allocated to
the cache. When data is allocated to the cache 5, then the
controller 20 will need to select a location within the cache to
which the data can be allocated. Various cache allocation
algorithms are possible. In one example algorithm, then most
preferably an invalid cache location which is not currently
being used to cache data would be used to store the allocated
data (if required, then an additional cache segment 12 can be
powered up by the power supply unit 15 so as to provide more
cache space). If no invalid locations exist, then a location
containing evictable data would be selected for allocation, for
example using a least recently used (LRU) method. If no
invalid or evictable locations exist, then a valid, non-evictable
location would be replaced using a LRU algorithm. For a
main memory having a higher write than read latency, a
modified algorithm such as a clean first least recently used
(CFLRU) could be used for better performance. In CFLRU a
clean cache location is selected in preference to a dirty cache
location, because no writeback to memory will be required
when clean data is evicted from the cache. Another algorithm
for selecting a victim cache location is discussed below with
reference to FIG. 6. Once data has been allocated to the cache

Apr. 21,2011

at step 240 then flow returns to step 200 where it is again
determined whether a memory access has occurred.

[0100] NotethatinFIGS. 4 and 5 both the eviction selection
mechanism 35 and the cache allocation mechanism 25 main-
tain a confidence counter. The confidence counter for the
eviction selection method in FIG. 4 counts the number of
cache accesses that are infrequent enough to be satisfied by
the main memory. The confidence counter for the cache allo-
cation mechanism in FIG. 5 counts the number of accesses to
anon-cached piece of data that are too frequent to be satisfied
by the main memory. Thus, the values of the confidence
thresholds for the respective mechanisms will determine how
soon data will be evicted from the cache or allocated to the
cache. Performance slowdown can be reduced by setting the
confidence threshold for the eviction selection mechanism 35
to a high value and the confidence threshold for the cache
allocation mechanism 25 to a low value. On the other hand, if
performance slowdown is not as important an issue then
greater power savings can be achieved by reducing the con-
fidence threshold for the eviction selection mechanism 35 and
increasing the confidence threshold for the cache allocation
mechanism 25, so that data is retained in the memory for
longer before being cached.

[0101] FIG. 6 shows an example of a process performed by
the cache allocation mechanism 25 when allocating new
cached data to the cache 5. When data is to be allocated to the
cache 5, for example following a cache miss, the cache allo-
cation mechanism selects a cache location (known as a victim
cache location) to which the newly cached data is allocated.
FIG. 6 shows an example of how the victim cache location is
selected.

[0102] First, in step 250, the cache allocation mechanism
25 sets as a candidate cache segment the cache segment 12
having the most locations storing non-evictable data. At step
252, it is determined whether the candidate cache segment
contains at least one invalid cache location. If there is an
invalid cache location in the candidate segment, then at step
254 one of the invalid cache locations is selected as the victim
location. If the candidate cache segment does not have an
invalid cache segment, then at step 256 the cache allocation
mechanism 25 identifies whether the candidate cache seg-
ment has any cache locations storing clean, evictable, cached
data. If this is the case, then at step 258, the cache allocation
mechanism selects one of the clean evictable cache locations
for storing the new cached data. The selected one of the clean
evictable cache locations could be the location which has
been least recently accessed, or could be selected at random.
Alternatively, if at step 256 it is determined that the candidate
cache segment does not have any clean evictable cache loca-
tions, then at step 260, it is determined whether the candidate
cache segment has any dirty, evictable cache locations. If at
least one dirty evictable cache location exists, then at step 262
one of these locations is selected as the victim location, and at
step 264 the dirty data is written back to memory 5 from the
dirty, evictable, cache location. As for the selection of a clean
location at step 258, the selected dirty evictable cache loca-
tion can be selected in step 262 in accordance with a least
recently used (LRU) algorithm, or can be selected at random.
[0103] If at step 260 the cache allocation mechanism 25
finds that the candidate cache segment has no dirty evictable
cache locations, then at step 266 it is determined whether
there are any more cache segments that are not in the power
saving state. If this is the case, then at step 268 the cache
segment 12 having the next most non-evictable data (after the

US 2011/0093654 Al

currently selected candidate cache segment) is set as the
candidate cache segment, and then steps 252-266 are repeated
for the newly selected candidate cache segment. If at step 266
it is determined that there are no more currently activated
cache segments, then at step 270 a cache segment 12 that is
currently in the power saving state is powered up by the power
control circuitry 22 and power supply 15, and an invalid
location from the newly powered up cache segment is
selected as the victim location.

[0104] Finally, following selection of a victim cache loca-
tion for storing the newly allocated cache data in one of steps
254, 258, 262 and 270, the newly cached data is stored in the
selected cache location in step 272. The cache allocation
process then ends. Since the cache allocation mechanism 25
is arranged to select cache locations from powered up cache
segments in preference to cache segments in the power saving
mode, and selects cache locations from the cache segment 12
having the most non-evictable data in preference to cache
segments 12 having fewer locations storing non-evictable
data, newly allocated data is allocated to more densely packed
segments and so over time the cache will become more com-
pact, thus allowing more cache segments to be powered
down.

[0105] Having selected one or more pieces of data for evic-
tion from the cache, power savings are achieved by perform-
ing periodic cache compaction using the cache compaction
mechanism 40. Cache compaction enables the number of
active cache segments 12 to be varied dynamically in depen-
dence upon the current usage of cached data by the processor
2. A method of cache compaction is shown in FIG. 7. First, at
step 275, the cache compaction mechanism 40 determines
whether eviction of evictable cached data would enable the
remaining non-evictable cached data to be cached in fewer
cache segments than are currently being used to store the
cached data. This may be done by determining whether, for
any candidate cache segment, the total number of invalid and
evictable cache locations in currently powered segments
other than the candidate cache segment is equal or greater
than the number of non-evictable locations in the candidate
cache segment. If eviction of evictable cached data would not
allow fewer segments to be used then there is no point in
performing cache compaction as cache compaction will not
result in any power savings, and so it is better to retain the
evictable cached data in the cache where it can be accessed
more rapidly by the processor 2. Therefore, if the cache
compaction mechanism 40 determines at step 275 that evic-
tion will not allow fewer segments to be used then the process
of FIG. 7 ends. The cache compaction mechanism would then
wait until the next time it initiates cache compaction, by
which time more data may have been selected for eviction.

[0106] If at step 275 it is determined that eviction would
enable fewer cache segments 12 to be used, then flow pro-
ceeds to step 277 where the cache compaction mechanism 40
determines which cache segment 12 contains the fewest valid
locations that are currently storing non-evictable cached data.
The segment having the least non-evictable data is referred to
below as a source segment. Next, at step 279, the segment
having the most valid locations storing non-evictable data is
identified. This segment is referred to below as a destination
segment. At step 281 the cache compaction mechanism evicts
evictable cached data from the source cache segment. If any
of'this evictable data is dirty (that is, it has been modified by
the processor 2 without being written back to the memory 8)
then the evicted data is written back to the memory 8. The

Apr. 21,2011

locations from which data is evicted within the source seg-
ment are then marked as invalid at step 283. Flow then pro-
ceeds to step 285, where the cache compaction mechanism 40
migrates non-evictable data from the source cache segment to
one or more cache locations of the destination cache segment.
The cache locations of the destination cache segment to
which the cached data is migrated are invalid cache locations
or cache locations storing evictable cached data. Clean evict-
able cache locations are selected in preference to dirty evict-
able cache locations, and if a dirty location is selected the
dirty evictable data is written back to memory before trans-
ferring the data from the source cache location. If possible, all
of the non-evictable cached data from the source segment is
transferred to the destination segment, although if there are
fewer invalid or evictable cache locations in the destination
segment than there are locations storing non-evictable cached
data in the source segment then only a portion of the non-
evictable cached data is transferred. At step 287, the cache
compaction mechanism 40 determines whether any more
data can be transferred from a segment having less non-
evictable data to a segment having more non-evictable data. If
more data can be transferred, then flow returns to step 277 and
steps 277 to 285 are repeated so as to further compact the
cache. If no more data can be transferred, then the cache is as
compact as possible and so flow ends.

[0107] By performing the method according to FIG. 7, the
non-evictable data within the cache 5 can be moved within the
cache so that it occupies fewer cache segments 12. This
means that at least one cache segment is no longer required to
store cached data and so may be placed in the power saving
mode by the power supply unit 15 under control of the power
control mechanism 22 (see step 120 of FIG. 3). Thus, for most
of the time, when little cached data is needed, then only a
small amount of the cache needs to be fully powered and so
power consumption is reduced. However, on the few occa-
sions when a lot of cached data is necessary, then an increased
amount of cache capacity is available so as to provide quick
access to the data. By providing a cache compaction mecha-
nism for dynamically adjusting the effective cache size,
power consumption can be significantly reduced while main-
taining system performance.

[0108] The processor 2 may generate data while carrying
out processing operations. In this case, performance can be
improved by allocating the generated data to the cache ini-
tially. Since it is likely that the processor 2 may access the
recently generated data again, a warm-up performance hit can
be avoided by placing the data in the cache 8 initially rather
than storing the data only in the memory 5. If it turns out that
this data is used infrequently by the processor 2 then it can be
evicted to the memory later by the cache compaction mecha-
nism 40. Bit information in the page table entry for the page
allocated to cache but not memory can record this fact and
indicate that when the data is evicted from the cache it should
be written back to memory.

[0109] The allocation and compaction mechanisms may be
modified to pack data more sparsely into more cache seg-
ments. For example, data could be randomly allocated to
several cache segments rather than the segment having the
most non-reclaimable data. This can improve system perfor-
mance via increased bank interleaving.

[0110] The controlling mechanisms 22, 25, 30, 35, 40
described above can be implemented in various different
ways. In FIG. 1, for example, the power control mechanism
22, the cache allocation mechanism 25, the eviction selection

US 2011/0093654 Al

mechanism 35 and the cache compaction mechanism 40 have
all been illustrated as part of the controller 20, and the access
monitoring mechanism 30 has been illustrated as part of the
processor 2. However, it will be appreciated that these mecha-
nisms may be implemented differently. For example, each
mechanism 22, 25, 30, 35, 40 could be implemented as part of
a memory management processor for managing page caching
decisions, possibly having its own local memory. Also, each
mechanism could be implemented using a dedicated cache
compaction unit for managing the cache compaction. This
hardware unit could be provided with a full or compressed
table of memory statistics, recording the times between
memory accesses and the confidence counters for the cache
allocation and eviction selection mechanisms. The control-
ling mechanisms could also be implemented using software
algorithms executed by the processor 2 or a separate manage-
ment processor (not illustrated in FIG. 1). These software-
based algorithms would record memory accesses and mea-
sure the inter-access time interval. A combination of these
options is also possible, in which different mechanisms are
implemented in different ways.

[0111] InFIG. 1, the cache 5 and the low power memory 8
have been illustrated using separate blocks so as to illustrate
their separate functions. However, it will be appreciated that
in practice the cache 5 and memory 8 do not need to be
implemented on separate memory modules. FIGS. 8(a), 8(5)
and 8(c¢) show some of the arrangements of the cache memory
5 and the low power memory 8 that are possible.

[0112] FIG. 8(a) shows a hybrid memory module 300 hav-
ing both DRAM cache locations 310 and low power memory
locations 320. Note that most of the circuit area is provided
for DRAM, not the more densely packed low power memory,
in order to provide sufficient cache capacity to achieve quick
access to a large amount of data when this is needed by the
processor 2. Energy can be conserved by powering down
segments of the cache when they are not required. The hybrid
memory module 300 has the advantage that when data is
written back to memory or allocated to the cache, data can be
transferred within the memory module 300 and so access to
the system bus 10 is not always required. This helps to reduce
bus traffic, freeing up more bandwidth for use by the proces-
sor 2.

[0113] InFIG.8(a)the memory locations 320 and the cache
locations 310 are arranged in blocks 330, each block having
some memory locations 320 and some cache locations 310.
However, as illustrated in FIG. 8(5) it is also possible for a
hybrid memory module 350 to comprise a number of dedi-
cated cache memory blocks 360 having only cache memory
locations, and a dedicated memory block 370 having only
memory locations. This can be advantageous in embodiments
where the low power memory consists of flash memory,
because having a concentrated, larger block of memory loca-
tions 370 can better exploit wear levelling than the same
number of memory locations distributed among several
blocks as shown in FIG. 8(a).

[0114] It is also possible for the cache and memory to be
implemented on separate memory modules, as shown in FIG.
8(¢). In this case, a cache memory module 380 and a memory
module 390 would be provided, each of which can be inserted
into different memory sockets of the data processing system
1.

[0115] FIGS. 9 to 11 show another example of a way in
which cached data can be selected for eviction by the pro-
cessing apparatus 1. As described above, it is possible to

Apr. 21,2011

monitor inter-access intervals in order to determine which
data should be evicted. However, this may require a signifi-
cant amount of storage capacity and processing resource in
order to store time stamps or counters for recording the inter-
vals elapsed between accesses to each cache location. FIG. 9
shows a technique for selecting evictable cached data in
which less overhead is used.

[0116] In the technique of FIG. 9, a set of eviction status
bits are maintained (either within the cache memory module
or coupled to the cache controller 20—see FIGS. 10 and 11).
Each eviction status bit corresponds to a respective cache
location in the cache 5, and may be set to one of two states: an
evictable state indicating that the corresponding cache loca-
tion contains evictable cached data, and a non-evictable state
indicating that the corresponding cache location contains
non-evictable cached data. For example, when an eviction
status bitis set to 1 then this could indicate non-evictable data,
while when it is set to 0 this could indicate evictable data.
Below, we shall assume that this mapping of eviction status
bit values is being used (although it will be appreciated that
alternatively a bit value of 1 could indicate evictable data and
0 could indicate non-evictable data).

[0117] FIG. 9 shows an example of how the eviction status
bits (also known as reclaim bits) may be processed during the
interval between two successive cache compaction events
performed by the cache compacting mechanism 40. Attimet,
one compaction event is carried out. Following the cache
compaction, at time t, all eviction status bits are reset to the
evictable state. For example, this can be achieved by writing
zeros to the eviction status bits or by not refreshing the bit
cells storing the status bits. Some time prior to the next
compaction event a write window begins at t;. The write
window continues up to the occurrence of the next cache
compaction at time t5. During the write window, a write to a
cache location causes the corresponding eviction status bit to
be set to the non-evictable state. Similarly, at a time t, a read
window begins, which continues up to the time of the cache
compaction at time t5. During the read window, a read to a
cache location causes the corresponding eviction status bit to
be set to the non-evictable state. Although in FIG. 9 the write
window has been indicated as being longer than the read
window, this does not necessarily have to be the case. When
the next cache compaction event occurs at time ts, any cache
locations for which the corresponding eviction status bit is
still set to the evictable state are selected as containing evict-
able cached data, and so data from these locations may be
evicted during compaction performed by the cache compac-
tion mechanism 40.

[0118] FIG. 10 shows an example of a cache memory mod-
ule 5 which may be arranged to implement the technique
shown in FIG. 9. The cache memory module 5 contains an
eviction status bit storage (or reclaim bit storage) 400, and a
snoop unit 410 for monitoring accesses to the locations in the
cache segments 12 of the cache module 5 and controlling the
state of the eviction status bits. In this arrangement, the evic-
tion status bit storage 400 is implemented as a special cache
segment that unlike the other segments 12 is not subject to
power control and cache compaction. The eviction status bit
storage 400 contains one bit for each location in the cache
module 5. Since only one bit is stored per cache location, the
eviction status bit storage 400 requires little storage overhead.
Also, since only one bit needs to be changed per cache access,
this techmque of eviction selection has little processing over-
head. When a cache location is accessed by the processor 2,

US 2011/0093654 Al

the snoop unit 410 is responsive to the address being accessed
to set the corresponding eviction status bit to the non-evict-
able state if the access is within the appropriate read or write
window. The snoop unit 410 may include registers for storing
information for defining the read and write window intervals.
The eviction status bit storage 400 may also be responsive to
an external reset signal 420 provided by the processor 2 in
order to reset all the eviction status bits to the evictable state.
The reset signal 420 could be used, for example, if the cache
needs to be flushed.

[0119] Since the reclaim bit storage 400 and the snoop unit
410 are provided as part of the cache memory module 5, the
cache memory is easily expandable. New memory modules
may be added and, since each module will already have the
required amount of bit storage 400, no modification of the
cache controller 20 would be necessary.

[0120] As shown in FIG. 10, the cache memory module 5
may comprise circuitry 430 for directing cache accesses to
the appropriate cache segment 12. This circuitry 430 may be
known as a “mini-rank buffer” (MRB). Zheng et al propose a
way of implementing the mini-rank buffer.

[0121] FIG. 11 shows an alternative arrangement for pro-
viding the reclaim bit storage 400 and the snoop unit 410. The
snoop unit 410 could be provided as part of the cache memory
controller 20. The reclaim (eviction status) bit storage 400
could be provided separately from the memory modules and
act as a global reclaim bit storage that is coupled to the cache
controller 20. The reclaim bit storage 400 is addressable by
the controller.

[0122] FIG. 11 also shows a variation in which the reclaim
bit storage 400 includes an eviction status history store 450
for storing historical values of the eviction status bits. Peri-
odically, a current set of values of the eviction status store 400
could be stored to the history store 450 (for example, the
history could be recorded when a cache compaction event
occurs). The history store 450 may be accessed by the various
control mechanisms 22, 25, 35, 40. Storing various sets of
history values enables the control mechanisms to determine
inter-access intervals that are longer than the interval between
two successive cache compaction events. This may be useful
in order to identify data that should be evicted from the cache
or allocated to the cache in order to improve the system
performance and/or reduce the energy consumed by the
memory system. Although FIG. 10 does not show the reclaim
bit storage 400 having a history store 450 as in FIG. 11, it will
be appreciated that the arrangement of FIG. 10 could also
have a history store 450, and that the arrangement of FIG. 11
could be provided without a history store 450.

[0123] Some optional modifications that may be provided
in the apparatus 1 are:

[0124] The cache 5 and the memory 8 may be provided
on separate memory buses so that the memory 8 can be
arranged to operate at a lower frequency (and hence
lower power) than the cache 5.

[0125] A virtual to physical address mapping scheme
similar to a hypervisor (as used in virtualization sys-
tems) may be used in the present technique. This allows
simple modification of the physical location of data.

[0126] A pre-fetching mechanism may be used to read
data from memory 8 into the cache 5 in advance of the
data being accessed, using address prediction tech-
niques.

[0127] Data transferred between the cache and main
memory may be compressed using compression cir-

Apr. 21,2011

cuitry, in order to reduce the energy consumed by the bus
and reduce the amount of data stored in memory (thus
increasing memory lifetime).

[0128] Individual cache locations within the cache 5 may
be divided into smaller sub-blocks each associated with
bits indicating whether the individual sub-blocks have
been modified (i.e. are dirty). This means that on evic-
tion only the sub-blocks that are dirty need to be written
back to memory. This reduces the amount of bus traffic
(and hence bus energy consumed) and increases
memory lifetime, since less data needs to be written to
memory. This is particularly advantageous for flash
devices that have a limited number of erase cycles.

[0129] Although illustrative embodiments of the invention
have been described in detail herein with reference to the
accompanying drawings, it is to be understood that the inven-
tion is not limited to those precise embodiments, and that
various changes and modifications can be effected therein by
one skilled in the art without departing from the scope and
spirit of the invention as defined by the appended claims.

We claim:

1. A data processing apparatus comprising:

data processing circuitry for processing data;

a memory for storing data for use by said data processing
circuitry;

a cache memory comprising a plurality of cache segments
and configured to store cached data from said memory;

power supply circuitry for selectively supplying each of
said cache segments with power;

an eviction selection mechanism for selecting evictable
cached data for eviction from said cache memory;

a cache compacting mechanism configured to perform
cache compaction by evicting said evictable cached data
from said cache memory and storing non-evictable
cached data in fewer cache segments than were used to
store said cached data prior to eviction of said evictable
cached data; and

power control circuitry configured to control said power
supply circuitry to place in a power saving state at least
one of said cache segments that, following eviction of
said evictable cached data by said cache compacting
mechanism, are not required to store cached data.

2. A data processing apparatus according to claim 1,
wherein said memory has a lower static power consumption
per amount of stored data than said cache memory.

3. A data processing apparatus according to claim 1,
wherein after evicting said evictable cached data from said
cache memory said cache compacting mechanism is config-
ured to move at least some non-evictable cached data to a
different cache segment, such that fewer cache segments are
required to store said non-evictable cached data than were
required prior to eviction of said evictable cached data.

4. A data processing apparatus according to claim 1,
wherein said at least one of said cache segments comprises all
of said cache segments that, following eviction of said evict-
able cached data by said cache compacting mechanism, are
not required to store cached data.

5. A data processing apparatus according to claim 1, further
comprising an access monitoring mechanism for monitoring
acache access interval between successive accesses to cached
data stored in said cache memory.

6. A data processing apparatus according to claim 5,
wherein said eviction selection mechanism is configured,
when cached data is accessed from said cache memory, to

US 2011/0093654 Al
12

select said accessed cached data as said evictable cached data
in dependence upon whether said cache access interval moni-
tored by said access monitoring mechanism is greater than a
cache access interval threshold.

7. A data processing apparatus according to claim 6,
wherein said eviction selection mechanism is configured to:

increment a confidence counter if said cache access inter-
val is greater than said cache access interval threshold;
and

select said accessed cached data as said evictable cached
data if said confidence counter is greater than a confi-
dence threshold.

8. A data processing apparatus according to claim 6,

wherein said cache access interval threshold is one of:

at least a read latency of said memory; and

at least a write latency of said memory.

9. A data processing apparatus according to claim 5,
wherein said access monitoring mechanism is further config-
ured to monitor a memory access interval between successive
accesses to data stored in said memory; and

said data processing apparatus further comprises a cache
allocation mechanism configured, when data is accessed
from said memory, to select said accessed data for allo-
cation to said cache memory in dependence upon
whether said memory access interval monitored by said
access monitoring mechanism is less than a memory
access interval threshold.

10. A data processing apparatus according to claim 9,

wherein said cache allocation mechanism is configured to:
increment a confidence counter if said memory access
interval is less than said memory access interval thresh-
old; and

select said accessed data for allocation to said cache
memory if said confidence counter is greater than a
confidence threshold.

11. A data processing apparatus according to claim 9,

wherein said memory access interval threshold is one of:

at least a read latency of said memory; and

at least a write latency of said memory.

12. A data processing apparatus according to claim 1, fur-
ther comprising a cache allocation mechanism for allocating
cached data to said cache memory; wherein:

said cache allocation mechanism selects as a candidate
cache location for storing said cached data a cache loca-
tion from one of said cache segments that is not in said
power saving state in preference to a cache location from
one of said cache segments that is in said power saving
state.

13. A data processing apparatus according to claim 12,
wherein said cache allocation mechanism selects said candi-
date cache location by performing the following steps:

(1) setting as a candidate cache segment the cache segment
not in said power saving state that has the most cache
locations storing non-evictable cached data;

(ii) selecting from said candidate cache segment an invalid
cache location;

(ii1) if (i1) is not possible, then selecting from said candidate
cache segment a clean cache location storing evictable
cached data;

(iv) if (i1) and (iii) are not possible, then selecting from said
candidate cache segment a dirty cache location storing
evictable cached data;

(v) if (i), (iii) and (iv) are not possible, then setting as said
candidate cache segment the cache segment not in said

Apr. 21,2011

power saving state that has the next-most cache loca-
tions storing non-evictable cached data, and repeating
steps (ii), (iii) and (iv);

(vi) if (ii), (iii), (iv) and (v) are not possible, then control-
ling said power control circuitry to bring out of said
power saving state a cache segment that is currently in
said power saving state, and selecting as said candidate
cache location an invalid cache location of the cache
segment that has been brought out of said power saving
state.

14. A data processing apparatus according to claim 5,
wherein said eviction selection mechanism is configured to
select cached data as said evictable cached data if said access
monitoring mechanism determines that an interval since the
last access to said cached data is greater than a predetermined
threshold.

15. A data processing apparatus according to claim 14,
wherein said access monitoring mechanism is configured to
determine periodically whether or not said interval since the
last access to said cached data is greater than said predeter-
mined threshold.

16. A data processing apparatus according to claim 1,
wherein:

said data processing circuitry is configured to provide a
signal to said eviction selection mechanism indicating
that a subset of cached data will no longer be used by
said data processing circuitry; and

said eviction selection mechanism is responsive to said
signal to select said subset of cached data as said evict-
able cached data.

17. A data processing apparatus according to claim 1,
wherein said cache compacting mechanism is configured to
perform said cache compaction periodically.

18. A data processing apparatus according to claim 1,
wherein said cache compaction performed by said cache
compacting mechanism is independent from said selection of
evictable cached data by said eviction selection mechanism.

19. A data processing apparatus according to claim 1,
wherein said cache compacting mechanism is configured to
perform said cache compaction if said cache compacting
mechanism identifies that eviction of said evictable cached
data would allow said non-evictable cached data to be stored
in fewer cache segments than are currently being used to store
said cached data.

20. A data processing apparatus according to claim 1,
wherein said cache compacting mechanism is configured to
perform said cache compaction by executing the following
steps:

(1) identifying whether eviction of said evictable cached
data would allow said non-evictable cached data to be
stored in fewer cache segments than are currently being
used to store said cached data; and

(i1) if it is identified that eviction of said evictable cached
data would allow said non-evictable cached data to be
stored in fewer cache segments than are currently being
used to store said cached data, then performing steps (a)
to (e):

(a) selecting as a source cache segment a cache segment
having the fewest cache locations that are storing non-
evictable cached data;

(b) selecting as a destination cache segment a cache seg-
ment having the most cache locations that are storing
non-evictable cached data;

US 2011/0093654 Al

(c) evicting evictable cached data from said source cache
segment and setting as invalid cache locations the cache
locations from which said evictable cached data is
evicted;

(d) transferring at least a portion of said non-evictable
cached data stored in said source cache segment to at
least one cache location of said destination cache seg-
ment, each said at least one cache location being one of
an invalid cache location of said destination cache seg-
ment and a cache location of said destination that is
storing evictable cached data; and

(e) repeating steps (a) to (e) until no more cached data can
be transferred to another cache segment.

21. A data processing apparatus according to claim 1,
wherein said data processing circuitry is configured to gen-
erate data, and when generated said data is initially stored in
said cache memory.

22. A data processing apparatus according to claim 5,
wherein said eviction selection mechanism, said cache com-
pacting mechanism and said access monitoring mechanism
are provided by at least one of:

memory management circuitry for managing said cache
memory and said memory;

dedicated cache compacting circuitry for managing cache
compaction;

software algorithms executed by said data processing cir-
cuitry; and

software algorithms executed by a management processor.

23. A data processing apparatus according to claim 1,
wherein said cache memory comprises dynamic random
access memory.

24. A data processing apparatus according to claim 23,
wherein said memory comprises at least one of:

dynamic random access memory having a lower static
power consumption per amount of stored data than said
dynamic random access memory of said cache memory;

flash memory;

magnetic random access memory; and

phase change random access memory.

25. A data processing apparatus according to claim 1,
wherein said cache memory and said memory are arranged in
separate memory modules.

26. A data processing apparatus according to claim 1, com-
prising at least one hybrid memory module, each said hybrid
memory module comprising a plurality of cache locations of
said cache memory and a plurality of memory locations of
said memory.

27. A data processing apparatus according to claim 26,
wherein said hybrid memory module comprises a plurality of
blocks, each block comprising at least some of said cache
locations and at least some of said memory locations.

28. A data processing apparatus according to claim 26,
wherein said hybrid memory module comprises a plurality of
blocks, at least one of said plurality of blocks being a memory
block dedicated to providing memory locations and at least
one of said plurality of blocks being a cache block dedicated
to providing cache locations.

29. A data processing apparatus according to claim 1, fur-
ther comprising:

an eviction status bit store for storing a plurality of eviction
status bits, each eviction status bit being associated with
a corresponding cache location of said cache memory
and having an evictable state indicating that the corre-
sponding cache location contains evictable cached data

13

Apr. 21,2011

and a non-evictable state indicating that the correspond-
ing cache location contains non-evictable cached data;
and

access monitoring circuitry for monitoring access to cache

locations of said cache memory and maintaining said
eviction status bits in said eviction status bit store;
wherein:

said access monitoring circuitry is configured to set all of

said eviction status bits to said evictable state following
cache compaction being performed by said cache com-
paction circuitry;
said access monitoring circuitry, is responsive to a read to
a read target location occurring within a read access
window to set the eviction status bit corresponding to
said read target location to said non-evictable state;

said access monitoring circuitry is responsive to a write to
a write target location within a write access window to
set the eviction status bit corresponding to said write
target location to said non-evictable state; and

said evictable cached data is cached data stored in cache

locations for which the corresponding eviction status bit
is in said evictable state when said cache compacting
mechanism performs said cache compaction.

30. A data processing apparatus according to claim 27,
wherein said eviction status bit store and said access moni-
toring circuitry are provided as part of a memory module that
forms part of said cache memory.

31. A data processing apparatus according to claim 27,
wherein said eviction status bit store includes an eviction
status history store for storing a plurality of sets of eviction
status history bits, each set of eviction status history bits
having values corresponding to values of said eviction status
bits at a respective instance in the past.

32. A data processing apparatus comprising:

data processing means for processing data;

memory means for storing data for use by said data pro-

cessing means;

cache memory means for storing cached data from said

memory means, said cache memory means comprising a
plurality of cache segment means;

power supply means for selectively supplying each of said

cache segment means with power;
eviction selection means for selecting evictable cached
data for eviction from said cache memory means;

cache compacting means configured to perform cache
compaction by evicting said evictable cached data from
said cache memory means and storing non-evictable
cached data in fewer cache segment means than were
used to store said cached data prior to eviction of said
evictable cached data; and

power control means configured, to control said power

supply means to place in a power saving state at least one
of said cache segment means that, following eviction of
said evictable cached data by said cache compacting
means, are not required to store cached data.

33. A method for a data processing apparatus comprising
data processing circuitry for processing data, a memory for
storing data for use by said data processing circuitry, and a
cache memory comprising a plurality of cache segments and
configured to store cached data from said memory; said
method comprising the steps of:

selecting evictable cached data for eviction from said cache

memory;

US 2011/0093654 Al Apr. 21,2011

14
performing cache compaction by evicting said evictable placing in a power saving state at least one of said cache
cached data from said cache memory and storing non- segments that, following eviction of said evictable
evictable cached data in fewer cache segments than were cached data, are not required to store cached data.

used to store said cached data prior to eviction of said
evictable cached data; and ook ok k%

