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ABSTRACT

This paper addresses test generation for design verifi-
cation of pipelined microprocessors. We describe a high-
level model for testing pipelined microprocessors, which
exposes high-level knowledge that is useful for verification
test generation. We present a three-part test generation
algorithm that uses this knowledge: The core part of the
algorithm conducts a branch-and-bound search in a trans-
Jormed state space of the controller. The decision vari-
ables of the search represent the essential interaction
between concurrent instructions in the pipeline. The size of
this transformed search space can be significantly smaller
than the original state space of the controller. The second
part of the algorithm selects justification and propagation
paths in the datapath, which guide the search in the con-
trol space. The third part uses discrete relaxation to deter-
mine appropriate data values. We have implemented the
proposed algorithm and used it to generate verification
tests for design errors in the datapath of a representative
pipelined microprocessor.

I. INTRODUCTION

Design verification is considered one of the most seri-
ous bottlenecks for multimillion gate microprocessor
designs. There are two broad approaches to hardware
design verification: formal and simulation-based. Formal
methods try to verify the correctness of a system by using
mathematical proofs. Simulation-based design verification
tries to uncover design errors by detecting a circuit’s faulty
behavior when deterministic or pseudo-random tests (sim-
ulation vectors) are applied. Manufacturers of modern
microprocessors still rely heavily on simulation-based
methods to verify their products.

Traditionally hand-written test cases have been used as
a first line of defense against bugs, focusing on basic func-
tionality and important rarely-occurring corner cases. To
increase test productivity, sophisticated test generation
systems have been developed that are biased towards cor-
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ner cases [3, 9]. Advances in simulation and emulation
technology have enabled the use of other sources of test
stimuli such as existing application and system software
[20].

These test generation techniques are used in conjunc-
tion with coverage metrics to quantify the effectiveness of
a verification test suite. The metrics include code coverage
metrics from software testing [5], finite-state machine cov-
erage [15], architectural event coverage [27], and observ-
ability-based metrics [10]. A shortcoming of all these
metrics is that the relationship between the metric and the
detection of classes of design errors is not well specified or
understood.

An alternative verification approach draws on the simi-
larity between hardware design verification and physical
fault testing {1, 4, 18, 28]. In this approach, synthetic error
models are derived from empirical design error data, and
physical fault testing techniques are adapted to generate
test sets for the synthetic errors. Both the implementation
and specification of the target design are simulated for that
test set. A discrepancy in the simulation outcome indicates
an error in the design implementation or in the specifica-
tion. Due to the gap in abstraction level between the imple-
mentation and the specification, the test generation
problem must be solved for a very large sequential circuit.
Circuits of the size and complexity of pipelined micropro-
cessors far exceed the capabilities of current gate-level
sequential test generation algorithms.

This paper addresses test generation targeted at syn-
thetic errors for design verification of pipelined micropro-
cessors, and proposes a new test generation method that
exploits high-level knowledge about these designs. We
first present a novel structured high-level model for pipe-
lined processors that applies to a broad class of micropro-
cessors. This model exposes high-level knowledge about
microprocessor structure that can be used during test gen-
eration. We then present a novel high-level test generation
algorithm for pipelined microprocessors that uses the
information provided by our model. This algorithm has
three parts: Its core part conducts a branch-and-bound
search in a transformed state space of the controller. The
branching decision variables derive from the essential
interaction between concurrent instructions in the pipeline.
The transformed search space can be much smaller than
the controller’s original state space. The second part of the

.



algorithm selects appropriate justification and propagation
paths in the datapath, which guides the search in the con-
trol space. The third part uses discrete relaxation to deter-
mine appropriate data values.

We review relevant previous work in Section II. Cur
high-level model for pipelined processors is presented in
Section III. The iterative organization of the proposed
high-level test generation algorithm is described in Section
IV. The three parts of the algorithm are described in Sec-
tion V. We present experimental results in Section VI, and
give some concluding remarks in Section VII.

II. RELATED WORK

A. Test generation for gate-level sequential circuits

Typical test generators for sequential circuits [2, 26]
iteratively apply a test generation algorithm for combina-
tional circuits by using a gate-level iterative logic array
(ILA) model of the circuit. Kelsey et al. [19] describe a
test generation algorithm for sequential circuits that does
not follow the iterative structure of the ILA. For a given
fault, an estimate of the test sequence length is computed,
and the circuit is unrolled over that many cycles. The
PODEM algorithm is applied to the resultant circuit,
which is treated as a single combinational circuit. Because
this approach only makes decisions on primary inputs and
only propagates information forwards, it can result in a
more efficient search. On the other hand, the search pro-
cess is performed on a much larger and deeper circuit than
in conventional approaches, hence its efficiency depends
critically on the backtracing heuristics used.

Ghosh, Devadas and Newton [12] decompose the test
generation problem into three subproblems: combinational
test generation, fault-free state justification, and fault-free
state differentiation. By performing state justification and
differentiation in the fault-free machine their algorithm
can re-use a significant amount of computation.

B. High-level test generation

Lee and Patel describe a high-level test generation algo-
rithm for microprocessors [22]. They assume a high-level
model of the datapath, and represent the control unit by the
set of control behaviors (a sequence of control values pre-
sented to the datapath), corresponding to the instructions
in the instruction set of the processor. Their algorithm gen-
erates instruction and data sequences that apply precom-
puted test sets to modules under test in the datapath. The
key features of this approach are that test generation is
split into path selection and value selection phases, and
that value selection is performed by discrete relaxation.
The modeling of the control unit limits the approach of
[22] to non-pipelined processors with a relatively small
number of control behaviors.

Iwashita et al. [17] describe a technique for generating
instruction sequences to excite given “test cases”, such as
hazards, in pipelined processors. Test cases are mapped
onto states of a reduced FSM model of the processor. The

technique performs implicit enumeration of the reachable
states to synthesize the desired test sequences. Some limi-
tations are that the reduced FSM model is derived manu-
ally and that no details are given on the effect of the
abstraction on the types of test cases that can be handled.

Chandra et al. [9] present a sophisticated code genera-
tor for architectural validation of microprocessors. The
user provides symbolic instruction graphs together with a
set of constraints; these compactly describe a set of
instruction sequences that have certain properties. The sys-
tem expands these templates into test sequences using con-
straint solvers, an architectural simulator, and biasing
techniques. A similar work is discussed in [16]. As these
techniques operate on the microarchitectural specification
of the design only, they are not suitable for generating tests
for structural errors in the implementation.

C. Formal verification

Bhagwati and Devadas [6] describe an automated
method to verify pipelined processors with respect to their
ISA specification. A mapping between input and output
sequences of the implementation and the specification is
given. The method assumes that the implementation can
be approximated by a k-definite! FSM. The equivalence of
the two machines is checked by symbolic simulation. The
assumptions made about the implementation and the lack
of abstraction limit the applicability of this approach.

Burch and Dill [8] propose a method for microproces-
sor verification based on symbolic simulation and the use
of a quantifier-free first-order logic with uninterpreted
functions. The method requires manually generated
abstract models of both the implementation and the speci-
fication in terms of uninterpreted functions. Symbolic sim-
ulation of the models is used to construct the next-state
functions. The verification problem is turned into checking
the equivalence of the next-state functions of implementa-
tion and specification.

Levitt and Olukotun {23] develop a methodology for
verifying the control logic of pipelined microprocessors.
The datapath is modeled using uninterpreted functions.
Verification is performed by iteratively merging the two
deepest stages of the pipeline. After each step a check is
made to see whether the newly obtained pipeline is still
equivalent to the previous one. The equivalence is proven
automatically using induction on the number of execution
cycles. To achieve the high degree of automation, the
approach of [23] uses high-level knowledge about the
design, such as the design intent of a bypass.

D. Hybrid verification techniques

A class of hybrid verification techniques [11, 13, 15,
24, 25] that combine simulation with formal verification
has recently been proposed. These techniques construct a
reduced FSM model of the implementation. A test set is
generated that achieves full coverage on the reduced FSM

1. A k-definite FSM is one that can only remember the last k
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model; a typical coverage metric is state transition cover-
age. That test set is transformed so that it can be applied to
the implementation. The implementation and the specifi-
cation are then simulated for the transformed test set.

II1. PIPELINED PROCESSOR MODEL

An important element of microprocessor structure is
the distinction between data and control. The merits of
treating datapath and control differently have been recog-
nized in many other domains such as high-level synthesis,
formal verification, etc. Because it possesses unstructured
binary signals, the controller is normally represented at the
gate level. The datapath, on the other hand, processes
structured data words and so can be represented at a higher
level, using high-level, multibit modules and buses. This
high-level representations drastically reduces the size of
the design representation.

From a verification point of view, it is also important to
distinguish machine state that is visible to the specifica-
tion, typically an ISA (instruction set architecture) model,
from machine state which is specific to the implementa-
tion. In pipelined microprocessors the implementation-
specific machine state consists of the pipeline registers.
Much of the complexity of these processors results from
the interaction between multiple instructions in the pipe-
line. If instructions were to interact only through the ISA-
visible part of the machine state, they could be treated
independently for verification test generation. However,
there is also interaction through the implementation-spe-
cific machine state, and this is intimately related to pipe-
line hazards. Hennessy and Patterson [14] define three
standard techniques for dealing with pipeline hazards:

stalling, squashing and bypassing. The signals that control

these mechanisms are of interest because they reveal the
essence of instruction interaction in the pipeline. They
provide a means to characterize the control state of the
pipeline in a much more compact way than by considering
all the instructions in the pipeline simultaneously.

We are developing the model for pipelined processors,
shown in Figure 1, which exposes high-level knowledge
that can be used during test generation. The datapath and
controller both exhibit pipeline structure and interact via
status and control signals. The signals at each stage are
classified as:

e primary: interfacing with the environment

» secondary: interfacing with the stage’s pipeline

registers

* tertiary: interfacing with another pipeline stage
The tertiary signals are precisely the signals needed to
describe essential instruction interaction. Typical exam-
ples of tertiary signals in the controller are squash and
stall; typical examples of tertiary signals in the datapath
are bypasses. Imposing the model requires no more than
the appropriate labeling of control signals, status signals,
and pipe registers, along with appropriate high-level mod-
eling of the datapath.
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Figure 1. Pipelined microprocessor model.

IV. PIPEFRAME MODEL

Conventional test generation algorithms for sequential
circuits use the [LA model and iteratively apply test gener-
ation techniques for combinational circuits in one time-
frame. In this section we describe a different
organizational model specific to pipelined processors. This
pipeframe organizational model exploits high-level knowl-
edge about pipeline structure that is captured with the pro-
cessor model. The advantages of this approach are a
reduction of the search space and the elimination of many
conflicts.

Consider the application of a conventional test genera-
tion algorithm to a pipelined controller circuit without a
datapath. Figure 2a shows a three-stage pipelined circuit.
C0, Cl and C2 are combinational logic corresponding to
the three pipe stages. The global combinational logic CG
sources all CPIs and all CSIs. In order not to clutter the
figure, the CPI sourced by Ci and the CPOs produced by
Ci have been omitted. The iterative logic array medel for
this circuit is shown in Figure 2b. If PODEM is used as the
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Figure 2. a) Pipelined controller; b) iterative array: con-
ventional organization; c) iterative array: alternative or-
ganization; d) composite circuit dealt with in c).

combinational test generation algorithm, the decision vari-
ables are the CPIs and the CSIs in each timeframe. The
state space to be searched during each iteration is that of
the CSIs and CPIs. For the controller of pipelined micro-
processors, the number of CSIs (state bits) is typically
much larger than the number of CPIs. This is because the
primary function of the controller is to decode the incom-
ing instructions.

Taking into account that the circuit is pipelined and per-
forms several concurrent, and to a large extent indepen-
dent, decodes, a different organization of the search, one
that is directly in terms of the CPlIs, is desirable. When the
global control logic CG is absent, it is easy to see how this
can be accomplished. In this case, the iterative array model
consists of unconnected (horizontal) slices spanning a
number of timeframes equal to the number of pipe stages.
These horizontal slices will be referred to as pipeframes. It
can be seen that the size of the circuit to be considered is
exactly the same as that in the conventional time-frame
based search, although the depth is greater. However, in
the new approach conflicts due to invalid (unreachable)
states cannot arise as decisions are made only on the CPlIs.

In general, there is interaction between pipestages
through the global combinational logic CG. To organize
the search by pipeframe, the tertiary signals CTIi, i =
0, ... 2, need to be included as decision variables. The iter-
ative array is partitioned into pipeframes by cutting the ter-
tiary signals, as shown in Figure 2c. A complication is that
a pipeframe directly interacts with a number of other pipe-
frames via shared primary inputs and via the tertiary sig-
nals feeding the pipeframe. In the conventional
organization, each timeframe depends directly only on the
previous timeframe. To cope with this complication, mul-
tiple pipeframes need to be considered simultaneously
during the search. The set of pipeframes directly relevant
to pipeframe i is indicated by window i in the figure. The
linking of pipeframes via the tertiary signals is shown in
Figure 2d. It can be seen that the tertiary signal CTIO to
pipeframe (i + 2) depends on PIs and CTIs to pipeframes i,
(i + 1) and (i + 2). (In order not to clutter the figure the
indices were omitted.)

Consider an p-stage pipelined controller with a total of
ny CPIs, ny CSIs per pipestage, and n3 CTIs per pipestage.
In the usual timeframe organization, there are n; + p.n,
decision variables per timeframe, p.n, of which need justi-
fication. In our pipeframe approach, there are n; + p.n3
decision variables per pipeframe, p.n5 of which need justi-
fication. Our approach is targeted at the circuits with
n3 << ny. For such circuits the following can be observed:

» The size of the search space in the pipeframe
organization is significantly smaller than that in
the usual timeframe organization.

» The size of the circuit to be dealt with in the
pipeframe organization is comparable to that in
the conventional organization, although its depth
is greater. This can be seen in Figure 2d.

For some pipelined controllers the pipeframe approach
does not reduce the search space. This is the case when
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status = UNDETERMINED

1.
2. DPTRACE /* derive initial path objectives */
3. while ( status == UNDETERMINED )
4. * imply */
s. ctriStatus = CTRLJUST:imply
6. pathStatus = DPTRACE
7. valueStatus = DPRELAX
8. status = Status(ctriStatus, pathStatus, valueStatus)
9. if (status == CONFLICT)
10. Undolmplications(currentDecision)
11. status = UNDETERMINED
12. while (NoUntriedValuesLeft(CurrentDecision))
13. Undo(currentDecision)
14. if (DecisionStackEmpty)
15. status = FAILURE
16. break /* out of inner while */
17. else
18. currentDecision = Pop(decisionStack)
19. if (status == UNDETERMINED)
20. SelectNextUntried( currentDecision )
21. else /* status == UNDETERMINED */
22. if (reset state reached and all objectives satisfied)
23. status = SUCCESS
24. else
23. currentObjective = SelectObjective()
26. currentDecision = BackTrace( currentObjective)
27. Push(currentDecision, decisionStack)

Figure 3. Overall test generation algorithm.

CSOi depends on CSIi+1 (referring to Figure 1) for every
pipestage. For such circuits, all CSIs are also CTIs, the
pipeframe approach reduces to the usual timeframe
approach.

V. TEST GENERATION ALGORITHM

In this section we describe our high-level test genera-
tion algorithm for design verification of pipelined micro-
processors. It is targeted at errors in the datapath and of the
type described in [28]. The algorithm follows the iterative
pipeframe organization described in the previous section.
The algorithm decomposes the test generation problem
into three subproblems:

» P1: path selection in the datapath,

» P2: value selection in the datapath, and

* P3: justification of control signals (controller).

Pseudo-code for the overall algorithm 7'G is shown in
Figure 3; the interaction of the three subproblems is shown
in Figure 4. Let DPTRACE, DPRELAX, and CTRLJUST
be the procedures that solve P1, P2, and P3, respectively.
TG is mounted on the branch-and-bound search (CTRL-
JUST) for solving P3. DPTRACE selects justification and
propagation paths in the datapath for activating and expos-
ing the error. Part of the solution produced by DPTRACE
is a set of objectives (s, v), where s is a CTRL signal and
v € {0, 1}. These objectives are used to guide the search
performed by 7G. DPRELAX uses discrete relaxation to
determine appropriate data values.

DPTRACE computes an initial path selection and corre-
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Figure 4. The three parts of the test generation algorithm
and their interactions.

sponding set of path objectives (step 2). CTRLJUST makes
decisions on CPI, CTI and STS signals (step 27), guided
by the objectives (step 26). These decisions are implied on
three fronts. First, they are implied in the controller
(step 5) where they affect the CPO, CTO and CTRL sig-
nals. Second, DPTRACE checks whether the updated
CTRL signals are consistent with the current set of justifi-
cation and propagation paths in the datapath (step 6). If
there is consistency, no further action is required. Other-
wise DPTRACE computes a new set of justification and
propagation paths, taking into account the current state of
the CTRL lines. The objectives on the CTRL lines are
updated accordingly. Only if DPTRACE fails to derive a
set of justification and propagation paths will DPTRACE
cause TG to backtrack. The third aspect of implication
involves invoking DPRELAX (step 7) to compute data val-
ues. Failure to converge will cause TG to backtrack. Steps
9-20 are the usual actions for backtracking. Step 22 checks



whether the reset state has been reached. If so, and if all
objectives are satisfied, we return successfully with a test.
The three subalgorithms are described in the remainder of
this section.

A. DPTRACE: path selection in datapath

The task of the path selection algorithm DPTRACE is
to determine a set of justification and propagation paths in
the datapath to activate the error and expose the error
effect at a primary output of the datapath. Value selection
is delegated to DPRELAX. This divide-and-conquer
approach reduces the problem size significantly, but may
fail to find a solution even if the problem is feasible.

First we define a circuit representation suitable for path
selection. Datapath modules are classified into the follow-
ing three categories:

* ADDclass

* AND class

* MUXclass

Modules in the ADD class have one data output, and one
or more data inputs. They have the property that the output
can be justified (to an arbitrary value) by controlling only a
single input, i.e., regardless of the values of the other
inputs, the controlled input can be assigned a value that
will justify the output. Also, if the output is observable
than every input is observable as well. Modules in this
class include the adder, the subtractor, and the X(N)OR
word gate. Predicate modules, which take two n-bit inputs
A and B and produce a single bit output ¥ = A <op> B,
where <op> € (=, #, <, <, >, 2, ADDOVF, SUBOVF}, are
also placed in the ADD class. The latter two modules com-
pute overflow for signed addition and subtraction.

Modules in the AND class have one data output, and one
or more data inputs. In order to justify the output (to an
arbitrary value) all inputs need to be controlled. To
observe an input, the output needs to be observable and all
side inputs need to be controlled. Modules in this class are
word gates such as (N)AND, (N)OR, and shift modules.

Modules in the MUX class have one data output, one or
more data inputs, and one or more control inputs. The con-
trol inputs determine which data input is selected. In order
to justify the output, the control inputs need to be assigned
and the selected data input needs to be controlled; the
other data inputs are free. In order to observe a data input,
the output needs to be observable, and the control inputs
need to be assigned such that the requested data input is
selected. This class contains modules such as multiplexers
and tristate buffers.

More complex modules such as ALUs are represented as
a composition of the modules listed above. For nets with
multiple fanout, only one fanout can be justified by con-
trolling the stem. This reflects that the values to be justi-
fied on two fanouts of the same stem may be different, but
during path selection this information is unavailable.

Formulation
Controllability information is represented by a sym-
bolic value attributed to each port (terminal of a module)

ADD2 ADD2
C(y) C(x2) O(x1) o)
ClC2C3 4 01 02 03
Cl|C1 C1 C1 C1 C1{01 02 01
C2ICl1 C2 €2 C1 C2|01 02 01
C(x1) C3|C1 C2 C3 C4 C(x2) C3{01 02 03
C4|C1 C1 C4 C4 C4|01 02 03
AND2 AND2
Cy) C(x2) O(x1) O(y)
ClC2C3C4 01.02 03
Cl|c1 2 c2 C1 Cl1|101 02 01
cz|ezczcz2 e C2(102 02 02
C(x1) C3|C2 C2 C3 C3 C(x2) C3|02 02 02
C4|C1 C2 C3 C4 C4|01 02 03
MUX2 (s=1 selects x2) MUX2 (s=1 selects x2)
Cce) 0(x1) o)
u |C2if C(x1),C(x2) 01 02 03
€ {C2,C3}) u |01 02 01
s C1 otherwise s 01fo1 0203
0 |CixD) 11020202
1 |C(x2)

Figure 5. C- and O-propagation tables.

in the circuit. The attribute, the C-state of a port, assumes
values from the set {C1, C2, C3, C4}. The interpretation
of these values are as follows:
* Cl: it is unknown whether the port can be
controlled
* C2: the port cannot be controlled, but there are
still open decisions in the transitive fanin of the
port
* (C3: the port cannot be controlled and there are no
more open decisions in the transitive fanin of the
port;
¢ (4: the port is controlled
Similarly, information about a port’s observability is repre-
sented by the O-state of the port, which assumes values
from the set {O1, 02, 03}. The interpretation of these val-
ues are as follows:
e Ol: it is unknown whether the port can be
observed
» O2: the port is not observable
* O3: the port is observable
Controllability and observability information is propa-
gated forwards and backwards, respectively, according to
propagation tables. Propagation tables for a representative
of each module class are given in Figure 5. The first table
expresses the C-state of the output port y of a two-input
ADD module in terms of the C-state of its input ports x,
and x,. The second table expresses the O-state of x; in



terms of the O-state of y and the C-state of x,. The figure
also shows similar tables for a two-input AND word gate
and a two-input multiplexer.

We formulate the path selection problem as a search
problem with two types of decision variables:

* CTRLs: control variables

» FOs: farout-select variables
CTRL variables are associated with the CTRL signals to
the datapath and assume three values {0, 1, u} (x: unas-
signed). FO variables are associated with nets that have
muitiple fanout; they assume values from {1,..., n, u},
where n is the number of fanouts. An FO variable indi-
cates which fanout uses the stem for its justification; the
other fanouts cannot be controlled.

The path selection problem is as follows: Given is a J-
frontier = {(p;, cp;) | i=1...n} where p; is a data-port, and
cp; € {C3, C4}; given is an E-frontier! = {p; | i=1...m};
given is a partial assignment to the CTRL variables; deter-
mine a partial assignment to the decision variables such
that the C-state of every line in the J-frontier is justified to
the specified value, and that at the O-state of at least one
line in the E-frontier is justified to O3.

We have adapted PODEM for the path selection prob-
lem. We have adapted gate-level controllability and
observability measures [2] for our problem.

B. DPRELAX: value selection in datapath

The task of the value selection algorithm is to deter-
mine values for DPI that expose the error effect and justify
any STS signals assigned by the CTRLJUST. As in path
selection, the problem is solved on a per pipeframe basis.

More precisely, the value selection problem for a single
pipeframe is as follows: Given a partial assignment to the
CTRL, DP], and DTI signals, and a set of (s, v) pairs that
need to be justified, where s is a STS or DTO signal, and v
is an integer value, determine a partial assignment to the
DPI and DTI signals that exposes the error effect at a DPO
or DTO and justifies every given (s, v).

This problem can be formulated as that of finding a
solution to a system of non-linear equations {21]. For spe-
cial cases, such as that of datapaths containing only linear
modules, efficient deterministic methods can be devised to
solve the system. However such techniques are not appli-
cable to the non-linear systems that result in most practical
cases. Lee and Patel [21] suggested the use of discrete
relaxation in the context of high-level test generation for
physical fault testing. The main advantages of this tech-
nique are its ability to deal with any type of combinational
datapath modules and its simplicity. A disadvantage is that
it is not a complete method: it cannot prove that the system
has no solutions, and may fail to find a solution even if
there is one. A key observation is that during path selec-
tion, appropriate justification and propagation paths are
selected so that the system to be solved during value selec-

1. In design verification we use the term error to differentiate from
the term fault used in physical fault testing; hence E-frontier
instead of F-frontier.

tion is likely to be underdetermined, in which case discrete
relaxation is likely to converge quickly.

In our discrete relaxation algorithm, each net in the
datapath is characterized by two pairs of variables, one
corresponding to the error-free circuit, the other to the
erroneous circuit. Each pair consists of an integer in the
range specified by the bit-width of the net, and a type
which is in the range {unassigned, determined, fixed}. The
algorithm iteratively re-evaluates the modules in the cir-
cuit until a consistent assignment is obtained or until a
maximum iteration count is exceeded. The mechanism is
event-driven. An event is associated with each terminal of
a net when the value of that net is changed. An event is
processed by re-evaluating the module to which the trig-
gering terminal belongs. If the current values of the nets
connected to the module are consistent with the module’s
functionality, no further action is required. Otherwise the
values of one or more nets connected to the module are
changed in order to make them consistent. New events are
generated at all terminals (except those belonging to the
module that is being processed) of every net whose value
has been changed.

The choice of which net to update and what value to
assign can, in principal, be random, but it strongly influ-
ences convergence. We implemented a number of heuris-
tics whose goal is to try to exercise all possible modes of
event propagation and to aid convergence.

C. CTRLIUST: justification of CTRL signals in controller

Given is a set of objectives (c;, v;) where c; is a CTRL
signal and v; € {0.1}, and a J-frontier = {(#v;)} where t;is
a CTI signal. The justification problem is Llllat of determin-
ing an input sequence (to be applied to CPI, STS) that
starts from the controller’s reset state, and satisfies the
given objectives and justifies the J-frontier.

CTRLIJUST is a PODEM-based algorithm with deci-
sion variables the CPI, CTI and STS signals. The search is
guided by path objectives on the CTRL lines produced by
DPTRACE. The objectives are backtraced to generate
decisions. Decisions on CTI signals need to be justified
and are therefore added to the J-frontier. If a decision con-
cerns a STS signal, that STS signal needs to be justified by
the datapath, and is therefore added to the set of signals to
be justified by DPTRACE. After a decision is made its
implications are determined. As explained above, the over-
all test generation algorithm 7G is mounted on CTRL-
JUST. In fact what remains of TG (Figure 3) after deleting
step 2, 6 and 7, is CTRLJUST.

VI. EXPERIMENTS

We have built a prototype implementation of the pro-
posed test generation algorithm. It encompasses 22K lines
of C-code, excluding the Verilog parser and the BDD
package. We are using a version of the DLX microproces-
sor [14] as a preliminary test vehicle. This design imple-
ments 44 instructions, has a five-stage pipeline and branch
prediction logic, and consists of 1552 lines of structural



Table 1. Test generation for bus SSL errors in execute,
memory and write-back stages of DLX

No. of errors 298
No. of errors detected 252
No. of errors aborted 46
Average test sequence length 6.2
No. of backtracks (detected errors only) 50
CPU time [minutes) 36

Verilog code, excluding the models for library modules
such as adders and register-files. The datapath has 512 bits
of state, not including those in the register file; the control-
ler has 96 bits of state; the number of tertiary signals in the
controller is 43. The pipeframe approach reduces the num-
ber of decision variables that need justification from 96 to
43 compared to the conventional timeframe approach.
Solving data values by discrete relaxation allows us to
avoid searching the huge data state space.

We targeted our test generation system at all bus single
stuck line (bus SSL) errors [7] in the execute, memory and
write-back stages of the datapath. Although our test gener-
ation algorithm can be used in conjunction with other error
models proposed in [28], the bus SSL model was chosen
for these initial experiments because it defines a number of
error instances linear in the size of the circuit. The results
are summarized in Table 1. A total of 298 errors were tar-
geted; test generation succeeded for 85% of these errors.
The average length of the test sequences is slightly more
than 6 instructions. Typical sequences consist of a few
non-trivial instructions followed by a sequence of NOP
instructions. The overall algorithm performed only 50
backtracks for the successful errors. We are currently
investigating why test generation failed for the aborted
errors, and expect to achieve higher coverage in the near
future. It should be noted that no error simulation was used
in this preliminary implementation, and that much re-use
of work in the algorithm has not yet been exploited. There-
fore, we can expect that run times will significantly
improve as these issues are addressed.

VII. CONCLUSIONS

‘We are developing a system for automatically generat-
ing test sequences for design verification of pipelined
microprocessors. To handle the complexity of these
designs, our algorithm integrates high-level treatment of
the datapath with low-level treatment of the controller. It
exploits high-level knowledge about the operation of pipe-
lines which is captured by our microprocessor model. As
the analysis shows, the pipeframe approach can signifi-
cantly reduce the search space. We have also formulated
the path selection problem such that it can be solved by a
variety of branch-and-bound algorithms. We are building
software that implements our test generation algorithm
and used it to generate verification tests for a pipelined
microprocessor. Our preliminary experimental results
demonstrate the feasibility scalability and of the approach.
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