A Performance Comparison of Contemporary DRAM Architectures

Vinodh Cuppu, Bruce Jachb
Dept. of Eledricd & Computer Engineaing
University of Maryland, College Park
{ramvinod,blj} @eng.umd.edu

ABSTRACT

In response to the growing gap between memory access time and
processor speed, DRAM manufacturers have created several new
DRAM architectures. This paper presents a simulation-based per-
formance study of a representative group, each evaluated in a small
system organization. These small-system organizations correspond
to workstation-class computers and use on the order of 10 DRAM
chips. The study covers Fast Page Mode, Extended Data Out, Syn-
chronous, Enhanced Synchronous, Synchronous Link, Rambus, and
Direct Rambus designs. Our simulations reveal several things: (a)
current advanced DRAM technologies are attacking the memory
bandwidth problem but not the latency problem; (b) bus transmis-
sion speed will soon become a primary factor limiting memory-sys-
tem performance; (c) the post-L2 address stream till contains
significant locality, though it varies from application to application;
and (d) as we move to wider buses, row access time becomes more
prominent, making it important to investigate techniques to exploit
the available locality to decrease accesstime.

1 INTRODUCTION

In resporse to the growing gap between memory acces time and
processor speed, DRAM manufadurers have creaed severd new
DRAM architedures. This paper presents asimulation-based perfor-
mance study of a representative group, evauating ead in terms of
its effed on total exeaution time. We simulate the performance of
seven DRAM architedures: Fast Page Mode [35], Extended Data
Out [16], Synchronaus [17], Enhanced Synchronaus [10], Synchro-
nouws Link [38], Rambus [31], and Dired Rambus [32]. Whil e there
are anumber of acalemic proposals for new DRAM designs, space
limits usto covering only existent commercia parts. To oltain acar-
rate memory-request timing for an aggressive out-of-order proces-
sor, weintegrate our code into the SimpleScalar tod set [4].

This paper presents a basdline study of a small-system DRAM
organization: these are systems with only ahandful of DRAM chips
(0.1-1GB). We do na consider large-system DRAM organizations
with many gigabytes of storage that are highly interleaved. The
study asks and answers the foll owing questions:

*  What isthe effed of improvementsin DRAM technology on the
memory latency and bandwidth problems?

Contemporary techniques for improving processor performance
and tolerating memory latency are exacerbating the memory
bandwidth problem [5]. Our results $how that current DRAM
architectures are dtacking exadly this problem: the most recent
technologies (SDRAM, ESDRAM, and Rambus) have reduced
the stall ti me due to limited bendwidth by afactor of three
compared to ealier DRAM architedures. However, the
memory-latency component of overhead has not improved.
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*  Whereistime spent in the primary memory system (the memory
system beyond the cade hierarchy, but not including secondary
[disk] or tertiary [badkup] storage)? What is the performance
benefit of exploiting the page mode of contemporary DRAMS?

For the newer DRAM designs, thetime to extrad the required
data from the sense anps/row cades for transmissonon the
memory busisthe largest comporent in the average accestime,
though page mode dl owsthisto be overlapped with column
accessand the time to transmit the data over the memory bus.

* How muchlocdity istherein the aldress stream that reachesthe
primary memory system?

The stream of addresses that missthe L2 cache ontainsa
significant amourt of locdity, as measured by the hit-rates in the
DRAM row huffers. The hit rates for the gplications gudied
range 8-9%%, with a mean hit rate of 40% for a1MB L2 cache.
(This does nat include hits to the row buffers when making
multiple DRAM requeststo read one cate-line.)

We dso make severa observations. First, there is a one-time trade-
off between cost, bandwidth, and latency: to a point, latency can be
deaeased by ganging together multiple DRAMs into a wide struc-
ture. Thistrades doll ars for bandwidth that reduceslatency becaise a
request sizeis typicdly much larger than the DRAM transfer width.
Page mode ad interleaving are similar optimizaions that work
becaise arequest sizeis typicdly larger than the bus width. How-
ever, the latency benefits are limited by bis and DRAM speeds: to
get further improvements, one must run the DRAM core and bus at
faster speeds. Current memory busses are adequate for small sys-
tems but are likely inadequate for large ones. Embedded DRAM 5,
19, 37] is not a near-term solution, as its performance is poa on
high-end workloads [3]. Faster buses are morelikely solutions—wit-
nessthe elimination o the dow intermediate memory bus in future
systems [12]. Ancther solution is to internally bank the memory
array into many small arrays © that eah can be acesed very
quickly, asin the MoSys Multibank DRAM architecture [39].

Semnd, widening buses will present new optimizaion opportu-
nities. Each application exhibits a different degree of locdity and
therefore benefits from page mode to a different degree. As buses
widen, this effed beacomes more pronaunced, to the extent that dif-
ferent appli cations can have average accesstimesthat differ by 50%.
This is a minor issue considering current bus technoogy. However,
future bus technologies will expose the row access as the primary
performance bottlened, justifying the exploration of mechanismsto
exploit locdity to guaranteehitsin the DRAM row buffers: e.g. row-
buffer victim cades, prediction mechanisms, etc.

Third, while buses as wide & the L2 cade yield the best mem-
ory latency, they canna halve the latency of abus half aswide. Page
mode overlaps the @mponents of DRAM accesswhen making mul-
tiple requests to the same row. If the busis as wide as a request, one
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Figure 1: Conventional DRAM block diagram. The conventional DRAM
uses a split addressing mechanism still found in most DRAMs today.

cannot exploit this overlap. For cost considerations, having at most
an N/2-bit bus, N being the L 2 cache width, might be agood chaice.

Fourth, criticd-word-first does not mix well with burst mode.
Criticd-word-first is a strategy that requests a block of data poten-
tially out of addressorder; burst mode delivers data in a fixed but
redefinable order. A burst-mode DRAM can thus can have longer
latenciesin real systems, even if its end-to-end latency is low.

Finally, the dhoice of refresh mechanism can sigrificantly alter
the average memory accesstime. For some benchmarks and some
refresh arganizations, the amount of time spent waiting for aDRAM
in refresh mode accounted for 50% of the total latency.

As one might expect, our results and conclusions are dependent
on aur system specificaions, which we chaose to be representative of
mid- to high-end workstations: a 100MHz 128-bit memory bus, an
eight-way superscdar out-of-order CPU, lockup-free cahes, and a
small-system DRAM organization with ~10 DRAM chips.

2 RELATED WORK

Burger, Goodman, and Kagi quantified the dfed on memory behav-
ior of high-performance latency-reducing o latency-tolerating tech-
niques sich as lockup-free cabes, out-of-order execution,
prefetching, speculative loads, etc. [5]. They concluded that to hide
memory latency, these techniques often increase demands on mem-
ory bandwidth. They classfy memory stall cycles into two types:
those due to ladk of available memory bandwidth, and those due
purely to latency. Thisis a useful classification, and we useit in ou
study. This gudy dffers from theirs in that we focus on the access
time of only the primary memory system, while their study com-
bines all memory accesstime, including the L1 and L2 caches. Their
study focuses on the behavior of latency-hiding techniques, while
this gudy focuses on the behavior of different DRAM architedures.
Severa marketing studies compare the memory latency and
bandwidth avail able from different DRAM architectures [7, 29, 3Q].
This paper builds on these studies by looking at a larger asortment
of DRAM architedures, measuring DRAM impact on total applica
tion performance, decompasing the memory accesstime into dffer-
ent components, and measuring the hit rates in the row buffers.
Finally, there ae many studies that measure system-wide perfor-
mance, including that of the primary memory system [1, 2, 9, 18, 23,
24, 33, 34]. Our results resemble theirs, in that we obtain simil ar fig-
ures for the fraction d time spent in the primary memory system.
However, these studies have different goas from ours, in that they
are mncerned with measuring the dfects on total exeadtion time of
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Figure 2: FPM Read Timing. Fast page mode allows the DRAM controller
to hold a row constant and receive multiple columns in rapid succession.

varying several CPU-level parameters sich as isale width, cache
size & organizaion, number of processors, etc. This study focuses
on the performance behavior of different DRAM architedures.

3 BACKGROUND

A Random Access Memory (RAM) that uses a singe transistor-
capadtor pair for eath hinary value (bit) isreferred to as a Dynamic
Random Access Memory or DRAM. This circuit is dynamic
becaise leskage requires that the caacitor be periodicdly refreshed
for information retention. Initialy, DRAMs had minimal 1/0 pin
counts because the manufaduring cost was dominated by the num-
ber of 1/0 pins in the padage. Due largely to a desire to use stan-
dardized parts, theinitial constraints limiting the 1/0 pins have had a
long-term effed on DRAM architecture: the address pins for most
DRAMSs are still multiplexed, patentially limiting performance As
the standard DRAM interface has become a performance battlened,
anumber of “revolutionary” propasas[26] have been made. In most
cases, the revolutionary partion is the interface or access mecha-
nism, while the DRAM core remains esentiall y unchanged.

31 The Conventional DRAM

The adressng mechanism of ealy DRAM architeduresis gill uti-
lized, with minor changes, in many o the DRAMs produced today.
In this interface shown in Figure 1, the aldressbus is multi plexed
between row and column components. The multi plexed addressbus
uses two control signals—the row and column address $robe sig-
nals, RAS and CAS respedively—which cause the DRAM to latch
the aldresscomporents. The row addresscauses a mmplete row in
the memory array to propagate down the bit li nes to the sense amps.
The olumn address ®lects the appropriate data subset from the
sense anps and causesiit to be driven to the output pins.

3.2 Fast Page Mode DRAM (FPM DRAM)

Fast-Page Mode DRAM implements page mode, an improvement
on conventional DRAM in which the row-addressis held constant
and data from multiple olumns is read from the sense anplifiers.
The data held in the sense amps form an “open pege” that can be
accessd relatively quickly. This geels up successve accsss to
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Figure 3: Extended Data Out (EDO) DRAM block diagram. EDO adds a
latch on the output that allows CAS to cycle more quickly than in FPM.
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Figure 4: EDO Read Timing. The output latch in EDO DRAM allows more
overlap between column access and data transfer than in FPM.

the same row of the DRAM core. Figure 2 gvesthe timing for FPM
reals. The labels sow the categories to which the portions of time
are ssdgned in ou simulations. Note that page modeis sipported in
all the DRAM architeduresin this gudy.

33  Extended Data Out DRAM (EDO DRAM)

Extended Data Out DRAM, sometimes referred to as hyper-page
mode DRAM, adds a latch between the sense-amps and the output
pins of the DRAM, shown in Figure 3. This latch hdds output pin
state and permits the CAS to rapidly de-assert, all owing the memory
array to begin precharging sooner. In additi on, thelatch in the output
path aso implies that the data on the outputs of the DRAM circuit
remain valid longer into the next clock phase. Figure 4 gives thetim-
ing for an EDO rea.

3.4  SynchronousDRAM (SDRAM)

Conventional, FPM, and EDO DRAM are cortrolled asynchro-
nowly by the procesor or the memory controller; the memory
latency is thus ome fradional number of CPU clock cycles. An
aternativeisto makethe DRAM interface synchronaus such that the
DRAM latches information to and from the ntroller based ona
clock signa. A timing dagram is $iown in Figure 5. SDRAM
devices typicdly have aprogrammable register that holds a bytes-
per-request value. SDRAM may therefore return many bytes over
several cycles per request. The alvantagesinclude the dimination d
the timing strobes and the avail ability of data from the DRAM eath
clock cycle. The underlying architecture of the SDRAM core is the
same asin a onventional DRAM.
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Figure 5: SDRAM Read Operation Clock Diagram. SDRAM contains a
writable register for the request length, allowing high-speed column access.
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Figure 6: Rambus DRAM Read Operation. Rambus DRAMSs transfer on
both edges of a fast clock and can handle multiple simultaneous requests.

35  Enhanced Synchronous DRAM (ESDRAM)

Enhanced Synchronaus DRAM is an incremental modificaion to
Synchronaus DRAM that parallds the differences between FPM
and EDO DRAM. Firgt, the internd timing parameters of the
ESDRAM core aefaster than SDRAM. Second, SRAM row-caches
have been added at the sense-amps of eath benk. These cates pro-
vide the kind o improved intrarow performance observed with
EDO DRAM, alowing requests to the last accessed row to be satis-
fied even when subsequent refreshes, precharges, or activates are
taking dace.

36  SynchronousLink DRAM (SLDRAM)

RamLink is the |[EEE standard (P1596.4) for a bus architecture for
devices. Synchronows Link (SLDRAM) is an adaptation o Ram-
Link for DRAM, and is anather IEEE standard (P1596.7). Both are
adaptations of the Scalable Coherent Interface(SCl). The SLDRAM
spedficaion is therefore an open standard allowing for use by ven-
dors withou licensing fees. SLDRAM uses a packet-based split
request/response protocol. Its bus interface is designed to run at
clock speeds of 200600 MHz and hes a two-byte-wide datapath.
SLDRAM suppats multiple @ncurrent transactions, provided al
transadions reference unique internal banks. The 64Mbit SLDRAM
devices contain 8 banks per device.

37 RambusDRAMs(RDRAM)

Rambus DRAMs use a one-byte-wide multi plexed addresgdata bus
to conned the memory cortroller to the RDRAM devices. The bus
runs at 300Mhz and transfers on both clock edges to achieve atheo-
retical peek of 600 Mbytes/s. Physically, ead 64-Mbit RDRAM is



Table 1: DRAM Specifications used in simulations

DRAM Size Rows Columns Transfer  Row Internal Speed Pre- Row Column Data
type Width Buffer Banks charge Access Access Transfer
FPMDRAM  64Mbit 4096 1024 16 bits 16K bits 1 - 40ns 15ns 30ns 15ns
EDODRAM  64Mbit 4096 1024 16 bits 16K bits 1 - 40ns 12ns 30ns 15ns
SDRAM 64Mbit 4096 256 16 bits 4K bits 4 100MHz  20ns 30ns 30ns 10ns
ESDRAM 64Mbit 4096 256 16 bits 4K bits 4 100MHz 20ns 20ns 20ns 10ns
SLDRAM 64Mbit 1024 128 64 bits 8K bits 8 200MHz 30ns 40ns 40ns 10ns
RDRAM 64Mbit 1024 256 64 bits 16K bits 4 300MHz  26.66ns  40ns 23.33ns 13.33ns
DRDRAM 64Mbit 512 64 128 bits 4K bits 16 400MHz 20/40ns 17.5ns 30ns 10ns
Table 2: Time components in primary memory system
Component Description

Row Access Time

Column Access Time

Data Transfer Time

Data Transfer Time Overlap

Refresh Time

Bus Wait Time

Bus Transmission Time

The time to (possibly) precharge the row buffers, present the row address, latch the
row address, and read the data from the memory array into the sense amps

The time to present the column address at the address pins and latch the value

The time to transfer the data from the sense amps through the column muxes to the
data-out pins

The amount of time spent performing both column access and data transfer
simultaneously (when using page mode, a column access can overlap with the
previous data transfer for the same row)

Note that, since determining the amount of overlap between column address and
data transfer can be tricky in the interleaved examples, for those cases we simply
call all time between the start of the first data transfer and the termination of the last
column access Data Transfer Time Overlap (see Figure 8).

Amount of time spent waiting for a refresh cycle to finish
Amount of time spent waiting to synchronize with the 100MHz memory bus

The portion of time to transmit a request over the memory bus to & from the DRAM
system that is not overlapped with Column Access Time or Data Transfer Time

divided into 4 banks, each with its own row buffer, and renceupto 4
rows remain adive or openl. Transactions occur on the bus using a
split request/response protocol. Because the bus is multiplexed
between addressand data, only one transadion may use the bus dur-
ing any 4clock cycle period, referred to as an octcycle. The protocol
uses padket transadions; first an address padket is driven, then the
data. Different transactions can require different numbers of octcy-
cles, depending on the transadion type, location d the data within
the device, number of devices on the channdl, etc. Figure 6 gives a
timing diagram for aread transadion.

38  Direct Rambus (DRDRAM)

Dired Rambus DRAMs use a400Mhz 3-byte-wide channel (2 for
data, 1 for addresses/commands). Like the Rambus parts, Dired
Rambus parts transfer at both clock edges, implying a maximum
bandwidth of 1.6 Gbytes/'s. DRDRAMSs are divided into 16 banks
with 17 helf-row buffers’. Each helf-row buffer is sared between
adjacent banks, which implies that adjacent banks canna be adive
simultaneously. This organizaion has the result of increaing the
row-buffer missrate a& compared to having ane open row per bank,
but it reduces the cost by reducing the die areaoccupied by the row

1. Inthis gudy, we model 64-Mbit Rambus parts, which have 4 banks and
4 open rows. Earlier 16-Mbit Rambus organizations had 2 banks and 2
open pages, and future 256-M bit organizations may have even more.

2. Aswith the previous part, we model 64-Mbit Direct Rambus, which has
this organization. Future (256-Mbit) organizations may look different.

buffers, compared to 16 full row buffers. A criticd difference
between RDRAM and DRDRAM isthat becaise DRDRAM parti-
tionsthe businto different comporents, three transactions can simul-
taneoudly utili zethe different portions of the DRDRAM interface

4 EXPERIMENTAL METHODOLOGY

For acarrate timing of memory requests in a dynamicdly reordered
instruction stream, we integrated ou code into SimpleScdar, an exe-
cution-driven simulator of an aggressve out-of-order processor [4].
We calculate the DRAM aacesstime, much of which is overlapped
with instruction exeaution. To determine the degree of overlap, and
to separate out memory stals due to bandwidth limitations vs.
latency limitations, we run two other simulations—one with perfed
primary memory (zero accesstime) and one with a perfect bus (as
wide & an L2 cade line). Following the methodology in [5], we
partition the total appli cation exeaution time into three amponents:
Tp T and Tg which correspord to time spent processng, time spent
stalling for memory due to latency, and time spent stalli ng for mem-
ory due to limited bandwidth. In this paper, time spent “processng”
includes al adivity above the primary memory system, i.e. it con
tains al procesor exeautiontime and L1 and L2 ceche attivity. Let
T be the total execution time for the redistic simulation; let T, be
the execution time asuming unli mited bandwidth—the results from
the simulationthat models cadheline-wide buses. Then Tpisthetime
given by the simulation that models a perfed primary memory sys-
tem, and we cdculate T and Tg: T =Ty—-TpandTg=T-=Ty. In
addition, we consider one more @mporent: the degreeto which the
procesr is able to overlap memory access time with processing
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Figure 7: DRAM bus configurations. The DRAM/bus organizations used
in (a) the non-interleaved FPM, EDO, SDRAM, and ESDRAM simulations; (b)
the SLDRAM and Rambus simulations; and (c) the parallel-channel SLDRAM
and Rambus performance numbers in Figure 11. Due to differences in bus
design, the only bus overhead included in the simulations is that of the bus
that is common to all organizations: the 100MHz 128-bit memory bus.

time. We cdl this overlapped comporent To, and if Ty, is the total
time spent in the primary memory system (the time returned by our
DRAM simulator), then Tg = Tp— (T — Tyy). Thisis the portion o
Tpthat is overlapped with memory access

4.1 DRAM Simulator Overview

The DRAM simulator models the interna state of the following
DRAM architectures: Fast Page Mode[35], Extended Data Out [16],
Synchronous [17], Enhanced Synchronous [10, 17], Synchronous
Link [38], Rambus[31], and Dired Rambus[32].

The timing parameters for the different DRAM architedures are
givenin Table 1. Sincewe mud not find a 64Mbit part spedficaion
for ESDRAM, we extrapolated besed onthe most recent SDRAM
and ESDRAM datasheds. To measure DRAM behavior in systems
of differing performance we varied the speed at which requests
arrive at the DRAM. Weran the L2 cade at speeds of 100rs, 10rs,
and 1rs, and for each L2 aacesstime we scded the main procesor’s
speead accordingly (the CPU runs at 10x the L2 cache spedd).

We wanted a model of atypical workstation, so the processor is
eight-way superscdar, out-of-order, with lockup-freeL 1 caches. L1
cades are split 64KB/64KB, 2-way set asciative, with 64-byte
linesizes. The L2 cacheis unified IMB, 4-way set asociative, write-
bad, and has a 128-byte linesize The L2 cade is lockup-free but
only allows one outstanding DRAM request a atime; note this orga-

nization fail s to take alvantage of some of the newer DRAM parts
that can hand e mullti ple concurrent requests. 100M Hz 128-hit buses
are common for high-end machines, so this is the bus configuration
that we model. We assume that the communicaion overhead is only
one 10nscyclein ead diredion.

The DRAM/bus configurations smulated are shown in Figure 7.
For DRAMSs other than Rambus and SLDRAM, eight DRAMs are
arranged in peralel in a DIMM -like organizaion to obtain a 128-bit
bus. We assume that the memory cortroller has no overheal delay.
SLDRAM, RDRAM, and DRDRAM utilize narrower, but higher
speed busses. These DRAM architedures can be aranged in parall el
channels, but we study them here in the context of a singe-width
DRAM bus, which is the simplest configuration. This yields me
latency pendlties for these achitedures, as our simulations require
that the controller coalesce bus padkets into 128bit chunks to be
transmitted over the 100MHz 128-bit memory bus. To put the
designs on even footing, we ignore the transmisson time over the
narrov DRAM channel. Because of this organization, transfer rate
comparisons may also be deceptive, aswe are transferring data from
eight conventional DRAM (FPM, EDO, SDRAM, ESDRAM) con
currently, versus only a singe device in the cae of the narrow bus
architedures (SLDRAM, RDRAM, DRDRAM).

The simulator models a synchronous memory interface the pro-
cesr'sinterface to the memory controller hasaclock signal. Thisis
typicdly simpler to implement and debug than a fully asynchronous
interface. If the processor executes at a faster clock rate than the
memory bus (asislikely), the procesor may have to stall for severa
cycles to synchronize with the bus before transmitting the request.
We acourt for the number of stall cyclesin BusWait Time.

The simulator models sveral different refresh arganizations, as
described in Sedion 5 The anourt of time (on average) spent stall -
ing dwe to a memory reference ariving during a refresh cycle is
accounted for in the time cmponent labeled Refresh Time.

4.2  Interleaving

For the 100MHz 128-hit bus configuration, the transfer sizeis eight
times the request size; therefore e@h DRAM aceassis a pipelined
operation that takes advantage of page mode. For the faster DRAM
parts, this pipeline kegxs the memory bus completely occupied.
However, for the dower DRAM parts (FPM and EDO), the timing
looks like that shown in Figure 8(a). While the aldressbus may be
fully occupied, the memory bus is nat, which puts the sower
DRAMSs at a disadvantage compared to the faster parts. For compar-
ison, we model the FPM and EDO parts as interleaved as well
(shown in Figure 8(b)). The degree of interleavingis that required to
occupy the memory data bus as fully as passible. This may actualy
over-occupy the addressbus, in which case we aaime that there are
more than one aldressbuses between the ortroller and the DRAM
parts. FPM DRAM spedfies a 40ns CAS period and is four-way
interleaved; EDO DRAM specifies a 25ns CAS period and is two-
way interleaved. Both are interleaved at abus-width granularity.

5 EXPERIMENTAL RESULTS

For most graphs, the performance of several DRAM organizaionsis
given: FPM1, FPM2, FPM3, EDO1, EDO2, SDRAM, ESDRAM,
SLDRAM, RDRAM, and DRDRAM. The first two configurations
(FPM1 and FPM2) show the difference between always keeping the
row buffer open (thereby avoiding a precharge overhea if the next
accessis to the same row) and never keeping the row buffer open.
FPM 1 isthe pesdmistic strategy of closingthe row buffer after every
accessand precharging immediately; FPM2 is the optimistic strat-
egy of keeping the row buffer open and ddlaying precharge. The dif-
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ference is ®en in Row Access Time, which, as the graphs ow, is
not large for present-day organizaions. For al other DRAM simula-
tions but ESDRAM, we keep the row buffer open, as the timing of
the pessmigtic strategy can be cdculated without simulation. The
FPM3 and EDO2 labels represent the interleaved organizations of
FPM and EDO DRAM. The remaining labels are self-explanatory.

5.1 Handling Refresh

Surprisingly, DRAM refresh arganizaion can affect performance
dramaticdly. Where the refresh arganization is not specified for an
architedure, we simulate amodel in which the DRAM allocaes
bandwidth to either memory references or refresh operations, at the
expense of predictability [26]. The refresh period for al DRAM
parts but Rambus is 64ms; Rambus parts have a refresh period of
33ms. In the smulations presented in this paper, this period is
divided into N individual refresh operations that occur 33/N milli -
seands apart, where 33 is the refresh period in milli seconds and N
is the number of rowsin an internal bank times the number of inter-
na banks. This is the Rambus mechanism, and a memory request
can be delayed a most the refresh of one DRAM row. For Rambus
parts, this behavior is gelled ou in the data sheds. For other
DRAMSs, the refresh mecdhanism is not explicitly stated. Note that
normaly, when multiple DRAMs are ganged together into physicd
banks, al banks are refreshed at the same time. This is different;
Rambus refreshesinternal banks individually.

Because many textbodks describe the refresh operation as a peri-
odic shutting dovn of the DRAM urtil all rows are refreshed (e.g.
[14]), we dso simulated stalling the DRAM once every 64ms to
refresh the entire memory array; thus, every 64ms, one can poten-
tially delay one or more memory references the time it takes to
refresh the entire memory array. This approach yields refresh stalls
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Figure 9: The penalty for choosing the wrong refresh organization. In
some instances, time waiting for refresh can account for more than 50%.

up to two orders of magnitude worse than the time-interspersed
scheme. Particularly hard-hit was the compress benchmark, shown
in Figure 9. Becaise such high owerheads are eaily avoided with an
appropriate refresh organizaion, we only present results for the
time-interspersed refresh approach.

5.2 Total Execution Time

Figure 10(a) shows the total exeaution time for several benchmarks
of SPECint '95 using SDRAM for the primary memory system. The
timeisdivided into processor computation, which includes acesses
to the L1 and L2 cades, andtime spent in the primary memory sys-

tem. The graphs also show the overlap between procesor computa:

tion and DRAM accesstime. For each architedure, there ae three
verticd bars, representing L2 cade cycle times of 100rs, 10ns, and
1ns (left, middle, and rightmost bars, respedively). For eady DRAM

architedure and L2 cadhe acces time, the figure shows a bar repre-
senting execution time, partitioned into four comporents:

*  Memory stal cyclesdueto limited bandwidth
¢ Memory stall cyclesdueto latency

e Procesor time (includesL1 and L2 adivity) that is overlapped
with memory aacess

e Procesor time (includesL 1 and L2 adivity) that is not
overlapped with memory access

SimpleScdar schedules instructions extremely aggressvely and
hides much of the memory latency with other work—though this
“other work” is not all useful work, as it includes all L1 and L2
cache adivity. For the 100rs L2 (correspording to a 100MHz pro-
cesr), between 50% and 99% of the memory aacesstime is hid-
den, depending onthe type of DRAM the CPU is attached to (the
faster DRAM parts allow a procesor to exploit greater degrees of
concurrency). For 10ns (corresponding to a 1GHz processor),
between 5% and 90% of the latency is hidden. As expeded, the
sower systems hide more of the DRAM access time than the faster
systems.

Figure 10(b) shows that the more advanced DRAM designs have
reduced the proportion d overhea attributed to limited bandwidth
by roughy afador of three from 3 CPl in FPMDRAM to 1CPl in
SDRAM, ESDRAM, and DRDRAM.

Summary: The graphs demonstrate the degree to which con
temporary DRAM designs are addressing the memory bandwidth
problem. Popuar high-performance techniques such as lockup-free
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Figure 10: Total execution time + access time to the primary memory system. Figure (a) gives total execution time in units of CPI for different DRAM types.
The overhead is broken into processor time and memory time, with overlap between the two shown, and memory cycles are divided into those due to limited
bandwidth and those due to latency. Figure (b) shows the total execution time in CPI for all benchmarks, using Synchronous DRAM.

cades and out-of-order exeaution expose memory bandwidth as the
battleneck to improving system performance i.e,, common tedh-
niques for improving CPU performance and tolerating memory
latency are exacebating the memory bandwidth problem [5]. Our
results $how that contemporary DRAM architectures are dtacking
exactly that problem. We see that the most recent technologies
(SDRAM, ESDRAM, SLDRAM, and Rambus designs) have
reduced the stall time due to limited bandwidth by a fador of two to
three as compared to ealier DRAM architedures. Unfortunately,
there ae no matching improvements in memory latency; while the
newest generation  DRAM architectures deaeases the @st of lim-
ited bandwidth by afador of three compared to the previous genera-
tion, the st of stalls due to latency has remained almost constant.

The graphs also show the expeded result that as L2 cace and
processor spedds increase, systems are lessable to tolerate memory
latency. Acoordingly, the remainder of our study focuses on the
comporents of memory latency.

5.3 AverageMemory Latency

Figure 11 kre&ks down the memory-system comporent of Figure 10.
The accsstimes are divided bythe number of accesses to oltain an
average time-per-DRAM-acess This is endto-end latency: the
time to complete an entire request, as opposed to critical-word
latency. Much o this time is overlapped with processor execution;
the degree of overlap depends on the speed of the L2 cache and main
CPU. Since the variations in performance are not large, we only
show three benchmarks that vary most widely. The differences are
amost entirely due to Row Access Time and Bus Transmission Time.

Row Access Time varies with the hit rate in the row buffers,
which, aslater graphs show, is as appli cation-dependent as cache hit-
rate. The pessimistic FPM1 strategy of always closing pages wins
out over the optimistic FPM2 strategy. However, with larger caches,
we have seen many instances where the open-page strategy wins,
compulsory DRAM acaesss tend to exhibit goad locdity.

The differences between benchmarks in Bus Transmission Time
are due to write traffic. Writes alow a different degree of overlap
between the mlumn access data transfer, and bus transmission. The
heavier thewritetraffic, the higher the Bus Transmission component.
One can conclude perl and ijpeg have heavier write traffic than go.

Though it is a mmpletely unkalanced design, we dso measured

latencies for 128-bit wide configurations for Rambus and SLDRAM
designs, pictured in Figure 7(c). These “parall e-channel” results are
intended to demonstrate the mismatch between today’s bus geeds
and fastest DRAM S, they are shown in the bottom right of Figure 11.

Bus Transmission Time is that portion of the bus activity na
overlapped with column acces or data transfer, and it accourts for
10% to 30% of the tota latency. In the parallel-chanrel results, it
accounts for more than 50%. This siggests that, for some DRAM
architedures, bus gedl is becoming a «aiticd issue. While airrent
techndogies em balanced, bus gedl islikely to become asignifi-
cant problem very quickly for next-generation DRAMSs [8]. It is
interesting to note that the recently announced Alpha 21364 inte-
grates Rambus memory cortrollers onto the CPU and conneds the
procesor diredly to the DRDRAMSs with a400MHz Rambus Chan-
nel, thereby €li minating the dow intermediate bus[12).

EDO DRAM does a much better job than FPM DRAM of over-
lapping column aacess with data transfer. This is to be expeded,
given thetiming dagramsfor these achitedures. Note that the over-
lap components (Data Transfer Time Overlap) tend to be very large
in generd, demonstrating relatively significant performance savings
due to page-mode. This is an argument for keeping buses no wider
than helf the block sizeof the L2 cache.

Severa of the architectures siow no owerlap at al between data
transfer and column acess SDRAM and ESDRAM do not alow
such owerlap becaise they instead use burst mode, which obvates
multiple @lumn accesses (see Figure 5). SLDRAM does alow
overlap, just as the Rambus parts do; however, for smplicity, in our
simulations we modeled SLDRAM'’s burst mode. The overlapped
mode would have yielded similar latencies.

The interleaved configurations (FPM3 and EDO2) demonstrate
excdlent performance latency for FPM DRAM improves by a fac
tor of 2 with four-way interleaving, and EDO improves by 25-30%
with two-way interleaving. The interleaved EDO configuration per-
forms dightly worse than the FPM configuration because it does not
take full advantage of the memory bus; there is gill asmall amournt
of unused bus bandwidth. Note that the breek-downs of these organi-
zations look very much like Dired Rambus; Rambus behaves simi-
larly to highly interleaved systems but at much lower cost points.

The time stalled de to refresh tends to accourt for 1-2% of the
total latency; this is more in line with expedations than the results
shown in Figure 9. The time stall ed synchronizing with the memory
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Figure 11: Break-downs for primary memory access time, 128-BIT BUS. These graphs present the average access time on a 128-bit bus across DRAM
architectures for the three benchmarks that display the most widely varying behavior. The different DRAM architectures display significantly different access times.
The main cause for variation from benchmark to benchmark is the Row Access Time, which varies with the probability of hitting an open page in the DRAM'’s row
buffers. If a benchmark exhibits a high degree of locality in its post-L2 address stream, it will tend to have a small Row Access Time component.

bus is in the same range, acounting for 1-5% of the totd. Thisis a
small priceto pay for a simpler DRAM interface compared to a
fully asynchronous design.

Summary: The FPM architecture is the basdine architedure,
but it coud be sped up by 30% with a greater degree of overlap
between the column accessand data transmisson. Thisis eeninthe
EDO architedure: its column accessis a bit faster due to the latch
between the sense anps and the outpt pins, and its degreeof over-
lap with data transfer is greater, yielding a significantly faster design
using esentially the same techndogy as FPM. Synchronous DRAM
is another 30% faster than EDO, and Enhanced SDRAM increases
performance another 15% by improving the row- and column-access
timing parameters and adding an SRAM cache to improve @ncur-
rency, though we note that its improvement over SDRAM is less
dramatic if using a pessmistic dose-page strategy asin FPM 1.

As modeled, SLDRAM and Rambus designs have higher end-
to-end transadion latencies than SDRAM or ESDRAM, as they
require multi ple narrow-bus cyclesto complete a128-hit transadion.
However, they are not ganged together into a wide datapath, as are
the other organizations. Despite the handicap, SLDRAM performs
well, which is important considering it is a public standard. Direa
Rambus comes out about equal to SDRAM in end-to-end latency.
Note that SLDRAM and RDRAM make twice the number of data

transfers as DRDRAM; had they been arganized as two DRAMS
wideto put them on equal footing with DRDRAM, which hasa 128
bit transfer width, their latencies would be 20-30% lower.

Where the SLDRAM and Rambus designs excd isin their criti-
cal-word latencies: though SDRAM and ESDRAM win in end-to-
end latency, they arerigid in their acessordering. Parts li ke Rambus
and SLDRAM are like the interleaved FPM and EDO organizations
in that they all ow the memory controller to request the mmponents
of alargeblock in arbitrary order. Thus, the Rambus parts allow easy
criti cal-word-first ordering, whereas burst-mode DRAMs do nat.

Lagt, the parallel-channel results demonstrate the failure of a
100MHz 128-hit bus to keep upwith today’s fastest parts. Here, we
have placed enowgh channels side-by-side to creae a128-hit datap-
ath that is then pushed aadossthe 100MHz bus, and Dired Rambus
has roughly the same end-to-end latency as before. Clearly, we ae
pushing the limits of today’s busses. The Alpha 21364 will solve this
problem by ganging together multiple Rambus Channels conrected
diredly to the CPU, eliminating the 100MHz bus[12].

5.4  Cost-Performance Considerations
The organizations are equa in their cgpadty: all but the interleaved
examples use éght 64Mbit DRAMs. The FPM3 arganizaion uses
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Figure 12: Break-downs for primary memory access time, 128-BYTE BUS. These graphs present the average access time on a 128-byte bus, the same
width as an L2 cache line. Therefore the pipelined access to memory (multiple column accesses per row access) is not seen, and the Row Access component
becomes relatively more significant than in the results of a 128-bit bus (Figure 11). Whereas in Figure 11, variations in Row Access caused overall variations in
access time of roughly 10%, these graphs quantify the effect that Row Access has on systems with wider buses: average access time can vary by a factor of two.

32 64Mbit DRAMS, and the EDO2 organization uses sixteen. How-
ever, the cost of eat system is very different. Cost is a aiterion in
DRAM seledion that may be a important as performance Each of
these DRAM techndogies carries a different price, and these prices
are dynamic, based on factors including rumber of suppliers, saes
volume, die aea premium, and speed yield.

In the narrow-bus organization we modeled, money spent on
Rambus and SLDRAM parts does not go diredly to latency’s bot-
tom line & with the other DRAMSs. The arerage accesstime graphs
demonstrate how effedively ddlars reduce latency: the only reason
FPM, EDO, SDRAM, and ESDRAM have latencies comparable to
Rambus and SLDRAM s that they are ganged together into very
wide organizations that deliver 128 hits of data per request, though
ead individua DRAM transfers only 16 bits at atime. If ead orga-
nization had been represented by a singe 64Mbit DRAM, the FPM,
EDO, SDRAM, and ESDRAM parts would have had latencies from
four to eight times those in Figure 11 The Rambus and SLDRAM
parts benefit by multiple DRAMs only in that this organizaion
extends the sizeof the collective sense-amp cade and thusincreases
the row-buffer hit rates (see Figure 13); a single Rambus or
SLDRAM chip will perform amost aswell asagroup of eight.

Ignoring grice premiums, cost is a good argument for the high-
spead narrow-bus DRAMs. Rambus and SLDRAM parts give the

performance of other DRAM organizations & a fradion of the st
(roughly 1/32 the interleaved FPM organization, 1/16 the interleaved
EDO organization, and 1/8 al the non-interleaved organizations).
Alternatively, by ganging together several Rambus Channels, one
can achieve better performance at the same cost. Accordingly, these
partstypicdly carry a stiff price premium, but typicdly less than 8x.

55 Perfect-Width Buses

As alimit study, we measured the performance of a perfed-width
bus: 100MHz and aswide asan L 2 cacheline. Theresults are shown
in Figure 12. The scde is much smaller than the previous graphs,
and some mmporents have scaed with the dhange in bus width. The
number of column aaccesss are reduced by a factor of eight, which
reduces the Column Access and Data Transfer times. The row access
remains the same, as does Bus Wait Time; they appeas to have
increased in importance. Bus transmisdon for a read has been
reduced from 90ns (10 for the request, 80 to transmit the data), much
of which was overlapped with column accessand data transfer, to
20ns, nore of which is overlapped. Because each request requires
only one memory access, there is no fpelining to be exploited, and
the full 20ns transmission is exposed (10rs ead for address and
data). FPM2 and FPM 3 look identical, asdo EDO1 and EDO2. This
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Figure 13: Hit-rates in the row buffers. These graphs show hit-rates for the benchmarks on each of the DRAM architectures. The newer DRAMs, with more
internal banking, tend to have higher hit rates. Write traffic, due to writebacks, disrupts the locality of the address stream for architectures with fewer internal banks.

is no mistake. Two configurations are interleaved, the others are nat.
Making the bus the width of the request size obviates interleaving.

There ae no Overlap components in these graphs. With a 128
byte bus, each cachelinefill requires a singetransadion. Overlap is
possble if multiple cncurrent requests to the DRAM are dlowed,
but this is beyond the scope of our current DRAM simulations.
Overlap shown in previous graphs is due to the overlap of multiple
requests required for asinge cahe linefill .

Asbefore, the primary variation between benchmarksisthe Row
Access Time. The variations are larger than in the previous graphs,
becaise the row access time is propationally much larger. The
graphs show that the locdity of referencefor each applicaion (seen
in the row-buffer hit-rates, Figure 13) can have a dramatic impad on
the accesslatency—for example, there is afador of two dfference
between the average acess latency for compress and perl. This
effea has been seen before—McKeéswork showsthat intentionally
reordering memory ac@sss to exploit locdity can have an order of
maghitude df ed on memory-system performance[21, 22].

Summary: Couded with extremely wide buses that hide the
effeds of limited bandwidth and thus highlight the differences in
memory latency, the DRAM architectures perform similarly. As
FPM1 and ESDRAM show, the variations in Row Access can be
avoided by always closing the row buffer after an accessand hiding
the sense-amp precharge time during idle moments. This yields the
best measured performance and its performance is much more deter-
ministic (e.g. FPM1 yields the same Row Access independent of
benchmark). Notethat in studieswith a4MB L2 cade, some bench-
marks exeauting with an ogtimistic strategy showed very high row-
buffer hit rates and had Row Access components that were nea-zero.

Comparing these results to the previous experiment, we seethat
when one mnsiders current technology (128-bit buses), thereislittl e
variation from application to application in the average memory
access time. The two comporents that vary, Row Access and Bus
Transmission, contribute littl e to the total latency, being overshad-
owed by long memory-access pipelines that exploit page mode.
However, moving to wider buses deaeases the @mlumn accesses per
request, and as a result the row acess which is much larger than
column accessto begin with, becomes significant. With fewer col-
umn accesses per request, we ae lessable to hide bus transmisson
time, and this component becmes more noticeale as well.

Variations in row aacesstime, though poblematic for real-time
systems, do dfer an opportunity to optimize performance one can
eally imagine enhanced row-buffer cading schemes, row-buffer
victim caches, or even prediction mechanisms that attempt to capi-
talize on the anount of post-L2-cade locdity. However, with cur-
rent organizaions, such measures make littl e sense.
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56  Row-Buffer Hit Rates

Assciated with eady DRAM core is a set of sense anps that can
latch data; this esentially amounts to an SRAM cade, and inter-
nally-banked DRAMs have several of these caches. Collectively, a
DRAM or bank of DRAMscan have asizeble SRAM cade (cdl it a
row-buffer cache) in these sense anps. The size of eady DRAM’s
row-buffer cade is the produwct of the Row Buffer and Internal
Banks terms in Table 1—except for DRDRAM, which hes 17 half-
row buffers dared between 16 kanks (atotal of 68K hits of storage).

Figure 13 presents the variations in hit rates for the row-buffer
caches of different DRAM architedures. Hit rate does not include
the dfect of hits that are due to multiple requests to satisfy one L2
cacheline: these results are for the 128-byte bus. We present results
for two types of traffic: al traffic and read-only traffic. The read-
only resultsignore dl writes to the DRAM system (which, in write-
bad caches, occur only when aline isbeing replaced).

The results siow that memory requests frequently hit the row
buffers; for the full-traffic simulations hit rates range from 8-95%,
with amean of 40% (mean calculated owver only the IMB L2 cache
results). There is a significant change in hit rate when writes are
included in the aldress $ream: including write traffic tends to
deaease the row-buffer hit-rate for those DRAMs with lessSRAM
storage. Writebacks tend to purge useful data from the smaller row-
buffer caches; thus the Rambus, SLDRAM, and ESDRAM parts
perform better than the others. This effed suggests that when write-
badks happen, they do so without much locality: the cacheli nes that
are written bad tend to be to DRAM pages that have not been
accesxd recently. Thisis expected behavior.

Note that adesigner can play with the ordering of addressbitsto
maximize the row-buffer hits. A similar technique is used in inter-
leaved memory systemsto adbtain the highest bandwidth.

5.7  Trace-Driven Simulations

We dso investigated the effed of using trace-driven simulation to
measure memory latency. We simulated the same benchmarks using
SimpleScdar’'s in-order mode with single-issie. Clearly, in-order
exeadtion cannat yield the same degree of overlap as out-of-order
exeadution, but we did see virtualy identical average access times
compared to ou-of-order execution, for both 128-hit and 128-byte
buses. Because SPEC has been criticized as being not representative
of red-world applications, we dso used University of Washington's
Etch traces [11] to corroborate what we had seen using SPEC on
SimpleScdar. The Etch benchmarks yielded very smilar results,
with the main dfference being that the row-buffers had a higher
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Figure 14: Locality in the stream of accesses to the single open row in the FPM DRAM. The top six graphs show the frequency with which accesses to a
given DRAM page hit at stack depth x. The bottom two graphs show the inter-arrival time of accesses that hit in an open DRAM page. Both sets of graphs show
that when references are made to the data in a particular DRAM page, the accesses tend to be localized in time.

average hit rate (61% with a 4MB L2 cache, as opposed to 51%),
and a smaller standard deviation (11.4, as opposed to 25.5).

6 CONCLUSIONS

We have simulated seven commercidl DRAM architectures in a
workstation-class tting, conneded to a fast, out-of-order, eight-
way superscalar procesor with lockup-free @ches. We have found
the following: (8) contemporary DRAM technologies are aldressng
the memory bandwidth problem but not the memory latency prob-
lem; (b) the memory latency problem is closely tied to current mid-
to high-performance memory bus geeds (100MHz), which will
soon kecome inadequate for high-performance DRAM designs; (c)
there is a significant degreeof locdity in the aldresesthat are pre-
sented to the primary memory system—this locality seems to be
exploited well by DRAM designs that are multi-banked internally
and therefore have more than one row buffer; and (d) exploiting this
locdity will become more important in future systems when mem-
ory buses widen, exposing row accesstime & asignificant fador.
The bottom line is that contemporary DRAM architectures have
used page-mode and internal interleaving to achieve aone-time per-
formance boost. These tedhniques improve bandwidth diredly and
improve latency indiredly by ppelining over the memory bus the
multi ple transadions that satisfy one real or write request (requests
are often cadeline-sized, and the cahe width is typicdly greder
than the bus width). This is similar to the performance optimization
of placing multiple DRAMSsin perdl el to achieve abus-width datap-
ath: this optimizaion works becaise the bus width is typicdly
greder than an individual DRAM'’s transfer width. We have seen
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that ead of the DRAM architectures dudied takes advantage of
internal interleaving and pege mode to dffering degrees of success
However, asthe studies show, wewill soon hit the limit of these ben-
efits: the limiting fadors are now the speed o the busand, to alesser
degree, the spead of the DRAM core. To improve performance fur-
ther, we must explore other avenues.

7 FUTURE WORK

We will extend the research to cover large systems, which have dif-
ferent performance behavior. In the present study, the number of
DRAMSs per organizion is snall, therefore the hit rate seen in the
row buffers can be high. In larger systems, this effed decreases in
significance For instance, in large systems, bandwidth is more of an
isaie than latency—hitting an open page is less important than
scheduling the DRAM requests © asto avoid bus corflicts.

As buses grow wider, Row Access Time becomes sgnificant; in
our IMB L2 studies it acoounts for 20-50% of the total latency, and
in our 4AMB L2 studies it acounted for 1-50% [8]. Increasing the
number of open rowsis one gproach to decreasing the overhead, as
seen in the multi-banked DRAMSs such as Rambus and SLDRAM.
Other approadhes include adding extra row buffers to cade previ-
ously opened rows, prefetching into the row buffers, pladng row-
buffer victim-cades onto the dips, predicting whether or nat to
close an open page, etc. We intend to lookinto thismore dosely, but
wanted to get a rough idea of the potential gains. We kept the last
eight accessed row buffersina FIFO and kept track of the number of
hits and misses to the buffer, as well as the depth at which any hits
occurred. The results are shown in Figure 14. For each benchmark,



we show the number of misses to the main row buffer. The first
value & the leftmost of ead curve isthe number of hitsat adepth of
onein the FIFO victim buffer. The next value represents the number
of hits a a depth o two, and so on. The rightmost value in eat
curveisthe number of accessesthat missed both the main row buffer
and the FIFO victim buffer. The two graphs on the battom show the
amourt of locdity in the two benchmarks with the most widely
varying behavior; the graphs plot the time in CPU clocks between
successive references to the previous open row (i.e. the row that was
replacal by the currently open row: it also happens to be the topmost
entry in the FIFO). This graph demonstrates that when the row is
accessd in the future, it is most often acessd in the very nea
future. Our conclusion is that the previoudly-referenced row has a
high hit rate, and it islikely to be referenced within a short period of
time if it is referenced again at all. A number of proven techniques
exist to exploit this behavior, such as victim caching, set asciative
row buffers, etc.
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