
1

Copyright © 1999 IEEE. Published in the Proceedings of the 26th International Symposium on Computer Architecture, May 2-4, 1999, in Atlanta GA, USA. Personal use of this material is per-
mitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

ABSTRACT

In response to the growing gap between memory access time and
processor speed, DRAM manufacturers have created several new
DRAM architectures. This paper presents a simulation-based per-
formance study of a representative group, each evaluated in a small
system organization. These small-system organizations correspond
to workstation-class computers and use on the order of 10 DRAM
chips. The study covers Fast Page Mode, Extended Data Out, Syn-
chronous, Enhanced Synchronous, Synchronous Link, Rambus, and
Direct Rambus designs. Our simulations reveal several things: (a)
current advanced DRAM technologies are attacking the memory
bandwidth problem but not the latency problem; (b) bus transmis-
sion speed will soon become a primary factor limiting memory-sys-
tem performance; (c) the post-L2 address stream still contains
significant locality, though it varies from application to application;
and (d) as we move to wider buses, row access time becomes more
prominent, making it important to investigate techniques to exploit
the available locality to decrease access time.

1 INTRODUCTION

In response to the growing gap between memory access time and
processor speed, DRAM manufacturers have created several new
DRAM architectures. This paper presents a simulation-based perfor-
mance study of a representative group, evaluating each in terms of
its effect on total execution time. We simulate the performance of
seven DRAM architectures: Fast Page Mode [35], Extended Data
Out [16], Synchronous [17], Enhanced Synchronous [10], Synchro-
nous Link [38], Rambus [31], and Direct Rambus [32]. While there
are a number of academic proposals for new DRAM designs, space
limits us to covering only existent commercial parts. To obtain accu-
rate memory-request timing for an aggressive out-of-order proces-
sor, we integrate our code into the SimpleScalar tool set [4].

This paper presents a baseline study of a small-system DRAM
organization: these are systems with only a handful of DRAM chips
(0.1–1GB). We do not consider large-system DRAM organizations
with many gigabytes of storage that are highly interleaved. The
study asks and answers the following questions:

• What is the effect of improvements in DRAM technology on the
memory latency and bandwidth problems?

Contemporary techniques for improving processor performance
and tolerating memory latency are exacerbating the memory
bandwidth problem [5]. Our results show that current DRAM
architectures are attacking exactly this problem: the most recent
technologies (SDRAM, ESDRAM, and Rambus) have reduced
the stall time due to limited bandwidth by a factor of three
compared to earlier DRAM architectures. However, the
memory-latency component of overhead has not improved.

• Where is time spent in the primary memory system (the memory
system beyond the cache hierarchy, but not including secondary
[disk] or tertiary [backup] storage)? What is the performance
benefit of exploiting the page mode of contemporary DRAMs?

For the newer DRAM designs, the time to extract the required
data from the sense amps/row caches for transmission on the
memory bus is the largest component in the average access time,
though page mode allows this to be overlapped with column
access and the time to transmit the data over the memory bus.

• How much locality is there in the address stream that reaches the
primary memory system?

The stream of addresses that miss the L2 cache contains a
significant amount of locality, as measured by the hit-rates in the
DRAM row buffers. The hit rates for the applications studied
range 8–95%, with a mean hit rate of 40% for a 1MB L2 cache.
(This does not include hits to the row buffers when making
multiple DRAM requests to read one cache-line.)

We also make several observations. First, there is a one-time trade-
off between cost, bandwidth, and latency: to a point, latency can be
decreased by ganging together multiple DRAMs into a wide struc-
ture. This trades dollars for bandwidth that reduces latency because a
request size is typically much larger than the DRAM transfer width.
Page mode and interleaving are similar optimizations that work
because a request size is typically larger than the bus width. How-
ever, the latency benefits are limited by bus and DRAM speeds: to
get further improvements, one must run the DRAM core and bus at
faster speeds. Current memory busses are adequate for small sys-
tems but are likely inadequate for large ones. Embedded DRAM [5,
19, 37] is not a near-term solution, as its performance is poor on
high-end workloads [3]. Faster buses are more likely solutions—wit-
ness the elimination of the slow intermediate memory bus in future
systems [12]. Another solution is to internally bank the memory
array into many small arrays so that each can be accessed very
quickly, as in the MoSys Multibank DRAM architecture [39].

Second, widening buses will present new optimization opportu-
nities. Each application exhibits a different degree of locality and
therefore benefits from page mode to a different degree. As buses
widen, this effect becomes more pronounced, to the extent that dif-
ferent applications can have average access times that differ by 50%.
This is a minor issue considering current bus technology. However,
future bus technologies will expose the row access as the primary
performance bottleneck, justifying the exploration of mechanisms to
exploit locality to guarantee hits in the DRAM row buffers: e.g. row-
buffer victim caches, prediction mechanisms, etc.

Third, while buses as wide as the L2 cache yield the best mem-
ory latency, they cannot halve the latency of a bus half as wide. Page
mode overlaps the components of DRAM access when making mul-
tiple requests to the same row. If the bus is as wide as a request, one

A Performance Comparison of Contemporary DRAM Architectures

Vinodh Cuppu, Bruce Jacob Brian Davis, Trevor Mudge
Dept. of Electrical & Computer Engineering Dept. of Electrical Engineering & Computer Science

University of Maryland, College Park University of Michigan, Ann Arbor
{ ramvinod,blj} @eng.umd.edu {btdavis,tnm} @eecs.umich.edu

2

cannot exploit this overlap. For cost considerations, having at most
an N/2-bit bus, N being the L2 cache width, might be a good choice.

Fourth, critical-word-first does not mix well with burst mode.
Critical-word-first is a strategy that requests a block of data poten-
tially out of address-order; burst mode delivers data in a fixed but
redefinable order. A burst-mode DRAM can thus can have longer
latencies in real systems, even if its end-to-end latency is low.

Finally, the choice of refresh mechanism can significantly alter
the average memory access time. For some benchmarks and some
refresh organizations, the amount of time spent waiting for a DRAM
in refresh mode accounted for 50% of the total latency.

As one might expect, our results and conclusions are dependent
on our system specifications, which we chose to be representative of
mid- to high-end workstations: a 100MHz 128-bit memory bus, an
eight-way superscalar out-of-order CPU, lockup-free caches, and a
small -system DRAM organization with ~10 DRAM chips.

2 RELATED WORK

Burger, Goodman, and Kagi quantified the effect on memory behav-
ior of high-performance latency-reducing or latency-tolerating tech-
niques such as lockup-free caches, out-of-order execution,
prefetching, speculative loads, etc. [5]. They concluded that to hide
memory latency, these techniques often increase demands on mem-
ory bandwidth. They classify memory stall cycles into two types:
those due to lack of available memory bandwidth, and those due
purely to latency. This is a useful classification, and we use it in our
study. This study differs from theirs in that we focus on the access
time of only the primary memory system, while their study com-
bines all memory access time, including the L1 and L2 caches. Their
study focuses on the behavior of latency-hiding techniques, while
this study focuses on the behavior of different DRAM architectures.

Several marketing studies compare the memory latency and
bandwidth available from different DRAM architectures [7, 29, 30].
This paper builds on these studies by looking at a larger assortment
of DRAM architectures, measuring DRAM impact on total applica-
tion performance, decomposing the memory access time into differ-
ent components, and measuring the hit rates in the row buffers.

Finally, there are many studies that measure system-wide perfor-
mance, including that of the primary memory system [1, 2, 9, 18, 23,
24, 33, 34]. Our results resemble theirs, in that we obtain similar fig-
ures for the fraction of time spent in the primary memory system.
However, these studies have different goals from ours, in that they
are concerned with measuring the effects on total execution time of

varying several CPU-level parameters such as issue width, cache
size & organization, number of processors, etc. This study focuses
on the performance behavior of different DRAM architectures.

3 BACKGROUND

A Random Access Memory (RAM) that uses a single transistor-
capacitor pair for each binary value (bit) is referred to as a Dynamic
Random Access Memory or DRAM. This circuit is dynamic
because leakage requires that the capacitor be periodically refreshed
for information retention. Initially, DRAMs had minimal I/O pin
counts because the manufacturing cost was dominated by the num-
ber of I/O pins in the package. Due largely to a desire to use stan-
dardized parts, the initial constraints limiting the I/O pins have had a
long-term effect on DRAM architecture: the address pins for most
DRAMs are still multiplexed, potentially limiting performance. As
the standard DRAM interface has become a performance bottleneck,
a number of “ revolutionary” proposals [26] have been made. In most
cases, the revolutionary portion is the interface or access mecha-
nism, while the DRAM core remains essentially unchanged.

3.1 The Conventional DRAM

The addressing mechanism of early DRAM architectures is still uti-
lized, with minor changes, in many of the DRAMs produced today.
In this interface, shown in Figure 1, the address bus is multiplexed
between row and column components. The multiplexed address bus
uses two control signals—the row and column address strobe sig-
nals, RAS and CAS respectively—which cause the DRAM to latch
the address components. The row address causes a complete row in
the memory array to propagate down the bit li nes to the sense amps.
The column address selects the appropriate data subset from the
sense amps and causes it to be driven to the output pins.

3.2 Fast Page Mode DRAM (FPM DRAM)

Fast-Page Mode DRAM implements page mode, an improvement
on conventional DRAM in which the row-address is held constant
and data from multiple columns is read from the sense ampli fiers.
The data held in the sense amps form an “open page” that can be
accessed relatively quickly. This speeds up successive accesses to

... Bit Lines ...

Memory
Array

Sense Amps/Word Drivers

R
ow

D
ec

od
er

Column Decoder

Data

rd/wr

ras

cas

address

Figure 1: Conventional DRAM block diagram. The conventional DRAM
uses a split addressing mechanism still found in most DRAMs today.

. .
 .

.

Data In/Out
Buffers

Clock &
Refresh Cktry

Column Address

Row Address

Buffer

Buffer

Figure 2: FPM Read Timing. Fast page mode allows the DRAM controller
to hold a row constant and receive multiple columns in rapid succession.

Row Access

Data Transfer Overlap

Column Access

Data Transfer

Row
Address

Column
Address

Valid
Dataout

Column
Address

Column
Address

Valid
Dataout

Valid
Dataout

RAS

CAS

Address

DQ

3

the same row of the DRAM core. Figure 2 gives the timing for FPM
reads. The labels show the categories to which the portions of time
are assigned in our simulations. Note that page mode is supported in
all the DRAM architectures in this study.

3.3 Extended Data Out DRAM (EDO DRAM)

Extended Data Out DRAM, sometimes referred to as hyper-page
mode DRAM, adds a latch between the sense-amps and the output
pins of the DRAM, shown in Figure 3. This latch holds output pin
state and permits the CAS to rapidly de-assert, allowing the memory
array to begin precharging sooner. In addition, the latch in the output
path also implies that the data on the outputs of the DRAM circuit
remain valid longer into the next clock phase. Figure 4 gives the tim-
ing for an EDO read.

3.4 Synchronous DRAM (SDRAM)

Conventional, FPM, and EDO DRAM are controlled asynchro-
nously by the processor or the memory controller; the memory
latency is thus some fractional number of CPU clock cycles. An
alternative is to make the DRAM interface synchronous such that the
DRAM latches information to and from the controller based on a
clock signal. A timing diagram is shown in Figure 5. SDRAM
devices typically have a programmable register that holds a bytes-
per-request value. SDRAM may therefore return many bytes over
several cycles per request. The advantages include the elimination of
the timing strobes and the availabilit y of data from the DRAM each
clock cycle. The underlying architecture of the SDRAM core is the
same as in a conventional DRAM.

3.5 Enhanced Synchronous DRAM (ESDRAM)

Enhanced Synchronous DRAM is an incremental modification to
Synchronous DRAM that parallels the differences between FPM
and EDO DRAM. First, the internal timing parameters of the
ESDRAM core are faster than SDRAM. Second, SRAM row-caches
have been added at the sense-amps of each bank. These caches pro-
vide the kind of improved intra-row performance observed with
EDO DRAM, allowing requests to the last accessed row to be satis-
fied even when subsequent refreshes, precharges, or activates are
taking place.

3.6 Synchronous Link DRAM (SLDRAM)

RamLink is the IEEE standard (P1596.4) for a bus architecture for
devices. Synchronous Link (SLDRAM) is an adaptation of Ram-
Link for DRAM, and is another IEEE standard (P1596.7). Both are
adaptations of the Scalable Coherent Interface (SCI). The SLDRAM
specification is therefore an open standard allowing for use by ven-
dors without licensing fees. SLDRAM uses a packet-based split
request/response protocol. Its bus interface is designed to run at
clock speeds of 200-600 MHz and has a two-byte-wide datapath.
SLDRAM supports multiple concurrent transactions, provided all
transactions reference unique internal banks. The 64Mbit SLDRAM
devices contain 8 banks per device.

3.7 Rambus DRAMs (RDRAM)

Rambus DRAMs use a one-byte-wide multiplexed address/data bus
to connect the memory controller to the RDRAM devices. The bus
runs at 300 Mhz and transfers on both clock edges to achieve a theo-
retical peak of 600 Mbytes/s. Physically, each 64-Mbit RDRAM is

... Bit Lines...

Memory
Array

Sense Amps/Word Drivers

R
ow

D
ec

od
er

Column Decoder

Q D

Figure 3: Extended Data Out (EDO) DRAM block diagram. EDO adds a
latch on the output that allows CAS to cycle more quickly than in FPM.

. .
 .

.

Data

rd/wr

ras

cas

address

Data In/Out
Buffers

Clock &
Refresh Cktry

Column Address

Row Address

Buffer

Buffer

Figure 4: EDO Read Timing. The output latch in EDO DRAM allows more
overlap between column access and data transfer than in FPM.

Row
Address

Column
Address

Valid
Dataout

RAS

CAS

Address

DQ

Column
Address

Column
Address

Valid
Dataout

Valid
Dataout

Data Transfer

Column Access

Transfer Overlap

Row Access

Figure 5: SDRAM Read Operation Clock Diagram. SDRAM contains a
writable register for the request length, allowing high-speed column access.

CAS

Address

DQ Valid
Dataout

Valid
Dataout

Valid
Dataout

Column
Address

Row
Address

RAS

Clock Data Transfer

Column Access

Data Transfer Overlap

Row Access

Figure 6: Rambus DRAM Read Operation. Rambus DRAMs transfer on
both edges of a fast clock and can handle multiple simultaneous requests.

DQ

Command

Address Col

Dout Dout Dout

Col Col

Read
Strobe

Read
Term

ACTV/
READ

Bank/
Row

4 cycles

Data Transfer

Column Access

Transfer Overlap

Row Access

4

divided into 4 banks, each with its own row buffer, and hence up to 4
rows remain active or open1. Transactions occur on the bus using a
split request/response protocol. Because the bus is multiplexed
between address and data, only one transaction may use the bus dur-
ing any 4 clock cycle period, referred to as an octcycle. The protocol
uses packet transactions; first an address packet is driven, then the
data. Different transactions can require different numbers of octcy-
cles, depending on the transaction type, location of the data within
the device, number of devices on the channel, etc. Figure 6 gives a
timing diagram for a read transaction.

3.8 Direct Rambus (DRDRAM)

Direct Rambus DRAMs use a 400 Mhz 3-byte-wide channel (2 for
data, 1 for addresses/commands). Like the Rambus parts, Direct
Rambus parts transfer at both clock edges, implying a maximum
bandwidth of 1.6 Gbytes/s. DRDRAMs are divided into 16 banks
with 17 half-row buffers2. Each half-row buffer is shared between
adjacent banks, which implies that adjacent banks cannot be active
simultaneously. This organization has the result of increasing the
row-buffer miss rate as compared to having one open row per bank,
but it reduces the cost by reducing the die area occupied by the row

buffers, compared to 16 full row buffers. A critical difference
between RDRAM and DRDRAM is that because DRDRAM parti-
tions the bus into different components, three transactions can simul-
taneously utili ze the different portions of the DRDRAM interface.

4 EXPERIMENTAL METHODOLOGY

For accurate timing of memory requests in a dynamically reordered
instruction stream, we integrated our code into SimpleScalar, an exe-
cution-driven simulator of an aggressive out-of-order processor [4].
We calculate the DRAM access time, much of which is overlapped
with instruction execution. To determine the degree of overlap, and
to separate out memory stalls due to bandwidth limitations vs.
latency limitations, we run two other simulations—one with perfect
primary memory (zero access time) and one with a perfect bus (as
wide as an L2 cache line). Following the methodology in [5], we
partition the total application execution time into three components:
TP TL and TB which correspond to time spent processing, time spent
stalling for memory due to latency, and time spent stalli ng for mem-
ory due to limited bandwidth. In this paper, time spent “processing”
includes all activity above the primary memory system, i.e. it con-
tains all processor execution time and L1 and L2 cache activity. Let
T be the total execution time for the realistic simulation; let TU be
the execution time assuming unlimited bandwidth—the results from
the simulation that models cacheline-wide buses. Then TP is the time
given by the simulation that models a perfect primary memory sys-
tem, and we calculate TL and TB: TL = TU – TP and TB = T – TU. In
addition, we consider one more component: the degree to which the
processor is able to overlap memory access time with processing

Table 1: DRAM Specifications used in simulations

DRAM
type Size Rows Columns Transfer

Width
Row
Buffer

Internal
Banks Speed Pre-

charge
Row
Access

Column
Access

Data
Transfer

FPMDRAM 64Mbit 4096 1024 16 bits 16K bits 1 – 40ns 15ns 30ns 15ns

EDODRAM 64Mbit 4096 1024 16 bits 16K bits 1 – 40ns 12ns 30ns 15ns

SDRAM 64Mbit 4096 256 16 bits 4K bits 4 100MHz 20ns 30ns 30ns 10ns

ESDRAM 64Mbit 4096 256 16 bits 4K bits 4 100MHz 20ns 20ns 20ns 10ns

SLDRAM 64Mbit 1024 128 64 bits 8K bits 8 200MHz 30ns 40ns 40ns 10ns

RDRAM 64Mbit 1024 256 64 bits 16K bits 4 300MHz 26.66ns 40ns 23.33ns 13.33ns

DRDRAM 64Mbit 512 64 128 bits 4K bits 16 400MHz 20/40ns 17.5ns 30ns 10ns

Table 2: Time components in primary memory system

Component Description

Row Access Time The time to (possibly) precharge the row buffers, present the row address, latch the
row address, and read the data from the memory array into the sense amps

Column Access Time The time to present the column address at the address pins and latch the value

Data Transfer Time The time to transfer the data from the sense amps through the column muxes to the
data-out pins

Data Transfer Time Overlap The amount of time spent performing both column access and data transfer
simultaneously (when using page mode, a column access can overlap with the
previous data transfer for the same row)

Note that, since determining the amount of overlap between column address and
data transfer can be tricky in the interleaved examples, for those cases we simply
call all time between the start of the first data transfer and the termination of the last
column access Data Transfer Time Overlap (see Figure 8).

Refresh Time Amount of time spent waiting for a refresh cycle to finish

Bus Wait Time Amount of time spent waiting to synchronize with the 100MHz memory bus

Bus Transmission Time The portion of time to transmit a request over the memory bus to & from the DRAM
system that is not overlapped with Column Access Time or Data Transfer Time

1. In this study, we model 64-Mbit Rambus parts, which have 4 banks and
4 open rows. Earlier 16-Mbit Rambus organizations had 2 banks and 2
open pages, and future 256-Mbit organizations may have even more.

2. As with the previous part, we model 64-Mbit Direct Rambus, which has
this organization. Future (256-Mbit) organizations may look different.

5

time. We call this overlapped component TO, and if TM is the total
time spent in the primary memory system (the time returned by our
DRAM simulator), then TO = TP – (T – TM). This is the portion of
TP that is overlapped with memory access.

4.1 DRAM Simulator Overview

The DRAM simulator models the internal state of the following
DRAM architectures: Fast Page Mode [35], Extended Data Out [16],
Synchronous [17], Enhanced Synchronous [10, 17], Synchronous
Link [38], Rambus [31], and Direct Rambus [32].

The timing parameters for the different DRAM architectures are
given in Table 1. Since we could not find a 64Mbit part specification
for ESDRAM, we extrapolated based on the most recent SDRAM
and ESDRAM datasheets. To measure DRAM behavior in systems
of differing performance, we varied the speed at which requests
arrive at the DRAM. We ran the L2 cache at speeds of 100ns, 10ns,
and 1ns, and for each L2 access-time we scaled the main processor’s
speed accordingly (the CPU runs at 10x the L2 cache speed).

We wanted a model of a typical workstation, so the processor is
eight-way superscalar, out-of-order, with lockup-free L1 caches. L1
caches are split 64KB/64KB, 2-way set associative, with 64-byte
linesizes. The L2 cache is unified 1MB, 4-way set associative, write-
back, and has a 128-byte linesize. The L2 cache is lockup-free but
only allows one outstanding DRAM request at a time; note this orga-

nization fails to take advantage of some of the newer DRAM parts
that can handle multiple concurrent requests. 100MHz 128-bit buses
are common for high-end machines, so this is the bus configuration
that we model. We assume that the communication overhead is only
one 10ns cycle in each direction.

The DRAM/bus configurations simulated are shown in Figure 7.
For DRAMs other than Rambus and SLDRAM, eight DRAMs are
arranged in parallel in a DIMM-like organization to obtain a 128-bit
bus. We assume that the memory controller has no overhead delay.
SLDRAM, RDRAM, and DRDRAM utili ze narrower, but higher
speed busses. These DRAM architectures can be arranged in parallel
channels, but we study them here in the context of a single-width
DRAM bus, which is the simplest configuration. This yields some
latency penalties for these architectures, as our simulations require
that the controller coalesce bus packets into 128-bit chunks to be
transmitted over the 100MHz 128-bit memory bus. To put the
designs on even footing, we ignore the transmission time over the
narrow DRAM channel. Because of this organization, transfer rate
comparisons may also be deceptive, as we are transferring data from
eight conventional DRAM (FPM, EDO, SDRAM, ESDRAM) con-
currently, versus only a single device in the case of the narrow bus
architectures (SLDRAM, RDRAM, DRDRAM).

The simulator models a synchronous memory interface: the pro-
cessor’s interface to the memory controller has a clock signal. This is
typically simpler to implement and debug than a fully asynchronous
interface. If the processor executes at a faster clock rate than the
memory bus (as is likely), the processor may have to stall for several
cycles to synchronize with the bus before transmitting the request.
We account for the number of stall cycles in Bus Wait Time.

The simulator models several different refresh organizations, as
described in Section 5. The amount of time (on average) spent stall -
ing due to a memory reference arriving during a refresh cycle is
accounted for in the time component labeled Refresh Time.

4.2 Interleaving

For the 100MHz 128-bit bus configuration, the transfer size is eight
times the request size; therefore each DRAM access is a pipelined
operation that takes advantage of page mode. For the faster DRAM
parts, this pipeline keeps the memory bus completely occupied.
However, for the slower DRAM parts (FPM and EDO), the timing
looks like that shown in Figure 8(a). While the address bus may be
fully occupied, the memory bus is not, which puts the slower
DRAMs at a disadvantage compared to the faster parts. For compar-
ison, we model the FPM and EDO parts as interleaved as well
(shown in Figure 8(b)). The degree of interleaving is that required to
occupy the memory data bus as fully as possible. This may actually
over-occupy the address bus, in which case we assume that there are
more than one address buses between the controller and the DRAM
parts. FPM DRAM specifies a 40ns CAS period and is four-way
interleaved; EDO DRAM specifies a 25ns CAS period and is two-
way interleaved. Both are interleaved at a bus-width granularity.

5 EXPERIMENTAL RESULTS

For most graphs, the performance of several DRAM organizations is
given: FPM1, FPM2, FPM3, EDO1, EDO2, SDRAM, ESDRAM,
SLDRAM, RDRAM, and DRDRAM. The first two configurations
(FPM1 and FPM2) show the difference between always keeping the
row buffer open (thereby avoiding a precharge overhead if the next
access is to the same row) and never keeping the row buffer open.
FPM1 is the pessimistic strategy of closing the row buffer after every
access and precharging immediately; FPM2 is the optimistic strat-
egy of keeping the row buffer open and delaying precharge. The dif-

D
R

A
M

Figure 7: DRAM bus configurations. The DRAM/bus organizations used
in (a) the non-interleaved FPM, EDO, SDRAM, and ESDRAM simulations; (b)
the SLDRAM and Rambus simulations; and (c) the parallel-channel SLDRAM
and Rambus performance numbers in Figure 11. Due to differences in bus
design, the only bus overhead included in the simulations is that of the bus
that is common to all organizations: the 100MHz 128-bit memory bus.

(b) Configuration used for SLDRAM, RDRAM, and DRDRAM

(a) Configuration used for non-interleaved FPMDRAM, EDODRAM, SDRAM, and ESDRAM

CPU Memory

Controllerand caches

x16 DRAM

x16 DRAM

x16 DRAM

x16 DRAM

x16 DRAM

x16 DRAM

x16 DRAM

x16 DRAM

128-bit 100MHz bus

CPU Memory

Controllerand caches
128-bit 100MHz bus

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

(c) (Strawman) configuration used for parallel-channel SLDRAM & Rambus performance

CPU Memory

Controllerand caches
128-bit 100MHz bus

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M...

6

ference is seen in Row Access Time, which, as the graphs show, is
not large for present-day organizations. For all other DRAM simula-
tions but ESDRAM, we keep the row buffer open, as the timing of
the pessimistic strategy can be calculated without simulation. The
FPM3 and EDO2 labels represent the interleaved organizations of
FPM and EDO DRAM. The remaining labels are self-explanatory.

5.1 Handling Refresh

Surprisingly, DRAM refresh organization can affect performance
dramatically. Where the refresh organization is not specified for an
architecture, we simulate a model in which the DRAM allocates
bandwidth to either memory references or refresh operations, at the
expense of predictabilit y [26]. The refresh period for all DRAM
parts but Rambus is 64ms; Rambus parts have a refresh period of
33ms. In the simulations presented in this paper, this period is
divided into N individual refresh operations that occur 33/N milli -
seconds apart, where 33 is the refresh period in milli seconds and N
is the number of rows in an internal bank times the number of inter-
nal banks. This is the Rambus mechanism, and a memory request
can be delayed at most the refresh of one DRAM row. For Rambus
parts, this behavior is spelled out in the data sheets. For other
DRAMs, the refresh mechanism is not explicitly stated. Note that
normally, when multiple DRAMs are ganged together into physical
banks, all banks are refreshed at the same time. This is different;
Rambus refreshes internal banks individually.

Because many textbooks describe the refresh operation as a peri-
odic shutting down of the DRAM until all rows are refreshed (e.g.
[14]), we also simulated stalli ng the DRAM once every 64ms to
refresh the entire memory array; thus, every 64ms, one can poten-
tially delay one or more memory references the time it takes to
refresh the entire memory array. This approach yields refresh stalls

up to two orders of magnitude worse than the time-interspersed
scheme. Particularly hard-hit was the compress benchmark, shown
in Figure 9. Because such high overheads are easily avoided with an
appropriate refresh organization, we only present results for the
time-interspersed refresh approach.

5.2 Total Execution Time

Figure 10(a) shows the total execution time for several benchmarks
of SPECint ’95 using SDRAM for the primary memory system. The
time is divided into processor computation, which includes accesses
to the L1 and L2 caches, and time spent in the primary memory sys-
tem. The graphs also show the overlap between processor computa-
tion and DRAM access time. For each architecture, there are three
vertical bars, representing L2 cache cycle times of 100ns, 10ns, and
1ns (left, middle, and rightmost bars, respectively). For each DRAM
architecture and L2 cache access time, the figure shows a bar repre-
senting execution time, partitioned into four components:

• Memory stall cycles due to limited bandwidth

• Memory stall cycles due to latency

• Processor time (includes L1 and L2 activity) that is overlapped
with memory access

• Processor time (includes L1 and L2 activity) that is not
overlapped with memory access

SimpleScalar schedules instructions extremely aggressively and
hides much of the memory latency with other work—though this
“other work” is not all useful work, as it includes all L1 and L2
cache activity. For the 100ns L2 (corresponding to a 100MHz pro-
cessor), between 50% and 99% of the memory access-time is hid-
den, depending on the type of DRAM the CPU is attached to (the
faster DRAM parts allow a processor to exploit greater degrees of
concurrency). For 10ns (corresponding to a 1GHz processor),
between 5% and 90% of the latency is hidden. As expected, the
slower systems hide more of the DRAM access time than the faster
systems.

Figure 10(b) shows that the more advanced DRAM designs have
reduced the proportion of overhead attributed to limited bandwidth
by roughly a factor of three: from 3 CPI in FPMDRAM to 1 CPI in
SDRAM, ESDRAM, and DRDRAM.

Summary: The graphs demonstrate the degree to which con-
temporary DRAM designs are addressing the memory bandwidth
problem. Popular high-performance techniques such as lockup-free

Figure 8: Interleaving in DRAM simulator. Time in Data Transfer Overlap
accounts for much activity in interleaved organizations; Bus Transmission is
the remainder of time that is not overlapped with anything else.

Row
Address

Column

Address

Valid
Dataout

Column

Address

Column

Address

Valid
Dataout

Valid
Dataout

Address

DQ

Bus
Cycle

Bus
Cycle

Bus
Cycle

Data bus

Row
Address

Column

Address

Valid
Dataout

Column

Address

Column

Address

Valid
Dataout

Valid
Dataout

Address0

DQ0

Row
Address

Column

Address

Valid
Dataout

Column

Address

Column

Address

Valid
Dataout

Valid
Dataout

Address1

DQ1

Bus
Cycle0

Bus
Cycle0

Bus
Cycle0

Data bus Bus
Cycle1

Bus
Cycle1

Bus
Cycle1

(a) Non-interleaved timing for access to DRAM

(b) Interleaved timing for access to DRAM

Bus Transmission

Data Transfer Overlap

Data Transfer

Column Access

Row Access

Figure 9: The penalty for choosing the wrong refresh organization. In
some instances, time waiting for refresh can account for more than 50%.

FPM1 FPM2 FPM3 EDO1 EDO2 SDRAM1 ESDRAM SLDRAM RDRAM DRDRAM

DRAM Configurations
0

400

800

1200

T
im

e
pe

r
A

cc
es

s
(n

s)

compress, 100ns L2 cache

Bus Transmission Time
Row Access Time
Column Access Time
Data Transfer Time Overlap
Data Transfer Time
Refresh Time
Bus Wait Time

7

caches and out-of-order execution expose memory bandwidth as the
bottleneck to improving system performance; i.e., common tech-
niques for improving CPU performance and tolerating memory
latency are exacerbating the memory bandwidth problem [5]. Our
results show that contemporary DRAM architectures are attacking
exactly that problem. We see that the most recent technologies
(SDRAM, ESDRAM, SLDRAM, and Rambus designs) have
reduced the stall time due to limited bandwidth by a factor of two to
three, as compared to earlier DRAM architectures. Unfortunately,
there are no matching improvements in memory latency; while the
newest generation of DRAM architectures decreases the cost of lim-
ited bandwidth by a factor of three compared to the previous genera-
tion, the cost of stalls due to latency has remained almost constant.

The graphs also show the expected result that as L2 cache and
processor speeds increase, systems are less able to tolerate memory
latency. Accordingly, the remainder of our study focuses on the
components of memory latency.

5.3 Average Memory Latency

Figure 11 breaks down the memory-system component of Figure 10.
The access times are divided by the number of accesses to obtain an
average time-per-DRAM-access. This is end-to-end latency: the
time to complete an entire request, as opposed to critical-word
latency. Much of this time is overlapped with processor execution;
the degree of overlap depends on the speed of the L2 cache and main
CPU. Since the variations in performance are not large, we only
show three benchmarks that vary most widely. The differences are
almost entirely due to Row Access Time and Bus Transmission Time.

Row Access Time varies with the hit rate in the row buffers,
which, as later graphs show, is as application-dependent as cache hit-
rate. The pessimistic FPM1 strategy of always closing pages wins
out over the optimistic FPM2 strategy. However, with larger caches,
we have seen many instances where the open-page strategy wins;
compulsory DRAM accesses tend to exhibit good locality.

The differences between benchmarks in Bus Transmission Time
are due to write traffic. Writes allow a different degree of overlap
between the column access, data transfer, and bus transmission. The
heavier the write traffic, the higher the Bus Transmission component.
One can conclude perl and ijpeg have heavier write traffic than go.

Though it is a completely unbalanced design, we also measured

latencies for 128-bit wide configurations for Rambus and SLDRAM
designs, pictured in Figure 7(c). These “parallel-channel” results are
intended to demonstrate the mismatch between today’s bus speeds
and fastest DRAMs; they are shown in the bottom right of Figure 11.

Bus Transmission Time is that portion of the bus activity not
overlapped with column access or data transfer, and it accounts for
10% to 30% of the total latency. In the parallel-channel results, it
accounts for more than 50%. This suggests that, for some DRAM
architectures, bus speed is becoming a critical issue. While current
technologies seem balanced, bus speed is likely to become a signifi-
cant problem very quickly for next-generation DRAMs [8]. It is
interesting to note that the recently announced Alpha 21364 inte-
grates Rambus memory controllers onto the CPU and connects the
processor directly to the DRDRAMs with a 400MHz Rambus Chan-
nel, thereby eliminating the slow intermediate bus [12].

EDO DRAM does a much better job than FPM DRAM of over-
lapping column access with data transfer. This is to be expected,
given the timing diagrams for these architectures. Note that the over-
lap components (Data Transfer Time Overlap) tend to be very large
in general, demonstrating relatively significant performance savings
due to page-mode. This is an argument for keeping buses no wider
than half the block size of the L2 cache.

Several of the architectures show no overlap at all between data
transfer and column access. SDRAM and ESDRAM do not allow
such overlap because they instead use burst mode, which obviates
multiple column accesses (see Figure 5). SLDRAM does allow
overlap, just as the Rambus parts do; however, for simplicity, in our
simulations we modeled SLDRAM’s burst mode. The overlapped
mode would have yielded similar latencies.

The interleaved configurations (FPM3 and EDO2) demonstrate
excellent performance; latency for FPM DRAM improves by a fac-
tor of 2 with four-way interleaving, and EDO improves by 25-30%
with two-way interleaving. The interleaved EDO configuration per-
forms slightly worse than the FPM configuration because it does not
take full advantage of the memory bus; there is still a small amount
of unused bus bandwidth. Note that the break-downs of these organi-
zations look very much like Direct Rambus; Rambus behaves simi-
larly to highly interleaved systems but at much lower cost points.

The time stalled due to refresh tends to account for 1-2% of the
total latency; this is more in line with expectations than the results
shown in Figure 9. The time stalled synchronizing with the memory

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Compress Go Ijpeg Li Perl Vortex0

0.5

1

1.5

2

2.5

3

C
lo

ck
s

P
er

 In
st

ru
ct

io
n

(C
P

I)

(a) Total Execution Time in CPI
for All benchmarks using SDRAM

Figure 10: Total execution time + access time to the primary memory system. Figure (a) gives total execution time in units of CPI for different DRAM types.
The overhead is broken into processor time and memory time, with overlap between the two shown, and memory cycles are divided into those due to limited
bandwidth and those due to latency. Figure (b) shows the total execution time in CPI for all benchmarks, using Synchronous DRAM.

Processor Execution
Overlap between Execution & Memory
Stalls due to Memory Latency
Stalls due to Memory Bandwidth

FPM1 FPM2 FPM3 EDO1 EDO2 SDRAM ESDRAM SLDRAM RDRAM DRDRAM

DRAM Configurations

C
yc

le
s

P
er

 In
st

ru
ct

io
n

(C
P

I)

(b) Total Execution Time in CPI
for Perl

8

bus is in the same range, accounting for 1-5% of the total. This is a
small price to pay for a simpler DRAM interface, compared to a
fully asynchronous design.

Summary: The FPM architecture is the baseline architecture,
but it could be sped up by 30% with a greater degree of overlap
between the column access and data transmission. This is seen in the
EDO architecture: its column access is a bit faster due to the latch
between the sense amps and the output pins, and its degree of over-
lap with data transfer is greater, yielding a significantly faster design
using essentially the same technology as FPM. Synchronous DRAM
is another 30% faster than EDO, and Enhanced SDRAM increases
performance another 15% by improving the row- and column-access
timing parameters and adding an SRAM cache to improve concur-
rency, though we note that its improvement over SDRAM is less
dramatic if using a pessimistic close-page strategy as in FPM1.

As modeled, SLDRAM and Rambus designs have higher end-
to-end transaction latencies than SDRAM or ESDRAM, as they
require multiple narrow-bus cycles to complete a 128-bit transaction.
However, they are not ganged together into a wide datapath, as are
the other organizations. Despite the handicap, SLDRAM performs
well , which is important considering it is a public standard. Direct
Rambus comes out about equal to SDRAM in end-to-end latency.
Note that SLDRAM and RDRAM make twice the number of data

transfers as DRDRAM; had they been organized as two DRAMs
wide to put them on equal footing with DRDRAM, which has a 128-
bit transfer width, their latencies would be 20-30% lower.

Where the SLDRAM and Rambus designs excel is in their criti -
cal-word latencies: though SDRAM and ESDRAM win in end-to-
end latency, they are rigid in their access ordering. Parts like Rambus
and SLDRAM are like the interleaved FPM and EDO organizations
in that they allow the memory controller to request the components
of a large block in arbitrary order. Thus, the Rambus parts allow easy
critical-word-first ordering, whereas burst-mode DRAMs do not.

Last, the parallel-channel results demonstrate the failure of a
100MHz 128-bit bus to keep up with today’s fastest parts. Here, we
have placed enough channels side-by-side to create a 128-bit datap-
ath that is then pushed across the 100MHz bus, and Direct Rambus
has roughly the same end-to-end latency as before. Clearly, we are
pushing the limits of today’s busses. The Alpha 21364 will solve this
problem by ganging together multiple Rambus Channels connected
directly to the CPU, eliminating the 100MHz bus [12].

5.4 Cost-Performance Considerations

The organizations are equal in their capacity: all but the interleaved
examples use eight 64Mbit DRAMs. The FPM3 organization uses

Figure 11: Break-downs for primary memory access time, 128-BIT BUS. These graphs present the average access time on a 128-bit bus across DRAM
architectures for the three benchmarks that display the most widely varying behavior. The different DRAM architectures display significantly different access times.
The main cause for variation from benchmark to benchmark is the Row Access Time, which varies with the probability of hitting an open page in the DRAM’s row
buffers. If a benchmark exhibits a high degree of locality in its post-L2 address stream, it will tend to have a small Row Access Time component.

Bus Transmission Time
Row Access Time
Column Access Time
Data Transfer Time Overlap
Data Transfer Time
Refresh Time
Bus Wait Time

FPM1 FPM2 FPM3 EDO1 EDO2 SDRAM ESDRAM SLDRAM RDRAM DRDRAM

DRAM Configurations

0

100

200

300

400

500

T
im

e
pe

r
A

cc
es

s
(n

s)
perl

FPM1 FPM2 FPM3 EDO1 EDO2 SDRAM ESDRAM SLDRAM RDRAM DRDRAM

DRAM Configurations

0

100

200

300

400

500

T
im

e
pe

r
A

cc
es

s
(n

s)

go FPM1 FPM2 FPM3 EDO1 EDO2 SDRAM ESDRAM SLDRAM RDRAM DRDRAM

DRAM Configurations

0

100

200

300

400

500

T
im

e
pe

r
A

cc
es

s
(n

s)

ijpeg

FPM1 FPM2 FPM3 EDO1 EDO2 SDRAM ESDRAM SLDRAM RDRAM DRDRAM

DRAM Configurations

0

100

200

300

400

500

T
im

e
pe

r
A

cc
es

s
(n

s)

PERL — performance of parallel-channel Rambus & SLDRAM

9

32 64Mbit DRAMs, and the EDO2 organization uses sixteen. How-
ever, the cost of each system is very different. Cost is a criterion in
DRAM selection that may be as important as performance. Each of
these DRAM technologies carries a different price, and these prices
are dynamic, based on factors including number of suppliers, sales
volume, die area premium, and speed yield.

In the narrow-bus organization we modeled, money spent on
Rambus and SLDRAM parts does not go directly to latency’s bot-
tom line as with the other DRAMs. The average access time graphs
demonstrate how effectively dollars reduce latency: the only reason
FPM, EDO, SDRAM, and ESDRAM have latencies comparable to
Rambus and SLDRAM is that they are ganged together into very
wide organizations that deliver 128 bits of data per request, though
each individual DRAM transfers only 16 bits at a time. If each orga-
nization had been represented by a single 64Mbit DRAM, the FPM,
EDO, SDRAM, and ESDRAM parts would have had latencies from
four to eight times those in Figure 11. The Rambus and SLDRAM
parts benefit by multiple DRAMs only in that this organization
extends the size of the collective sense-amp cache and thus increases
the row-buffer hit rates (see Figure 13); a single Rambus or
SLDRAM chip will perform almost as well as a group of eight.

Ignoring price premiums, cost is a good argument for the high-
speed narrow-bus DRAMs. Rambus and SLDRAM parts give the

performance of other DRAM organizations at a fraction of the cost
(roughly 1/32 the interleaved FPM organization, 1/16 the interleaved
EDO organization, and 1/8 all the non-interleaved organizations).
Alternatively, by ganging together several Rambus Channels, one
can achieve better performance at the same cost. Accordingly, these
parts typically carry a stiff price premium, but typically less than 8x.

5.5 Perfect-Width Buses

As a limit study, we measured the performance of a perfect-width
bus: 100MHz and as wide as an L2 cache line. The results are shown
in Figure 12. The scale is much smaller than the previous graphs,
and some components have scaled with the change in bus width. The
number of column accesses are reduced by a factor of eight, which
reduces the Column Access and Data Transfer times. The row access
remains the same, as does Bus Wait Time; they appears to have
increased in importance. Bus transmission for a read has been
reduced from 90ns (10 for the request, 80 to transmit the data), much
of which was overlapped with column access and data transfer, to
20ns, none of which is overlapped. Because each request requires
only one memory access, there is no pipelining to be exploited, and
the full 20ns transmission is exposed (10ns each for address and
data). FPM2 and FPM3 look identical, as do EDO1 and EDO2. This

0

70

140

T
im

e
pe

r
A

cc
es

s
(n

s)

0

70

140

T
im

e
pe

r
A

cc
es

s
(n

s)

0

70

140

T
im

e
pe

r
A

cc
es

s
(n

s)

Figure 12: Break-downs for primary memory access time, 128-BYTE BUS. These graphs present the average access time on a 128-byte bus, the same
width as an L2 cache line. Therefore the pipelined access to memory (multiple column accesses per row access) is not seen, and the Row Access component
becomes relatively more significant than in the results of a 128-bit bus (Figure 11). Whereas in Figure 11, variations in Row Access caused overall variations in
access time of roughly 10%, these graphs quantify the effect that Row Access has on systems with wider buses: average access time can vary by a factor of two.

Bus Transmission Time
Row Access Time
Column Access Time
Data Transfer Time Overlap
Data Transfer Time
Refresh Time
Bus Wait Time

FPM1 FPM2 FPM3 EDO1 EDO2 SDRAM ESDRAM SLDRAM RDRAM DRDRAM

DRAM Configurations

perl

FPM1 FPM2 FPM3 EDO1 EDO2 SDRAM ESDRAM SLDRAM RDRAM DRDRAM

DRAM Configurations

go

FPM1 FPM2 FPM3 EDO1 EDO2 SDRAM ESDRAM SLDRAM RDRAM DRDRAM

DRAM Configurations

compress

10

is no mistake. Two configurations are interleaved, the others are not.
Making the bus the width of the request size obviates interleaving.

There are no Overlap components in these graphs. With a 128-
byte bus, each cache line fill requires a single transaction. Overlap is
possible if multiple concurrent requests to the DRAM are allowed,
but this is beyond the scope of our current DRAM simulations.
Overlap shown in previous graphs is due to the overlap of multiple
requests required for a single cache line fill .

As before, the primary variation between benchmarks is the Row
Access Time. The variations are larger than in the previous graphs,
because the row access time is proportionally much larger. The
graphs show that the locality of reference for each application (seen
in the row-buffer hit-rates, Figure 13) can have a dramatic impact on
the access latency—for example, there is a factor of two difference
between the average access latency for compress and perl. This
effect has been seen before—McKee’s work shows that intentionally
reordering memory accesses to exploit locality can have an order of
magnitude effect on memory-system performance [21, 22].

Summary: Coupled with extremely wide buses that hide the
effects of limited bandwidth and thus highlight the differences in
memory latency, the DRAM architectures perform similarly. As
FPM1 and ESDRAM show, the variations in Row Access can be
avoided by always closing the row buffer after an access and hiding
the sense-amp precharge time during idle moments. This yields the
best measured performance and its performance is much more deter-
ministic (e.g. FPM1 yields the same Row Access independent of
benchmark). Note that in studies with a 4MB L2 cache, some bench-
marks executing with an optimistic strategy showed very high row-
buffer hit rates and had Row Access components that were near-zero.

Comparing these results to the previous experiment, we see that
when one considers current technology (128-bit buses), there is littl e
variation from application to application in the average memory
access time. The two components that vary, Row Access and Bus
Transmission, contribute littl e to the total latency, being overshad-
owed by long memory-access pipelines that exploit page mode.
However, moving to wider buses decreases the column accesses per
request, and as a result the row access, which is much larger than
column access to begin with, becomes significant. With fewer col-
umn accesses per request, we are less able to hide bus transmission
time, and this component becomes more noticeable as well .

Variations in row access time, though problematic for real-time
systems, do offer an opportunity to optimize performance: one can
easily imagine enhanced row-buffer caching schemes, row-buffer
victim caches, or even prediction mechanisms that attempt to capi-
talize on the amount of post-L2-cache locality. However, with cur-
rent organizations, such measures make littl e sense.

5.6 Row-Buffer Hit Rates

Associated with each DRAM core is a set of sense amps that can
latch data; this essentially amounts to an SRAM cache, and inter-
nally-banked DRAMs have several of these caches. Collectively, a
DRAM or bank of DRAMs can have a sizable SRAM cache (call it a
row-buffer cache) in these sense amps. The size of each DRAM’s
row-buffer cache is the product of the Row Buffer and Internal
Banks terms in Table 1—except for DRDRAM, which has 17 half-
row buffers shared between 16 banks (a total of 68K bits of storage).

Figure 13 presents the variations in hit rates for the row-buffer
caches of different DRAM architectures. Hit rate does not include
the effect of hits that are due to multiple requests to satisfy one L2
cacheline: these results are for the 128-byte bus. We present results
for two types of traffic: all traffic and read-only traffic. The read-
only results ignore all writes to the DRAM system (which, in write-
back caches, occur only when a line is being replaced).

The results show that memory requests frequently hit the row
buffers; for the full-traffic simulations hit rates range from 8–95%,
with a mean of 40% (mean calculated over only the 1MB L2 cache
results). There is a significant change in hit rate when writes are
included in the address stream: including write traffic tends to
decrease the row-buffer hit-rate for those DRAMs with less SRAM
storage. Writebacks tend to purge useful data from the smaller row-
buffer caches; thus the Rambus, SLDRAM, and ESDRAM parts
perform better than the others. This effect suggests that when write-
backs happen, they do so without much locality: the cachelines that
are written back tend to be to DRAM pages that have not been
accessed recently. This is expected behavior.

Note that a designer can play with the ordering of address bits to
maximize the row-buffer hits. A similar technique is used in inter-
leaved memory systems to obtain the highest bandwidth.

5.7 Trace-Driven Simulations

We also investigated the effect of using trace-driven simulation to
measure memory latency. We simulated the same benchmarks using
SimpleScalar’s in-order mode with single-issue. Clearly, in-order
execution cannot yield the same degree of overlap as out-of-order
execution, but we did see virtually identical average access times
compared to out-of-order execution, for both 128-bit and 128-byte
buses. Because SPEC has been criticized as being not representative
of real-world applications, we also used University of Washington’s
Etch traces [11] to corroborate what we had seen using SPEC on
SimpleScalar. The Etch benchmarks yielded very similar results,
with the main difference being that the row-buffers had a higher

Compress Go Ijpeg Li Perl Vortex
Benchmarks

0

20

40

60

80

100

H
it

R
at

e

ALL TRAFFIC, 4MB L2 Cache

Compress Go Ijpeg Li Perl Vortex
Benchmarks

0

20

40

60

80

100

H
it

R
at

e

READ-ONLY TRAFFIC, 4MB L2 Cache

Figure 13: Hit-rates in the row buffers. These graphs show hit-rates for the benchmarks on each of the DRAM architectures. The newer DRAMs, with more
internal banking, tend to have higher hit rates. Write traffic, due to writebacks, disrupts the locality of the address stream for architectures with fewer internal banks.

Compress Go Ijpeg Li Perl Vortex
Benchmarks

0

20

40

60

80

100

H
it

R
at

e

ALL TRAFFIC, 1MB L2 Cache

FPMDRAM

EDODRAM

SDRAM

ESDRAM

SLDRAM

RDRAM

DRDRAM

11

average hit rate (61% with a 4MB L2 cache, as opposed to 51%),
and a smaller standard deviation (11.4, as opposed to 25.5).

6 CONCLUSIONS

We have simulated seven commercial DRAM architectures in a
workstation-class setting, connected to a fast, out-of-order, eight-
way superscalar processor with lockup-free caches. We have found
the following: (a) contemporary DRAM technologies are addressing
the memory bandwidth problem but not the memory latency prob-
lem; (b) the memory latency problem is closely tied to current mid-
to high-performance memory bus speeds (100MHz), which will
soon become inadequate for high-performance DRAM designs; (c)
there is a significant degree of locality in the addresses that are pre-
sented to the primary memory system—this locality seems to be
exploited well by DRAM designs that are multi -banked internally
and therefore have more than one row buffer; and (d) exploiting this
locality will become more important in future systems when mem-
ory buses widen, exposing row access time as a significant factor.

The bottom line is that contemporary DRAM architectures have
used page-mode and internal interleaving to achieve a one-time per-
formance boost. These techniques improve bandwidth directly and
improve latency indirectly by pipelining over the memory bus the
multiple transactions that satisfy one read or write request (requests
are often cacheline-sized, and the cache width is typically greater
than the bus width). This is similar to the performance optimization
of placing multiple DRAMs in parallel to achieve a bus-width datap-
ath: this optimization works because the bus width is typically
greater than an individual DRAM’s transfer width. We have seen

that each of the DRAM architectures studied takes advantage of
internal interleaving and page mode to differing degrees of success.
However, as the studies show, we will soon hit the limit of these ben-
efits: the limiting factors are now the speed of the bus and, to a lesser
degree, the speed of the DRAM core. To improve performance fur-
ther, we must explore other avenues.

7 FUTURE WORK

We will extend the research to cover large systems, which have dif-
ferent performance behavior. In the present study, the number of
DRAMs per organization is small, therefore the hit rate seen in the
row buffers can be high. In larger systems, this effect decreases in
significance. For instance, in large systems, bandwidth is more of an
issue than latency—hitting an open page is less important than
scheduling the DRAM requests so as to avoid bus conflicts.

As buses grow wider, Row Access Time becomes significant; in
our 1MB L2 studies it accounts for 20–50% of the total latency, and
in our 4MB L2 studies it accounted for 1-50% [8]. Increasing the
number of open rows is one approach to decreasing the overhead, as
seen in the multi -banked DRAMs such as Rambus and SLDRAM.
Other approaches include adding extra row buffers to cache previ-
ously opened rows, prefetching into the row buffers, placing row-
buffer victim-caches onto the chips, predicting whether or not to
close an open page, etc. We intend to look into this more closely, but
wanted to get a rough idea of the potential gains. We kept the last
eight accessed row buffers in a FIFO and kept track of the number of
hits and misses to the buffer, as well as the depth at which any hits
occurred. The results are shown in Figure 14. For each benchmark,

0 2 4 6 8 10
0

10000

20000

30000

40000

50000

0 2 4 6 8 10
0

200

400

600

800

1000

0 2 4 6 8 10
0

50000

1e+05

1.5e+05

2e+05

0 2 4 6 8 10
0

50

100

150

200

0 2 4 6 8 10
0

1e+05

2e+05

3e+05

4e+05

0 2 4 6 8 10
0

50000

1e+05

1.5e+05

Compress

Go

Ijpeg

Li

Perl

Vortex

Hits in Victim-Row FIFO Buffer

Figure 14: Locality in the stream of accesses to the single open row in the FPM DRAM. The top six graphs show the frequency with which accesses to a
given DRAM page hit at stack depth x. The bottom two graphs show the inter-arrival time of accesses that hit in an open DRAM page. Both sets of graphs show
that when references are made to the data in a particular DRAM page, the accesses tend to be localized in time.

2000 4000 6000 8000 10000
Inter-arrival time (in CPU Clocks)

1

10

100

1000

10000

100000

Compress

2000 4000 6000 8000 10000
Inter-arrival time (in CPU Clocks)

1

10

100

1000

10000
Vortex

12

we show the number of misses to the main row buffer. The first
value at the leftmost of each curve is the number of hits at a depth of
one in the FIFO victim buffer. The next value represents the number
of hits at a depth of two, and so on. The rightmost value in each
curve is the number of accesses that missed both the main row buffer
and the FIFO victim buffer. The two graphs on the bottom show the
amount of locality in the two benchmarks with the most widely
varying behavior; the graphs plot the time in CPU clocks between
successive references to the previous open row (i.e. the row that was
replaced by the currently open row: it also happens to be the topmost
entry in the FIFO). This graph demonstrates that when the row is
accessed in the future, it is most often accessed in the very near
future. Our conclusion is that the previously-referenced row has a
high hit rate, and it is likely to be referenced within a short period of
time if it is referenced again at all . A number of proven techniques
exist to exploit this behavior, such as victim caching, set associative
row buffers, etc.

ACKNOWLEDGMENTS

This study grew out of research begun by Brian Davis and extended
by Vinodh Cuppu, Özkan Dikmen, and Rohit Grover in a graduate-
level architecture class taught by Prof. Jacob in the spring of 1998.
Dikmen and Grover were instrumental in the development of the
simulator used in this study.

We would like to thank several researchers at IBM who provided
helpful insight into the internal workings of the various DRAM
architectures: Mark Charney, Paul Coteus, Phil Emma, Jude Rivers,
and Jim Rogers. We would also like to thank Sally McKee for her
detailed comments on and suggestions for the paper, as well as the
anonymous reviewers of the first draft.

Trevor Mudge is supported in part by DARPA grant DABT 63-
96-C0047. Vinodh Cuppu and Bruce Jacob are supported in part by
NSF grant EIA-9806645.

REFERENCES

[1] L. A. Barroso, et al. “Memory system characterization of commercial
workloads.” In Proc. ISCA-25, June 1998, pp. 3–14.

[2] D. Bhandarkar and J. Ding. “Performance characterization of the Pen-
tium Pro processor.” In Proc. HPCA-3, February 1997, pp. 288–297.

[3] N. Bowman, et al. “Evaluation of existing architectures in IRAM sys-
tems.” Workshop on Mixing Logic and DRAM, June 1997.

[4] D. Burger and T. M. Austin. “The SimpleScalar tool set, version 2.0.”
Tech. Rep. CS-1342, University of Wisconsin-Madison, June 1997.

[5] D. Burger, et al. “Memory bandwidth limitations of future micropro-
cessors.” In Proc. ISCA-23, May 1996, pp. 78–89.

[6] M. Charney, P. Coteus, P. Emma, J. Rivers, and J. Rogers. Private
communication. 1999.

[7] R. Crisp. “Direct Rambus technology: The new main memory stan-
dard.” IEEE Micro, vol. 17, no. 6, pp. 18–28, November 1997.

[8] V. Cuppu and B. Jacob. “The performance of next-generation DRAM
architectures.” Tech. Rep. UMD-SCA-TR-1999-1, University of
Maryland Systems and Computer Architecture Group, March 1999.

[9] Z. Cvetanovic and D. Bhandarkar. “Characterization of Alpha AXP
performance using TP and SPEC workloads.” In Proc. ISCA-21, April
1994, pp. 60–70.

[10] ESDRAM. Enhanced SDRAM 1M x 16. Enhanced Memory Systems,
http://www.edram.com/products/datasheets/16M_esdram0298a.pdf,
1998.

[11] Etch. Memory System Research at the University of Washington. The
University of Washington, http://etch.cs.washington.edu/, 1998.

[12] L. Gwennap. “Alpha 21364 to ease memory bottleneck.” Microproces-
sor Report, vol. 12, no. 14, pp. 12–15, October 1998.

[13] L. Gwennap. “New processor paradigm: V-IRAM.” Microprocessor
Report, vol. 12, no. 3, pp. 17–19, March 1998.

[14] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quanti-
tative Approach, 2nd Ed. Morgan Kaufmann Publishers, Inc., 1996.

[15] S. I. Hong, et al. “Access order and effective bandwidth for streams on
a Direct Rambus memory.” Proc. HPCA-5, January 1999, pp. 80–89.

[16] IBM. EDO DRAM 4M x 16 Part No. IBM0165165PT3C. http://www.
chips.ibm.com/products/memory/88H2011/88H2011.pdf, 1998.

[17] IBM. SDRAM 1M x 16 x 4 Bank Part No. IBM0364164. http://www.
chips.ibm.com/products/memory/19L3265/19L3265.pdf, 1998.

[18] K. Keeton, et al. “Performance characterization of a quad Pentium Pro
SMP using OLTP workloads.” Proc. ISCA-25, June 1998, pp. 15–26.

[19] C. Kozyrakis, et al. “Scalable processors in the billi on-transistor era:
IRAM.” IEEE Computer, vol. 30, no. 9, pp. 75–78, September 1997.

[20] D. Kroft. “Lockup-free instruction fetch/prefetch cache organization.”
In Proc. ISCA-8, May 1981.

[21] S. McKee, et al. “Design and evaluation of dynamic access ordering
hardware.” In Proc. International Conference on Supercomputing,
May 1996.

[22] S. A. McKee and W. A. Wulf. “Access ordering and memory-con-
scious cache utili zation.” Proc. HPCA-1, January 1995, pp. 253–262.

[23] B. Nayfeh, et al. “Evaluation of design alternatives for a multiprocessor
microprocessor.” In Proc. ISCA-23, May 1996, pp. 67–77.

[24] B. A. Nayfeh, et al. “The impact of shared-cache clustering in small-
scale shared-memory multiprocessors.” HPCA-2, Feb. 96, pp. 74–84.

[25] Y. Nunomura, et al. “M32R/D—integrating DRAM and microproces-
sor.” IEEE Micro, vol. 17, no. 6, pp. 40–48, Nov. 1997.

[26] S. Przybylski. New DRAM Technologies: A Comprehensive Analysis of
the New Architectures. MicroDesign Resources, Sebastopol CA, 1996.

[27] Rambus. “Rambus memory: Enabling technology for PC graphics.”
Tech. Rep., Rambus Inc., Mountain View CA, October 1994.

[28] Rambus. “64-megabit Rambus DRAM technology directions.” Tech.
Rep., Rambus Inc., Mountain View CA, September 1995.

[29] Rambus. “Comparing RDRAM and SGRAM for 3D applications.”
Tech. Rep., Rambus Inc., Mountain View CA, October 1996.

[30] Rambus. “Memory latency comparison.” Tech. Rep., Rambus Inc.,
Mountain View CA, September 1996.

[31] Rambus. 16/18Mbit & 64/72Mbit Concurrent RDRAM Data Sheet.
Rambus, http://www.rambus.com/docs/Cnctds.pdf, 1998.

[32] Rambus. Direct RDRAM 64/72-Mbit Data Sheet. Rambus,
http://www.rambus.com/docs/64dDDS.pdf, 1998.

[33] P. Ranganathan, et al. “Performance of database workloads on shared-
memory systems with out-of-order processors.” In Proc. ASPLOS-8,
October 1998, pp. 307–318.

[34] M. Rosenblum, et al. “The impact of architectural trends on operating
system performance.” In Proc. SOSP-15, December 1995.

[35] Samsung. FPM DRAM 4M x 16 Part No. KM416V4100C. Samsung
Semiconductor, http://www.usa.samsungsemi.com/products/prod-
spec/dramcomp/KM416V40(1)00C.PDF, 1998.

[36] I. Sase, et al. “Multimedia LSI accelerator with embedded DRAM.”
IEEE Micro, vol. 17, no. 6, pp. 49–54, November 1997.

[37] A. Saulsbury, et al. “Missing the memory wall: The case for proces-
sor/memory integration.” In Proc. ISCA-23, May 1996, pp. 90–101.

[38] SLDRAM. 4M x 18 SLDRAM Advance Datasheet. SLDRAM, Inc.,
http://www.sldram.com/Documents/corp400b.pdf, 1998.

[39] R. Wilson. “MoSys tries synthetic SRAM.” EE Times Online, July 15,
1997. http://www.eetimes.com/news/98/1017news/tries.html.

