646

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.5, MAY 2019

Configurable-ECC: Architecting a Flexible ECC
Scheme to Support Different Sized Accesses
in High Bandwidth Memory Systems

Hsing-Min Chen
Carole-dean Wu

, Shin-Ying Lee

, Trevor Mudge, Life Fellow, IEEE,
, Senior Member, IEEE, and Chaitali Chakrabarti, Fellow, IEEE

Abstract—Designing error correction code (ECC) to guarantee strong reliability for high bandwidth memory (HBM) is imperative

in high performance computers, especially for systems equipped with graphics processing units (GPUs). The design of ECC is
challenging because future GPUs are expected to implement a memory subsystem supporting fine and coarse-grained data accesses
to match the difference in the spatial locality of GPGPU applications. Current ECC designs, however, are developed for a fixed data
fetch granularity. To have a more flexible design, we propose a novel memory protection scheme, called Config(urable)-ECC, which
provides strong reliability for both fine and coarse-grained data accesses. Config-ECC consists of two tiers of ECC protection. The
tier-1 code is a strong product code that can correct errors due to small granularity faults and detect errors caused by large granularity
faults. The tier-2 code is an XOR-based code that is employed to correct errors incurred by large granularity faults. Config-ECC
provides stronger reliability and/or lower energy consumption compared to state-of-the-art fixed 32B and 64B ECC schemes. It reduces
the HBM energy by 17-21 percent while reducing the failure in time (FIT) rate by 20 times compared to a state-of-the-art fixed 64B ECC

scheme with an insignificant 1.2 percent performance overhead.

Index Terms—3D DRAM, memory reliability, error control coding and GPU

1 INTRODUCTION

GRAPHICS processing units (GPUs) play an increasingly
significant role in high performance computers. Mod-
ern GPUs employed in supercomputers are equipped with
very large size of memory. For example, Titan (2012) and
Tianhe-2 (2013) have 109.5 and 375 TB sized memory, respec-
tively. In order to provide greater memory density, lower
access latency, higher bandwidth, and better energy effi-
ciency to sustain the demand of modern GPUs, 3D DRAMs,
e.g., high bandwidth memory (HBM) [1], are projected to be
widely adopted in GPU memory systems in the near future.
In fact, 3D DRAMSs have already been applied in some com-
mercial GPU products, such as Nvidia Tesla P100 [2] and
AMD Radeon R9 FURY X GPU cards [3].
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One of the most important issues in 3D DRAM design for
GPU memory systems is the reliability aspect. While high
performance GPUs are equipped with denser DRAMs, the
system is likely to experience DRAM data failures more fre-
quently. Thus, data stored in the DRAMs is typically pro-
tected by error correction codes (ECC) [4], [5], [6] to detect
and recover from failures. However, promising strong reli-
ability for 3D DRAMSs is more challenging than conven-
tional 2D DRAMSs because in 3D DRAM, a data line is
housed in a single bank instead of striping across multiple
chips like the 2D DRAM organizations.

In addition to the essential differences between the mem-
ory architectures of 3D DRAMSs and 2D DRAMs, designing
an ECC scheme for GPU memory systems is more challeng-
ing than for CPUs. The reason is that the data fetch granu-
larity from GPUs highly depends on the GPU memory
hierarchy configuration. Therefore, it is difficult for HBM
vendors to deliver a fixed memory product. For example,
AMD GPUs, such as the RADEON series, adopt 64B as the
cache line size [7], whereas Nvidia uses 128B L2 cache line
size in many of their GPU products. Furthermore, many
recent studies [8], [9] have shown that GPGPU applications
exhibit mixed locality data access patterns over application
execution. Fig. 1 shows the distribution of data fetch differ-
ent sizes for GPU DRAM accesses. Each color of the bars
indicates the portion of the 128B cache line before its evic-
tion. We can observe that, within an application, the data
access pattern can be mixed, demanding varying size of
data. Therefore, a lot of designs have been proposed to
dynamically predict and accommodate varying cache line
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Fig. 1. The distribution of number of bytes referenced during a cache
line’s lifetime.

sizes for the L1 cache [9] as well as for the L2 cache [8].
Furthermore, in some GPU products, the L2 cache line size
can be statically configured to operate in 2 different modes
(32B or 128B) before a GPU kernel is launched [10]. This is
proposed with compiler level analysis to fully exploit the
varying degree of spatial locality in GPGPU applications.

Traditionally, ECC algorithms used in DRAMs were
optimized for fixed sized data accesses. Examples include
CRC-16 for 32B accesses in [1], symbol-based code for 64B
accesses in [11], [12]. However, applying an ECC scheme
that is optimized for a single data access size leads to subo-
ptimal memory reliability or higher energy consumption
for the other data access sizes. For instance, an ECC algo-
rithm optimized for 64B access leads to additional energy
consumption if the GPU data fetch size is 32B. Alternatively,
an ECC algorithm optimized for 32B data results in lower
reliability compared to one that results in been designed
for 64B data. Clearly, to better support the diversity of cache
configurations in GPUs and the performance feature of
the variable data fetch granularity runtime support for
future GPUs, there is a strong need to develop an adaptive
and flexible ECC scheme.

In this paper, we propose Config(urable)-ECC, an ECC
scheme that not only supports a diverse set of cache hierar-
chy configurations in different GPU cards in the static mode
but is also designed to handle variable data fetch granular-
ities at runtime in the dynamic mode with strong reliability
and/or low energy consumption. Config-ECC is based on a
two-tiered ECC code: The tier-1 code is a product code [4]
that has strong error detection and correction capabilities;
the most important selection of product code is that it
allows the different access sizes. It can correct errors due to
small granularity faults (single bit, column, and TSV fail-
ures) and detect errors with large granularity fault (row or
bank failures) with very low silent data corruption rate. The
tier-2 code, which is based on an XOR structure and stored
in the data banks, is launched for correcting errors due to
large granularity faults.

Config-ECC is built around a core 32B ECC scheme that
can be easily extended to support 64B and 128B accesses.
The product code structure of Config-ECC helps address
the mismatch between data access size and fixed size ECC
scheme. Basically, the inner code is optimized to have very
strong detection capability for 32B access and the combina-
tion of inner code and outer code provides for very strong
reliability for 64B access. Config-ECC improves the silent
data corruption rate (SDC) by 200 times compared to the

32B ECC scheme in the HBM standard and by 20 times
compared to the latest 64B ECC schemes with a negligible
1.2 percent performance overhead [11], [13]. For applica-
tions that prefer small cache line size (32B), Config-ECC has
significant energy reduction (21 percent) compared to the
64B and 128B ECC schemes and also provides stronger reli-
ability than that of a fixed 32B ECC scheme.
Our main contributions are as follows

e We designed a two-tiered ECC scheme to provide
strong error protection for mixed 32B, 64B and 128B
accesses in 3D HBM memory systems used in high
performance GPUs. These three ECC schemes share
the same core structure and can be configured stati-
cally and dynamically to support different sized
accesses.

e Compared to a fixed 32B ECC scheme, Config-ECC
significantly increases the reliability by 200 times for
both static and dynamic modes with only an insig-
nificant 1.2 percent performance overhead.

e Compared to a fixed 64B ECC scheme, Config-ECC
increases the reliability by 20 times when the access
size is 64B or larger. Also, Config-ECC can choose
to only read 32B of data to reduce the energy by
21 percent in the static mode and 17 percent in the
dynamic mode.

The rest of the paper is organized as follows: Section 2
describes the basics of a 3D DRAM memory system followed
by error characteristics and motivation for a flexible ECC
design for GPU system. Section 3 gives the high level over-
view of our proposed Config-ECC and Section 4 presents the
detailed design for 32B accesses. The 32B access scheme is
extended to support the static and dynamic mode accesses in
Section 5. The reliability and simulation infrastructure are
given in Section 6 and the results are shown in Section 7.
Finally, Section 8 concludes this paper.

2 BACKGROUND AND MOTIVATION

2.1 3D High Bandwidth Memory Architecture

In this work, we focus our ECC design for HBM' since
HBM has been integrated with commercial GPU products.
Each layer in HBM houses multiple DRAM banks, each of
which consists of two sub-banks. A group of banks share a
channel. For instance, in the latest HBM standard [1], 8 or
16 banks share a single channel and a single layer consists
of two separate channels. Within a DRAM bank, DRAM
cells are organized into rows and columns, similar to a con-
ventional 2D DRAM bank. A data line is stored in the same
bank in HBM in contrast to a data line being striped across
multiple banks in conventional 2D DRAM:s.

The HBM architecture is shown in Fig. 2. For each read or
write operation, data is accessed from a single bank. The
basic access unit is 32B in HBM1 [14] while the access unit
can be 32B or 64B in HBM2 [1]. The I/O for each channel is
128b with additional 16b for ECC in [1], [15]. While HBM2
supports two modes: the legacy mode and the pseudo chan-
nel mode, here we focus on the pseudo channel mode which

1. Since HBM2 is the latest HBM standard, we use HBM and HBM2
interchangeably throughout this paper.
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Fig. 2. 32B versus 64B accesses in HBM (Pseudo channel mode).

has lower actiaion power and higher bandwidth. In
this mode, a single channel is divided into two sub-channels
each of size 64 bits and so a 32B access is transferred
through 4 bursts (2 cycles). In a 64B access, two sub-
channels are activated at the same time and the 64B access
is also transferred through 4 bursts (2 cycles).

The ECC bits are stored in the data banks instead of
being housed in another die as in [13]. In each access, the
ECC bits are read along with the data bits. We assume that
the storage overhead of ECC is 12.5 percent based on the
HBM standard outlined in [1] and [15].

2.2 3D DRAM Errors

DRAM errors can be broadly classified into soft errors and
hard errors [16], [17]. Soft errors are caused by transient
faults which occur randomly and cause incorrect data to be
read from a memory location; they disappear when the
error location is overwritten. Hard errors are caused by per-
manent faults or intermittent faults. A permanent fault
causes a memory location to consistently return an incorrect
value. Note that a single fault can result in multiple error
instances [16].

DRAM errors can also be classified into those that are
due to small granularity faults such as single bit or single
column that account for 62.8-84.8 percent of all faults, and
large granularity faults such as row and bank failures [16],
[18], [19]. 3D DRAM also has errors due to TSV failures [12],
[13], which fall under small granularity faults. A single row
or bank failure leads to multiple errors which can be seen as
burst errors in a data line. To minimize the miss-error detec-
tion of errors due to large granularity faults, the ECC should
also have strong burst error detection capability. In this
paper, we analyze the capability of the memory system to
handle errors due to small granularity and large granularity
faults (transient and permanent).

Real-world field data from [16] provided DRAM failure
rates as failures in time (FIT) in a single 1 Gb DRAM chip/
device. In this work, we assume that each die consists of
two channels and each channel supports 16 banks with a
capacity of 4 Gb (8 Gb per die). We use the FIT rate from
[16] and scale the failure rate proportionally to the size of
DRAM chips. For each ECC scheme, we report the final
detected and corrected error rate (DCE), detected but uncor-
rected error rate (DUE) and silent data corruption rate
(SDC) [20] of the decoded results; the corresponding analy-
sis is given in Section 7.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.5, MAY 2019

2.3 Related Work
Several ECC schemes have been proposed for 3D DRAM
systems. We discuss a few of them here.

RATT-ECC [11] uses RS code as the tier-1 code to correct
all errors due to small granularity faults and has very strong
detection capability for errors due to large granularity
faults. It relies on a simple tier-2 code to recover from errors
due to large granularity faults. If a spare bank is needed, the
RS code is shortened to support the spare bank.

E-RAS [12] proposed a two tier error correction scheme
with higher than 12.5 percent storage overhead. The first
tier uses a symbol-based ECC code to correct errors due to
small granularity faults, while the second tier is an XOR-
based correction code (XCC) to correct the detectable but
uncorrectable errors due to large granularity faults. It pro-
posed a strategy to deal with permanent TSV (or row) fail-
ures by using spare TSVs (or rows). However, it does not
have very strong detection capability for errors due to large
granularity faults.

Citadel [13] also uses two tier ECC protection to handle
errors due to small and large granularity faults. It uses
CRC-32 to provide strong error detection capability. After
errors are detected, it relies on multiple levels of parity
(3DP) to recover errors. It provides for two spare banks to
handle permanent bank failures. While Citadel is optimized
to handle errors due to permanent faults (TSV, row, bank),
it has a very large overhead for correcting errors due to tran-
sient faults including those that affect only a single bit.

Parity-Helix [21] focuses on the tier-2 code design com-
pared to [11], [12], [13], which focus on tier-1 code. Specifi-
cally, it protects against whole die failure or a single channel
failure. The design is based on the RAID-5 algorithm in a
helical fashion with the parity bits being generated on data
gathered from banks in a die and across dies.

For 2D DRAM ECC schemes, here, we summarize a
few that can support multiple access sizes or reconfigu-
rable structures. For instance, VL-ECC [22] reconfigures the
data protection size so that the most significant bits get
higher protection compared to the other bits. Since the
lower significant bits can still be erroneous, such a scheme
is not acceptable for high performance computing applica-
tions. CLEAN-ECC[23] and DGMS [24] support access sizes
ranging from 16B to 64B. In [23], the ECC is optimized for
correction of a 32b block since a single device failure leads
up to 32b errors in a data line in 2D DRAM. DGMS [24] uses
multiple SEC-DED codes to protect a single data line, specif-
ically, they use 8b to protect every group of 64b of data. Both
CLEAN-ECC [23] and DGMS [24] are not strong enough to
handle 3D DRAM errors.

2.4 Motivation for an ECC Design Supporting GPU’s
Dynamic Varying Data Fetch Sizes
General-purpose GPU kernels exhibit dynamically-varying
data access patterns and different degrees of spatial locality.
Thus, a static, general memory configuration cannot be opti-
mal across all kinds of GPGPU applications. Consequently,
the cache line size in today’s commercial GPU products has
a diversity of configurations. For example, the cache line
size of NVIDIA Fermi GPUs [25] is 128B, the cache line size
of Intel Gen9 GPUs and AMD Graphics [7], [26] is 64B, and
the data fetch granularity of NVIDIA Maxwell GPUs [27] is
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Fig. 3. The normalized execution time speedup with different two cache
configurations: 128B cache line size for both L1 and L2 caches versus
L1 cache disabled and 32B cache line size for the L2 cache.

32B with two different L2 cache line sizes of 32B and 128B.
The device driver of NVIDIA Tesla GPUs can be modified
to launch kernels with two cache configurations. When the
L1 cache is turned on, the L1 as well as for the L2 cache lines
are 128B. When the L1 cache is turned off, the data fetch size
of the L2 cache becomes finer-grain 32B.

Fig. 3 shows the performance characterization results for
GPGPU applications running with the different cache config-
urations on a Nvidia Kepler-based GPU. The blue bars repre-
sent the performance of our baseline system with the L1 cache
enabled, as such, the L2 cache operates at the 128B data fetch
granularity whereas the black bars represent the performance
speedup when the L1 cache is disabled, resulting a finer-
grained 32B data fetch size. Applications in the first category
receiving performance speedup by an average of 1.6X prefer a
finer data fetch granularity while other applications prefer a
coarse-grained data fetch size because of the relative well-
exploited spatial locality. While applications with high spatial
locality favor the 128B data fetch size, applications with poor
degree of spatial locality prefer 32B access granularity.

Also, within a GPU kernel, optimal data fetch granular-
ities can vary as well. Arunkumar et al. demonstrated a
strong correlation between an issuing instruction, its degree
of memory divergence and the optimal data fetch size [9]
whereas Rhu et al. showed a dynamic data fetch granularity
design can significantly improve the performance and
energy efficiency of GPUs [8]. Our own characterization
study (Fig. 1) illustrates a similar trend for a large set of
GPGPU applications. Since the optimal data access granu-
larity changes during the kernel execution at runtime, an
optimized GPU design needs to be able to predict and apply
the optimal memory configuration to improve resource uti-
lization and the performance of the GPGPU application.

Traditional DRAM ECC algorithms are developed and
optimized for fixed sized data accesses. Applying an ECC
algorithm that is optimized for a certain data fetch size causes
configuration mismatch, that leads to sub-optimal reliability
and energy consumption optimization. For instance, an ECC
algorithm optimized for 128B data accesses results in data
over-fetch, if the GPU cache line size is 32B, leading to addi-
tional energy consumption. This is because to perform error
correction for a single 32B request, the entire 128B of
data needs to be fetched. On the other hand, with an ECC
algorithm that is optimized for 32B data, when data requests
from the GPU are of 128B, the degree of reliability guarantee
offered by the 32B-optimized ECC algorithm is lower than

that of an ECC algorithm that is tailored made for 128B
accesses. We refer to mismatches between GPU data fetch
sizes and ECC algorithms as configuration mismatches.

To address the issues due to configuration mismatch, we
propose Config-ECC, a mechanism to provide a strong reli-
ability guarantee while minimizing data fetch energy con-
sumption for the GPU memory subsystem for a varying
granularity of data accesses. The proposed Config-ECC sup-
ports two operation modes:

e  Static Operation Mode which targets at tackling the
mismatch problem by setting to protect small or
large data granularity depending upon the need at
an application level.

e  Dynamic Operation Mode which aims to resolve the
mismatch issue by interleaving small and large sized
ECC protection for supporting the mixed locality
behavior during runtime.

3 OVERVIEW

In order to handle both small and large granularity faults in
HBM systems that support different sized data accesses
(32B, 64B and 128B), we propose, Config-ECC, a flexible
ECC architecture. Config-ECC is based on a two-tiered ECC
scheme, where the tier-1 code is designed to correct errors
due to small granularity faults and to detect errors due to
large granularity faults and the tier-2 code is designed to
perform error correction only when tier-1 code detects
errors due to large granularity faults.

This scheme is very different from existing two-tiered 3D
DRAM ECC schemes [11], [12], [13], which all optimize for
64B access. When GPU requests different sized data, these
schemes have high energy overheads, as will be demon-
strated in Section 7. The existing ECC schemes proposed in
2D DRAM [28], [29], [30] do not have the capability to cor-
rect errors due to large granularity faults in HBM systems
and cannot be used. Virtualized-ECC [28], which provides
single symbol correction and double symbol detection, is
not strong enough for errors due to large granularity faults.

To support strong protection and different sized accesses,
we design a core ECC structure based on 32B accesses and
extend it to support 64B and 128B accesses. This is achieved
by using an inner code and an outer code analogous to prod-
uct codes [4]. The overview of Config-ECC is shown in Fig. 4.
In the dynamic mode, for 32B accesses, we only use the inner
code to protect 32B of data; the outer code is launched when
the inner code detects errors. For 64B accesses, both inner
code and outer code are used, resulting in better reliability
compared to the 32B accesses. For 128B accesses, two sepa-
rate 64B decoding units are used resulting in the same
protection capability as 64B accesses. In the static mode, we
add interleavers to increase the burst error detection capabil-
ity. Recall that large granularity faults manifest as burst
errors and adding interleavers is a low cost method of
improving burst error detection capability. For 64B accesses,
an interleaving unit is used to spread the erroneous bits
in two 256b of data to two inner code decoding units. Simi-
larly, for 128B accesses, the interleaving unit is used to
spread the erroneous bits of four 256b of data to four inner
code decoding units.
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3.1 Design of Tier-1 Code

In our system, the tier-1 code has the following require-
ments. First, it should have strong detection capability for
the different sized accesses. Specifically, it should detect all
errors due to small granularity faults and have very low
SDC rates for errors due to large granularity faults. This fea-
ture is very important since the tier-2 code is only activated
when the tier-1 code detects errors.

Second, the tier-1 code should correct all errors due to
small granularity faults. Recent work on DRAM reliability
indicates that errors due to small granularity faults account
for more than 70 percent of the total faults [17], [18]. Since
the tier-2 code has larger latency and consumes more
energy to correct errors, errors due to small granularity
faults should be corrected by the tier-1 code. Third, the stor-
age overhead of the tier-1 code should be constrained to
12.5 percent, as indicated in the HBM standard [1].

Since the ECC storage overhead is 12.5 percent for the
tier-1 code design, each 32B (=256 bits) of data is protected
by 32 ECC bits. These 32 ECC bits are stored along with the
data in the same bank. Of these 32 bits, N parity bits are
reserved for the inner code and the remaining (32 — N) bits
are reserved for the outer code. The choice of whether more
bits should be allotted to inner code or outer code is dictated
by the following consideration. If we put more bits in the
inner code, it would have strong detection capability but
the outer code might not be able to support correction. On
the other hand, if we put more bits in the outer code, the
inner code might have weak detection capability for errors
due to large granularity faults and might lead to miss-error
events. So we choose to allot more ECC bits to the inner
code to support strong detection capability.

Inner Code. We allocate N parity bits to support correction
or detection of 32B data. If the inner code is designed to pro-
vide for both correction and detection, its overall detection
strength would be lower [4]. So we choose to use the N par-
ity bits for only detection, so that the tier-1 inner code has
strong detection capabilities. Designing the inner code for
strong detection guarantees that errors due to small and
large granularity faults be detected, producing very low
SDC rates. If the inner code detects errors, the tier-1 outer
code can be used to correct errors due to small granularity
faults and the tier-2 code can be used to recover errors due
to large granularity faults.

Outer Code. Of the 32 ECC bits, if N bits are allotted for
tier-1 inner code, we only have 32 — NV bits for the outer
code. If N is (say) 24, there are not enough bits to design an
outer code with the desired detection and correction capa-
bilities. So we combine ECC bits associated with two sets of
32B data. Specifically, we combine 2 x (32 — N) ECC bits to
form the parity bits of the outer code. Such a scheme neces-
sitates tier-1 code to be split across two 32B access units.
The performance penality due to this splitting is very small,
as will be described in Section 7.

The outer code has to correct all errors due to small gran-
ularity faults such as single bit, single column and single
TSV faults. This is achieved by a symbol based code, as
described in Section 4.1.

3.2 Tier-2 Code

Once the errors in the data line are flagged as errors due to
large granularity faults (that cannot be corrected by the tier-
1 code), the tier-2 code is invoked. The tier-2 code corrects
errors due to large granularity faults caused by a single
row/bank failure in a die-stacked DRAM. Our tier-2 code
is based on an XOR-correction code as in [11], [12],
[13], [21]. According to the failure characteristics described
in Section 2, multiple bank failures in the same die are less
likely to occur and we focus on correcting errors due to
one bank failure. In our 3D DRAM structure, there are 128
banks. Of these, one bank is reserved for storing the parity
of data in the remaining 127 banks. Thus when tier-2 code is
launched, 126 data lines and 1 parity line (in the same row
location) are read out and XORed to generate the correct
data line. Our tier-2 code has a storage overhead of 1/127.
Since the tier-2 code parity line is also housed in the data
banks, the real data size in a HBM stack is reduced. Note
that we could have chosen to XOR 64 banks or 32 banks for
lower decoding latency (read 64 or 32 lines per correction)
but at the expense of lower storage capacity.

4 DETAILS OF 32B CONFIG-ECC

This section describes the detailed design of our ECC
scheme for fixed 32B data fetch size HBMs. We first describe
the design of the inner and outer code in Section 4.1. Next,
we summarize the error detection and correction operations
and the decoding flowcharts for 32B accesses in Section 4.2.
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TABLE 1
Inner Code and Outer Code Combination Candidates

Code N 2x(32-N) ECC codes

(inner) (outer) (inner + outer)
1 16 32 2 CRC-16 + RS (73,69)
2 20 24 2 CRC-20 + RS (72,69)
3 24 16 2 CRC-24 + RS (72,70)
4 26 12 2 CRC-26 + SEC-DED (575,564)
5 28 8 2 CRC-28 + N/A

4.1 Design of the Tier-1 Code

As described earlier, the tier-1 code consists of an inner code
which should have strong error detection capability and an
outer code which should be able to correct single symbol
errors. For the tier-1 inner code, both Reed-Solomon (RS)
[31] symbol based code and cyclic redundancy code (CRC)
[32] are good candidates since they have strong detection
capabilities. Low density parity check (LDPC) [4] is not an
appropriate candidate here although it has been success-
fully used in SSD/disk. The reason is that LDPC is designed
for large block size (2 to 8 KB in SSD) while DRAM access
size is 256b or 512b. It also has large decoding latency (10 -
20 cycles), which is unacceptable for DRAM systems and its
good performance comes from soft decision decoding [4],
which cannot be supported in DRAM systems.

Recall that we allocate N parity bits for the inner code,
where N varies from 0 to 32, and 2x(32-N) bits for the outer
code. A large value of N implies that the inner code will have
strong detection capability but the outer code could end up
with poor detection/correction capability. On the other
hand, a small value of N implies that the inner code will
have weak detection capabilty and the outer code will have
strong detection/correction capability. Thus the reliability
performance of the tier-1 code depends on the choice of N.

In order to select the value of N that is best suited for our
ECC scheme, we analyze the performance of 5 candidate
schemes listed in Table 1. If N = 16 (Candidate 1), the SDC
rate is 279 (for 32B access) which is high. The outer code
now has 32b and can support double symbol correction.
However, double column or double TSV failures happen
very infrequently and so allocating 32 bits to the outer code
is an overkill. Candidate 2, corresponding to N = 20, has SDC
rate of 272, which is lower than Candidate 1, as expected.
The outer code now provides single symbol correction
and double symbol detection. Candidate 3, corresponding
to N = 24, has SDC rate 27%* (for 32B access) and the corre-
sponding outer code can support single symbol correction.
This is strong enough to handle errors due to single TSV fail-
ure or single column failure. Candidate 4, corresponding to
N = 26, has better SDC rate compared to the N = 24 case but
the outer code now only has 12 bits. The only available code
is SEC-DED (575,564), which cannot correct errors due to a
single TSV failure and is thus not appropriate. Candidate 5,
corresponding to N = 28, only has 8b for the outer code and
thus is not strong enough for even a single bit correction.
From this analysis, we conclude that the outer code needs a
minimum of 16b (2 x 8 symbols to perform single symbol
correction), which means N should be smaller than or equal
to 24. So we choose N = 24 for Config-ECC. Its inner code has

strong detection capability and its outer code can support
single symbol correction. Together, the tier-1 code can cor-
rect all small granularity faults and provide good detection
capability for large granularity faults.

For the outer code, we choose RS (72,70) over finite field
GF(2®). It can provide single error correction because its
minimum distance is 3 [4]. Since the errors due to small
granularity faults might occur in the data bits as well as the
CRC parity bits, the RS (72,70) code is used to protect both
data bits and CRC parity bits.

For the design of the inner code with N = 24, we choose
CRC-24 over RS (35,32) code in GF(2%). While both codes
use 24b ECC to protect 256b data, RS (35,32) can detect three
symbol errors among 35 symbols (8 bits per symbol) but
cannot guarantee detection of 24 consecutive bit errors in a
280 bit (35 x 8) codeword. In contrast, CRC-24 can detect
any 24 consecutive bit errors in the 280 bit codeword and
since it has minimum distance of 6 [33], it can detect up to 5
random bit errors. Overall, CRC-24 has stronger detection
capability in terms of random bit error detection and burst
error detection compared to RS (35,32). Furthermore, imple-
mentation of CRC is straight forward and so for the tier-1
inner code, we choose the CRC-24 code. Specifically, we
choose the CRC polynomial 0OxBD80DE from [33], [34]. This
polynomial has the largest minimum distance of 6 among
all CRC-24 codes and also detects all odd number of errors.

4.2 Error Correction & Detection

The flowchart for 32B access and the corresponding ECC
decoding steps are summarized in Fig. 5. The decoding pro-
cess is as follows: (i) if the CRC-24 unit reports error-free,
the RS decoder is not launched, (ii) if CRC unit reports
errors (the first pass), an additional read is issued to retrieve
the second 256b data. If only the first CRC unit reports
errors, the RS decoder is launched to perform single symbol
correction. After the correction, the two CRC units check
whether there are any remaining errors. If two CRC units
report errors in the beginning, RS decoder is not launched
and tier-2 code is activated. Next we analyze the error cor-
rection and detection capability of the 32B access scheme.

Errors Due to Small Granularity Faults. CRC-24 will suc-
cessfully detect errors due to a single bit failure and a single
column failure. A single TSV failure results in 4-bit error,
which can be detected by one CRC-24 since CRC-24 has
minimum distance of 6. A small granularity fault only leads
to one symbol error in a RS codeword, which can be
corrected.

Errors Due to Large Granularity Faults. After the RS (72,70)
decoder performs correction, two CRC-24 codes recheck the
CRC bits. If any one of the two CRC-24 codes flags errors,
the tier-2 code has to be activated to correct errors due to
large granularity faults.

Silent Data Corruption. There are two situations when the
tier-1 code suffers from silent data corruption. First, when
the CRC decoder detects errors, the RS code performs error
correction and the two CRC codes miss-detect the corrected
words. If the RS code performs correction, the two CRC
codes recheck the decoded data again. If two CRC codes
miss-detect the errors, an SDC event occurs.

Second, the CRC miss-detects errors at the first detection;
RS(72,70) will not be launched and the RS decoder cannot
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Fig. 5. 32B access flowchart.

help in this case. Hence, it is very important that tier-1 inner
code to have very strong detection capabilities.

5 EXTENSIONS OF CONFIGURABLE-ECC

In this section, we explain how our 32B ECC scheme can
be easily extended to support Dynamic Operation Mode
(Section 5.1) and the Static Operation Mode (Section 5.2).

5.1 Dynamic Mode Protection
5.1.1 64B Access Size

In this case, two 32B of data and two 32b of ECC are read
out from two sub-banks and sent to the tier-1 decoder. The
tier-1 decoder checks for errors using CRC-24 decoder, cor-
rects single symbol error using RS (72,70) and launches tier-
2 if errors are detected.

The decoding steps for 64B access are as follows: (i) if
only one CRC-24 code reports errors, the RS (72,70) decoder
performs single error correction, followed by CRC-24 detec-
tion as in the 32B access scheme, (iii) if two CRC codes
report errors, RS decoder is not activated and the tier-2
decoder is launched. (iii) if two CRC-24 codes report error-
free, the RS (72,70) decoder performs double error detection.

If two CRC codes report errors at the same time, it means
that the errors must not have been caused by the small granu-
larity faults and thus tier-2 code is triggered. The decoding
case (iii) is different from the 32B access scheme where the RS
(72,70) decoder was used for single symbol correction. Since
RS (72,70) code can perform either single error correction or
double error detection, once two CRC codes report error-free,
the RS decoder activates double error detection to avoid possi-
ble miss-error detection by two CRC codes. The decoding
flow chart is presented in Fig. 6. Our analysis of the error per-
formance of the 64B access scheme is as follows.

No Errors. When there are no errors, 2 CRC-24 codes and
RS (72,70) report error free and the memory controller sends
the 512b to the lower level cache.

Errors Due to Small Granularity Faults. A single bit failure
and a single column failure lead to one bit error which can
be fully detected by one CRC-24 code. A single TSV failure
results in 4 bit errors in one CRC-24 code and since CRC-24
has minimum distance of 6, the CRC-24 code can fully

64B Access 2 CRC-24 No RS (72,70) Case (iii)
Read
detect errors? detects errors? No
1 Yes Yes

1 CRC-24 2 CRC-24 Sends 512b to

reports errors report errors LLC
Case (i) l Case (ii)

RS (72,70)

performs

correction

2 CRC-24 Yes Report mt{ltlple
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detect errors? .
tier-2
l No
Error Free

Fig. 6. Decoding flowchart for 64B access.

detect this error event. Thus, when there is a small granular-
ity fault, only one CRC-24 code report errors. The small
granularity fault only causes one symbol error in an RS
codeword, and can be fully corrected.

Errors Due to Large Granularity Faults. When two CRC-24
codes declare errors, tier-2 code is launched. This is because
the number of errors is beyond the correction capability of
the RS code.

Silent Data Corruption. Silent data corruption can occur in
the following scenarios. First, two CRC-24 codes declare
error free, and RS (72,70) also declares error free. Second,
one CRC-24 code declares errors, RS (72,70) performs cor-
rection and two CRC-24 codes declare error free.

5.1.2 128B Access Size

Here, 128B of data is split into two 64B of data and fed to two
Contig-ECC 64B units and thus the decoding flow is the same
as 64B access (see Fig. 6). Consequently, the 64B access scheme
and the 128B access scheme have identical reliability.

5.2 Static Mode Protection

Errors due to large granularity faults manifest as burst
errors. So we propose to add interleaving units to improve
the overall error detection capability.

5.2.1 64B Access Size

We interleave 32B data from each sub-bank and then encode
it with CRC-24 code. Such a scheme increases the burst error
detection capability without the use of a larger CRC code
which has higher hardware complexity. The interleaved
CRC decoding procedure is based on the method in [35].
The bit sequence of two 32B data lines are redistributed as
follows. In each data line, if the bit position modulo 2 is 0,
it is sent to the first CRC-24 unit; if the bit position modulo
21is 1, it is sent to the second CRC-24 unit. After interleaving,
the decoding steps are the same as dynamic Config-ECC
64B scheme.

5.2.2 128B Access Size

128B of data are redistributed before sending to four CRC-
24 units. Assume that for the first 64B access, 32B are read

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 10,2020 at 05:24:59 UTC from IEEE Xplore. Restrictions apply.



CHEN ETAL.: CONFIGURABLE-ECC: ARCHITECTING A FLEXIBLE ECC SCHEME TO SUPPORT DIFFERENT SIZED ACCESSES IN HIGH... 653

A single bank in HBM

! I
I
LN 3) 00
| —— ——
| 256b256b 256b 256b :
I
. :
| L _Eo—e I
Subbank0 Subbankl
RS(72,70)-1
— — CRC-24-0 8b
o 256b 256b
o) — e - CRC-24-1 8b
256b — Interleaving 256b
QT ne CRC-24-2 8b
QT e CRC-24-3 8b
RS(72,70)-2

Fig. 7. Configurable-ECC for 128B access: Static mode.

from sub-banks 0 and 1 as shown in Fig. 7. If the bit position
modulo 4is 0, 1,2 and 3, then that bit is send to CRC-24 unit
0, 1, 2 and 3, respectively. Now for the second 64B access,
the mapping function is a little different. For data lines 3
and 4, if the bit position modulo 4 is 1, 0, 3 and 2, these bits
are sent to CRC-24 units 0, 1, 2, and 3, respectively. This
mapping function was designed to avoid 8 bit errors due to
a single TSV failure be sent to the same CRC unit.

The decoding steps for static 128B access are as follows:
(i) if one or two CRC-24 units report errors, the RS decoder
performs single error correction, (ii) if more than two CRC-
24 decoder report errors, RS decoder is not activated and
tier-2 decoder is launched, (iii) if four CRC units report error
free, the RS decoder performs double error detection. The
decoding flowchart is given in Fig. 8. Small granularity
faults will fall in case (i). The large granularity faults fall in
either case (ii) or case (iii).

6 METHODOLOGY

We introduce the experimental setup used to evaluate
the reliability, performance and energy consumption of
Configurable-ECC in this section.

6.1 Setup for Reliability Evaluation

To measure system-level failure probability, we use Monte
Carlo based simulations. The number of trials is at least 1
billion. Since the number of simulations is very large, we
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tier-2
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Error Free

Fig. 8. Decoding flowchart for 128B access: Static mode.

TABLE 2
GPU and HBM System Configuration
GPU Architecture
# of SMs, 15
Max. # of Wraps per SM 48
Max. # of Blocks per SM 8
# of Warps per SM 32
# of Schedulers per SM 2
# of Registers per SM 32768

L1 inst. cache 2 kB per SM, 128B line size

4 sets, 4-ways

L2 cache 768 kB, 128B line size 32 sets,
8-ways, 6 banks

Scheduler Greedy-then-oldest (GTO)

HBM Configurations

Capacity 4GB per stack

# of Channels 8

# of banks 16 per channel

170 144 per channel

Memory clock 0.5GHz

Row Size 1 kB for 32B access

(pseudo channel mode) 2 kB for 64B access

HBM Memory tRC=24, tRCD=7, tRP=7,

Timing (cycles) tCL=7, tRAS=17, tRRD=3,

tCCD=2, tWL=1, tRTP=2

use the Mersenne Twister algorithm as the pseudo number
generator to generate error patterns that ensure randomness
[36]. We inject faults into the 3D HBM DRAM system and
analyze the results after ECC decoding. Our procedure to
calculate the reliability of each ECC scheme is similar to
others [11], [12], [13], [21].

For errors due to single bit and single column failure,
we assume that there is one single bit error per access (32B,
64B or 128B). We assume that the number of bit errors due
to a single TSV failure is 4, 8 and 8 for 32B, 64B and 128B
access, respectively. Prior work [17] indicated that a row or
bank failure could result in 3 to 31 random bit errors. While
[12] simulated this error event, [21], [37] pessimistically
assumed that half of the bits in each data line are erroneous.
In our simulations, we inject 3 to 128 random bit errors in a
data line to model errors due to large granularity faults.

We ECC decoding results to check whether the errors
are detectable and correctable errors (DCE), detectable but
uncorrectable errors (DUE) or result in silent data corrup-
tion (SDC) [20]. Finally, we also use the raw FIT rate pro-
vided from [11] and give the final FIT rates of our three
Configurable-ECC schemes in Table 7.

6.2 System Simulation Infrastructure

To evaluate the performance of our ECC schemes in terms
of performance and energy consumption, we use GPGPU-
Sim (version 3.2.2), a cycle-level performance simulator
of a general purpose GPU architecture. The key micro-
architectual parameters of the baseline configuration are
summarized in Table 2. The GPGPU-Sim simulator is also
used to generate DRAM traces for energy calculations.
To generate the DRAM traces, we assume that the L2
cache is equipped with a perfect spatial locality predictor.
The assumption of perfect spatial locality predictor was
done to simplify the model. Such an assumption results
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TABLE 3

Benchmarks for Timing and Energy Evaluation
Abbr Application Dataset
RD_KMN K-Means [41] 494020 objects
PAN_PAG Page Rank [40] 1M data entries
PAN_SPM Sparse Vector Multiplication [40] 1M points
MAR_PVR Page View [39] 1M pages
RD_BFS Breadth-First-Search [41] 65536 nodes
NV_BIO Binomial Options [38] 512 Options
PAN_FW Floyd Warshall [40] 256(V), 16K (E)
RD_PF Particle Filter [41] 28x128x10 nodes
RD_HOT Hotspot [41] 512x512 nodes
NV_MC  Monte Carlo [38] 256 options
PAN_CMX Graph Coloring Max [40] ecology
RD_STC Streamcluster [41] 32x4096 nodes
PAN_FB Floyd Warshall Block [40] 256(V), 16K (E)
PAN_MIS Maximal Independent Set [40] ecology
RD_BP  Back Propagation [41] 65536 nodes

in fewer number of data bits being read from DRAM,
thereby saving energy. In other words, this assumption
show cases the best energy saving provided by our
scheme. For each DRAM trace, we record the issued time
of DRAM requests and number of bytes that have been
referenced during a cache line’s lifetime at the L2
cache controller. We use the DRAM traces to compute
the energy consumption of the different ECC schemes.
We select a wide range of benchmarks from Nvidia SDK
[38], Mars [39], Pannotia [40], and Rodinia [41], [42]
benchmark suites to represent the diversity of memory
access patterns in GPUs. The details of benchmarks are
listed in Table 3.

6.3 Config-ECC Decoding Latency

The decoding latency of Config-ECC is due to CRC-24 (for
32B access) and CRC-24 + RS (66,64) (for 64B or 128B
access). CRC-24 can be implemented as a lookup-table and
so its latency is very low. Since HBM2 operates at 500 MHz,
one cycle period is 2 ns. The table-lookup method can be
optimized for one cycle delay decoding. Hence, if the read
request is 32B, the memory controller needs one additional
cycle to generate the redundancy bits. When the access is
64B, two CRC-24 codes and one RS code will be launched at
the same time and we assume these two units can be
decoded parallelly. The decoding latency of RS (66,64) is
also quite small. Its syndrome calculation unit (critical path)
is only 0.42 ns using 28 nm library. RS code doesn’t need to
wait for the decoding results of CRC-24 because it just per-
forms detection. The memory controller only has to check
whether the two syndrome vectors are zero vector or not.
Thus the ECC decoding overhead is only one cycle for 32B,
64B and 128B accesses; we add this one additional cycle in
our timing performance simulation.

Use of tier-2 code to correct large granularity faults
comes with a large overhead. This is the case for the other
existing schemes [11], [13] as well. Specifically, tier-2 code
of Config-ECC is an XOR-based code which requires 127
additional reads and thus has large decoding latency and
large energy overhead. We find that if 127 reads are distrib-
uted across 8 channels and each read is from a different
bank in a channel, the latency is around 400 ns. Since the
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large granularity faults are very rare, the latency of tier-2
code can be well hidden.

6.4 HBM Energy Modeling

We model HBM energy consumption using DRAMSim2
[43], a cycle-level accurate memory system simulator. For
activation/precharge energy, we use the latest value pro-
vided by CACTI-3D [44] and plug this value into the simu-
lator. For 1 kB page size, we assume that the row energy is
1.5 nJ [21] and for 2 kB page size, we scale the row energy
to 3 nJ. Similarly, we assume 32B read/write energy to be
4 nJ based on CACTI-3D. Since there is no publicly available
data for HBM background and refresh current, we only
show the results when only activation/precharge and
read/write energy are considered.

6.5 Summary of Read/Write Accesses of the
Dfiferent Schemes

For better understanding of the performance and energy
results, we summarize the different types of accesses for
32B ECC [1], 64B ECC [13], 128B ECC, and Config-ECC. The
32B ECC scheme is based on CRC-16 [1], the existing 64B
ECC scheme is Citadel [13],% and the 128B ECC scheme was
designed exclusively for 128B data. Such a 128B scheme
would have very high reliability for the same 12.5 percent
parity storage.

32B Read Request. Config-ECC and [1] have no additional
reads but [11], [13] have an additional 32B read since their
ECC are based on the design of 64B access. Any 128B ECC
scheme would have to read additional 96B of data to per-
form ECC decoding.

32B Write Request. There is no overhead for [1]. However,
Config-ECC has to read an additional 32B of data (if it is not
cached) while [11], [13] have to peform a 64B read first and
then write 64B back. The 128B ECC scheme needs to per-
form a 128B read and write 128B data back.

64B Read Request. There is no overhead for Config-ECC,
[1] and [11], [13]. The 128B ECC scheme needs to read
another 64B of data.

64B Write Request. There is no overhead for Config-ECC,
[1] and [11], [13] as well. The 128B ECC scheme needs to
read an additional 64B of data and write 128B data back.

128B Request. For both read and write requests, there is
no addtional overhead for any of the ECC schemes.

Since all ECC schemes are two-tiered ECC schemes, we
assume that the latency of the updates for tier-2 code is well
hidden by the ECC cache as in [11], [12], [13]. The updates
of tier-2 code degrade the timing performance by 3 percent
and we include this in our simulation results.

7 RESULTS AND ANALYSIS

7.1 Timing Performance Analysis

To evaluate the performance overhead of Config-ECC,
we inject additional read and write operations for mem-
ory requests of various granularities, as summarized in
Section 6.5. We ran simulations by assuming that each 32B
write always has a 32B read before it. This represents the

2. RATT-ECC is also an ECC scheme based on 64B access and it has
similar performance/energy results compared to Citadel.
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TABLE 4
Read/Write Overhead of Different ECC Schemes
32B Read 32B Write 64B Read 64B Write
32B ECC 32B read + 32B write to 64B read + 64B write to update
[1] CRC-16 update CRC-16 CRC-16 decoding CRC-16
64B ECC 64B read + 64B read + CRC-32 decoding 64B read + 64B write to update
[13] CRC-32 64B write to update CRC-32 CRC-32 decoding CRC-32
128B ECC 64B read + 128B read + 128B ECC decoding 128B read + 128B read + 128B write to
128B ECC + 128B write to update 128B ECC 128B ECC decoding update 128B ECC scheme
Config-ECC ~ 32Bread + 32B read + CRC-24 decoding 64B read + CRC-24 64B write to update
CRC-24 + 64B write to update CRC-24 + RS (72,70) & RS (72,70) decoding CRC-24 & RS(72,70)

worst case performance scenario for Config-ECC. Our eval-
uation results show that the increase in the write latency
has negligible performance impact across the diverse set of
applications. The average performance degradation is 1.2
percent with the worst case of 3.7 percent for RD_SRA 2.

We attribute the insignificant performance penalty of Con-
fig-ECC to four major reasons. First, a write operation is not
latency critical. The GPU pipeline does not need to stall for
the completion of write operations. Second, GPU applications
are less latency sensitive [45], [46], [47], [48]. The slight latency
increase, incurred for 32B write operations, can be well over-
lapped by the multithreading execution feature of GPUs.
Third, write operations, in particular 32B granularity accesses,
account for a small fraction of all DRAM accesses for GPGPU
applications. Our characterization results show the fraction of
write operations ranges from 0.8 to 49.1 percent with an aver-
age of only 20.8 percent for all benchmarks. Finally, the
latency to read or write 32B or 64B data in HBM2 is similar
because of the pseudo-channel feature of HBM2. A single
64B read or write operation can be split into two 32B opera-
tions, which are performed concurrently. Consequently, the
latency overhead is tolerable under Config-ECC. Overall, our
performance evaluation shows that, compared with the base-
line 32B ECC scheme, the execution time speedup is only
degraded slightly by a negligible 1.2 percent on average for
applications that prefer a smaller cache line granularity, as
shown in Fig. 9.

64B ECC scheme and 128B ECC scheme have more addi-
tional reads and writes compared to Config-ECC for the
benchmarks that prefer small cache line size. However, timing
overhead does not lead to huge difference but the energy con-
sumptions lead to large difference. Hence, we perform a com-
prehensive comparsion for DRAM energy in the later section.
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Fig. 9. Performance variation with Config-ECC (The performance of
Config-ECC is evaluated under the worst case, such that all write opera-
tions are in 32B and cannot be coalesced into a 64B/128B operation).

7.2 Reliability Comparison
7.2.1 32B Access Schemes

We provide detailed comparison of our Config-ECC 32B
scheme to the baseline CRC-16 scheme [1] and the single
bit correction and double bit detection code (SEC-DED)
used by Nvidia Tesla P100 [2]. Other schemes such as the
rotational code which uses 16b ECC to protect 128b data
[12] and BCH based schemes are not as competition. For
instance, the scheme in [12] has an SDC rate of 3E-2, which
is too high for detecting errors due to large granularity
faults, which accounts for 36 percent of all faults in Table 7.
Similiarly, a BCH code that can be used to correct 3 bit
errors and maybe detect 4 bit errors (there is no BCH code
to correct 4 bit errors with 32 ECC bits) also does not pro-
vide strong detection capability for errors due to large gran-
ularity faults. It is not even strong enough to correct 4 bit
errors caused by a single TSV failure.

The SDC rate of Config-ECC 32B scheme is dominated by
the detection capability of the CRC-24 code. The reason is
that once CRC code miss-detects errors, the RS decoder is
not activated. Simulation result shows that CRC-24 has SDC
rate of 7E — 8 (10 billion runs), which is very close to its the-
oretical SDC rate 272! = 5.9F — 8.

Both the baseline CRC-16 scheme and the SEC-DED
scheme have higher SDC rate. CRC-16 can detect all errors
due to small granularity faults and has an SDC rate of
1.5E — 5 for errors due to large granularity faults. The dis-
advantage of using CRC-16 as the tier-1 code is that it can
only perform detection and all correction has to be done by
the tier-2 code.

We assume SEC-DED code in [2] is based on Hamming
(72,64), which protects 64 data bits with 8 parity ECC bits.
The Hamming (72,64) SEC-DED can correct all errors due to
small granularity faults but it has very poor SDC rate for
errors due to large granularity faults. The error performance
of the three competing schemes is shown in Table 5.

Using raw FIT rate number from [11], we calculate the
final FIT rates of all schemes. CRC-16 and SEC-DED have
final FIT rate of 3.7E-3 and 68.9, respectively. In contrast,
our Config-ECC 32B reduces the raw FIT rate to 1.69E-5,
which is 200x better than the baseline CRC-16.

Compared to Citadel or RATT-ECC (64B ECC schemes),
our CRC-24 has higher SDC rate (300x). Both Citadel and
RATT-ECC designs are optimized for 64B access and thus
force the system to read 64B even if the application only
needs 32B. However, the product code design of Config-ECC
allows the system to either choose better performance but
lower reliablity(32B access with CRC-24) or better reliablity
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TABLE 5
The Error Protection Coverage for 32B Config-ECC
and the Existing Schemes
CRC-16 SEC-DED Config-ECC 32B
(Baseline) (Nvidia) (Proposed)
Single bit DCE:0% DCE:100%  DCE:100%
or column DUE:100% DUE:0% DUE:0%
failure SDC:0% SDC:0% SDC:0%
Single TSV DCE:0% DCE:100%  DCE:100%
failure DUE:100% DUE:0% DUE:0%
SDC:0% SDC:0% SDC:0%
Singlerow  DCE:0% DCE:0% DCE:0%
or bank DUE:(1-1.5E-5) DUE:72% DUE:(1-7E-8)
failure SDC:1.5E-5 SDC:28% SDC:7E-8

(64B access with CRC - RS product code) for 32B access appli-
cation. The next section explains why our tier-1 code has
stronger reliablity compared to the current 64B ECC schemes.

7.2.2 64B Access Schemes

We compare Config-ECC 64B scheme to two recent ECC
schemes: Citadel [13] and RATT-ECC [11]. For 64B access
without interleaving, SDC events can occur due to (i) two
CRC-24 decoders declaring error free, and RS (72,70) decoder
also declaring error free in spite of errors, (ii) one CRC-24
decoder declaring errors, RS (72,70) performing correction
and two CRC-24 decoder declaring error free even when
errors are presented. The SDC rate of (ii) is very low because
the probability of two CRC-24 codes detecting errors wrongly
at the same time is extremely low (around 2 x 272%). We
assume the worst condition when errors are all located in one
32B of data line in case (i). In this case, the SDC rate is calcu-
lated theoretically to 272! x 2710 =~ 9.0F — 13 (close to 1072).
We did not see any error events in 10'? runs and so we conser-
vatively claim that the SDC rate is lower than 10~'?. Note that
the interleaving 64B access scheme used in static mode have
similar SDC rate but stronger burst error detection capability.

Citadel [13] uses CRC-32 as the tier-1 code to detect
errors and relies on tier-2 code to perform all correction.
RATT-ECC [11] uses a stronger tier-1 code, RS(70,64), and
so can correct all errors due to small granularity faults. The
extended version of Citadel [49] uses CRC-30 (instead of
CRC-32) and single bit correction, and has lower detection
capability compared to the original scheme [13]. The

TABLE 6
The Error Protection Coverage for 64B Config-ECC
and the Existing Schemes

CRC-32 RS(70,64) Config-ECC 64B
[13] [11] (Proposed)
Single bit ~ DCE:0% DCE:100% DCE:100%
or column DUE:100% DUE:0% DUE:0%
failure SDC:0% SDC:0% SDC:0%
Single TSV DCE:0% DCE:100% DCE:100%
failure DUE:100% DUE:0% DUE:0%
SDC:0% SDC:0% SDC:0%
Single row DCE:0% DCE:0% DCE:0%
or bank DUE:1-SDC DUE:1-SDC DUE: 1 - SDC
failure SDC:2.3FE — 10 SDC:24FE —10 SDC:1E — 12
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TABLE 7
The Final FIT Rate of Config-ECC Schemes

Failure Mode Raw FIT 32B 64B/128B
Single bit 238 0 0
Single column 70 0 0
Single row 84 5.9E-6 8.4E-11
Single bank 162 1.1E-5 1.6E-10
Single TSV 41 0 0
Summary 685 1.69E-5 2.44E-10

simulation results show that our Config-ECC 64B scheme
has SDC rate lower than 1E — 12, making it at least 40x
stronger than [13] and [11]. Our Config-ECC 64B reduces
the raw FIT rate to 2.44E-10, which is 20x better than [13]
and [11], and 40x better than [49].

Parity-Helix [21] can protect from a whole channel fail-
ure or a whole die failure. It has a storage overhead of
14.3 percent for the tier-2 code and 26.8 percent for the
overall ECC design (tier-1 + tier-2). While Config-ECC
uses XOR-correction code to correct errors due to a single
bank failure, it can be extended to support 3DP [13] or
Parity-Helix [21].

7.2.3 128B Access Schemes

Since there is no current ECC scheme designed for 128B
access, we only analyze the reliability metrics of our Config-
ECC 128B scheme. In the dynamic mode, Config-ECC
128B is built using two Config-ECC 64B units and so the
reliability performance of Config-ECC 128B is the same as
Config-ECC 64B. In the static mode, Config-ECC 128B uses
an interleaver to detect up to 96 consecutive burst errors.
Table 7 summarizes the final FIT rates of our Config-ECC.

7.3 Energy Comparison

The energy overhead is due to the mismatch between the
data access size and data size used for the different ECC
schemes. It is a function of the numbers of reads, writes,
and row activations.

7.3.1  Dynamic Operation Mode

We present the energy results of the four competing schemes
in Fig. 10.> For the GPGPU applications that show a
mixed data fetch size preference, RD_KMN, PAN_PAG,
PAN_SPM, MAR PVR, and RD_BFS (the first five applica-
tions in Fig. 1), Config-ECC achieves a good balance between
strong reliability guarantee and low energy consumption.
Compared to the lowest energy 32B ECC design, Config-
ECC increases the active energy consumption by 1.5 percent
while providing 200 times stronger reliability guarantee. The
last five benchmarks, NV_BIO, RD PF, PAN CMX, RD STC
and PAN_MIS have small fractions of accesses that are 32B
and 64B, so the energy results are also very similar among
all the schemes.

3. We observe that, of the 15 benchmarks listed in Table 3, PAN_FW,
RD_HOT, NV_MC, PAN_FB and RD_BP have mostly 128B accesses
(see Fig. 1). Therefore, there is no difference in the energy performance
of the four ECC schemes. Thus, we do not show their energy results in
Fig. 10.
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Fig. 10. Energy comparison of the competing schemes when operating
in the dynamic operation mode.
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Fig. 11. Energy consumption of the competing schemes when operating
in the static operation mode.

When compared to the 64B and 128B ECC designs, Con-
fig-ECC offers 20 times stronger reliability guarantee while
requiring significantly lower active energy consumption by
17 and 34 percent less than [13] and the 128 ECC scheme.
Both [13] and 128B ECC schemes have higher energy due to
the mismatch between access size and ECC data size, result-
ing in larger number of reads, writes, and row activations.
An analysis of the ratio of reads and writes shows that these
benchmarks have high frequency of 32B reads but very low
frequency of 32B writes. This is why Config-ECC has energy
consumption similar to [1] even though it has higher energy
consumption for 32B writes compared to [1].

7.3.2 Static Operation Mode

For the static operation mode, we present the energy con-
sumption of the competing schemes for the L1 cache-off
configuration, since the energy results for the L1 cache-on
configuration are expected to be the same for the competing
schemes. This corresponds to the first nine GPGPU applica-
tions in Fig. 3. In this configuration, the requests are either
32B read or write requests. Fig. 11 shows the energy compo-
nents of Config-ECC and other ECC schemes. Config-ECC
consumes an additional 10 percent energy compared to [1]
since the number of 32B writes for these benchmarks ranges
from 0 to 49 percent. This energy overhead comes with the
benefit of a stronger, more reliable memory system. As
what Section 7.2 shows, Config-ECC provides 200 times
lower SDC rate than the 32B ECC scheme. When compared
to [13] and 128B ECC scheme, Config-ECC has 21 and 63
percent lower energy respectively.

8 CONCLUSION

HBM is projected to boost performance and reduce power
and energy in future data centers; however, its reliability is an
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issue. The design of ECC is challenging because future GPUs
are expected to implement a memory subsystem supporting
fine and coarse-grained data accesses to match the difference
in the spatial locality of GPGPU applications. Given the differ-
ences in the cache/data line size, an ECC scheme that is opti-
mized for a fixed data line size is sub-optimal.

We present Config-ECC, a two-tiered error correction
scheme that provides high reliability with a flexible structure
to support different sized accesses in HBM memory systems.
The configurable/flexible tier-1 code is a product code that
provides strong error detection and correction capabilities to
correct all errors due to small granularity faults and detect
errors with large granularity faults with very low silent data
corruption (SDC) rate. The tier-2 code is launched for correct-
ing errors due to large granularity faults. Config-ECC
increases the reliability by 200 times compared to a fixed 32B
ECC scheme and by 20 times compared to a fixed 64B ECC
scheme with 1.2 percent performance degradation. Also, Con-
fig-ECC can choose to read only 32B resulting in 17 percent
energy reduction when operating in dynamic mode and
21 percent reduction when operating in static mode compared
to a fixed 64B ECC scheme.
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