

Abstract:

Is Storage Hierarchy Dead? Co-located Compute-Storage NVRAM-based
Architectures for Data-Centric Workloads
David Roberts, Jichuan Chang, Parthasarathy Ranganathan, Trevor N. Mudge

HP Laboratories
HPL-2010-119

The increasing gap between the speed of the processor and the time to access the data in the disk has
historically been offset with deeper and larger memory hierarchies with multiple levels of SRAM, DRAM,
and more recently, Flash layers for caching. However, recent trends that point to a potential slowdown of
DRAM growth and the emergence of alternate resistive non-volatile memory technologies and properties
of emerging data-centric workloads offer the opportunity to rethink future solutions. Specifically, in this
paper, we examine an approach that leverages both the memory-like and disk-like attributes of emerging
non-volatile memory technologies. We propose a new architectural building block - called nanostores - that
co-locates computation with a single-level data store in a flat hierarchy, and enables large-scale distributed
systems for future data-centric workloads. We present a new evaluation methodology to reason about these
new architectures, including benchmarks designed to systematically study emerging data-centric
workloads. Our evaluation results demonstrate significant potential for performance benefits from our
approach (often orders of magnitude) with better energy efficiency.

External Posting Date: November 8, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: November 8, 2010 [Fulltext]

Copyright 2010 Hewlett-Packard Development Company, L.P.

1

Is Storage Hierarchy Dead? Co-located Compute-Storage
NVRAM-based Architectures for Data-Centric Workloads

The increasing gap between the speed of the processor and the time to access the data in the disk has historically been offset
with deeper and larger memory hierarchies with multiple levels of SRAM, DRAM, and more recently, Flash layers for caching.
However, recent trends that point to a potential slowdown of DRAM growth and the emergence of alternate resistive non-volatile
memory technologies and properties of emerging data-centric workloads offer the opportunity to rethink future solutions.
Specifically, in this paper, we examine an approach that leverages both the memory-like and disk-like attributes of emerging
non-volatile memory technologies. We propose a new architectural building block – called nanostores – that co-locates
computation with a single-level data store in a flat hierarchy, and enables large-scale distributed systems for future data-centric
workloads. We present a new evaluation methodology to reason about these new architectures, including benchmarks designed
to systematically study emerging data-centric workloads. Our evaluation results demonstrate significant potential for
performance benefits from our approach (often orders of magnitude) with better energy efficiency.

1. INTRODUCTION

The amount of data being created is exploding, growing significantly faster than Moore’s law. For example,

the size of the largest data warehouse in the Winter Top Ten Survey has been increasing at a cumulative

annual growth rate of 173% [34]. The amount of online data is estimated to have risen nearly 60-fold in the

last seven years [24]. Data from richer sensors, digitization of offline content, and new applications like

twitter, search, etc., will only increase data growth rates. Indeed, it is estimated that only 5% of the world’s

offline data has been made online so far [22].

This growth in data is leading to a corresponding growth in data-centric applications that operate on data in

diverse ways (capture, classify, analyze, process, archive, etc). Compared to traditional enterprise workloads

(e.g., online transaction processing, web services), emerging data-centric workloads change a lot of

assumptions about system design. These workloads typically operate at larger scale (hundreds of thousands of

servers) and on more diverse data (e.g., structured, unstructured, rich media) with I/O intensive, often random,

data access patterns and limited locality. In addition, these workloads have been characterized by a lot of

innovations in the software stack targeted at increased scalability and commodity hardware (e.g., Google

MapReduce/BigTable).

Concurrent with these trends, significant changes are also expected in the memory industry. Recently, new

non-volatile RAM (NVRAM) memory technologies have been demonstrated that significantly improve

latency and energy efficiency compared to Flash and Hard Disk. Some of these NV memories, such as Phase-

Change Memory (PCM) and Memristors have been demonstrated to have the potential to replace DRAM with

competitive performance and better energy efficiency and technology scaling. At the same time, several

studies have postulated the potential end of DRAM scaling (or at least a significant slowing down) [4] [18]

[27] [39] over the next decade, further increasing the likelihood of DRAM being replaced by these NVRAM

memories in future systems.

The confluence of these trends – future large-scale distributed data-centric workloads with I/O intensive

behavior, the corresponding innovations in the software stack, the end of scaling for DRAM, and their

2

potential replacement with NVRAM memories – offers a unique opportunity to rethink traditional system

architecture and memory hierarchy design for future workloads. Specifically, in this paper, we present a

radical (yet intuitive) new design that co-locates computing with non-volatile storage, eliminating many

intervening levels of the memory hierarchy. All data is stored in a single NVRAM data-store layer that

replaces traditional disk and DRAM layers (disk is relegated to archival backup).

The rest of the paper is organized as follows. Section 2 motivates and presents the design of nanostores, a new

building block for data-centric systems. A nanostore includes 3D-stacked non-volatile memory with a layer of

compute cores and a network interface, and can operate as a system node in a larger distributed system

running a data-parallel environment like MapReduce. Section 3 presents a new evaluation methodology to

reason about these new architectures. Our approach includes a hybrid evaluation model that incorporates high-

level application models akin to database query plans or MapReduce simulations in combination with detailed

micro-architectural simulations and a data-centric workload taxonomy and a benchmark suite designed to

systematically exercise this taxonomy. Section 4 presents our evaluation results demonstrating significant

benefits even when compared to aggressive future extrapolations of current best systems – one to three orders

of magnitude performance improvements at 2X to 10X improved energy efficiency. We break down the

benefits across the key design aspects, discuss workload-specific trends and key assumptions in leveraging

these benefits, and present sensitivity results to technology trends and limits. Section 5 discusses related work

and Section 6 concludes the paper.

2. ARCHITECTURE: NANOSTORES

2.1 Motivation

2.1.1 Data-centric workloads

An important trend in the emergence of data-centric workloads has been the emergence of complex analysis at

immense scale (coupled closely with the growth of large-scale internet web services). Traditional data-centric

workloads like web serving and online transaction processing are being superseded by workloads like real-

time multimedia streaming and conversion, history-based recommendation systems, searches of text, images

and even videos, and deep analysis of unstructured data (e.g., Google Squared).

From a system architecture point of view, a common characteristic of these workloads is that they are

generally implemented on highly distributed systems and adopt approaches that scale by partitioning data

across individual nodes. Their large scale is reflected both in the total amount of data involved in a single task

and the number of distributed compute nodes required to process the data. Additionally, these workloads are

I/O intensive often with random access patterns to small-sized objects over large data sets. Many of these

applications are also operating on larger fractions of data in memory. A recent study reports that, for non-

image data, the total amount of DRAM used in Facebook is approximately 75% of the total data size [11].

While this trend partly reflects the little or no locality due to complex linkages between data for the Facebook

workload, similar trends can be seen for memcached servers and TPC-H winners over the past decade.

3

Technology Density Bandwidth Rd LatencyWr Latency Rd Energy Wr Energy Endurance

(µm^2/bit) (GB/s) ns ns pJ/bit (pJ/bit) Wr/bit

HDD 0.00006 0.5 3,000,000 3,000,000 2,500 2,500 N/A

SSD (SLC) 0.00210 1 25,000 200,000 250 250 1.0E+05

DRAM (DIMM) 0.00380 26 55 55 24 24 N/A

PCRAM (3D) 0.00580 32 48 150 2 19.2 1.0E+07

Memristor (3D) 0.00480 32 100 100 2 2 1.0E+07

Table 1: Storage technology projections for 2015 timeframe

Similarly, search algorithms (e.g., from Google) have evolved to store their search indices entirely in DRAM.

These trends motivate us to rethink the balance between memory and disk-based storage in traditional designs.

Second, recent data-centric workloads have also been characterized by a lot of commercially deployed

innovations in the software stack (e.g., Google BigTable and MapReduce, Amazon Dynamo, Yahoo PNUTS,

Microsoft Dryad, Facebook Memcached, LinkedIn Voldemort). Indeed, a recent talk mentions that the

software stack behind the very successful Google search engine was re-architected significantly four times in

the last seven years, to achieve better performance at increased scale [14]. The growing importance of this

class of workloads, their focus on large-scale distributed systems with ever increasing use of memory, and

their openness to software-level innovations together offer an opportunity for a corresponding clean-slate

architecture design targeted at these workloads.

2.1.2 Technology trends

Concurrently, recent trends point to several potential technology disruptions in the horizon. On the compute

side, recent microprocessors have favored multicore designs emphasizing multiple simpler cores for greater

throughput. This is well matched with the large-scale distributed parallelism discussed earlier in data-centric

workloads. Operating cores at near-threshold voltage has been shown to significantly improve energy

efficiency [37]. Similarly, recent advances in networking, particularly around optics, show a strong growth in

bandwidth for communication between different compute elements at various levels of the system design.

The most important technology changes

pertinent to data-centric computing, however,

relate to the advances and adoption of non-

volatile memory. Flash memories have been

increasingly widely adopted in popular

consumer systems (e.g, Apple’s iPhone) and are starting to gain adoption in the enterprise market (e.g,

FusionIO). Emerging non-volatile memories have been demonstrated with superior properties to Flash, most

notably, Phase-Change Memory (PCM) and, more recently, Memristors. Table 1 summarizes key attributes

(density, bandwidth, latency, energy, retention, and endurance) of potential storage alternatives in the next

decade, with projected data from recent publications and technology trends [4] [15] and direct industry

communication. These trends suggest that future non-volatile memories can be viable DRAM replacements,

achieving competitive speeds at much lower power consumption, and with non-volatility properties similar to

disk but without the power overhead. Additionally, several recent studies have identified a slowing of DRAM

growth ([4] [18] [39] [27]) due to scaling challenges for charge-based memories. The adoption of NVRAM

memories as DRAM replacement can potentially be accelerated due to such limitations in scaling DRAM.

Two traditional limitations of NVRAM technologies have been around density and endurance, but recent

trends suggest that these limitations can be addressed. Increased density can be achieved within a single-die

4

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

Non-Volatile Data
Store

Core

L2
L1

Core

L1

Network Interface

Switch

L2

Nanostore
Boards

Fat Tree
Network

Figure 1: Nanostore system architecture

through multi-level designs, and potentially multiple layers per die [19]. At a single chip level, 3D die

stacking using through-silicon vias (TSVs) for inter-die communication can further increase density. Such 3D

stacking also has the additional advantage of closely integrating the processor and memory for higher

bandwidth and lower power (due to short length low capacitance wires). In terms of endurance, compared to

flash, PCM and Memristor offer significantly better functionality (107-108 writes per cell compared to the 105

writes per cell for Flash). Optimizations at the technology, circuit, and systems levels [18] [39] [26] [27] have

been shown to further address endurance issues, and more improvements are likely as the technologies mature

and gain widespread adoption. (We discuss the lifetime of our proposed designs further in Section 4.)

These trends suggest that technologies like PCM and Memristors, especially when viewed in the context of

advances like 3D die stacking, multicores, and improved networking, can induce more fundamental

architectural change for data-intensive computing than traditional approaches that use them as solid-state disks

or as another intermediate level in the memory hierarchy.

2.2 Proposed architecture

2.2.1 High-level design

Combining the opportunity for a clean-slate

architectural redesign for data-centric workloads

with the potential to use emerging NVRAM

memories in more disruptive ways, we propose a

new system architecture and memory system design

that co-locates power-efficient compute cores with

non-volatile storage, eliminating many intervening

levels of the memory hierarchy. All data is stored in a single NVRAM data-store layer that replaces traditional

disk and DRAM layers (disk is relegated to archival backup).

Figure 1 illustrates the proposed solution consisting of a distributed system comprised of a large number of

small homogeneous building blocks. Our individual building block is a single chip and we refer to it as

nanostore. A nanostore consists of multiple 3D-stacked layers of dense silicon non-volatile memories (e.g.,

PCM or Memristors) with a top layer of power-efficient compute cores. TSVs are used to provide wide, low-

energy data paths between the processors and data stores. Power and thermal issues are important concerns

with 3D-stacking. This limits the amount of compute that can be included in a nanostore. In this paper, we

make 3D-packaging assumptions similar to the PicoServer project [12] and focus on low-power simpler cores

for the nanostore. Our assumption of simpler cores also means that we can correspondingly provision the

bandwidth to save power. Each nanostore can act as a full-fledged system with a network interface.

The individual nanostores are networked via an on-board connector to form a large-scale distributed system or

cluster akin to the existing solutions for data-centric workloads discussed in Section 2.1.1. In terms of physical

5

organization, multiple nanostore chips are organized into small daughter boards that, in turn, plug into

traditional blade server boards.

2.2.2 Specific choices

While the above description summarizes the high-level organization, there is a wide range of possible

implementations. There are a number of design choices in terms of the provisioning, organization, and balance

of the compute, storage, and network per nanostore as well as the sharing model across the individual nodes

and the topology of the network (including potential differences between the on-chip, on-board, and cross-

cluster networks). The design choices are constrained by technology- and circuits-level parameters such as the

size of the die and the yield, or the number of 3D-stacked or intra-die layers, as well as packaging constraints

such as the power/thermal budget per chip or board.

We assume a nanostore die size of 100mm2, similar to the cost-effective design point for memories1. For a

Memristor-based design circa 2015 [33], assuming 8 layers of 3D and intra-die stacking, the on-chip datastore

capacity is 75 GB per socket, with 100ns access latencies and 2 pJ/bit access energy. An equivalent PCM-

based design would have 25GB per socket with 150ns latencies and 2/19.2 pJ/bit read/write energy (Table 1).

In addition to these two data points, we also study other parameters for data store capacity, latency, and energy

to understand the sensitivity of our results to alternate NVRAM instantiations in the future.

The cores in the compute layer are based on low-voltage power-efficient microarchitectures with simple

SRAM cache hierarchies. Different organizations are possible for the compute layer – in the number of cores

(1 to 128), clock frequency (100MHz to 2GHz), issue width and pipeline depth (2-way simple to 4-way deep),

and L2 cache size (512KB or 1MB per core) – and we study this design space. To ensure realistic designs, we

limit the power density at the socket (32 Watt/cm2). For our projected timeframe, we expect 3D stacking to

provide significant bandwidth (up to 32GB/s per the PicoServer design [12]) between the processor and

stacked memory, and 80Gbps (2x 40Gbps NICs) networking2 bandwidth per system (in a traditional

architecture) but we study these as design space parameters too. We assume a large-scale distributed shared-

nothing system abstraction. This is well-matched with current data-centric workloads. Each nanostore can be

viewed as a complete independent system executing the software stack needed to implement a data parallel

execution environment like MapReduce.

2.2.3 Discussion

The two most important aspects of nanostores are (1) the co-location of power-efficient computing with a

single-level data store, and (2) the support for large-scale distributed design. Together, these enable several

1 Alternatively, we could have assumed 400mm2 nanostore die sizes similar to that for processors, but we chose to be conservative. (A larger die

size means higher storage density and compute-capacity per nanostore and potentially reduced scalability/networking limitations for our
design.)

2 We limit our discussion in this paper to a fat-tree network topology with the system nodes as the leaves and the switches as the root nodes.
However, our proposed design should work well (or better) with other topologies including recently proposed approaches like HyperX.

6

benefits. The single-level data store enables improved performance due to faster data access (in latency and

bandwidth). Energy efficiency is also improved from the flattening of the memory hierarchy and the increased

energy efficiency of NVRAM over disk and DRAM. The large-scale distributed design allows for higher

performance from increased parallelism and higher overall data/network bandwidth. This design also improves

energy efficiency by partitioning the system into smaller elements that can leverage more power-efficient

components (e.g., simpler cores).

At the same time, there are potential disadvantages. Given the smaller capacities of per-socket storage, the

number of individual elements in the system increases dramatically. This can potentially increase the stress on

the networking subsystem – around bandwidth contention (particularly for all-to-all communication),

topological complexity and port count, and power. Software scalability can also be an issue. While large-scale

deployments of data-centric workloads have been demonstrated, latency requirements (e.g., 500ms response

time for a search request) will still have to be carefully considered in the sizing of the system. Finally, chip-

level thermal constraints can limit the compute per nanostore; this could lead to compute bottlenecks (e.g., for

sophisticated data processing like collaborative filtering).

This discussion points to several open questions. How well does our nanostore design perform compared to

aggressive extrapolations of existing approaches? Are the expected benefits significant enough to warrant the

change? How do the benefits change across the range of data-centric workloads? How do the benefits break

down? Do we need to rethink the balance of compute, data, and network for this new architecture? What are

the implications of specific design choices and technology extrapolations? In particular, what is the sensitivity

to the network bandwidth assumptions and packaging limitations? What are the implications of limited

endurance of non-volatile memories? What are the implications for future research? The rest of the paper

seeks to address these questions.

3. EVALUATION METHODOLOGY

3.1 Challenges

Evaluating our proposed architecture and understanding the design space poses several challenges. Our focus

on the combination of multiple future technologies for emerging workloads poses several challenges in the

choice of benchmarks, technology parameters and baseline systems appropriate to this longer timeframe.

Furthermore, irrespective of any specific assumptions we make, given the speculative nature of such an

exercise, we need to relate these assumptions to a systematic understanding of the trends as well as understand

the variance of the results to alternate futures (affecting both the specific parameters and the combinations in

which they are used).

7

Response
Time

Real-time Real-time or interactive responses required

Background Response time is not critical for user needs

Access
Pattern

Random
Unpredictable access to regions of data
store

Sequential Sequential access of data chunks

Permutation Data is re-distributed across the system

Working
Set

All The entire dataset is accessed

Partial Only a subset of data is accessed

Data
Type

Structured
Metadata/schema/type are used for data
records

Unstructured
No explicit data structure, e.g.,
text/binary files

Rich media
Audio/video and image data with
inherent structures and specific
processing algorithms

Read
vs. Write

Read heavy Data reads are significant for processing

Write heavy Data writes are significant for processing

Processing
Complexity

High
Complex processing of data is required
per data item. Examples: video trans-
coding, classification, prediction

Low
Dominated by data access with low
compute ratio. Examples: sort, upload,
download, filtering, and aggregation.

Table 2: A data-centric workload taxonomy

Table 3: Workload mapping

To evaluate our proposed design and its tradeoffs, we need to study large-scale clusters running distributed

workloads operating on large volumes of data. We also need to examine tradeoffs at the full system level

including computing, networking, memory, and storage layers. Conventional architecture simulators not only

lack the ability to cope with this level of system scale, but also the modeling means for storage and network

subsystems at a distributed systems level. There is also a combinatorial explosion in the design space from

various assumptions at the fine-grained and coarse-grained architectural levels as well as the choice of

technology and workload parameters. An appropriate evaluation methodology is required to systematically

reason about this large design space.

To address these challenges, we next discuss a new set

of benchmarks that provides systematic coverage of

data-centric workloads and develop a new evaluation

framework that uses hybrid performance models to

reason about future new architectures.

3.2 Proposed benchmarks

The space of data-centric workloads is vast, fast-

evolving, and characterized by rich diversity across

multiple dimensions. To study a subset of workloads

that provide sufficient coverage and representativeness,

we systematically create a taxonomy of data-centric

workloads to characterize the key dimensions of

diversity and pick a subset of workloads that exercises

all these dimensions.

Table 2 illustrates the taxonomy of data-centric

workloads that we developed based on examination of

a wide class of emerging applications. Key dimensions

include: response time (real-time vs. background),

access pattern (random, sequential or permutation),

working set (all vs. partial), data type (structured,

unstructured and rich media), type of access (read vs.

write dominated), and processing complexity (low, medium or high). Table 2 further explains the attributes of

each dimension. Table 3 shows an example of mapping some popularly-referenced workloads to the taxonomy

and picking a small subset with full coverage (shaded rows). Our chosen workloads provide representative

coverage of different dimensions of data-centric workloads, capture emerging trends towards data analysis and

8

media processing, and support publicly available implementations that we can use for simulation. We describe

these workloads next.3

Sort: The sort benchmark models a two-pass distributed sort of a 1 petabyte dataset. The workload is both

read- and write-heavy, and stresses the balance between compute/storage/networking subsystems. The

algorithm we study is massively data-parallel and has two phases: (i) a shuffle phase where each server first

reads keys from its local storage and sends them over the network to their individual target servers while

simultaneously receiving keys from other servers. As the memory fills with incoming keys, the server sorts the

buffered keys and writes the results to its local storage. (ii) a local merge phase after the shuffle, where each

nanostore reads partially sorted keys from many local files, performs a merge sort then writes the final sorted

results to local storage. We use the nsort benchmark to model the local sort phases of this workload.

Checksum in data deduplication: This benchmark cksum implements checksum calculation in data

deduplication, resulting in mostly read-only, sequential access with low processing complexity. We model a

massively parallel implementation of cksum over a 1 petabyte dataset. Each server scans its local files and

generates block or file signatures using the SHA-1 hash function. We use sha1sum for our simulations.

Video transcoding: This benchmark models popular video encoding/transcoding web services that exploit

cloud infrastructure for batch processing. The algorithm reads the video input files, transcodes, and then stores

the output in a new format locally. For our simulations, we use the ffmpeg benchmark over a 1 petabyte

dataset. Our sample video is in FLV format at 320x240 resolution and is transcoded into JPEG snapshots. The

average size of the video is 10MB.

Recommender: This benchmark recom represents parallel machine learning algorithms with high processing

complexity and regular communication patterns. Our workload models the Netflix video recommendation

benchmark [40] over a 5 Terabyte dataset using parallel matrix factorization. The algorithm iteratively refines

two matrices so their product can best summarize the ratings matrix. The large matrices are distributed across

the servers’ main memory. Each iteration has four phases, two of them are compute-heavy matrix operations

while in the other interleaving phases. The servers update their local copies of input matrices using

personalized broadcast messages. The implementation requires large main memory to host the matrices and

compute/communication balance. For our simulations, we use a matlab compiled winner of the Netflix

challenge from 2008.

Search: The search benchmark models text search across a 128 terabyte data set, using an in-memory index to

achieve sub-second response times. The workload is read-only and stresses random access patterns. Similar to

popularly-used in-memory index-based text searches (e.g., Google), the entire index is partitioned and stored

in-memory in a large-scale distributed cluster. Each server searches its local index in the map phase, and sends

the top-matching document list to the front-end server in the reduce phase. In addition to search query

3 We hope to release the benchmarks and the execution models as a web appendix with the paper.

9

throughput, this benchmark models a quality of service (QoS) requirement that average query latency should

be less than 500ms. For our simulations, we use the lucene benchmark for the map phase.

3.3 Proposed evaluation methodology

3.3.1 Two-level simulation with design optimizer

The evaluation methodology that we use is summarized in Figure 2. Specifically, our approach has three main

components: (1) a high-level distributed system model, (2) a lower-level microarchitecture-based model, and

(3) a design space optimizer.

Our high-level distributed system simulation captures the applications’ system-level behavior and allows

exploration of broader datacenter issues like topology and

compute-network-datastore balance. Our implementation

is inspired by approaches currently used for

mapreduce/Hadoop simulation (e.g., [36]) and query

optimizers in databases (e.g., [35]). Similar to these

approaches, our high-level model uses an application-

level execution template that breaks down execution time

into key compute, communicate, and I/O subsystem

phases coupled with models for performance and power

for each subsystem. Given the per-node focus of the

nanostore in this paper, we use high-level models for the

network and I/O subsystems, but use the input from a

detailed microarchitectural simulator to model the

compute subsystem. This lower-level microarchitecture-

based model captures the applications’ instruction-level

behavior and allows exploration of architecture choices

like ILP and cache hierarchies. The compute data

throughput and memory bandwidth results from this

model feed into the higher-level simulation. A final design

space optimizer iterates between various compute,

storage, and network options to choose the optimal

balanced design for a given objective function (energy-

delay product, energy efficiency, or performance). Figure 3 presents the execution template and the high-level

models for the sort benchmark as an illustrative example.

Our evaluation methodology is unique in addressing the challenges discussed earlier in evaluating a new

architectural model, with forward-looking technology and workload assumptions, on large-scale distributed

Figure 2: Two-level simulation with design optimizer

R R R R

C
on

cu
rr

en
t a

ct
iv

iti
es

Transmit Blocks

Receive Blocks

S

W

S

W

S

W

S

W

Read

Sort

Write

Phase 1 Phase 2

Time

t_Write1 = (data_size) / (data store write bandwidth)

t_Read1 = (data_size) / (data store read bandwidth)

t_Net1 = (data_size) / (one-way network bandwidth)

t_Phase1 = MAX(t_Read1, t_Net1, t_Sort1, t_Write1)

t_Sort1 = (data_size) / (in-memory local Sort bandwidth)

t_W2 = size / (Wr BW)

t_S2 = size / (merge BW)

t_R2 = size / (Rd BW)

t_Phase2 =
MAX(t_R2, t_S2, t_W2)

Utilization

UW (%)

US (%)

UN (%)

UR (%)

TOTAL POWER = Power_Datastore(UW, UR) + Power_Network(UN)
+ Power_Core+Mem(US)

Figure 3: Illustration of sort execution template

10

systems. It also addresses all the compute, I/O, and network components of the system, and provides a

powerful way to systematically explore the rich design space at practical simulation times. However, a few

caveats need to be noted. Our high-level application execution models assume that computation and network

communication can overlap and are purely bandwidth based (i.e. no queuing models are used). These

assumptions are acceptable for the distinct phases and coarse-grained communication behavior of the

representative benchmarks we consider in this study, but care needs to be exercised in extrapolating the model

to other workload classes. Data is also assumed to be distributed uniformly, and load-balancing effects are

ignored. For the purposes of our study, these assumptions allow an adequate comparison of hardware

architectures under reasonable software conditions. However, issues around optimizing the operating systems

and middleware for load-balancing and scheduling need to be addressed in future work. Finally, in the absence

of actual prototypes (which is difficult given that many of the technologies we study are still lab samples), it is

hard to validate the model for futuristic design configurations. However, for simple near-term design

alternatives, we have tried to make sure that our results match prior published trends. For example, we studied

the performance of a simple MPI-based sort implementation on small cluster sizes (4 to 64 cores) and found

the results tracked the model well. In addition, we validated all the execution templates with application

experts for the respective benchmarks, and try to validate the intuition for all results using backup statistics

where possible.

3.3.2 Performance and power models

The data store and network subsystem performance models calculate the execution time for storage access and

communication activities based on the provisioned bandwidths of the subsystems and the amount of data

transferred to and from the subsystem for the workload execution. For the data store bandwidth, we model the

combined bandwidth needs of both file and memory accesses in our proposed designs. For the compute

subsystem, we use the publicly-available benchmarks discussed earlier for each of our workloads and proceed

in two steps. We execute the benchmark on an existing Xeon-based server with the baseline processor and

DRAM. The server is configured with minimal storage and network overhead (e.g., in-memory search and

processing cached data files). This experiment allows us to measure a “compute data processing throughput”

baseline. For different specific processor configurations, we run the benchmark through a detailed publicly-

available microarchitectural simulator (COTSon [3]) and use the simulated IPC values to normalize the data

throughput rate.

For our results in the paper, we focus mainly on average power consumption. (We also study peak power

consumption, but use it primarily to verify compliance with cooling constraints.) We use the execution time

models to compute the utilization for the processors, memory, data store and network ports. Active power is

assumed to scale linearly up to peak power as utilization increases. Several components also have a non-zero

idle power (such as DRAM refresh or CPU leakage power). During phases where the CPU cores are active,

we use the memory bandwidths (read and write) simulated in COTSon to calculate the memory utilization.

11

Processor Baseline Nanostore Main Memory Baseline Nanostore

Core count 32 1‐128 Peak BW/Unit (GB/s) 25.6 32

Frequency (GHz) 2 0.1‐2.0 Capacity/Unit (GB) 16 25, 75

Issue width 4 2, 4 Peak Power/Unit (W) 10 0.6, 0.3

Per‐core L1 cache 64K+64K 64K+64K Idle Power/Unit (W) 2 0.0, 0.0

Per‐core L2 cache 1M 512K, 1M

Peak Power/Core (W) 1.83 (model) Hard Disk/SSD HDD SSD

Idle Power/Core (W) 0.04 (model) Peak BW/Drive (GB/s) 0.5 4.5

Capacity/Drive (TB) 6 1.2

Network Baseline Nanostore Peak Power/Drive (W) 10 10

Peak BW/Port (Gbit/s) 40 40 Idle Power/Drive (W) 8 1

Peak Power/Port (W) 10 10

Idle Power/Port (W) 2 2

Table 4: System parameters

Fat Tree
Network

Memory
Controller

I/O

Core Core Core

L1$
(I+D)

L2$

L1$
(I+D)

L2$

L1$
(I+D)

L2$

I/O
chipset

Network
Interface

DRAM DIMM

HDD/
SSD

HDD/
SSD

HDD/
SSD

Fat Tree
Network

Memory
Controller

I/O

Core Core Core

L1$
(I+D)

L2$

L1$
(I+D)

L2$

L1$
(I+D)

L2$

I/O
chipset

Network
Interface

DRAM DIMM

DRAM DIMM

DRAM DIMM

DRAM DIMM

(a) Sort, cksum, video (b) search, recommender

Figure 4: Baseline architectures

Since network packets traverse multiple hops in the datacenter, we scale our NIC-level power model with a

network layer multiplier (the effective levels in a fat tree switch network) to calculate the total network power.

The CPU peak power is determined as a function of issue width, frequency and cache size using [20]. CPU

configurations at each frequency also factor in the power benefits from voltage and frequency scaling using

the models specified in [20]. CPU idle power is scaled based on the number of cores and caches on the

nanostore.

3.4 Choice of parameters and baselines

As discussed earlier, we examined ITRS roadmaps and prior publications and talked to industry sources to

determine forward-looking parameters for our studies, but in most cases also study sensitivity to a range of

values for each parameter. Also, we have generally tried to choose parameters that favored more conservative

projections for the benefits of our proposal.

Table 4 summarizes our system parameter assumptions. The different compute configurations (varying number

of thin/fat cores with different cache sizes), nanostore memory configurations (memristor/PCM), and

data/network bandwidth assumptions that we already discussed in Section 2 are listed. For DRAM, we ignore

any potential end-of-life scaling limitations at our

projected time frame and extrapolate historical scaling

trends in capacity and bandwidth. We assume

configurations of 16GB per DRAM DIMM module and

25.6 GB/s bandwidth, with each DIMM consuming

10W at peak and 2W at idle. For persistent storage, we

assume HDDs at 6TB capacity, 500 MB/s bandwidth,

and active power consumption varying between 8W to

10W from idle to peak. We also study SSDs at lower

capacity per drive (1.2TB), but higher bandwidth

(4.5GB/s) and improved energy efficiency (10W peak

power and 1W idle power). For the networking

subsystem, we assume peak and idle power for a 40Gig

Ethernet NIC of 10W and 2W respectively. The

changes to the network topology corresponding to the

increase in the number of leaf nodes with the relatively

small capacity networked nanostores is modeled as an increase in the number of layers in the topology.

Figure 4 summarizes the baseline system architectures we study for each workload. To provide a fair

comparison to the baseline, we recognize that different sweet spot design configurations have evolved for

different workloads (in terms of emphasis on compute, storage, and networking, and organization), and

12

correspondingly choose a baseline known to be best-suited for each workload. Specifically, sort, cksum and

video benchmarks keep their data on disks and are each allocated a single DRAM DIMM. Search and Netflix

are in-memory workloads so do not have a hard disk component, but have multiple DIMMs. To ensure the

most appropriate balanced baseline, other than the choice of an enterprise-class processor, other design

parameters in the baseline are determined through the iterative design space search of our simulator.

4. EVALUATION RESULTS
4.1 Baseline benefits

Figure 5 presents the improvements in performance and energy efficiency from our nanostore designs relative

to the baselines discussed above. Results for both the PCM- and Memristor-based nanostore designs are

presented for the five benchmarks. For these results, consistent with the data-centric focus of this paper, we

assume that the baseline and nanostore systems both operate on the same dataset size and keep the amount of

permanent persistent storage the same. (The data size and device capacity together determine the number of

sockets in the nanostore designs; all other parameters are based on Section 4.) Also, as discussed earlier, each

point represents the results of a design space search by the optimizer across a range of configuration

parameters, for both the baseline and nanostore designs, but with caps on the thermal density and aggregate

network bandwidth as discussed in Section 2.2. This ensures that the individual designs are locally balanced

for their objective function while meeting the design constraints. We focus on energy-delay-product as the

primary objective function (since we want to optimize both energy efficiency and performance) but discuss

other objective functions briefly in Section 4.3.

The results in Figure 5 show that for all our benchmarks, the nanostore solutions achieve higher performance

at better energy efficiency. For the three I/O intensive benchmarks – sort, cksum, video – the nanostore

designs achieve one to three orders of magnitude higher performance improvement with 3X-16X improved

energy efficiency. For the in-memory benchmarks with DRAM baselines – recom, search – nanostores

achieve 2X-6X better performance with 2X-4X improved energy efficiency.

Comparing the two different NVRAM technologies we consider, the PCM-based nanostores generally

outperform the memristor-based designs, but at reduced energy efficiencies. However, it should be noted that

our constant dataset size constraint presents the memristor-based design at a disadvantage. While, as the

results indicate, a pre-packaged 1 petabyte PCM-based design would have more performance (and cores) than

1

2

4

8

16

32

Sort Cksum Video Mean Recom Search Mean

PCM MRT

I/O intensive In‐memory

Energy EfficiencyFacto
rs o
f im
p
ro
vem
en
t

Facto
rs o
f im
p
ro
vem
en
t

1

10

100

1000

10000

Sort Cksum Video Mean Recom Search Mean

PCM MRT

I/O intensive In‐memory

Performance

Figure 5: Performance and energy efficiency improvements over 2015 baselines (EDP-optimized)

13

a pre-packaged 1 petabyte memristor-based design, the PCM-based design also has more individual nanostore

sockets (and correspondingly more volume). If an alternate comparison considered performance for the same

number of sockets (or equivalently the same amount of silicon), the memristor-based design would have

higher performance than PCM (by a factor corresponding to the Node multiplier discussed later).

4.2 Analysis of performance benefits

Table 5 presents additional data to provide further insight into these results (we focus on the non-shaded rows

in this section). Columns 3, 4, and 5 provide the factor of improvement in the energy delay product,

performance, and energy efficiency respectively. Column 6 summarizes the attributes of the best configuration

chosen by the optimizer, and the last four columns present statistics on the multipliers of improvement in

various system attributes. Specifically, Node, OPS, DS, and Net refer to the factor of increase in the number of

processor sockets, and the total provisioned raw compute bandwidth, datastore bandwidth, and network

bandwidth respectively.

The results in Table 5 show that the greatest improvement in resources occurs for the data store bandwidth,

resulting from the combination of both the higher per-nanostore 3D-stacked bandwidth and lower per-device

capacity. For example, with more than 5000 times higher bandwidth, the three I/O-intensive benchmarks no

longer have any data store access bottleneck. With co-located compute, nanostores also allow significantly

higher compute and network bandwidths to match the increased data store bandwidth, regaining the balance

across system resources to improve performance. By breaking the bandwidth wall in the conventional

architecture, processor power density and network aggregate bandwidth now become the new, important

system design constraints. (This also illustrates the reason why we capped these variables for a fair

comparison with the baseline; Section 4.6 considers relaxing these constraints further.)

Bench Scheme 1/EDP Perf EE Configuration

Base 1.0 1.0 1.0 Core=28/Freq=2.0/Issue=4/L2=1024k/DS=6000GB/nDS=2/DS_BW=0.5GBs/Net_BW=0.500GBs 1 1 1 1

SSD 47.2 15.3 3.1 Core=128/Freq=2.0/Issue=2/L2=1024k/DS=1280GB/nDS=2/DS_BW=4.5GBs/Net_BW=1.250GBs 5 11 42 12

DRAM 20.9 20.5 1.0 Core=128/Freq=0.5/Issue=2/L2=512k/DS=16GB/nDS=16/DS_BW=1.6GBs/Net_BW=0.125GBs 47 27 1198 12

PCM 124.8 17.3 7.2 Core=22/Freq=0.1/Issue=2/L2=512k/DS=25GB/nDS=1/DS_BW=32.0GBs/Net_BW=0.013GBs 479 9 15329 12

MRT 170.8 23.1 7.4 Core=88/Freq=0.1/Issue=2/L2=512k/DS=75GB/nDS=1/DS_BW=32.0GBs/Net_BW=0.050GBs 160 13 5110 16

Base 1.0 1.0 1.0 Core=40/Freq=2.0/Issue=4/L2=1024k/DS=6000GB/nDS=14/DS_BW=0.5GBs/Net_BW=0.001GBs 1 1 1 1

SSD 316 42 7.5 Core=104/Freq=0.5/Issue=4/L2=512k/DS=1280GB/nDS=2/DS_BW=4.5GBs/Net_BW=0.001GBs 33 21 42 1

DRAM 3695 583 6.3 Core=128/Freq=1.0/Issue=2/L2=1024k/DS=16GB/nDS=16/DS_BW=1.6GBs/Net_BW=0.001GBs 326 263 1198 1

PCM 51353 3235 15.9 Core=128/Freq=0.5/Issue=2/L2=512k/DS=25GB/nDS=1/DS_BW=32.0GBs/Net_BW=0.001GBs 3333 1344 15329 1

MRT 17432 1078 16.2 Core=128/Freq=0.5/Issue=2/L2=512k/DS=75GB/nDS=1/DS_BW=32.0GBs/Net_BW=0.001GBs 1111 448 5110 1

Base 1.0 1.0 1.0 Core=40/Freq=2.0/Issue=4/L2=1024k/DS=6000GB/nDS=2/DS_BW=0.5GBs/Net_BW=0.001GBs 1 1 1 1

SSD 15.3 7.8 2.0 Core=88/Freq=2.0/Issue=2/L2=1024k/DS=1280GB/nDS=2/DS_BW=4.5GBs/Net_BW=0.001GBs 5 5 42 1

DRAM 113.1 78.1 1.4 Core=88/Freq=2.0/Issue=2/L2=1024k/DS=16GB/nDS=16/DS_BW=1.6GBs/Net_BW=0.001GBs 47 52 1198 1

PCM 1093 337 3.2 Core=128/Freq=0.5/Issue=2/L2=1024k/DS=25GB/nDS=1/DS_BW=32.0GBs/Net_BW=0.001GBs 479 192 15329 1

MRT 368 112 3.3 Core=128/Freq=0.5/Issue=2/L2=1024k/DS=75GB/nDS=1/DS_BW=32.0GBs/Net_BW=0.001GBs 160 64 5110 1

Base 1.0 1.0 1.0 Core=56/Freq=2.0/Issue=4/L2=1024k/DS=16GB/nDS=16/DS_BW=1.6GBs/Net_BW=0.500GBs 1 1 1 1

DRAM 3.0 1.7 1.7 Core=112/Freq=2.0/Issue=2/L2=1024k/DS=16GB/nDS=16/DS_BW=1.6GBs/Net_BW=1.250GBs 1.0 1.0 1.0 2.5

PCM 6.2 3.4 1.8 Core=128/Freq=2.0/Issue=2/L2=1024k/DS=25GB/nDS=1/DS_BW=32.0GBs/Net_BW=0.500GBs 10.2 11.7 12.8 10.2

MRT 5.5 2.4 2.3 Core=120/Freq=0.5/Issue=4/L2=1024k/DS=75GB/nDS=1/DS_BW=32.0GBs/Net_BW=1.250GBs 3.4 1.8 4.3 8.5

Base 1.0 1.0 1.0 Core=80/Freq=2.0/Issue=4/L2=1024k/DS=16GB/nDS=16/DS_BW=1.6GBs/Net_BW=0.001GBs 1 1 1 1

DRAM 2.4 1.4 1.7 Core=128/Freq=2.0/Issue=2/L2=512k/DS=16GB/nDS=16/DS_BW=1.6GBs/Net_BW=0.001GBs 1.0 0.8 1.0 1.0

PCM 25.4 6.2 4.1 Core=128/Freq=0.5/Issue=2/L2=512k/DS=25GB/nDS=1/DS_BW=32.0GBs/Net_BW=0.001GBs 10.2 2.0 12.8 10.2

MRT 8.5 2.1 4.1 Core=128/Freq=0.5/Issue=2/L2=512k/DS=75GB/nDS=1/DS_BW=32.0GBs/Net_BW=0.001GBs 3.4 0.7 4.3 3.4

Search

Sort

Cksum

Video

Recom

ScaleX (Node/OPS/DS/Net)

Table 5: Configurations and scale multipliers of the baseline and SSD/DRAM/nanostores designs

14

Focusing on performance improvement, the biggest benefits stem from the increased parallelism of the

nanostore solution that allows greater amounts of compute and network to be provisioned for smaller slices of

data capacity. Using cksum as an illustrative example, the best PCM-based nanostore design (as determined by

the design space search) uses 128 simple cores running at 500MHz in conjunction with the 25GB datastore.

The design uses the lowest network bandwidth because this benchmark does not generate network traffic. The

raw compute bandwidth increases by a factor of more than 1000 to match the 15000X increase in data store

bandwidth, and these two resource improvement together provides three orders of magnitude better

performance. (The OPS multiplier is lower than the Node multiplier due to processor power density constraint,

that bounds the performance improvement)

 Although cksum is an extreme example because of its low processing complexity, video illustrates the same

performance benefits from higher data store bandwidth and matching, co-located, compute capability. To

address the higher compute requirement over cksum, the optimal baseline node for video now has more cores

and less storage capacity. This leads to a lower Node multiplier and a lower OPS multiplier due to the power

density constraint, explaining the lower performance improvement relative to cksum.

Sort is a benchmark with balanced compute, data access and network bandwidth requirements. In this case, the

network bandwidth becomes the new bottleneck once the datastore bandwidth bottleneck is addressed,

limiting the Net multiplier and subsequently, the performance improvement. For PCM-based nanostores, only

22 cores are required to match the limited network bandwidth; the Memristor-based nanostore has higher per-

device capacity and correspondingly higher per-node network bandwidth for a given aggregate network

bandwidth constraint, explaining its higher performance improvement.

For the two in-memory benchmarks, a similar analysis can be applied. The relatively smaller performance

improvements compared to the IO-intensive benchmarks stem from a smaller DS multiplier over the high-

bandwidth DRAM interface, and subsequently lower OPS and Net multipliers due to the power density and

network bandwidth caps.

Our detailed analysis also identified (surprisingly) that the significant bandwidth improvements enabled by the

3D-stacked architecture were not being fully leveraged. One reason, as discussed above, is that the constraints

on power density and network bandwidth can affect the effectiveness of how well the bandwidth is used.

Indeed, our additional experiments (data not shown in table for space) show significantly higher performance

improvements when these constraints are relaxed. Furthermore, as discussed in Section 3, our performance

model and the COTSon-generated per-core memory bandwidth numbers used as input to the model are both

conservative about the effect of improved memory bandwidth on performance, likely contributing further to

these conservative results.

Finally, the nanostore design’s memory-like datastore latency has huge performance potential for workloads

that are random-access dominant and latency sensitive. However, the benchmarks we study are throughput-

15

oriented and our performance model is mainly bandwidth based; therefore our results do not demonstrate this

potential benefit.

4.3 Analysis of energy efficiency benefits

Besides significant performance gains, nanostores also achieve 2X to 16X improvement in energy efficiency.

Below we discuss the three main contributors to nanostore’s better performance-per-watt.

First, the NVRAM-based data stores are significantly more efficient than the hard drives or DRAM modules

used in the baselines due to their better proportionality (no idle power) and lower access energy (technology

and 3D-stacking). For I/O heavy benchmarks, the hard drive access energy can be orders of magnitude higher

than nanostore; while for in-memory workloads, the large DRAM capacity adds large idle power.

Second, compute co-location with lower per-nanostore capacity leads to the use of low-power, more energy-

efficient processor cores. As shown in Table 5, nanostores often choose lower frequency, simpler cores, that

are much more energy-efficient due to voltage and frequency scaling. This effect is less dominant for the in-

memory benchmarks as they use more powerful cores to satisfy compute demand or low latency.

Finally, having a single-level data store also provides the opportunity to avoid data movement between the

logically separate segments of memory and persistent storage. Reducing the number of copy operations can

improve performance due to reduced traffic and less energy for the same task, both leading to better energy

efficiency. These effects are hard to isolate with the integrated model we consider, but we performed separate

experiments to study the elimination of redundant file load and save operations. Our results show significant

traffic reduction in cksum and sort. This translates to about 10% efficiency improvement; the relatively low

improvement stems from the efficient data stores in our designs. The benefits are more pronounced when the

data access bandwidth is limited. For example, cksum gets more than 30% better EDP when per-nanostore

bandwidth is 6.4GB/s.

The memristor-based design achieves higher energy efficiency by virtue of having more energy-efficient data

accesses, but as discussed earlier, has lower performance compared to the PCM-based nanostore because its

higher capacity leads to a smaller Node multiplier.

4.4 Applicability of nanostore techniques in other system architectures

As discussed so far, the nanostore design achieves its benefits from a combination of several inter-related

factors relating to high bandwidth per gigabyte, matching compute/network bandwidths, and co-location. Of

these factors, the nanostore design’s improvements to the data access bandwidth are fairly unique in

comparison with traditional system architectures. First, cost-sensitive hard drives usually have a floor price

(e.g., $30 for a mobile 2.5-inch drive) to amortize non-media costs. This effectively determines the hard

drive’s minimum capacity, and sets it to a level much larger than for a single nanostore socket. Combined with

the inherent low bandwidth of disks, it is not easy to apply nanostore’s compute/storage co-location principle

16

that needs small storage chunks. Second, SSDs using current NAND flash technologies also have limited pins

per package (typically shared by 4 dies), having a higher, yet still limited, bound on bandwidth per device.

Finally, DRAM and PCIe based SSDs can have much higher bandwidth by exploiting device-level

parallelism; however, compared to nanostores, they are still limited by the relatively narrow channels between

the compute and the datastore.

To better illustrate the benefits from the nanostore design and the applicability of individual techniques to

traditional architectures, Table 5 presents some additional data (shaded rows) listing the best SSD and DRAM-

based systems. As before these points represent the outcome of the design space search optimized for the

balanced design with the best energy delay product.

The results show that while the new DRAM and SSD-based designs show benefits, the nanostore designs still

achieve higher performance at better energy efficiencies. The SSD designs share some of the energy efficiency

advantages of lower idle power for the data store but suffer from lower bandwidth per GB; consequently, they

have lower performance but higher energy-efficiency relative to the DRAM designs. Note that the best SSD-

based designs also choose more efficient processor cores, as suggested by prior work using low-power

processors with NAND flash [5][8], but their scaling-down of the processors is much less aggressive than that

of the nanostore designs. Interestingly, DRAM-based solutions often pick more powerful cores even if they

are allowed to use more efficient, low-power cores. This is because the optimizer chooses to use faster, more

powerful cores and hence more processor-power dominating solutions to offset the energy non-proportionality

caused by DRAM idle power. In other words, more efficient and higher performance data stores can motivate

the selection of more energy efficient processor cores, leading to additive efficiency benefits.

4.5 Other objective functions

Table 6 summarizes the results for the PCM-based

nanostore when the optimizer uses other objective

functions, under the same thermal and network

constraints. For each benchmark, we normalize the

performance and efficiency numbers over the same

configuration (EDP-optimized baseline). The optimizer clearly chooses different configurations to reach

different objectives. EDP is a good objective because EDP-optimized solutions usually have close-to-optimal

performance and EE results across the entire table.

4.6 Impact of relaxed power density and network constraints

Table 7 visualizes the effect of relaxing the socket power density (32, 50, and 100 W/ cm2) and network

constraints (X1, X4, X16 aggregate network bandwidth) for our benchmarks. All results are normalized to the

PCM nanostore design from Section 4.1 (X1 network bandwidth and 32W/cm2). Darker shades illustrate

improved benefits. Allowing higher power density has a positive performance effect for all workloads,

Result

Objective EDP EE Perf EDP EE Perf

Sort 17.3 11.3 23.9 7.2 8.5 0.9

Cksum 3234.8 674.6 3706.6 15.9 22.1 12.0

Video 337.4 72.9 362.2 3.2 4.8 2.2

Recom 3.4 0.9 3.5 1.8 2.6 1.2

Search 6.2 2.8 8.1 4.1 5.0 2.7

Performance EE

Table 6: Impact of the optimizer’s objective function

17

matching our analysis in Section 4.2. Raising the

network bandwidth cap only affects the two

network-heavy benchmarks (sort and recom),

especially sort where the network is the first

bottleneck for performance scaling. Power

density is the first bottleneck for recom, which

has to trade core count with higher network bandwidth within the power envelope to get better performance.

4.7 Discussion

Endurance is an important issue to consider. For the peak memory bandwidth we consider, in theory, storage

wear out can occur in 2 years for PCM or 11 years for Memristor based on nanostore capacity and endurance.

However, in practice, not all applications sustain rates at that level and the average across the application is

much lower, leading to much longer lifetimes across the array. Wear-leveling schemes must still be used to

spread writes across the entire memory to prevent early failure of hot data blocks. Assuming a previously

proposed approach – start-gap wear leveling – at an efficiency of 90% of optimal wear-leveling (shown to be

realistic for OLTP/database workloads [26]), and using the memory write bandwidths from our simulations,

we estimate per-socket lifetimes of 7-18 years for our benchmarks on the PCM-based design. Nevertheless,

techniques that carefully manage wear-out warrant further study.

Another important issue is around scaling of workloads. The performance improvements from nanostores stem

from the larger distributed scale of the workloads, with scaling factors ranging from 100 to 500. Even with the

workloads we consider that are targeted at large-scale distributed implementations, such scaling is likely to

pose challenges. Our idealistic assumptions around scaling are not meant to gloss over the challenges of

scaling, but rather to provide an upper bound on the potential benefits. However, it is worth noting that over

the decade from 1998 to 2009, Google’s infrastructure is reported to have scaled performance (queries

processed/day) by 1000X while scaling the infrastructure by 1000X [24].

In this paper, we focus primarily on architectural and technology implications for best future designs, but cost

is another issue that also needs to be considered. Current flash memories are about an order of magnitude

higher cost on a $/byte basis compared to disk. The NVRAM memories we consider in this paper have the

potential to lower these costs by more aggressive stacking and simpler fabrication processes. The improved

energy efficiency of our design can also further lower total costs of ownership. Based on these observations,

we expect the nanostore design to be competitive in costs compared to traditional designs, but this needs to be

validated with further study. We are working with vendors to determine costs projections for PCM/Memristor

technologies and expect to have more discussion on costs in the final paper.

Result

Watt/cm2

Net_BW x1 x4 x16 x1 x4 x16 x1 x4 x16 x1 x4 x16 x1 x4 x16 x1 x4 x16

Sort 1 4 22 1 4 22 1 4 22 1.0 1.0 0.8 1.0 1.0 0.8 1.0 1.0 0.8

Cksum 1 1 1 2 2 2 2 2 2 1.0 1.0 1.0 0.8 0.8 0.8 0.8 0.8 0.8

Video 1 1 1 2 2 2 3 3 3 1.0 1.0 1.0 0.7 0.7 0.7 0.6 0.6 0.6

Recom 1 2 2 1 3 3 1 3 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9

Search 1 1 1 2 2 2 2 2 2 1.0 1.0 1.0 0.6 0.6 0.6 0.6 0.6 0.6

32 10050

EE

32 50 100

Performance

Table 7: Impact of thermal/network constraints

18

5. RELATED WORK
Several of the principles leveraged in the nanostore design have been studied in prior work. The iRAM and

PIM work [13] [25] examine integrating a processor with DRAM in the same process, and consider benefits

with vector streaming programming models. While thematically similar, our implementation is significantly

different in several ways, including the use of lower-power commodity processors with a disk-less flat

hierarchy based on non-volatile memory, and a distributed software model. Active Storage [30] incorporates

compute closer to disk, but only in the form of more powerful disk controllers for offloading and streaming.

The main processor is still a deep hierarchy away.

Recently, the RAMCloud project [11] has proposed distributed systems where all data resides in DRAM.

Their planned research primarily focuses on the software stack, around low-latency RPC, durability, data

model, scaling, and consistency. While several of their motivating arguments are similar to ours, we differ in

our assumptions around all data residing in 3D-stacked non-volatile RAM and in our architectural explorations

around balanced system designs. Our results validate their projected performance but show even better

benefits from our approach. Nevertheless, many of the software ideas are likely applicable to our design as

well.

Other recent studies have examined using lower-power (thin or wimpy) cores for energy efficiency [5] [9] [21]

[31] while also being aware of the impact on quality of service [29]. There has also been prior work on ultra-

low-voltage core design [37]. Like these studies, we also explore the benefits from better balanced designs,

but synergistically in combination with rethinking compute-data proximity and hierarchy.

Recent architectural proposals have studied 3D stacking and demonstrated its viability, and its benefits for

improved bandwidth and memory redesign (e.g. [12] [38]). These studies do not consider large-scale

distributed systems or co-location with non-volatile memory.

Previous studies have discussed different ways to use existing and emerging non-volatile memories e.g. Flash

[8] [9] [16] [17], PCM [18] [27] [38] [39], and Memristors [28] [32] [33]. While Flash memories have been

shown to be effective as storage, disk replacement, or disk cache [9] [1] [16] [17], their latency and endurance

limitations make them inapplicable for our work. Recent work on PCM has examined its use both as Flash

replacement and as memory replacement (including in 3D-stacked configurations [38]), but there have been no

studies that have focused on simplification of the data hierarchy, in the context of data-centric workloads.

Prior studies have prototyped and evaluated Memristors [32] [33], but we are not aware of any architectural

studies using Memristors.

Several studies have proposed optimizations to improve endurance [18] [27] [38] [39] and others have

identified potential improvements in the future [4]. Other studies have examined special-purpose architectures

optimized for specific data-centric workloads including use of GPUs [23], FPGAs [2], and even ASICs [6] and

co-design of hardware and software for data-centric workloads. (e.g., MonetDB [7], MapReduce [10]). Such

optimizations would be applicable in our solution as well.

19

6. CONCLUSIONS

With data and data-centric applications on the rise (steeply), there is an emerging market for new system

designs targeted at these workloads. At the same time, emerging technologies like 3D-stacked non-volatile

memories are likely to disrupt traditional assumptions around storage latency and bandwidth. In this paper, we

argue that the best (and most intuitive) way to leverage the confluence of these application and technology

trends is a radical approach that co-locates processors with non-volatile storage eliminating many intervening

levels of the storage hierarchy. Our primary contributions are in developing the design of such an architecture

and evaluating its potential benefits and implications.

Specifically, we present nanostores, a new building block for data-centric system design. A nanostore is a

single-chip computer that includes 3D-stacked layers of dense silicon non-volatile memory with a layer of

compute cores and a network interface. A large number of individual nanostores communicate over a simple

interconnect and run a data-parallel execution environment like MapReduce to support large-scale distributed

data-centric workloads. The key aspects of our approach are large-scale distributed parallelism and balanced

energy-efficient compute in close proximity to the data. Together, these allow nanostores to potentially

achieve significantly higher performance at lower energy.

Using an evaluation model and a benchmark suite that we newly designed for this study, we demonstrate

orders of magnitude improvements in performance at significantly better energy efficiency for key classes of

data-centric workloads. We also point out key challenges that need to be addressed to leverage this potential

including scalable software design and improved network subsystem design.

While our results are promising, we believe we have only scratched the surface of what is possible. We are

currently examining the rich architectural space enabled by nanostores, including heterogeneous designs and

integrated optics. There are also interesting opportunities for software optimizations including new interfaces

and management of persistent data stores. Looking further out, the large scale and low latency of our designs

will likely enable new previously-not-possible applications for more sophisticated insight generation across

larger diverse multiple data sources; the corresponding hardware-software codesign provides rich

opportunities for future research.

REFERENCES
[1] Fusionio. In http://www.fusionio.com.

[2] Netezza. In http://www.netezza.com.

[3] COTSon: Infrastructure for system-level simulation. In MICRO 41 Tutorial, 2008.

[4] ITRS roadmap. In http://www.itrs.net/, 2009.

[5] David Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan. FAWN: A fast array of

wimpy nodes. In SOSP, 2009.

[6] Shinsuke Azuma, Takao Sakuma, Takashi Nakano, Takaaki Ando, and Kenji Shirai. High-performance sort chip. In HotChips, 1999.

[7] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Breaking the memory wall in MonetDB. Commun. ACM, 51(12):77–85, 2008.

[8] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon: An improved architecture for data-intensive applications. IEEE Micro,

20

30(1):121–130, 2010.

[9] Adrian Cockcroft. Millicomputing: The future in your pocket and your datacenter. In USENIX Conference, invited talk, 2008.

[10] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters. OSDI, 2004.

[11] John Ousterhout et. al. The case for RAMCloud: Scalable high-performance storage entirely in DRAM. In

http://ilpubs.stanford.edu:8090/942/, 2009.

[12] T. Kgil et al. PicoServer: Using 3D Stacking Technology To Enable A Compact Energy Efficient Chip Multiprocessor. In ASPLOS, 2006.

[13] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: the terasys massively parallel PIM array. Computer, 28(4):23–31, Apr 1995.

[14] James Hamilton. Internet-scale service infrastructure efficiency. In Keynote, ISCA, 2009.

[15] G.C. Han, J.J. Qiu, L. Wang, W.K. Yeo, and C.C. Wang. Perspectives of read head technology for 10 tb/in recording. In IEEE Trans on

Magnetics, volume 46, 2010.

[16] T. Kgil and T. Mudge. FlashCache: a NAND flash memory file cache for low power web servers. In CASES, 2006.

[17] Taeho Kgil, David Roberts, and Trevor Mudge. Improving nand flash based disk caches. In ISCA, 2008.

[18] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a scalable dram alternative. In ISCA, 2009.

[19] Dean Lewis and Hsien-Hsin Lee. Architectural evaluation of 3D stacked RRAM caches. IEEE 3D System Integration Conference, 2009.

[20] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. McPAT: An integrated power, area

and timing modeling framework for multicore and manycore architectures. In MICRO, 2009.

[21] Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant Patel, Trevor Mudge, and Steven Reinhardt. Understanding and

designing new server architectures for emerging warehouse-computing environments. In ISCA, 2008.

[22] Peter Lyman and Hal R. Varian. How much information. In http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/, 2003.

[23] Wenjing Ma and Gagan Agrawal. A translation system for enabling data mining applications on gpus. In ICS, 2009.

[24] Marissa Mayer. The physics of data. In Talk at Xerox PARC, August 2009.

[25] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, I Thomas,

and Katherine Yelick. A case for intelligent RAM: IRAM. IEEE Micro, 17, 1997.

[26] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srinivasan, Luis Lastras, and Bulent Abali. Enhancing lifetime

and security of pcm-based main memory with start-gap wear leveling. In MICRO 42, 2009.

[27] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable high performance main memory system using phase-change

memory technology. In ISCA, 2009.

[28] T. Raja and S. Mourad. Digital logic implementation in memristor-based crossbars. In ICCCAS, 2009.

[29] V. Reddi, B. Lee, T. Chilimbi, and K. Vaid. Web Search Using Small Cores: Quantifying the Price of Efficiency. In ISCA, 2010.

[30] E. Riedel, C. Faloutsos, G.A. Gibson, and D. Nagle. Active disks for large-scale data processing. In IEEE Computer, vol 34, , 2001.

[31] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. JouleSort: a balanced energy-efficiency benchmark. In SIGMOD, 2007.

[32] W. Robinett, G.S. Snider, P.J. Kuekes, and R. S. Williams. Computing with a trillion crummy components. In CACM, vol. 50, 2007.

[33] D.B. Stukov, G.S. Snider, D.R. Steward, and R.S. Williams. The missing memristor found. In Nature, volume 453, pages 80–83, 2008.

[34] Richard Winter. Why are data warehouses growing so fast? In http://www.b-eye-network.com/view/7188, 2008.

[35] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. Exploring power-performance tradeoffs in database systems. 2010.

[36] Fan Yang, Wen Su, Huibiao Zhu, and Qin Li. Formalizing mapreduce with CSP. 2010.

[37] B. Zhai, R. G. Dreslinski, D. Blaauw, T. Mudge, and D. Sylvester. Energy efficient near-threshold chip multi-processing. In ISLPED, 2007.

[38] Wangyuan Zhang and Tao Li. Exploring phase change memory and 3d die-stacking for power/thermal friendly, fast and durable memory

architectures. In PACT, 2009.

[39] P. Zhou, B. Zhao, J. Yang, Y. Zhang. A durable and energy efficient main memory using phase change memory technology. In ISCA, 2009.

[40] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale Parallel Collaborative Filtering for the Netflix Prize. In

Algorithmic Aspects in Information and Management, 2008.

