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Abstract—Co-locating threads with complementary resource
usage is a key strategy for improving throughput in parallel
machines such as GPUs. However, the proliferation of irregular
algorithms which change execution behavior dynamically makes
optimal thread placement impossible when done statically or by
profiling kernels as a whole. In this work, we characterize the
performance loss associated with current thread block scheduling
policies in GPU architectures. We then demonstrate that an
extension of these strategies incorporating dynamic performance
metrics such as memory and functional unit utilization at the
thread block level as well as preemptive thread block swapping
can improve throughput. We show that performance on irregular
algorithms can be improved by an average increase of 17.1% over
static profiling methods and 12.9% over dynamic strategies with
no changes to legacy software and minimal hardware extensions
which increase SRAM storage area by less than 0.5%.

Index Terms—GPUs, thread scheduling, resource management,
preemption, irregular parallelism

I. INTRODUCTION

There has been a significant trend in mapping an increased

variety of workloads to data parallel architectures. We have

seen numerous enhancements to GPU hardware by vendors to

enable greater flexibility and programability [1] [2] [3] as well

as the emergence of new architectures for specific domains,

such as Google’s Tensor Processing Unit [4] to accelerate

machine learning algorithms. A prevalent challenge is the

increasing amount of control and data irregularities present

in many non-trivial algorithms [5], making it difficult to fully

utilize hardware. Multi-kernel execution and virtualization of

hardware across multiple users have been employed on GPUs

to mitigate these problems [6], but it is difficult to scale these

solutions in light of nondeterminism introduced by irregular

algorithms.

In this work, we will explore specifically how multi-kernel

techniques are hampered by irregular data parallelism, and

present our design for an extension to thread block scheduling

and placement that will circumvent these challenges. Our

contributions are as follows:

• We identify and characterize the variability of resource

usage within and across thread blocks when running ir-

regular algorithms as a function of input density, resulting

in distinct phases of computation

• We demonstrate that previous methods of resource al-

location, both static and dynamic, are insufficient at

accounting for this variability and result in interference

between thread blocks

• We propose a solution which adds hardware to track and

predict future resource usage for each thread block. This

hardware is used to make more sophisticated decisions

for allocating resources, as well as dynamically detecting

phase shifts and reallocating resources when appropriate

• We show that our solution results in a 17% and 13%

average increase in throughput over established static and

dynamic scheduling strategies, respectively, while only

increasing total SRAM requirements by less than 0.5%

II. BACKGROUND

A. GPUs

NVIDIA’s CUDA GPUs use a single instruction multiple

thread (SIMT) programming model, in which the programmer

writes code for a single thread that is replicated hundreds

to thousands of times on the hardware to operate on large

sets of data in parallel. The GPU hardware consists of several

streaming multiprocessors (SMs), each containing a large reg-

ister file to support many threads, a cache-hierarchy including

a software managed scratch-pad (also called shared memory),

and several multithreaded single instruction, multiple data

(SIMD) pipelines.

Threads are grouped into thread blocks (TBs) by the pro-

grammer, which are guaranteed to run on the same SM and can

cooperate through barrier instructions and a scratchpad called

shared memory. Thread blocks are dispatched to SMs via the

global thread block scheduler (TBS) as a grid when enough

resources (namely register file and shared memory space) are

available and are run asynchronously from one another until all

threads within the thread block have completed. A programmer

can indicate that independent kernels can be run concurrently

by issuing them on different streams.

SMs do not employ branch prediction or out-of-order mech-

anisms, but instead rely on swapping between the many avail-

able threads on a cycle-by-cycle basis to hide arithmetic and

memory latencies. Thread blocks are transparently divided into

smaller bundles of threads called warps, which are executed

in lockstep, simplifying fetch and dispatch logic. These con-

siderations allow a much greater portion of a GPU’s die area

to be dedicated towards computation compared with scalar
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cores, and enable their high-energy efficiency and throughput

capabilities [7].

While the SIMT programming model allows for the use

of conditional statements within code which create the ap-

pearance of threads being able to run independently of one

another, thread divergence (the occurrence of multiple distinct

branch outcomes within a single warp) and memory access

divergence (different cache lines being accessed within a

single warp memory operation) results in lane operations to

be serialized and underutilization. Programmers must take care

to ensure that control-flow and memory-access irregularity are

minimized as much as possible to ensure good performance.

B. Irregular Algorithms

Data-parallel architectures such as GPUs have been ideal

platforms for accelerating algorithms which involve uncondi-

tionally applying repeated operations on logically contiguous

data. Matrix-matrix multiplication is an archetypal application

which can achieve over 100× improvement in performance

per Watt on a GPU over serial implementations, as data can

be streamed very efficiently through its hundreds of available

processing units with minimal control overhead [8].

While not to the same degree, a wider class of algorithms

referred to as irregular data parallel algorithms (also called

“amorphous data parallel algorithms” or simply “irregular

algorithms”), has been demonstrated to show speedups of

2 − 10× on parallel architectures [5]. These algorithms are

still data parallel in the sense that operations are applied

repeatedly across multiple pieces of data, but the control flow

and memory access patterns are less regular and predictable.

Many problems which can be represented as graphs, where

operations are propagated through adjacent nodes, are irreg-

ular, since the memory layout is data dependent and may

change throughout execution. While these irregularities make

it difficult to fully utilize hardware, several techniques have

been demonstrated to show practical speedups on parallel

architectures [9] [10] [11].

1 g l o b a l vo id topo ( Node * nodes , boo l * done ) {
2 Node node = nodes [ t h r e a d I d x ] ;
3 i f ( node . a c t i v e ( ) ) {
4 node . p r o c e s s ( ) ;
5 * done = f a l s e ;
6 }
7 }
8

9 i n t main ( ) {
10 / / . . .
11 w h i l e ( ! done ) {
12 done = t r u e ;
13 topo<<<N>>>(nodes , &done ) ;
14 }
15 }

Fig. 1. Topology-driven implementation of an algorithm, which spawns N
threads per iteration. Each thread checks whether its assigned node is active,
and if so processes it. The ”process” method may activate neighboring nodes

Two common approaches towards designing these algo-

rithms are topology-driven and data-driven implementations

[12]. In both of these styles, the work to be done is represented

by a set of connected nodes. Some subset of these nodes are

active, indicating that they must be processed by applying an

algorithm-specific operator on them. After processing each

node, the neighboring nodes may or may not be activated,

causing a propagation effect of iteratively processing active

nodes until a steady state or some exit condition is reached.

For example, in breadth-first search, the operator simply

increments a distance variable by one, and all neighboring

nodes are always activated.

Topology and data-driven implementations are different in

how processing elements are assigned active nodes to process.

In topology-driven implementations (an example is shown

in figure 1), threads are generated to process each node

regardless of whether there is useful work to be done. Such

implementations are usually simple to design, but for data

sets where the percentage of active nodes at any given time

is low, this approach will be very inefficient, as few threads

are performing meaningful work by executing the “process”

method.

1 g l o b a l vo id d a t a ( Node * nodes , WL *wl ) {
2 w h i l e ( i d x = wl−>pop ( ) ) {
3 Node node = nodes [ i d x ] ;
4 node . p r o c e s s ( ) ;
5 f o r ( i =0 ; i<node . num neighbors ; i ++) {
6 wl−>push ( node . n e i g h b o r ( i ) ) ;
7 }
8 }
9 }

10

11 i n t main ( ) {
12 / / . . .
13 i n i t <<<N>>>(nodes , wl ) ;
14 da t a<<<M>>>(nodes , wl ) ;
15 }

Fig. 2. Data-driven implementation of an algorithm, which spawns M threads,
each iteratively popping work assignments of a shared worklist and adding
new work items back on

To address this, data-driven implementations (see figure 2)

dispatch a fixed set of threads which persist throughout the

application’s execution and are assigned nodes to process by

a shared worklist maintained in software. Nodes are only

added to this worklist when they are activated, so there

are no idle “spin-loops” as there are in the topology-driven

implementation.

Data-driven implementations are more algorithmically effi-

cient as they avoid unnecessary work when processing inactive

nodes. However, memory contention caused by accessing a

shared worklist with atomic memory operations means such

implementations are rarely used without aggressive software

optimizations.

One such optimization is employing distributed worklists

via thread-block partitions [12] [11]. This potentially sacrifices

parallelism when load-balancing is needed but allows scaling

to much larger workloads with low density, which we define

as
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D =
2|E|

|V |(|V | − 1)

where V is the total number of vertices or nodes, and E is

the total number of edges or adjacencies between the nodes.

The work presented in this paper makes use of the Lones-

tarGPU benchmark suite Version 3.0 [5] to study the behavior

of irregular algorithms. The benchmark suite has provided

many implementations of several key irregular algorithms,

but as the primary concern is how computation will scale

with the proliferation of large, sparse data sets, analysis of

data-driven implementations is limited to those which use

distributed worklists as part of their optimizations. Thus, the

following benchmarks are used:

Breadth-first search (BFS) counts the minimum number

of nodes between a specified source node and all other nodes.

Starting with the source node, neighboring nodes are activated

and updated with the current distance. There is a single kernel

invocation which iterates until the graph is traversed, and the

operator is very simple [13].

Delaunay mesh refinement (DMR) is provided with a

mesh of nodes and iteratively modifies edges between them to

resolve constraint violations. Because it modifies the underly-

ing data structure, it is a “morph algorithm” [14], and invokes

overhead since extra synchronization via barrier instructions

is needed to prevent partially updated graphs from being read.

It alternates invoking two separate kernels: one to modify the

mesh, and the other to check for new violations.

Minimum spanning tree (MST) is another morph algo-

rithm which finds a subset of the input graph that spans all

nodes and has the smallest overall cost. It uses Boruvka’s

algorithm and alternates between two kernels to iteratively find

the minimum weight edge coming from each component and

then merge partners across those minimum edges. The kernels

become more computationally intense as the graph is reduced.

Points-to-Analysis (PTA) determines the set of addresses a

pointer variable in a program’s source code can access given

a set of constraints. The algorithm uses a pipeline of low-

latency (<100 μs) kernels to iteratively propagate constrains

to different nodes until a steady state is reached. [15]

Single-Source Shortest Paths (SSSP) calculates the short-

est distance from a specified source node to all other nodes

in a weighted graph, in a similar manner to BFS, but with

slightly higher bandwidth needed to read the weights and

higher computational intensity to process them.

Stochastic Gradient Descent (SGD) completes unknown

entries in a supplied sparse matrix. It involves several dot

product calculations between vectors and is the most com-

putationally intensive workload considered.

III. MOTIVATION

While previous works [16] [17] have recognized the prob-

lem of interference across thread blocks, none have considered

the added difficulty when processing irregularly structured data

and how resource usage of threads changes as a result. This

is of paramount importance when considering the increased

prevalence of data sets with non-uniform patterns [18]. Real

world data sets often consist of graphs with clusters of highly-

connected nodes dispersed across many sparsely-connected

nodes. For example, figure 3 shows the distribution of different

local densities in a graph representing which Netflix movies

were enjoyed by which users [5]. While about three quarters

of the graph’s nodes are quite sparsely structured, having

connections to between .001% and 1% of the other nodes,

the remaining quarter of the nodes have a wide range of

higher densities. This is an example of a “power-law” graph,

which are becoming ever more prevalent in the era of big-data

computing [19].

Fig. 3. Distribution of densities of a graph where nodes are sorted by number
of connected neighbors. Local density of a given node is the number of
connected neighbors for that node divided by the total number of nodes

Figure 4 shows two prominent effects this distribution has

on the performance of algorithms processing such input data

sets. Using an NVIDIA Tesla V100 GPU (the specifications

of which are described in section V), we measured how the

rate of stalls resulting from memory throttling (i.e. when

the load-store-unit (LSU) is fully saturated and can’t accept

more requests) changes as the density of the data is increased

across benchmarks from the LonestarGPU suite. Across all

benchmarks, there is a decrease in the rate of these stalls

as density increases. This is a consequence of higher data-

reuse when processing dense data. As long as the working

data set can be fit within the cache, tightly packed clusters

of nodes will result in the compute operator processing the

same nodes multiple times in quick succession, yielding a

higher cache hit rate. Similarly, sparse segments of data will

result in pointer-chasing with little data reuse and the LSU is

more likely to be saturated with long latency cache misses.

BFS and SSSP are both memory bound workloads with very

simple compute operators, and accordingly show significant

changes (a total of 78% and 93%, respectively) in the rate of

stalls as the density and data reuse increases. On the other

extreme, MST and SGD have much more computationally

intense operators which hide the latencies associated with

cache misses. The penalties associated with processing highly

sparse data is correspondingly less than workloads with simple

compute operators, with a 10% and 25% reduction of stalls in

processing the densest data sets, respectively. DMR and PTA
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Fig. 4. How different metrics (y-axis) vary as a function of input density (x-axis) for each benchmark. The blue line is rate of stalls due to memory throttling,
and the orange line is the increase in utilization of the floating point units. Both are normalized to the sparsest case studied

show moderate reductions in stalls when processing dense data

(50% and 61%, respectively).

We also measured how the utilization of floating point

units (FPUs) are affected by density. Both BFS and PTA do

not contain any floating point code and are thus unaffected.

DMR and SSSP show increased utilization (19% and 24%,

respectively), but this is largely a side effect of the reduction

of memory stalls; since less time is spent waiting for memory,

a larger percentage of execution is spent processing data and

utilization is increased. The amount of computation needed

to process each node is largely unaffected. MST and SGD

both have operators which grow in complexity as the density

increases. For example, SGD performs numerous dot products

on segments of the input data. As the number of non-zero

elements within a row increases (i.e. as the density increases),

more elements must be multiplied and summed together for

each dot product, increasing the computational intensity of the

operator. Accordingly, MST and SGD both see an increase in

FPU utilization (31% and 28%, respectively) that is partially

independent of the decrease in memory stalls. This fact will

be significant in identifying benefits of tracking both metrics

in tandem.

Because different thread blocks process independent data,

there is little guarantee about how sparsity levels of the data

correlate between active thread blocks. Over time, the threads

processing these nodes may migrate to neighborhoods of

different density, and correspondingly the resource usages of

the containing thread blocks may also change. Accordingly,

an optimal thread block scheduler should treat individual

thread blocks within a given kernel differently depending

on the properties of the data being processed. We make

two observations that guide our design decisions for a finer

granularity scheduling and resource allocation policy:

• The density of graphs changes smoothly as the graph

is traversed. We observe that across the input data sets

considered, 86% of 5-node diameter subraghs (i.e. the

data processed by a thread across 5 iterations of the

algorithm) see deviations of fewer than 10 neighbors per

node between the most and least connected nodes in the

subgraph.

• In both topology-driven and data-driven workloads which

use distributed worklists, thread blocks with a given

block index traverse graphs smoothly (that is, nodes

accessed within in a short amount of time are logically

near one another in the graph) even across separate

kernel invocations. This is not the case with data-driven

implementations which use a single shared worklist, as

which particular subset of data accessed by a given thread

block will be completely random across separate kernel

invocations depending on the precise interleaving of other

thread block’s access to the worklist.

These observations suggest that we can predict how much

of a particular resource a pending thread block is likely to

use in the near future based on how that resource was used by

previous instances of the same thread block (i.e. have the same

block index). By tracking the resource usage via performance

counters already present on modern GPUs, we can feed this

information to the thread block scheduler and more accurately

place thread blocks on the ideal SM.

However, this is not a general solution. Table I lists several

properties of kernel iterations in the LonestarGPU benchmarks

when processing a fixed-size data set. One of these is the

average execution latency, or how long each kernel instance

runs on average. DMR, MST, PTA, and SGD all invoke kernels

several times across its execution, with the number of iterations

depending on the size and structure of data. BFS and SSSP

only invoke their respective kernels once, and as such their

latencies make up most of the applications’ run times.

The changing density patterns in the input data result in the

emergence of “phases” where a thread block’s resource usage

changes over time. For the purposes of this work, we define

a phase shift to have occurred when a given metric of interest

(namely, the rate of memory throttle stalls or utilization of the

FPU) averaged across a window of the last 100 μs deviates by
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Application Grid /
Block size

Regs per
thread

SMem per
block (B)

Total
context

size (KB)

Preemption
latency (μs)

Execution
latency

(μs)
BFS 240 / 128 32 0 16 3.0 56,000
DMR 112 / 512 32 0 64 11.8 9,080
MST 640 / 256 34 0 34 6.2 1,030
PTA 80 / 991 28 200 108 20.1 40
SSSP 160 / 256 32 0 32 5.9 23,000,000
SGD 900 / 16 26 68 2 0.3 10

TABLE I
AVERAGE ITERATION METRICS PER APPLICATION

more than 5% (choosing a smaller window size for the running

average is unlikely to be of use, since, as we will explain later

in this section, there will be no way to effectively respond to

this variances on that time scale). The exact properties of these

phases varies widely based on the benchmark as well as size

and structure of the input data. We provide one example of

the distribution of how long these phases last when executing

the SGD benchmark in figure 5. There is not a clear upper

bound on the length of these phases, but the majority last

between 1 and 10 ms, with an average of about 5.4 ms. Across

all benchmarks and several input data sets, the average phase

length varies between 0.1 ms and 100 ms.

Fig. 5. Distribution of phase lengths when running the SGD benchmark

The key observation is that while half of the benchmarks

(SGD, PTA, and to a lesser extent MST) have average latencies

on the order of or significantly less than the typical phase

lengths we observe and can therefore be rescheduled at a fine-

granularity at the next invocation of that thread block, the

other half (DMR and to a much larger degree BFS and SSSP)

have average latencies significantly higher than typical phase

lengths. Waiting to make allocation decisions at thread-block

dispatch may potentially miss several phase changes entirely.

Indeed, since BFS and SSSP only invoke their kernel once,

we have no hope of adjusting the allotted resources based on

phase changes at kernel dispatch.

Thus, the second part of an ideal resource allocation strategy

is to detect phase changes in real time, preempt thread blocks

which are not ideally placed, and relocate them to somewhere

better suited.

Fig. 6. Diagram of the proposed system architecture with the SMs, thread
block scheduler, and the proposed victim queue and thread block resource
usage tracker

IV. DESIGN

We use all of the discussed observations to design a dynamic

thread block scheduling and preempting infrastructure to better

approximate an ideal solution. The architecture is summarized

in figure 6. In order to account for resource usage variance

across thread blocks, we propose the inclusion of a thread
block resource usage tracker (RUT) which is implemented as

an SRAM table in hardware. The RUT is indexed with both

the stream ID and block index and stores an N bit unsigned

integer for each utilization metric to be tracked by the TBS.

The reason why the stream ID is used instead of the kernel ID

is that applications frequently use a pipeline of kernels with

identical dimensions to process data in several steps, where

each corresponding thread block with the same block index

processes the same subset of data and therefore exhibit similar

resource usage trends.

In addition to resources such as shared memory and register

file usage, the TBS will also estimate different resource

usages through the RUT and use these estimates as additional

constraints when placing thread blocks.

When allocating a thread block, the TBS will:

• access the RUT with the stream ID and block index to

receive estimates on key resources

• find the first SM (using a rotating round robin policy)

that has enough register file, shared memory, and sup-

plemental resources to accommodate the current thread

block
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• if no SMs meeting that criteria are available, thread block

dispatch is stalled until one becomes available

Periodically, each SM will check the resource usage of

of each resident thread block using preexisting performance

counters. If any tracked resource has deviated over a certain

threshold since the previous check, the SM informs the TBS,

which then updates the appropriate RUT entry. Each entry will

also be updated when the given thread block terminates. Care

must be taken to choose the right frequencies and parameters

so that the system is not overrun with traffic from updates.

Whenever the RUT is updated by a still-running thread

block, the TBS will reevaluate the resource usage of the SM.

If the estimated resource usage has increased such that the

SM is predicted to be oversubscribed, the SM is instructed to

preempt the thread block in question, the context is swapped

to memory (see next subsection for details), and meta-data for

the thread block is pushed onto a victim queue maintained by

the TBS, if it is not full. If the victim queue is full, no thread

blocks are preempted until space is made available.

If, upon update of the RUT, the estimated resource usage has

decreased, the thread block searches through the victim queue

in last-in-first-out order for a thread block that is not expected

to oversubscribe the SM and context-swaps the thread block

into the specified SM. If no thread blocks in the victim queue

meet the criteria, the TBS checks to see if the next thread block

which has not yet started execution will oversubscribe the SM,

and issues if appropriate. The victim queue is searched first

and in a LIFO order to take advantage of locality in the event

that the thread block is issued to an SM which shares part of

the cache hierarchy of the previous SM.

A. Thread Block Preemption

Preempting thread blocks on a GPU has been demonstrated

as an effective way to ensure quality of service when running

multiple kernels [20] [21] [22]. We make use of context

switching, which involves moving the contents of the register

file, scratchpad, and other data encapsulating the state of

running thread blocks between memory and SMs. We briefly

summarize alternative methods for thread block preemption in

Appendix A.

Table I includes the average total context size for a thread

block in each application, which is calculated as the amount of

shared memory per block plus the thread block size multiplied

by the number of registers per thread, multiplied by the

register size (32 bits). The table also includes the average

latency added per context switch, which was measured in

our simulation infrastructure (see section V for details). As is

apparent, the latency associated with preempting thread blocks

in each benchmark is still an order of magnitude lower than

the typical phase lengths we observe and can therefore be a

reasonable cost to pay if thread blocks are better co-located

and resource interference can be sufficiently reduced.

V. METHODOLOGY

We evaluate our design using GPGPU-Sim version 3.2.2

[23] whose configuration is described in table II, meant to

System Configuration
SMs 80 SMs, 5120 Cores, 1.6GHz

Max of 2K threads per SM
Max of 1K threads per TB
Max 64K registers per block
Max 48 KB shared memory per block
128 KB L1

Memory Subsystem 6 MB L2
900 GB/s bandwidth

Thread Scheduling GTO

TABLE II
GPGPU-SIM SIMULATION PARAMETERS USED FOR EVALUATION

emulate the Tesla V100 we used in previously described

experiments. We modified the simulator to enable multi-kernel

execution and preemption with context switching, and co-

ran pairs of applications from the LonestarGPU benchmark

suite Version 3.0 [5]. Because the LonestarGPU benchmarks

are predominately memory bound workloads, we also co-ran

the benchmarks with samples from the Parboil benchmark

suite [24] which includes a more diverse set of memory

and compute bound workloads. For all pairs of workloads

we measure the change in overall throughput (measured in

instructions committed per cycle) of the LonestarGPU kernels.

We compare our solution against two variants:

• A scheduler which has oracle knowledge of the average

resource usage of the kernel as a whole for use in

scheduling thread blocks, but does not track the dynamic

behavior of the kernel and does not employ preemption.

This provides a fair comparison to works such as Xu et al

[25] which estimate kernels performance characteristics

as a function of their input size.

• A scheduler which tracks the dynamic behavior of ker-

nels as a whole and preempts when oversubscription is

detected, but does not track individual thread blocks. This

provides a fair comparison to works such as Park et al

[17].

For input, we used datasets synthesized using the Graph500

R-MAT generator [26] using its default parameters of (A=0.57,

B=C=0.19) which were used in recent analytic works on

power-law graphs [27] [18]. The number of edges is set to

100,000 and the number of vertices is swept between 5,000

and 80,000.

As a heuristic, we have the SMs query the performance

counters once every (context size in KB / 1.1) μs, which

roughly equates to five times the expected preemption latency.

This information can be communicated via the TBS upon

thread block dispatch. We set the size of each RUT entry to be

3 bits per metric of interest (rate of memory throttle stalls and

FPU utilization), and set the total size of the table to be 16KB

or about 21K entries, more than enough to ensure virtually

no conflicts between different kernels. Any deviation detected

with this metric over that time period will be communicated

back to the TBS. We set the victim queue to be large enough

to hold 1K entries.
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Fig. 7. Throughput increases over oracle static classification (blue) and kernel
granularity profiling (orange)

VI. EVALUATION

Figure 7 shows the throughput increase of our design over

both the oracle static classification scheme and the kernel-

wide monitoring solution described in section V. Each result

is the average increase over all pairings and input datasets

involving that benchmark. Our design, across all benchmarks,

achieves an average increase in throughput of 17.1% compared

to the static scheduler and 12.9% compared to the kernel-wide

profiler. The magnitude of the throughput increase correlates

with the range of metric deviations reported in figure 4, as

benchmarks with higher variance pose the greatest hazard

for interference as the data patterns change. In most cases,

we achieve a better improvement over the static scheduler

than over the profiler. This is because the profiler, although it

does not track individual thread block metrics, can still detect

coarse-grained average changes in the data set across the whole

kernel and can preempt the thread blocks in cases where the

variances do not cancel each other out. The kernel profiler does

not perform any better than the static scheduler for either PTA

or SGD, as these benchmarks consist of kernels too short for

thread block preemption to be effective. To better understand

the efficacy of our design, we isolated several features.

A. Effectiveness of Predictive Scheduling versus Context
Switching

Figure 8 shows our design’s performance when employ-

ing only the preemption or predictive scheduling strategies

in isolation, and then using both together. BFS and SSSP

achieve all of their throughput increases through preemption,

as they only invoke their primary kernel once and so can’t use

the dynamic metrics to schedule future thread blocks more

efficiently. Although the kernel profiling strategy is able to

respond to global changes across the entire kernel, it cannot

respond to deviations when individual thread blocks enter or

exit dense regions of data. At the other extreme, PTA and

SGD’s kernels are too short to use preemption effectively

and achieve all of their performance gains through scheduling

enhancements. DMR and MST receive moderate speedups

due to preemption, but are limited by their relatively short

Fig. 8. Throughput increases over static classification when employing only
preemption (blue), only predictive scheduling (orange), and both (grey).
Annotated with correlation of subgragh densities across subsequent kernel
invocations

execution latencies and are less able to amortize the overhead

of context switches.

To illustrate the effectiveness of predictive scheduling, fig-

ure 8 also annotates the workloads using predictive scheduling

with the correlation of the average density of nodes processed

by two TBs with the same block ID across subsequent kernel

invocations. Predictive scheduling relies on the assumption

that thread blocks with the same block ID will enter similar

regions of the graph, i.e. we expect these correlations to be

high. BFS and SSSP of course have undefined correlations

since they do not have multiple kernel invocations. SGD

has a very high correlation of 96%, as it is a topology

driven benchmark which is guaranteed to have the same nodes

processed by the same threads each iteration. Small deviations

occur as the graph is morphed over time, but slowly relative to

the large number of pipelined, low-latency kernel invocations.

DMR and PTA are also topology driven benchmarks, but

morph the underlying data structures more rapidly relative to

the frequency of kernel invocations, and as such see a smaller

but still substantive correlations at 89% and 91%, respectively.

MST sees the lowest correlation at 81% as it is a data-driven

algorithm and thus sees a greater variance in which thread

blocks process which nodes. However, the use of distributed

worklists keeps the correlation relatively high.

Most benchmarks receive the vast majority of their speedup

from one strategy or the other and don’t receive much added

benefit from using both. MST is the exception, as the two

strategies are often able to “catch” opportunities to better

schedule threads missed by the other. On occasions where a

thread is not placed on an optimal SM due to variance from

worklist distribution or otherwise, preemption can still relocate

the thread block, albeit with higher overhead than the other

benchmarks.

B. Memory Tracking versus Compute Tracking

Figure 9 shows the performance increase when only tracking

memory stalls, FPU utilization, or both together. For most

benchmarks, tracking memory stalls is much more profitable

than tracking FPU utilization, which is expected as these are
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Fig. 9. Throughput increases over static classification when only tracking
memory throttle stalls (blue), only tracking FPU utilization (orange), and
tracking both (grey)

memory bound workloads. In particular, BFS and PTA have no

floating point code. SGD and MST contain more complicated

operators which make variable use of floating point operations

depending on the input data structure and see more benefit

from tracking FPU utilization. Although DMR and SSSP make

use of floating point operations and the intensity does vary

based on input structure, this variance is a largely a side effect

of changing memory utilization: fewer memory stalls increases

bandwidth, keeping the other functional units more occupied

as a result and vice-versa. Accordingly, these see less benefit to

tracking both metrics compared to other workloads, as tracking

one implicitly gives information on the other.

C. Overheads

Excluding benchmarks which do not make use of preemp-

tion, we see an average throughput overhead of 2.7%. This is

smaller than the overheads observed by Park et al [22] on the

order of 10% because:

1) The amount of register and scratchpad space allocated

by these benchmarks is smaller than the benchmarks

explored in their work

2) Preemptions in their work occur on the order of 10 −
100× more frequently than in this work due to typical

phase lengths

By choosing appropriate parameters for our design, we

have ensured significant performance improvements with small

overhead. The increased memory traffic associated with updat-

ing the RUT and context switching across the whole GPU is

13 KB/s and 1 GB/s, respectively, which accounts for less than

1% overhead on the total available throughput of the system.

The RUT and victim queue together account for 20 KB of

extra SRAM shared across all SMs, which adds under 0.5%

the overhead of the L2 cache.

VII. RELATED WORK

Thread block preemption has been recognized as a powerful

solution towards better resource management. Tanasic et al

[20] suggest hardware extensions to make preemption on

GPUs more efficient. Park et al [22] demonstrate how combin-

ing several preemption techniques and dynamically choosing

between them can reduce latency and improve throughput in

multiprogrammed workloads.

Many works have explored the problem of resource con-

tention in GPUs and how to prevent it. Kayiran et al [28]

explored how changing the number of thread blocks issued by

compute versus memory intensive workloads reduces resource

contention. Pai et al [29] and Zhong et al [16] investigate

alternative static and dynamic methods of modifying kernel’s

execution properties to enable better utilization.

This work followed the lead of many others in exploring

more sophisticated schedulers. Li et al [30] propose a co-

design between the thread scheduler and cache allocation

scheme to avoid cache contention without underutilizing other

resources. Sethia et al [31] propose augmentations to the

scheduler to prioritize memory requests from irregular, mem-

ory intensive workloads to reduce stalls. Zhao et al [32],

Xu et al [25] and Jiao et al [6] investigate classification of

kernels to enable better thread block placement. Park et al

[17] develop a strategy to dynamically monitor a kernel’s

execution and preempt thread blocks when appropriate. Wu

et al [33] and Chen et al [34] investigate solutions at the

program and runtime level to enable better thread scheduling

and preemption. To our knowledge we are the first to analyze

how thread scheduling is impacted by the issues of irregular

algorithms, and the first to develop a solution of tracking

resource usage at the thread block level.

VIII. CONCLUSION

Processing diverse data patterns in irregular workloads

results in significant resource usage variance across different

threads. However, gradual changes prevalent in practical data

sets make it possible to respond dynamically to these changes

and modify scheduling decisions. By adding a hardware table

to track metrics for each thread block as well as a queue to

hold preempted thread blocks, we can effectively reorganize

threads in response to changing data patterns. By increasing

SRAM storage requirements by less than 0.5%, we can gain

17% and 13% improvements of throughput over previously

proposed static and dynamic scheduling strategies, respec-

tively.
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APPENDIX A

THREAD BLOCK PREEMPTION STRATEGIES

Preemption strategies usually fall into one of three classifi-

cations:

• Context switching: Due to the massive number of threads

present on SMs, true context switching is generally

avoided. It requires storing the register file and scratch-

pad to a designated location in memory, which greatly

increases the latency of preemption [22].

• Draining [20] [22]: Draining allows all currently running

thread blocks to complete until the SM is empty, and

then swaps in a new set of thread blocks. As has already

been established, waiting for thread blocks to finish is too

costly for long running kernels such as BFS and SSSP to

be a general solution.

• Flushing [22]: Flushing drops the currently running

thread blocks and restarts them at the beginning of their

execution on a new SM at a later time. This ensures

low latency swapping, but requires certain properties of

the kernel at the point of preemption: it must not have

made any stores to memory that could affect the values

of its earlier loads, and it cannot have executed atomic

operations. Otherwise, the thread block may have differ-

ent execution when rerun from the beginning. Because

many irregular workloads are morph algorithms (e.g.

DMR and MST) which alter the input data structures as

they execute, they may not meet this criteria and flushing

cannot be used.
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Context switching is the only general solution and is thus

what is used for the design in this paper.

APPENDIX B

CATACLYSMIC THREAD PURGING

Upon thread preemption, our strategy marks context data as

non-cacheable. Figure 10 shows a possible outcome of context

swapping when the state is cached in the L1 and L2 levels of

the memory hierarchy. This results in a generalized form of

cache thrashing, where not just the contents of memory are

brought in and out of the cache in an unstable manner, but

also the contexts of the threads themselves.

Fig. 10. Negative impact of L1 and L2 caching during context swapping

As shown in table I, many of the kernels have context sizes

which are a significant portion (10% or more) of the L1 cache.

When cache entries are allocated as a result of saving or

restoring a thread block’s context, it evicts a significant portion

of the cache. In memory-intense workloads, particularly BFS

and SSSP, this has the effect of significantly increasing pres-

sure on the load-store units and increasing the probability that

further thread blocks are preempted as resources are saturated.

As more thread blocks are evicted, more of the cache is

displaced and still more pressure is placed on the memory

system, resulting in a chain reaction where a large portion

of the resident thread blocks are evicted. We refer to this

phenomena as cataclysmic thread purging. Those benchmarks

that do not make as much use of preemption (e.g. short running

kernels such as PTA and SGD) see less effects, but the overall

throughput improvement across benchmarks is reduced to just

2%.

As a result, our design marks context saving and restoring

memory operations as “non-cacheable” to prevent such an

event.
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