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Abstract

The dynamic performance of computer-controlied manipulators Is directly linked
to the formulation of the dynamic model of manipulators and its corresponding control

law. Various formulations are available to describe the dynamic models of mechanical

manipulators and most notable of these are the Lagrange-Euler and the Newton-Euler

formulations. This report describes an efficlent position plus derivative control in the

joint variable space for a PUMA" robot arm whose dynamic equations of motion are
formulated by the Newton-Euler method. The recursive controller compensates the
inertla loading, the nonlinear coupling reaction forces between joints and the gravity
loading effects. Using a PDP 11/46 computer, the controller equations can be com-
puted within 3 ms, which Is sufficlent for real-time control. Computer simulation of

the performance of the control law Is Included for dlscussion.

* DUMA Is a trademark of Unimation Inc.
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1. Introduction

A mechanical manipuiator can be modeled as an open-loop articulated chain
with several rigld bodles (links) connected In series by either revolute or prismatic
Joints. One end of the chaln Is attached to a supporting base whilae the other end is
fres and attached with a tool (the end-effector) to manipulate objects or perform

assembly tasks. The motion of the joints result in relative motion of the links.

The purpose of manipulator control is to maintaln the dynamical response of an
electromechanical manlpulator in accordance with some pre-specified system per-
formance and desired goals. In general, the control problem consists of (1) obtaining
dynamic models of the physical system and (ii) spacifying corresponding control
laws or strategies to achieve the desired system response and performance. This
raport deals with the second part of the control problem of computer-controlied

manlpulators, and In particular, the PUMA robot arm.

A priori information needed for control Is a set of differential equations describ-
ing the dynamic behavior of the manipulator. Though various approaches are avali-

able to formulate the robot arm dynamics such as the Lagrange-Euler [Uic85], the

"Recursive-Lagrange” [Hol80], the Newton-Euler [LWP80], the Lagrange form of

D'Alembert Principle [LLN82], and more recently the "Gibbs-Appeil” [HoT80] formula-
tion, two maln approaches remain to be used by most researchers to systematically
derive the dynamic model of the manipulator - the Lagrange-Euler and the Newton-
Euler formulations. After obtaining the dynamic equations of motion of the manipuia-
tor, a suitable control law must be designed to compute the necessary feedback
torques /forces to actuate the joints for every set point { 89,4 A )na pre-planned
trajectory. Bejczy [Bej74] based on the Lagranglan formulation has shown that the
dynamic equations of motion for a 6-jointed manipuiator are highly nonlinear and
consists of inertia loading, coupling reactlon forces between joints and gravity load-

ing effects. Hence, the control law must be designed to compensate all these non-

Robot Systems Division introduction
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linear effects. A position plus derivative control based on the computed torque
technique has been used previously to servo a Stanford arm [Mar73] whose
dynamic equations of motlon are formulated by the Lagrange-Euler approach. How-
ever, the dynamic equations of motion as formulated by the Lagrange-Euler method
have been shown to be computationally Inefficlent [TML&O,Pau?Z], and real-time
control based on the ‘complete' dynamic model has been found difficuit to achieve If
not impossible [Pau72]. A simple control law In joint space which compensates the
inertia loading, the coupling reaction forces between joints and the gravity loading is
shown through the "Equivalence Formulation" [TML&O,LCT&Z] to have the same con-
trol effects as the one obtained by the computed torque technique. This control law
is based on the dynamic equations .of motlon formulated by the Newton-Euler
method. Computer simulation of the performance of the proposed control law for a

PUMA robot arm on a VAX-11/780 computer shows the expected resuit.

in the following sections, vectors are represented In boldface jower case

alphabets while matrices are in boldface upper case alphabets.

2. Kinematics and Notation for Manipulators

A mechanical manipulator consists of a sequence of rigid bodies, called links,
connected by either revolute or prismatic joints. Each palr of joint-link constitutes
one degree of fraedom. Hence for an n degree-of-freedom manipulator, there are n
palirs of joint-link with link 0 attached to a supporting base where an inertial coordi-
nate frame Is established. In order to describe the translational and rotationatl rela-
tionship between adjacent iinks, a Denavit-Hartenberg matrix representation for
each link Is used [DeH55] and shown In Figure 1. From Figure 1, an orthonormal
coordinate frame system ( x,¥;,2 ) Is assigned to the it" link, where the z; axis
passes through the axis of motion of joint I+1, and the x; axis Is normal to the z;_4
axls, while the y; axis completes the right hand rule. With this orthonormal coordi-

nate frame, link | Is characterized by two parameters: &, the common normal

Robot Systems Division Kinematics
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distance betwesen the z,_, and z; axes, and ¢y, the twist angle measured between
the z,_1 and z; axes in a plane perpendicular to a;; and joint | which connects link i~
1 to link | is characterized by a distance parameter d, measured between the x;_,
and x; axes and a revolute joint variable ¥, which is between the normals and meas-
ured In a plane normal to the Joint axls. If joint i Is prismatic, then It Is characterized
by an angle parameter 4, and a joint variable d,. With the coordinate frames esta-
blished for adjacent links (link | and link I-1), one can relate the relationshlp between
the adjacent coordinate frames (/" and /—1%" frames) by performing the following
four operations (see Figure 1): (a) Rotate an angle of 9, about the z,_, axls ( the
X,—1 and x; axes are allgned ). (b) Translate a distance of d; along the 2,4 axis (
the x,_4 and X axes are colncldent ). (c) Translate a distance of a; along the x;

axis ( the two origins are colncident ). {d) Rotate an angle of a; about the x; axls.

Z,_z

Yi-1 \

Figure 1 Parameters of a Link Coordinste System

Robot Systems Division Kinematics
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These four operations may be expressed by a 4 x 4 homogeneous coordinate

transtormation matrix as:

cos ¥, —cos o sin¥, sin g sin 9, a cosY

sin 8, cos oy cos¥ -—sina cosy asind (2.1)
Ta=| o sin oy cos q d;
1)) 0 0 1

ln/_, p/-1 ] (2.2)

o 1

The upper left 3x3 submatrix of T/_, Is called the rotation matrix R/_; while the
upper right 3x1 vector is called the position vector p]_, . One can view the rotation
matrix R/_; as a transformation matrix which maps a vector r; =(x,y,Z )y
expressed In the /" coordinate frame into the (i-1)t coordinate frame with both
origins colncided at one point, and the position vector as the displacement vector of

the origin of the /" coordinate frame from the origin of the (/-1)¥ coordinate frame.

The above kinematics relationship between adjacent iinks will be used in the
following sections to derlve the dynamic equations of motion and show the
equivalence of the two controllers based on the two most popular arm dynamics for-

mulations.

3. Dynamics of Manipulators

The dynamic equations of motion for a PUMA robot arm can be obtained from
known physical laws (Newtonlan and Lagrangian mechanics) and physical measure-
ments (link inertias and geometric parameters). The actual derivation is based on
the Lagrangian/Newtonian formuiation applied to open articulated chains
represented In Denavit-Hartenberg matrix notation form. The equations of motion for

a six-jointed manipulator have been derived previously by Bejczy[Bej74],

Robot Svstems Division Oyramics
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Paul[Pau72] and Uicker[Uic65] using the Lagranglan generalized coordinates. The
equations of motlon derlved from the Lagranglan and Newtonlan formulations will be

briefly presented here.

3.1. Lagrange-Euler Formulation

Consider a position vector expressed in homogeneous coordinates,
p=(x,v, 2z, 1), which points from the base coordinate system to a differential

mass, dm, located In the N tink. p can be written as:
P=Tir;, and r, =(x,y,2,1) (3.1)

where r; Is the position of the differential mass dm reprasented In the I*" coordinate

frame.

The velocity of this differential mass with respect to the base coordinate

trame ( an Inertlal frame ) is:

I 8T .
_dp _ ° - .
vl==E= [/Z:‘ —;"-’j]rl ; fori=1,2,..n (3.2)

The assoclated kinetic energy dk; is %Tr(vé(v,,’,f )dm which equals:
dK, = 1 Ellzllrr BTc',r(r)Tdm aTé T{,{’k (3.3)
e 2 2 199y i X ,

When each iink Is integrated over its entire mass and the kinetic energles of all

links are summed, we have:
KE. = 3, [k = 212T\ L & 73,7 50,

where J,; Is defined as:

Robot Systems Division Lagrange~Euler Formulation
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—l ety t!
xxVlyytizz - -
- Dx—lyy+lzz  _ - = -
Tyl xmy — +rf my Tyrmy rym
Jf=
L+l
FoFmy 7 Ty XxXT WY ZZ L\ F2m, Fomy
Txm, Tym, 'fzm, my

The total potential energy of the arm Is the sum of the potential energy of

each link expressed in the base coordinate frame:

-]
PE.= S P =) —mgTiF (3.56)
I=1 1=1

where

¥, Is the position vector of the center of mass of link | expressed in the ith

coordinate frame.
g Is the gravity row vector = (gx.g,,gz0) and | ¢ | =8.8082m/ s

Applying the Lagrange-Euler equations of motion to the Lagranglan function
L = K.E. — P.E., we obtain the necessary generalized torque 7, for joint i to drive

the /" link of the arm:
;
glar) o & & [ovd [ams]]..
= e | o —— Tr{— ——
T dt[&ﬁ] R P '{aa,"" o9 ) | ¥

8 m m 2Tl aTm n .. &8 T4
+ Tr J 9% — Y mig——TF; ;forl=1,2,..,6
,,,2.,,2@, {amwk ”'[aa, i E, 1935, "

(3.8)

Because of its matrix structure,‘thls formulation is appealing from a control

viewpoint in that it gives a set of closed form differential equations as:
D(3)d + H(3,D + G(¥) = T (3.7)

where:

Robot Systems Division Lagrange~Euier Formulation
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D(¥) = a 8x8 Inertia accelaration matrix

T
6 ot [o1{
Dix = Tr{————J-[-——] } ; for i,k=1,2,...,8 (3.8)
j=m§(l.k) a@k 1 6‘131
H(¥ , 9 = a Bx1 nonlinear Coriolis and Centrifugal vector

ats
99,

8 82T
Hixm = Tr { é

J

'} Wl ; for km=1,2,...,6 (3.9)

G(9) = a 6x1 gravity loading vector of the links

8 aTd
= - —L2F = (3.10)
G Elm, 955, " ; for /=1,2,..,8
8=(8,%2, -, %)
d=(4 ,%, -, %)
B=(B, B, -, )

T= (TI 1 T2 73 ,T4 , 75 sTﬂ)r

= external applled torques for the joints

This form provides more insight to the coupling effects between jolnts and to
desligning a control law that compensates all these nonlinear effects easily. Com-
putationally, however, the Lagranglan formulation is extremely inefficient as com-

pared with other formulatlons.

3.2. Newton-Euler Formulation

The Newton-Euler equations of mation of a manipulator consist of a set of
compact forward and backward recursive equations. The most significant of this
formulation is the computation time of the applied torques could be reduced tremen-

dously so that real-time open-loop controf is possible. A brief derivation of the

Robot Systems Division Newton~-Euler Formulation
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formulation based on [LWP80] is presented here for completeness.

The forward recursive equations propagate linear veloclty, linear acceleration,
angular velocity, angular acceleratlon, total link forces and moments from the base
to the end-effector of the manipulator. For manlpulators having all the rotary

joints, these equatlons are:

Forward Equations: / = 1,2, - ,n
w = R/~ (w1 + Zo®) (3.11)
oy = R/~ [oyoy + 2o% + @y X 2,41 (3.12)
& = X +wX [w, x r,] + R/ 'a;_4 \' (3.13)
W=y xF+oyx[wxF]+a (3.14)
F, = m#&, (3.18)
Ny = hoy + wp X o 7 (3.16)

The backward recursive equations of motion propagate, from the end-effector to

the base of the ménlpulator, the forces and moments exerted on link | by link I-1.

Backward Equations: /i =n,n-1, - ,1
f,=R/*t 4 + F (3.17)
=R X+ +F)XF + N (3.18)
m=n[(R]~25) (3.19)

with the "usual’ inltial conditions of we = 0.8, = 25,0, =0, g = 9.8082m/ s2,

fp+1 = external force exerted on the hand and n,;1 = external moment exearted

Rebot Systems Division Mewton~Euler Formulation
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on the hand.

whaere:

R/ =1 = the rotation matrix which transforms a vector from its representation in

the /—1*" coordinate system to its equlvalent In the ™ coordinate system.

w; = the angular velocity of link | with respect to the /%" coordinate system.

a; = the angular acceleration of link | with respect to the ™ coordinate sys-

tem.

r; = the posltion vector of the origin of the -1t frame with respect to the "

coordinate system.

¥, = the position vector of the center of mass of link | with respect to the ith

coordinate system.

a; = the linear acceleration vector of link | with respect to the /" coordinate

system.

& = the llnear acceleration vector of the center of mass of link | with respect

to the i coordinate system.

I, = the Inartia matrix about center of mass of link | with respect to the i*" coor-

dinate system.

F; = the total extemal force vector exerted on link | with re;spect to the /"

coordinate system.

N, = the total external moment vector exerted on link | with respect to the /t?

coordinate system.

f, = the force vector exerted on link i by link i-1 .

n the moment vector exerted on link i by link 1-1 .,

L]

T the applied torque exerted on link |

Robot Systems Divislon Newirn-Euler Formulation
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. Computed Torque Technique Based on the Newton-Euler Formulations

Given the equations of motion of a manipuiator as in Egs. (3.7)-(3.10)
(Lagrange-Euler formulation) or Egs. (3.11)-(3.19) (Newton-Euler formuiation), the
control problem Als to find appropriate feedback torques/forces to servo all the
joints of the manipulator in real-time to track a desired position trajectory as ciosely
as possible. Several methods are available In accomplishing this task. Most notably
of these are: (i) Resolved Motlon Rate Control (RMRC)[Whi6g], (ii) Cerebeliar Model
Articulation Controller (CMAC)[AIb76], (iil) Near-minimum-time control [KaB71], and

(iv) Computed torque technique [Mar73, Pau72].

The RMRC Is a technique for determining the joint angle rates required to cause
a manipulator end point (or tool) to move In the directions which are expressed In
the hand or world coordinate system. in order to find the required 13, the inverse
Jacoblan matrix J(¥9)~' is required. One of the drawbacks of this method is the
added computation load needed to find the inverse Jacoblian matrix and the singular-

Ity problem assoclated with the matrix inversion.

The CMAC is a table look-up control method which based on neuro-physiological
theory. it computes control functions by referring to a table stored in the computer
memory rather than by solution of analytic equations. For useful applications several

problems such as memory size management and accuracy need to be solved.

Due to the noniinearity and complexity of the dynamical model of manipulator, a
closed form solution of the optimal control is very difficult, if not impossible. Near-
minimum-time controt is based on the linearization of the equations of motion about
the nominal trajectory and linear feedback and/or suboptimal control law are
obtained analytically. This control method is still too complex to be useful for mani-
pulators with four or more degree of freedom and furthermore It negiects the effect

of unknown external ioads.

Robot £ystens Division Control Law
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One of the baslc controli schemes is the computed torque technique

[Pau7 2,Mar73] based on the Lagrange-Euler equations of motion.

The computed torque technique assumes that one can accurately compute the
counterparts of D(d), H(d,® , and G(3) in Eq. (3.7) to minimize their nonlinear
effects and use a position plus derivative control to servo the joints [Pau72]. Thus
the structure of the control law has the form of:

T = DL F + KAF =9 + K97 = 9) | + H(3, D) + @) (4.1)
where

K, Is an nxn derivative feedback gain matrix.

K, Is an nxn position feedback gain matrix.

n Is the number of degree of freedom of a manipulator.

Substituting 7 from Eq. (4.1) into Eq. (3.7), we have:

D(3)D + H(3,) + G(B) = D) F + KAF — D + K(s? - ‘”]

. (4.2)
+ HJ(9,9 + G, ()

it DY), H (B, D, G(3) are equal to D(38) , H(3 , D) , G(3) respectively, then Eq.

(4.2) reduces to:

D)8 + K + Ko | =0 (4.3)

wheree =39 —Sande =37 — 3

Since D(Y) Is always non-singular, if the values of K, and K, are chosen so that
the characteristic roots of Eq. (4.3) have negative real parts, then the position error

vector e approaches zero asymptotically.

However, the computation of the joint torques from Eq. (4.1) Is very inefficient
If the dynamic model is based on the compiete Lagrange-Euler equations of motion.

Because of this reason, it is common to simplify Eq. (4.1) by neglecting the

obot Svstems Division Cortrol Law
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veloclty-related coupling term H.(ﬁ,f)) and the off-diagonal elements of the
acceleration-related matrix D(¥). That is, the structure of the control law has the

form of:
T = dlag[ D(¥) ][2‘3" + KF - D) + K — ) ] + G,() (4.4)

in the next section we will show the effects of neglecting these terms when
the controlier (as In Eq. (4.4)) Is based on the simplified Lagrange-Euler equations of

motlon.

in order to utilize the complete equations of motion, an analogous control law
derlved from the computed torque based on the Newton-Euler equations of motlon is
proposed. The analogous control law can be obtained by substituting 19, In Egs.

(3.11)-(3.19).

9 + ‘231 Kis(9¢ — &) + ‘Zj K88 — Bs)
g= s=1
or (4.5)

- n - n
B+ Y Ko+ Y K)fe,
s=1

s=1

where K/® and K}* are the derivative and position feedback gains for joint i

respectively and e; = 99, — ¥, is the position error for joint s.

The values of feedback gain matrices K, and K, can be determined systemati-

cally as follow:

It K, Is a symmetric and semi-positive definite matrix and K, is a symmetric and
positive definite matrix, and the rank of [Kv | KK | - | K},’"‘Kv ] = n, then the

position error vector e approaches zero asymptotically.

[LCT82,TML80] show the equivalence of the proposed recursive controller and
the control law obtained by the computed torque technique based on the Lagrange-

Euler equations of motion. Since the recursive controlier Is based on the complete

Robot Systems Division Control Law
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dynamic equations, it is expected that the performance of this controlier is always
better than the controiler based on the simplified Lagrange-Euler equations of

motion.

in the remaining of this section, the computational complexity of the proposed
recursive control law based on the Newton-Euler equations of motion and the analo-
gous control law obtained from the Lagrange-Euler equations of motion is tabulated.
Also the feasibliity of the real time control of a PUMA robot arm using the recursive

controller is discussed.

As a mean of comparing their computational complexlty,‘ their efficiency is
determined based on the number of mathematical operations (muitlplications and
additions) in terms of the number of joints of the robot arm, n . The number of
mathematical operations of some of the terms Iin both control laws may be slightly
different from other papers [TML80,Hol80] due to the method of implementation of

the control algorithms In programming.

In this study, the homogeneous transformation matrices T/_1 are computed first
and then other relevant terms such as the velocity-related, the acceleration-related
and the gravity loading terms in the Lagrange-Euler equations of motion are com-
puted respectively. The number of mathematical operations of the control laws
based on these two formulations are tabulated In Taﬁle 1 and Table 2. in general,
for a six-jointed robot arm with rotary joints, the number of mathematical operations
in the control iaw as Iin Eq. (4.1) based on the Lagranglan formulation is about 100

times more than that of the Newton-Euler formulation.

Based on a PDP 11/46 computer and its manufacturer’'s specification sheet, an
ADD (integer addition) instruction requiras 300 ns and a MUL (integer muitiply)
instruction requires 3.3 us. If we assume that for each ADD and MUL instruction, we
need to fetch data from the core memory and the memory cycle time is 450 ns, then

the proposed recursive contral law based on the Newton-Euler equations of motion

Robot Systems Division Control Law
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Controller based on
Lagrange-Euler Multipiications Additions
F Ethetauations of Motion
T} 32n(n-1) 2an(n-1)
oT, J (61n—A46)
- -7 ALl it
m;g —— 3%, 1 an(9n-7) n >
n aT
Zm,g—éﬂ 0 1—n(n—1)
J=l 2
9Ts |87, 128 66
Tr{d'ﬂ J [619; ]'} 5 n(n+1)¥n+2) > n(n+1)¥n+2)
n atk [oTk ]'} : 1
Tri——Jg 0 —n(n-1)}(n+1)
k-m?x(u) {a”l 89 6
t
L ¢4 aTx 128 66
128 > + 65 »
T’{Bﬂjaﬂk‘l”[ 2%, ] ] 3 (n+1)(n+2) > n“(n+1)(n+2)
n a2t [(otr ]’} 1
Tr J 0 —2(n-1)(n+1)
- {81’10""‘ "'[ 8% )
39 + Ko + Kpe 2n an
T = D87 + Koo + Kpe) n2(n+2) n2(n+1)
+ Hy(v ,9) + G (¥)
128 4, 616 3 98 4 , 787 3
Total 3n+———3n 3n+——8n
Mathematical Operations + -a—g—o—nz + 933,, + 630 n + 121 n

where n = number of degree-of-freedom of the robot arm

Table 1 Breakdown of Mathematical Operations of the Controller

Based on Lagrange-Euler Formulation

Robot Systems Division Control Law
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Controller based on
Newton-Euler Multiplications Additions
Ethetauations of Motion
(AT an 7n
oy 9n Bn
& 27n 22n
& 16n 14n
F, an (4]
L 1] 8(n-1) on-8
N; 24n 18n
n; 21n-16 24n-156
9 + Koy + Kgey 2n 4n
L A
Total 119n-24 | 107n-21%
Mathematical Operations

where n = number of degree-of-freedom of the robot arm

Table 2 Breakdown of Mathematical Operations of the Controlier

Based on Newton-Euler Formulation

Robot Systems Division Control Law
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requires approximately 3 ms. to compute the necessary joints torques to servo all
the joints of a PUMA robot arm for a trajectory set point. This certainly Is quite
acceptable for the time delay In the servo loop and thus aliows one to perform reai-
time feedback control on a PUMA robot arm with ail its dynamics taken Into con-

sideration.

8. Computer Simuliation Resuits

This section discusses the computer simulation result of the proposed recursive
control law and compares it with that of the simpliified Lagrange-Euler equation of

motion.

A computer simulation study to evaluate the performance of the above control
laws for a PUMA robot arm was carried out on a VAX-11/780 computer. in this simu-
lation, the six-jointed manipulator moves from an Initlal  joint angles
Simum = (0°, 46°, 46°, 0°, 0%, 0" to a  final  joint  angles
Syina = (90°, —46°,136°, 80°, 90°, 90°) . The required time for this motion is 1
second. In this trajectory, the PUMA robot arm is fully stretched at 0.5 seconds. At
this position, ¥p ssec = ( 46° 0°, 80°, 46°, 46°, 46%), the torques due to the gravity
have the maximum values and the absoiute vailues of joint velocity of the arm aiso
becomes the maximum. The accelerations are sharply changed from the maximum
vaiues to the minimum values or vice versa. The sampling time Is chosen to be 0.01

second.

The feedback gain matrices K, and K, of the control law are kept constant for
the whole motion execution to faciiitate the comparison of both control laws. The
elements of K, and K, are assigned according to the stabllity criterion as outlined in
Eq. (4.3). The principal diagonal elements of K, are assigned the value of 100 and
the diagona! elements of K, to 2 \/7(; = 20 . Again to simplify the comparison, ail

the non-diagonal elements of K, and K, are zero which neglect the position and

Robot Systems Division Computer Simulation
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derivative error effects between joints.

With reference to the dynamic equations of motion as in Egs. (3.11) - (3.19)

and Eq. (3.8) the numerical values used In this simulation are:

dy = 0.864 meter

a; = 0.432 meter

dz = 0.14895 meter

ds = 0.432 meter

ds = 0.130 meter

m =[ 2.27,15.91, 6.82, 3.18, 0.91, 0.46] Kg
dalg I, = [ 0.0071, 0.0287, 0.0267] Kg—meter?
dalg I> = [ 0.1000, 0.7300, 0.8025] Kg-meter*
daigls = [ o.ozéz, 0.2160, 0.2245] Kg-mézer?
daig 15 = [ 0.0020, 0.0010, 0.0010] Kg—meter?
daig 15 = [ 0.0030, 0.0030, 0.0004] Kg—meter?
daig 1 = [ 0.0060, 0.0060, 0.0003] Kg—meter?
ri =[ 0. —0.684, 0.] meter

r, = [ 0.432, 0., 0.1495) meter

rs = 0., 0., 0.7 meter

rs =[ 0., -0.432, 0.T meter

Robot Systems Division Computer Simulation
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rs =[ 0., 0.,0.] meter

re = [ 0., 0., 0.13] meter

¥, =[ 0., 0, 0.073] meter

F2 = [ -0.432, 0., 0.J meter
fs = [ 0., 0., 0.1 meter

¥4 =[0.,0,0.17 meter

¥s = [ -0., 0., 0.01] meter
ts = [ 0., 0., —0.06] meter

Figure 2 shows the flow-chart for the computer simulation program lmplementaﬂon.
Figures 3-6 show the preplanned position, velocity and acceleration trajectory for
joint 1. In this simulation each link moves 90 degéeea from‘rlts' original position. It is
expected that velocity trajectory and acceleration tra Jectory for each joint are the

same as Joint 1 except Joint 2 whose trajéctories are reversed.

Since the complete Lﬁérange-Euler equations of motlon require long computa-
tional time, it is common to simplify fhe Lagrange-Euler equations of motlon by
neglecting the off-diagonal terms In the acceleration-related matrix and the Corlolis
and centrifugél terms. Though the simplified Lagrange-Euler equations of motion has
an advantage for computational time, the neglected terms becomes significant when
the robot arm Is moving at high speeds. In order to show the effects of neglecting
the off-dlagonal elements of the accaleratlon-related term and the veloclty-felated
terms ( Corlolls and centrifugal ), the applied torques have been computed for the
foilowlng cases: (a) the Lagrange-Euler equations of motion with the off-dlagonal
elements of the acceleration-related matrix set to zero, (b) the Lagrange-Euler

equations of motion without the Coriolis and centrifugal terms and (c) the
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Lagrange-Euler equations of motion with both the off-diagonal elements in the
acceleration-related matrix and the Coriolls and centrifugal terms set to zero. Fig-
ures 6-11 show the applied torques computed from the Newton-Euler equations of
motion and from the case (a). Flgures 12-17 show the applled torques from the
Newton-Euler equations of motion and from the case (b). The applled torques from
the Newton-Euler equatlons of motion and from the case (c) are shown In Figures
18-23. For this particular motion through a given trajectory ( fast movement ), the
off-dlagonal terms In the acceleration-related matrix are large and dominant. In
joints 2,3,4 and 5, the differences between the applied torques computed from the
recursive control law and the simplified control law are large and as a result It Is

axpected to have large position errors In joints 2,3,4 and 6.

in Figures 24-41, the positlon errors between the t'wo'dynamic models, the
Newton-Euler equatlons of motion and the simplified Lagrange-Euler equations of
motion, are shown for each joint :fgr various loading conditions. The recursive con-
troller based on“tl‘aa Newfnn-gurlerr ,eqruationa of mothg alwgya shows better perfor-
Vmancre for varloué loading candri:lqns and varlous trajectories. Although the position
errors from tﬁa proposed control technlquerzrlre Vsllgih':cly "oscillatory” about the
desired position set points, they are always small. The simulation resultsr are tabu-~

lated in Table 3.

Since the manlpulator Is a highiy nonlinear and complax system, further
improvements in the performance of the control law can be done by using adaptive
feedback gains. Qur future work will focus on finding proper adaptive control stra-
tegles for industrial robots whose loads are varying within a task cycle time

[LeC82].
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Simpiified modei Complete model
s S R
Various Trajectory Tracking Trajectory Tracking
Loading Joint | Max. Error | Max. Error | Max. Error | Max. Error

Conditions ( radian ) (mm) ( radian ) (mm)
1 0.0194 10.40 0.0040 4.00

2 0.0494 49.40 0.0070 7.00

No Load 3 0.1882 94.10 0.0101 6.07
4 0.4698 70.47 0.0082 0.94

6 0.2278 3417 0.0010 0.16

6 0.0726 10.89 0.0038 0.58

1 0.0239 23.90 0.0046 4.80

2 0.0748 © 74.80 0.0009 ' 9.80

1/2 Max, Load 3 0.2435 121.76 0.0151 7.563
4 0.7665 113.47 0.0006 - 1.44

6 0.3066 45.84 0.0014 0.21

8 0.1606 24.08 0.0041 0.61

1 0.0261 26.10 0.0048 ' 4.80

2 0.0954 06.64 0.0122 12.20

Max. Load 3 0.2812 140.60 0.0183 0.65
4 - 0.8762 131.28 0.0122 1.83
- 0.3523 62.856 - 0.0018 2.33.

8 0.2131 31.97 0.0053 079

Table 3 Comparison of Control Method based on Two Dynamic Modeis
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(1) Set/ = 0 where I = /! sampling period.
(2) Determine 39[/], ¥*[/] and ¥[i] from preplanned trajectory.
(3) Compute poslition and veloclty errors.
o[/] = 3[/] - 3°[/]
e[/] = ¥F[11 - ¥
(4) Determine error élgnals with K, K, feedback gain matrices.
FLi] + Ke[i] + Kpe[/]
(6) Forward recursive equations In Newton-Euler formulation.

(6) Backward recursive equations in Newton-Euler formulation to determine the

applied torques 7{/].

(7). Compute cogfficiéhts of robot arm model using Lagrange-Euler formulation as in

Eq. (3.8).

(8) Integrate the dynamic equation of a PUMA arm derived from Lagrange-Euler for-
mulation using the 4 order Runge-Kutta method. The outputs are ¥f/] and
7] |

(@) Set! =1/ + 1 next sampling period.

(10)1s / = N 7 ( Total of N sampling periods ). If yes, stop. Else go to step (2).

Figure 2 Flow-Chart of Computer Simulation for the Proposed Controller
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Figure 3 Position Trajectory ( Joint 1)
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