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Abstract

The University of Michigan Gallium Arsenide MIPS
Project is using Verilog in the design of a 250 MHz MIPS architec-
ture microprocessor. The design system is based on a single Verilog
model which is used for simulation, synthesis, and hardware verifi-
cation. The model is composed of a mixture of Register Transfer
Level (RTL) and behavioral descriptions. Datapaths are represented
by RTL structural components, while the control logic has behav-
ioral descriptions.

To simplify verification and test development, a number
of operating system functions have been implemented using the
Verilog PLI (Programming Language Interface). These functions
allow the model to load and execute programs compiled for the
DECstation 5000. To ensure the model’s functional correctness, a
verification tool compares simulation results against the execution
of an physical MIPS processor. Any inconsistencies are flagged as
errors. Once the model is deemed functionally correct, it is synthe-
sized into a logic level implementation. Datapath logic, described at
the register transfer level, is directly mapped into a netlist for auto-
matic placement and routing. The control logic is translated to the
Finesse logic synthesis language. The Finesse compiler then synthe-
sizes each control block into a netlist which is passed to the physical
design tools from Cascade Design Automation (CDA) for final lay-
out.

The combination of front-end verification and back-end
synthesis results in a very short design time. Our first chip, Aurora I,
was completed by a team of 5 graduate students in about 5 months,
including tool development and library cell layout.

1 Introduction

The primary objective of the GaAs MIPS group is
to build an integrated GaAs microprocessor system consist-
ing of a CPU, Memory Management Unit (MMU), Floating
Point Unit, and two-level cache on a Multi-Chip Module[1].
However, given the difficulties involved in GaAs design, it
would have been very time consuming to attempt the design
without first establishing an automated CAD tool environ-
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ment. Therefore, we have an integrated suite of commercial
and locally developed tools that will take a design from the
behavioral domain into the physical domain using the pro-
cess flow outlined in Figure 1.

The CAD system is divided into two major areas:
hardware description and physical implementation. At the
top of the system lies the Verilog model of the architecture.
The model uses structural and behavioral modules to
describe the datapath and control logic, respectively. The
other end of the system, corresponding to actual lay out, is
centered on the Cascade physical design tools [2].

Connecting the two CAD domains is a translator
developed at the University of Michigan. This translator,
VeriChip, takes the top-level Verilog description and sepa-
rates it into two components: 1) control blocks and 2) a data-
path netlist. The control blocks and a library of standard cells
are synthesized into a gate-level netlist using the Cascade
state machine synthesis program, Finesse [3]. Then, the data-
path cells corresponding to the Verilog structural blocks are
combined with the control netlist and datapath standard cell
library to create the core layout.

Together with the design system outlined above, we
have developed a sophisticated Verilog environment which
provides many of the operating system functions on the host
machine. These functions include program loading, memory
management and unimplemented instruction simulation. We
have also implemented a verification system to compare the
internal state of the Verilog model with the internal state of
the MIPS workstation running the same executable code.
The entire CAD system allows us to use a single model for
the design, simulation, testing and synthesis of our GaAs
processor.
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Figure 1: The CAD environment

2 Design Translation and Synthesis

The key to using Verilog as our design base is the
ability to automatically translate the Verilog model into a
form which is suitable for logic and layout synthesis by the
Cascade tools. Therefore, we have developed a translator,
VeriChip, that converts the Verilog model into Finesse input
and Cascade netlist descriptions. This translation provides us
with a single path between the high level Verilog description
and the Cascade tools used to layout the chip.

Most of the translation between Verilog and Finesse
involves a one-to-one conversion. However, the Verilog
HDL is much richer than the Finesse logic synthesis lan-
guage. Therefore, we have developed a modified form of the
Verilog language, called ChipVerilog!, which does not per-
mit high level operators like +, *, or /. Instead, the model

1.  Cascade Design Automation is incorporating support for Verilog into
ChipCrafter 3.0.

must either explicitly instantiate a multiplier or divider that
exists in the component library, or build a Verilog structural
model from simpler, existing components.

ChipVerilog also incorporates several language
extensions not found in Verilog. These extensions allow the
translator to differentiate between four different module
classes as outlined below:

e PRIMITIVE: gates.

e FINESSE: boolean equations, If-then-else statements,
case statements, etc.

* GENERATE: variable bit-width components, especially
datapath components.

* HIERARCHY: networks of gates, Finesse modules, Gen-
erate modules and other hierarchy modules.



The extensions used by VeriChip are identified by the “%”
symbol. Consider the following example.

/t

Example of a primitive library module. The
only thing the translator needs is the I/O
definition. The simulation behavior is sepa-
rated and enclosed in translator comments.

*/
// 2 to 1 multiplexor library cell

module dpstwotolnor (SEL, INO, IN1l, OUT);

//% class: PRIMITIVE
input SBEL; input INO,IN1l; output OUT,;
//%/* Verilog sim.; ignored by VeriChip
wire SELBAR;
wire tO,t1;
not nl (SELBAR, SEL);
and al (tO0,SEL,IN1);
and a2 (tl1, SELBAR, INO);
or ol (OUT,tO0,tl);
//%*/
endmodule

Example 1: Primitive class - a 2 to 1 MUX

To describe the module’s class, the token
class:PRIMITIVE has been included in a special comment,
“//%”. Because “/I”” denotes a single-line comment, the Ver-
ilog parser will ignore this entire line. VeriChip, however
will look one character further and see the “%” symbol. This
symbol tells VeriChip to cancel the “//” comment and con-
tinue parsing the line. Also, because this is a primitive mod-
ule, VeriChip will not translate the Verilog description.
Instead, it will instantiate a 2 to 1 multiplexor from our GaAs
library into the netlist it creates. This is achieved by using
the tokens “//%/*” and “//%0*/”. To let VeriChip know the
beginning and the end of the section that must not be trans-
lated. Because VeriChip ignores the Verilog description, the
library designer much ensure identical functionality

The only Chip Verilog extension to FINESSE mod-
ules is their class specification. The rest of the module is
translated into the Finesse language. Example 2 illustrates a
FINESSE module.
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/t
Example of behavioral descriptions, this mod-
ule performs a 3 to 8 decode, unless the

‘allones’ line is set, in which case its out-

put is set to all onmes.

*/

// 3 to 8 decoder behavioral description
module decode( in,

allones, out);

//% class : FINESSE

input [2:0] in;
input allones;

output (7:0] out; reg [7:0] out;

always @ (in or allones)

begin

casex({allones, in})
{1’b1,3'bxxx}: out
{1’b0,3’b000}:
{1’»0,3’b001}:
{1°’b0,3'b010}:
{1’b0,3'b011}:
{1’b0,3'b100}:
{1’b0,3’b101}:
{1’b0,3’b110}:
{1'b0,3’b111}:

8’b11111111;
8°b00000001;
8’b00000010;
8’b00000100;
8’b00001000;
8’b00010000;
8’b00100000;
8'b01000000;
8’b10000000;

out =
out =
out =
out =
out =
out =
out =
out =
default: out = 8'h00;
endcase

end

endmodule

Example 2: Finesse class - a 3 to 8 decoder

Because Verilog does not allow dynamic instantia-
tion of modules, it is impossible to use Verilog to describe
bit slice components. However we did not want to create a
component library that contained separate descriptions for
every possible module size. Instead, we embedded two
descriptions into the GENERATE modules: the Verilog
model, and a structural model described in the Verilog com-
ments. This structural description is ignored by Verilog, but
VeriChip recognizes the “%” symbol and translates the
structural description.



/t

Example of a GENERATE module. This code will
create a variable width multiplexor. The
first section is used in gimulation and is
ignored by the translator. The expand section
defines the interconnect of the primitive
library elements needed to generate the
netlist for the Cascade tools.

t/ .

// 2 to 1 mux with encoded select line
module mux2 (SEL, IO, I1, O);

//% class : GENERATE

parameter width = 32;

input SEL;

input [width-1:0] IO,Il;

output [width-1:0] O; reg [width-1:0] O;

integer i;

//%/* Verilog simulation; ignored by VeriChip
always @(SEL or Il or IO)

begin
if( SEL == 1’bl) O=I1;
else O=I0;

end

//%*/

/*% // VeriChip dynamic instantiation;
expand
for( i=0; i<width; i=i+l)
begin
%+ dpstwotolnor #(1i) mux<%i%>
(.SBL(SBL), .INO( IO[i]), .IN1(I1[i])):
%+ assign O[i] = mux<%i%>.OUT;
end
%*/

endmodule

Example 3: Generate Class - a2 to 1 MUX

When the translator encounters the GENERATE
module, it ignores the Verilog description. Instead, it parses
the structural description and creates a netlist with the cor-
rect number of bit slice components. Again, the module
designer much ensure the Verilog model and structural
description are equivalent.

After the Verilog model is translated into a Cascade
netlist and Finesse input, Finesse performs logic synthesis
using our GaAs library modules. Then, control logic’s gate
level netlist is merged with the datapath netlist generated by
VeriChip. The complete description of control and datapath

Verilog Model
(with module classes)

=)
7S

Finesse input
(control logic) Datapath Netlist
< Finesse ) Cell Library
Standard Cell
Netlist

< Cascade Physical Design System)

Core Layout

Figure 2: Verilog to layout

is then fed into the Cascade Physical Design System along
with our standard cells. Finally, The Cascade tools produce
the core layout. This process is depicted in Figure 2.

3 Emulation of an Operating System Envi-
ronment

Because the Verilog model is used for both archi-
tectural development and processor design, we created an
environment in which the model could load and run execut-
able (binary) files compiled using the DECstation 5000 com-
piler. This allows us to use real programs to study the impact
of various architectural changes and to debug the models.
However, since the Verilog model currently only describes
the processor, it is unable to support the memory manage-
ment and system level functions required to load binaries
and manage their run time memory requirements. Therefore,
we have used the Verilog Programming Language Interface



‘ask Name Description

'8eed_mm (fileName)

Seed a model of main memory with the executable image contained in

fi1leName for future execution

'load_mm(address)

istore_mm(address, datum)

Return the value stored at virtual memory location pointed to by address

Store datum to virtual memory location pointed to by address

Table 1: Operating System Services (OSS tasks)

LI) to provide the operating system functions required to
\d and execute a program.

I The PLI Operating System Services Interface

The minimal services required to execute a com-
ed program include the capability to load an executable
age and run time memory management support. However,
r processor model was incapable of providing these ser-
:es because the first version of our processor (Aurora I) did
t include any system level hardware models, (i.e. MMU,
stem bus, disk drives). Furthermore, we had to cope with
mpiled test programs that contained unimplemented
itructions because Aurora I only implements a subset of
: MIPS R3000 ISA (Instruction Set Architecture) [4].

To provide these missing functions, Verilog models
the /O devices and memory management unit could have
:n built. Then, a “mini-operating system” that provides the
nimal services and runs on these models could have been
itten. However, this approach would have required an
necessary duplication of services that already exist in the
qulator’s host operating system.

We adopted a different strategy. Using the Verilog
I (Programming Language Interface), we wrote a series of
itines that allow the processor model to directly access the
st operating system services. We refer to this code as of
: Operating System Services (OSS) interface. It is com-
sed of just three PLI tasks summarized in Table 1.

! Loading Executable (Binary) Files

The first OSS interface function is $seed_mm().
:all to this task invokes several C routines through the PLI
ich perform the following sequence of steps:

The COFF file, £i1eName, is read to extract informa-
tion specifying the start and length of the text, data and
bss sections of the executable file. These operations are
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performed using standard UNIX file I/O system calls
provided by the host simulation machine.

*  The appropriate amount of memory for each of these
segments is allocated and then initialized with data con-
tained in the executable image file. The memory is
allocated with the standard C malloc() function
supplied by the host operating system.

 Initial working space for the program stack and heap is
allocated.

e Memory is allocated and filled with reset handling code
which sets up the global pointer (gp) and stack pointer
(sp) registers to point to the top of the program heap and
stack. This reset code also contains a jump to the entry
point of the program.

The reset code is placed at virtual memory location
0xb£fc00000, which is the R3000 reset vector address.
The model begins executing code at this address after the
processor’s reset signal is pulsed.

3.3 Virtual Memory

.Once the processor model begins executing, it
immediately requires access to memory for instructions and
data. Since our Verilog model does not yet support an
MMU (Memory Management Unit) to translate virtual
addresses into physical addresses, the processor model
expects to reference memory using full 32-bit virtual
addresses. It is impractical to declare a 4 gigabyte Verilog
array to represent this huge memory. Our solution imple-
ments a virtual memory space and gives the Verilog model
access to this memory through $load_mm() and
$store_mm(). These load and store tasks have direct
access to the instructions and data from the executable file
previously loaded by $seed_mm ().

Every invocation of $1oad_mm () causes the fol-
lowing steps to be performed through the PLI interface:



* The 32-bit value defined by address is compared
against the text and data pages already in memory to see
if the desired word is resident.

» If the desired word is in one of the resident pages, it is
passed back to the Verilog model through the PLIL.

o If the desired word is not resident, a new page of mem-
ory is allocated and an undefined value is passed back to
the Verilog model. Stores with $§store_mm () are han-
dled in the same way as loads, except that an additional
address check is performed to ensure that the store is not
to a read-only segment (e.g. text segment). Writes to
the kernel segment cause segmentation faults, as would
happen in a real system. If no errors occur, the supplied
datum is written to the specified address.

This technique of allocating memory only as
needed is similar to “demand paging” in virtual memory sys-
tems. The main advantage is that it does not require a huge
Verilog array to hold the entire contents of the memory
space. It is also much simpler than real virtual memory page
management because there is no need to explicitly page data
out of memory when memory fills. This is because the mem-
ory allocation program runs in a UNIX process that has full
access to a virtual address space itself. If this process begins
to allocate too much memory, parts of its address space will
be paged out automatically. In other words, the real compli-
cations of virtual memory are managed by the underlying
operating system of the host machine. This is consistent with
our strategy to “borrow” as many of the host OS services as
possible.

3.4 Unimplemented Instruction Handling

The first version of our design only implements a
subset of the R3000 ISA. This creates a problem when exe-
cuting test programs that use unimplemented instructions

When hardware does not support all instructions in
an ISA, a commonly used strategy is to generate an instruc-
tion exception so that the operating system can simulate exe-
cution of the unimplemented instruction with a trap handler.
For example, a microprocessor-based system that does not
have a hardware floating point unit can still define a set of
floating point instructions and then implement them in soft-
ware by trapping to the operating system.

We have extended this idea by implementing a a
Verilog “monitoring” module that executes outside of the
processor hierarchy. Its job is to probe into the processor
model using hierarchical signal pathnames and watch for
unimplemented instructions to appear in the instruction reg-

ister. Whenever an unimplemented instruction is detected, it
function is simulated by a call to a C routine through the PL]
The routine is passed the required operands and the result
are returned and injected into the model’s datapath by usin;
the Verilog force command.

This technique only allows programs to run on th
Verilog mode!l of the processor. The actual chip synthesize:
from the model will still be unable to perform any unimple
mented instructions. However, this technique greatly extend
the set of test programs that can be used to validate th
model. A test program does not have to be ruled out simpl
because it contains a few unimplemented instructions.

Minor modifications to this scheme could imple
ment more complex functions such as arbitrary system call:
For example, a syscall instruction could be detected, it
arguments packaged up and sent through the PLI to a syster
call servicing routine. This routine would then make the rez
system call to the operating system of the simulation hos
machine. The results would be passed back to the Verilo
model through the PLI. Such a scheme gives even the simr
plest processor model the ability to access any system servic
available through the standard UNIX system call mechanisn
For example, test programs that require file I/O could easil
be accommodated with this scheme.

4 Model verification

Because the Verilog model serves as the design bas
for the GaAs MIPS processor, it is critical that the mods
accurately describe the processor’s functionality. At first, ve
ification was done by running opcodes through the model ar.
manually validating the results. However, it soon becarr
obvious that manual verification was consuming all of tt
developers’ time. Therefore, we developed an automated ve
ification system called Verify. Verify performs the verificatic
by running DECstation executable binaries on both the mod
and the DECstation’s R3000 processor. The model’s intern
state is compared against the R3000’s state and any discre]
an.cy is flagged as an error. This allows the designer to te
the results of a model change and quickly locate errors. Ve
ify will also run a complete suite of test programs and flag tt
errors, freeing the designer to focus on design. ‘

4.1 How Verify works

Two key factors helped in the design of Verif
First, our processor is a GaAs implementation of the san
R3000 architecture used by the DECstation. Second, our Ve
ilog model can load and execute the same compiler generatt
binaries as the DECstation 5000. Therefore, we can compa
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Figure 3: Verilog model and Verify
running on a DECstation 5000

our model to the behavior of the physical CPU by running
binaries on both the model and the workstation as shown in
Figure 3.

Leveraging this capability, we embedded into Ver-
ilog a set of PLI primitives that allow us to concurrently exe-
cute the same binary on both the R3000 (DECstation 5000)
and the Verilog model. These primitives are described in
Table 2.

Using these primitives, we debug our model as fol-
lows:

1. Using $fork(object_file), we create a process
that executes the same binary file as our model.

2. Once the process is forked, we query the process for the

current state of its CPU registers using the
$return_reg() primitive.

3. We load the model with its copy of the object code and
force the model’s registers to the same values as those
returned from the physical CPU. At this point, both the
model and the forked process (running on the actual
CPU) are in identical states.

We execute one instruction on the model and single-step
the forked process with the §step (1) task.

5. The forked process is queried for its current statz which
is the contents of its registers. These values are com-
pared against the values in the model.

6. Steps 4 and S are repeated until any discrepancy
between the physical CPU’s registers and the model’s
registers is discovered. This discrepancy is reported
back to the user.

The entire debugging process is automated through
several Verilog tasks which allow the user to specify the
binary file and start the debugging process. The verification
system will run until an error is discovered or the program
completes.

To help view the progress of the testing system, an
X-window interface to Verify was written and embedded
into Verilog. It allows the user to see the state of the model
and physical CPU. Whenever a difference between the
model and the physical CPU occurs, a flag appears on the
display pointing to the location of the error. Both the Verilog
and Verify displays are shown in Figure 4.

Task Name Description

$fork(object_£file)

$step (num_of_instructions)

Forks off a process that will execute the binary in object_£ile

Forces the forked process to execute the number of instructions specified as

the parameter by making repeated calls to the unix system call ptrace ()

$goto (program_counter)

Forces the forked process to execute until the PC register equals

program_counter

$return_reg(reg_num)
$return_mem(address)

Srestart

Returns the current contents of register reg_num
Returns the contents of memory location address

Restarts the forked process

Table 2: Verify Primitives
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