
Se
ss

ion
 1Session 1

18

Checkpointing Exascale Memory Systems with Existing
Memory Technologies

Nilmini Abeyratne, Hsing-Min Chen*, Byoungchan Oh,
Ronald Dreslinski, Chaitali Chakrabarti*, and Trevor Mudge

University of Michigan, Ann Arbor, Michigan 48109
*Arizona State University, Tempe, Arizona 85281

{sabeyrat, bcoh, rdreslin, tnm}@umich.edu, *{hchen136, chaitali}@asu.edu

ABSTRACT
Building exascale supercomputers requires resilience to fail-
ing components such as processor, memory, storage, and
network devices. Checkpoint/restart is a key ingredient in
attaining resilience, but providing fast and reliable check-
pointing is becoming more challenging as the amount of data
to checkpoint and the number of components that can fail
increase in exascale systems. To improve the speed of check-
pointing, emerging non-volatile memory (phase change,
magnetic, resistive RAM) have been proposed. However,
using unproven memories to create checkpoints will only
increase the design risk for exascale memory systems. In
this paper, we show that exascale systems with hundreds of
petabytes of memory can be constructed with commodity
DRAM and SSD flash memory and that newer non-volatile
memory are unnecessary, at least for the next generation.

The challenge when using commodity parts is providing
fast and reliable checkpointing to protect against system fail-
ures. A straightforward solution of checkpointing to local
flash-based SSD devices will not work because they are en-
durance and performance limited. We present a checkpoint-
ing solution that employs a combination of DRAM and SSD
devices. A Checkpoint Location Controller (CLC) is imple-
mented to monitor the endurance of the SSD and the per-
formance loss of the application and to decide dynamically
whether to checkpoint to the DRAM or the SSD.

The CLC improves both SSD endurance and application
slowdown; but the checkpoints in DRAM are exposed to
device failures. To design a reliable exascale memory, we
protect the data with a low latency ECC that can correct
all errors due to bit/pin/column/word faults and also de-
tect errors due to chip failures, and we protect the check-
point with a Chipkill-Correct level ECC that allows reliable
checkpointing to the DRAM.

Using our system, the SSD lifetime increases by 2×—from
3 years to 6.3 years. Furthermore, the CLC reduces the
average checkpointing overhead by nearly 10× (47% from a
420% slowdown), compared to when the application always
checkpointed to the SSD.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS 2016 October 3–6, 2016, Washington, DC, USA
© 2016 ACM. ISBN 978-1-4503-4305-3. . . $15.00

DOI: http://dx.doi.org/10.1145/2989081.2989121

CCS Concepts
•Hardware → Fault tolerance; Dynamic memory; Non-
volatile memory; •Software and its engineering →
Checkpoint / restart;

Keywords
fault tolerance; checkpoint/restart; ECC; exascale

1. INTRODUCTION
Aggregate failure rates of millions of components result in

frequent failures in exascale supercomputers. In particular,
exascale systems are projected to have memory systems as
large as 100 petabytes—that is 100× larger than the super-
computer Titan’s 1 petabyte memory system. The millions
of memory devices that make up these memory systems con-
tribute significantly to failures [1]. Overcoming these failures
requires a fast and reliable checkpoint/restart framework.

Checkpointing—periodically saving a snapshot of memory
to stable storage—is a useful practice to rollback the ap-
plication to a point before failure, without restarting from
the very beginning. Exascale systems rely heavily on check-
points to recover from many types of failures including hard-
ware failures, software failures, environmental problems, and
even human errors [2]. Usually, checkpoints are made to a
non-volatile storage such as a hard disk, but increasingly,
solid-state drives (SSDs) are replacing hard disks because
they provide higher read/write bandwidth, lower power con-
sumption, and better durability [3]. The question becomes
whether SSDs are sufficient for storing checkpoints or if we
should wait for emerging memory technologies.

The biggest disadvantage of NAND-flash SSDs is its lower
endurance, which is on the order of 104-105 program/erase
cycles. SSD manufacturers employ various tricks such as
DRAM buffers and sophisticated wear-leveling to extend
lifetime. Currently, SSDs on the market are guaranteed
a lifetime of 3-5 years with a cap on the total number of
terabytes that can be written [4]. Nevertheless, writing
gigabyte-sized checkpoints several times a day to the SSD
can take a toll on its endurance.

Many have suggested using emerging non-volatile mem-
ory technologies such as phase change memory, memristors,
and STT-RAM for checkpointing, often touting their supe-
rior read and write speeds and higher endurance [5, 6, 7].
While we do not disagree with these studies, emerging tech-
nologies must overcome many undeveloped steps between a
successful prototype and volume production. It is difficult
to guess when, or if ever, emerging technologies will be ready

Checkpointing Exascale Memory Systems with Existing Memory Technologies | 19

Se
ss

ion
 1Session 1

for the first round of exascale supercomputers. The U.S. De-
partment of Energy’s Exascale Computing Initiative plans
to deploy exascale computing platforms by 2023 [8]. Designs
for 2023 systems will have to be finalized 3-4 years prior, sim-
ilar to plans for Summit (2018) and Aurora (2018-2019) su-
percomputers that were completed by 2015. At some point,
system designers will have to reason about reliable, off-the-
shelf components that will be available in the next 3 years.
We show that existing non-volatile storage options that are
proven less risky due their maturity and low cost are suffi-
cient for the near future, if used correctly.

When using SSD flash memory for checkpointing, reduc-
ing the checkpoint size or frequency remain the most effec-
tive ways to stretch its lifetime. To this end, we propose a
system that selectively checkpoints to a DRAM in order to
reduce the number of writes to the SSD thereby lengthen-
ing its useful lifetime. To accomplish this task, we imple-
ment a Checkpoint Location Controller (CLC) that i) esti-
mates SSD lifetime, ii) estimates application’s performance
loss, and iii) monitors checkpoint size. The CLC detects
checkpointing frequencies that lead to SSD lifetime falling
under the typical manufacturer’s guarantee of 5 years, and
reduces these frequencies by redirecting some checkpoints to
the DRAM. We believe this is the first work to consider the
lifetime of the SSD while writing checkpoints to it; previous
work [9] that also used SSD ignored its endurance.

DRAM is prone to transient errors and checkpoints cor-
rupted by them cannot be used for recovery. Then, a key
feature to enable our technique to write fewer checkpoints
to the SSD is to have a strong error correcting code (ECC)
that can protect the checkpoints in DRAM. For that reason,
we propose a dual mode ECC memory system that protects
regular application data with a normal ECC algorithm and
checkpoint data with a strong ECC algorithm. The nor-
mal ECC, which is on the critical path of memory accesses,
is an RS(36,32) code that has small decoding latency to
correct or detect errors. It can correct all errors due to a
bit/pin/column/word failure and detect all errors due to a
chip failure. The strong ECC is a two-layer RS(19,16) code
that provides Chipkill-Correct level reliability without mod-
ifications to the DRAM devices. If an unrecoverable error
corrupts the DRAM checkpoint, then the application will
restart from the checkpoint in the SSD. The resultant ca-
pability to write reliable checkpoints to memory relieves the
burden on the SSD, in turn lengthening its lifetime. More
importantly, the combined DRAM-SSD checkpointing solu-
tion makes it possible to design an exascale memory system
without relying on unproven emerging memory technologies.

In summary, we make the following contributions:

• A low-risk exascale memory system. We use
mature technology in commodity DRAMs and SSDs
to create a low design-risk checkpointing solution and
prove that system designers do not have to wait until
newer non-volatile memory technologies are ready.

• Hybrid DRAM-SSD checkpointing. Our local
checkpointing solution is a hybrid mechanism that uses
both DRAM and SSD flash memory to achieve speed
and reliability (Section 3).

• SSD-lifetime-aware checkpoint controller. We
design an intelligent Checkpoint Location Controller
(CLC) that decides when to checkpoint to the SSD

considering its endurance decay and performance
degradation (Section 3.3).

• Dual-ECC memory. We propose a dual mode ECC
memory that has a normal ECC mode to protect regu-
lar application data and a strong ECC mode to protect
the DRAM checkpoint. ECC-protected checkpoints
ensure error-free restarts at recovery (Section 4).

Our results from microbenchmark simulations averaged
across various checkpoint sizes indicate that the CLC is
able to increase SSD lifetime by 2×—from 3 years to 6.3
years—exceeding the guaranteed lifetime of 5 years [4]. Fur-
thermore, the performance estimation feature in the CLC
that monitors application slowdown is able to reduce the
checkpoint overhead to a 47% (on average) slowdown, com-
pared to a 420% slowdown when the application always
checkpointed to the SSD—nearly a 10× savings.

2. MOTIVATION
Local checkpoints to local storage (DRAM or SSD) have

stemmed from a need to avoid the slowdown resulting from
transferring checkpoints to the remote parallel file system
(PFS) over limited-capacity I/O channels. It is difficult to
decide on the best local storage because each has their ad-
vantages and disadvantages. On one hand, DRAM is fast
(50ns [10]) but loses the checkpoint after a reboot. Further-
more, limited DRAM capacity not only limits the size of
the largest checkpoint that can be made but also limits the
amount of usable memory for applications.

On the other hand, SSDs are reliable and capacious but
slow and have low endurance (105 program/erase cycles).
To illustrate the speed difference between ramdisk—a vir-
tual disk created in DRAM to write checkpoint files—and
the SSD, we measured the total runtime of a microbench-
mark (details provided in Section 5.1) under three näıve
implementations i) no checkpointing, ii) checkpointing to
ramdisk only, and iii) checkpointing to SSD only. For this
simulation, we assumed that both ramdisk and the SSD had
unlimited checkpoint storage. As can be seen in Figure 1,
writing the checkpoint to ramdisk incurs a small 14% slow-
down, but checkpointing to the SSD incurs a considerable
4.6× slowdown averaged across all the checkpoint sizes.

Figure 1: Microbenchmark runtime results with various
checkpoint sizes demonstrate that always checkpointing to
the SSD incurs significant overhead. Baseline runtime = 8.3
minutes.

20 | Abeyratne

Se
ss

ion
 1Session 1

The key insight gained from our experiment is that even
when checkpointing only to the SSD, files still occupy mem-
ory space because they are first allocated in the memory’s
page cache. Files in the page cache are not necessarily
flushed to the storage device when the file is closed because
the OS delays the write process to hide I/O latency. On the
other hand, explicitly flushing the page cache every time
incurs overhead because the slow write delay to flash be-
comes fully transparent. If we try to use the OS’s method
of hiding latency (implicitly writing to the memory), then
the checkpoint is sitting vulnerable in the memory and there
is no guarantee when it will be persisted to the SSD. There-
fore, a simpler and better approach is to explicitly write to
both—to write a select few checkpoints to the SSD and al-
ways flush them and balance out the performance loss by
writing the remaining checkpoints to the ramdisk.

The hybrid solution merges the benefits of both DRAM
and SSD: namely, speed and reliability. Furthermore, check-
pointing to the DRAM helps to reduce SSD wearout. The
shortcomings of our solution is that it limits the available
memory for applications and increases the memory pressure
(i.e. ratio of active memory pages) due to active checkpoints
residing in memory. The pros and cons of the proposed tech-
nique are listed in Table 1.
The checkpoints in ramdisk are exposed to DRAM fail-

ures, but ECC algorithms exists that are capable of pro-
tecting against most memory failures—except for a power
outage. The stronger the ECC, the more time and power
that it takes to decode data. A second key insight into our
idea is that it is possible to use stronger ECC algorithms
for checkpoints because decoding them is not on the critical
path of normal application execution.

Table 1: The pros and cons of the proposed technique com-
pared to DRAM-only or SSD-only checkpointing. The mem-
ory occupancy is marked as ”Med” because the CLC can
detect and send large checkpoints always to the SSD.

D
R
A
M

o
n
ly

S
S
D

o
n
ly

P
ro
p
o
se
d

D
R
A
M
+
S
S
D

Checkpoint Speed Hi Lo Hi
Recovery Speed Hi Lo Hi
Transient error protection Lo Hi Hi
Available memory for apps. Lo Hi Med
Memory pressure Hi Lo Med
Non-volatile; persists reboots N Y Y
Good SSD endurance – N Y

Alternative memory technologies such as phase-change,
magnetic, resistive RAM, and 3D XPoint holds promise be-
cause they are almost as fast as DRAM (10-300ns [10]), yet
also as reliable as storage. However, these technologies are
not yet as dense or cost-efficient as flash. Although Intel’s
3D XPoint is expected to cost half of DRAM [11], recent in-
novations in 3D NAND-flash such as stacking 48 layers [12]
will only cheapen flash. Furthermore, unlike emerging tech-
nologies, flash devices have well understood failure patterns
and strong ECC codes to protect them [13]. Commercial
availability and maturity of both DRAM and NAND-flash
prove them a low-risk option for at least the first round of

exascale systems. Should emerging technologies become bet-
ter than flash, they can easily be integrated into our hybrid
system and achieve even better performance.

In the remainder of the paper, we address two questions:
1) how to decide when to checkpoint to the DRAM or the
SSD? and 2) how to design a strong ECC algorithm to pro-
tect the checkpoints without interference to non-checkpoint-
data memory accesses? To answer the first question, we
implement the CLC in Section 3.3 that is aware of the en-
durance limits of the local SSD device and the performance
degradation from writing to it. To answer the second ques-
tion, we introduce a dual-mode ECC design in Section 4
that can be dynamically encode data in either normal ECC
or strong ECC depending on whether the data is normal
application data or checkpoint data.

3. HYBRID DRAM-SSD
CHECKPOINTING

An overview of the hybrid solution is presented in Fig-
ure 2. In our system, all compute nodes contain main mem-
ory consisting of x4 ECC-DRAM devices and one SSD flash
memory device. In comparison to existing local checkpoint-
ing solutions which write to only the ramdisk or only the
SSD [14, 15], the hybrid system writes to both. It can exist
within a hierarchical framework where global checkpoints
are still written to the remote PFS. Note that this sys-
tem differs from double checkpointing in other work [14, 16]
that write identical checkpoints to two platforms in “buddy”
nodes. Double checkpointing wastes memory space. In con-
trast, the hybrid system writes only one checkpoint to one
platform in a given checkpoint interval as illustrated in Fig-
ure 3. Although not implemented in this paper, a possible
optimization is to implement the hybrid system on top of a
buddy system, where either the ramdisk or SSD checkpoint
is saved in the buddy’s ramdisk or SSD, respectively.

App. Chk. App. Chk.App.

Chk.Chk.

Chk. /
Files

Chk. /
Files

Chk. /
Files

Always SSD

Parallel
File System

Node SSD

Node DRAM

Always Ramdisk Proposed Combination

Hierarchical Checkpoint Configurations

G
lo

ba
l

C
he

ck
po

in
ts

Lo
ca

l
C

he
ck

po
in

ts

Figure 2: The proposed idea utilizes both commodity
DRAM and commodity SSD for checkpoints.

compute compute(a) Always Ramdisk

(c) Hybrid Ramdisk-SSD

(b) Always SSD

chkpnt chkpnt

Figure 3: In the hybrid system (c), the CLC intelligently
selects which checkpoints are to be written to the SSD con-
sidering endurance, performance, and checkpoint size.

Checkpointing Exascale Memory Systems with Existing Memory Technologies | 21

Se
ss

ion
 1Session 1

3.1 Checkpointing to the Ramdisk
Checkpoints to memory are written outside of the appli-

cation’s address space to ensure its persistence after the ap-
plication crashes or ends. This can be achieved by writing
checkpoints to the ramdisk. There are two types of ramdisk
file systems: ramfs and tmpfs. The main difference between
them is that ramfs cannot be limited in size—i.e. it will
keep growing until the system runs out of memory—whereas
tmpfs will start swapping to disk once the specified size
limit is full. We use tmpfs and enforce a size limit that
ensures checkpoint memory does not encroach upon the ap-
plication’s memory.

3.1.1 Memory Requirement
In-memory checkpointing to DRAM requires prudent

management of memory resources. Out of the available
memory on each server node, a certain quantity is set aside
for checkpointing by mounting a ramdisk into the memory
space. The user should consider the memory requirement
for both the application and the checkpoint. For example,
4GB out of a 24GB system can be set aside for checkpoints,
leaving only 20GB for the application. The high perfor-
mance application running on the node can be adjusted for
the smaller memory size by setting a smaller problem size
per MPI process, or by running fewer MPI processes on the
node.

3.2 Checkpointing to the SSD
Writing checkpoints to SSDs have a history in ”burst

buffers” [9] and diskless checkpoints [17]. Several supercom-
puters that will be built between 2016-2019 such as Cori,
Summit, and Aurora, all plan to include persistent memory
in each compute node in the form of an SSD [18].

Our system uses application-level checkpointing in
which the programmer carefully selects the data to be saved
such that the program can be successfully restarted with
that data. The data is written out in the format of a file, and
storing and retrieving the file is handled by the file system on
the SSD. Usually, when writing a file to any storage device,
it is first temporarily allocated in the memory then flushed
to the device later. To ensure the file has persisted to the
SSD, the Linux fsync() operation must be called after each
checkpoint. Otherwise, there can be no guarantee the file is
recoverable after a crash and reboot.

3.3 Checkpoint Location Controller (CLC)
The CLC writes checkpoints to the ramdisk or to the SSD

by setting the file path to point to either the ramdisk or the
SSD. The decision is made just before the application starts
writing each checkpoint. The CLC can maximize the life-
time of the SSD (Section 3.3.1), and/or minimize the per-
formance loss of the application (Section 3.3.2). It can also
take into account the size of the checkpoint (Section 3.3.3).
An overview is in Figure 4. Section 3.3.4 shows how all three
metrics are combined into one algorithm used by the CLC.

3.3.1 Lifetime Estimation
The endurance of an SSD is described by bytes written

(e.g. TBW–terabytes written or PBW–petabytes written),
which is the total amount of writes that it can withstand
without wearing out. To obtain an example for the lifetime
of a real device, we chose the Intel DC S3700 SSD in 800 GB
as a reference [4]. Intel’s “DC”data-center SSD’s are some of

Compute CLC

Chkpnt
to DRAM

Chkpnt
to SSD

Endurance decay and/or
bad performance

Large chkpnt
size

Start

End Done chkpnt

Done chkpnt

Compute Phase Checkpoint Phase

Checkpoint!

Figure 4: This state machine representing application exe-
cution shows how in the checkpoint phase the CLC dynam-
ically decides the checkpoint location on each iteration.

their highest endurance SSDs suitable for high performance
computing. The S3700 reported an endurance rating of 14.6
PBW [4].

To measure endurance decay, the CLC calculates an
‘expected lifetime’ (Lexpected) and an ‘estimated lifetime’
(Lestimated). The ‘expected lifetime’ is a static calculation
based on how many petabytes have already been written.
For example, a brand new SSD is expected to last 5 years,
but as it accumulates writes, the lifetime linearly shortens.
The ‘estimated lifetime’ is a dynamic calculation of how long
the SSD might last given the current application’s write
bandwidth. If the ‘estimated lifetime’ is smaller than the
‘expected lifetime’, then that is interpreted as a sign of high
usage and accelerated endurance decay. Below are the two
equations for this metric.

Lexpected = (PBWrating − PBWused)×
5 years

PBWrating
(1)

Lestimated =
PBWrating − PBWused

BSSD
(2)

where PBW = petabytes written and BSSD = write band-
width to the SSD.

3.3.2 Performance Loss Estimation
Additionally, the CLC can be configured to monitor the

dynamic performance loss of the application as a result of
checkpointing to the SSD. If this option is enabled, the CLC
monitors the amount of time elapsed since the launch of the
program and the fraction of that time spent on checkpoint-
ing. We employ a stop-and-copy style checkpointing opera-
tion. Just before the next checkpoint, the CLC determines
whether the time already lost to checkpointing exceeds the
specified bound (e.g. 10%), and if so, directs the next check-
point to the ramdisk. Each MPI process makes this decision
independently.

Tslowdown =
Tchk

Tcompute + Tchk
(3)

3.3.3 Checkpoint Size
Finally, the CLC considers the size of the checkpoint to

determine if there is enough ramdisk space available. Since

22 | Abeyratne

Se
ss

ion
 1Session 1

ramdisk shares the main memory, its size must be limited to
avoid swapping from the disk. CLC directs all large check-
points to the SSD. However, if this decision conflicts with
the prior ‘lifetime’ and ‘performance loss’ decisions, then the
checkpoint is skipped altogether and the application moves
on until the next checkpoint interval.

The downside to this approach is that it reduces the num-
ber of checkpoints and increases the average rollback dis-
tance during recovery. A more severe outcome is unintended
uncoordinated checkpointing which can cause the applica-
tion to restart from the beginning if all the MPI processes
cannot agree on single synchronized checkpoint to roll back
to. To avoid such issues, the CLC can potentially be forced
to particular checkpoints.

3.3.4 CLC Library
Currently, the controller is written as a library that

is added to the application’s source code. It can inter-
face with existing application-level checkpointing mecha-
nisms and frameworks such as Scalable Checkpoint/Restart
(SCR) [19]. The algorithm used by the controller is pro-
vided below. Lines 2-3 call the lifetime estimation and per-
formance loss estimation features and lines 4-11 make a de-
cision based on their results. Lines 12-15 checks the check-
point size and skips writing large checkpoints to the ramdisk.
Lines 16-17 actually writes the checkpoint and updates the
checkpoint overhead measurement.

Algorithm 1 Checkpoint Location Controller (CLC)

1: function CLC(D, r, i)� Where D - data, r - MPI rank,
i - chkpnt number

2: Lestimated, Lexpected = lifetimeEstimation()
3: Tslowdown = performanceEstimation(Tchk, Ttotal)
4: if Lestimated > Lexpected then
5: loc = SSD
6: if Tslowdown > bound then
7: loc = RAM
8: end if
9: else
10: loc = RAM
11: end if
12: size limit = TMPFS SIZE/numMPIRanks
13: if loc == RAM and sizeof(D) > size limit then
14: return
15: end if
16: writeCheckpoint(loc,D, r, i)
17: update(Tchk)
18: end function

3.4 Recovery by Checkpoint Procedure
During restart, the application first searches for a check-

point file that has been saved by a previous run. An attempt
is always made to recover from the checkpoint in ramdisk.
If it finds the latest checkpoint in ramdisk, it begins read-
ing in that checkpoint. However, if the ECC logic signals
a detectable, but uncorrectable memory error, then the en-
tire ramdisk checkpoint is discarded. Information regarding
uncorrectable memory errors can be located by ‘edac’ (‘er-
ror detection and correction’) kernel modules in Linux. The
backup checkpoint file in the SSD is read in if the one in
memory was corrupt. The checkpoint in the SSD could be
older, leading to a longer rollback distance during recovery.

We assume that the SSD has strong ECC built-in that pro-
tects its checkpoint and that it is always reliable.

4. ECC DESIGN
The proposed dual-ECC mode memory system has nor-

mal ECC for regular data, and strong ECC, that is Chipkill-
Correct, for checkpoint data. A typical memory access to a
DDR3 x4 memory module containing 18 chips (16 for data
and 2 for ECC) reads out a data block of size 512 bits over
8 beats. A Chipkill-Correct scheme can correct errors due
to a single chip failure and detect errors due to two chip
failures. For x4 DRAM systems, such a scheme is based on
a 4-bit symbol code with 32 symbols for data and 4 sym-
bols for ECC parity and provides single symbol correction
and double symbol detection. It has to activate two ranks
with 18 chips per rank per memory access resulting in high
power consumption and poor timing performance [20, 21]. In
contrast, the proposed ECC schemes for regular and check-
point data only activate a single x4 DRAM rank and have
strong reliability due to the use of symbol-based codes that
have been tailored for this application. Reed-Solomon (RS)
codes are symbol based codes that provide strong correc-
tion and detection capability [22]. Here, we propose to use
RS codes over Galois Field (28) for both normal and strong
ECC modes.

Fault Model. When selecting the ECC algorithms for
normal and strong ECC, the type of failures and how they
manifest in the accessed data are considered. The DRAM
error characteristics are well analyzed in [23, 24, 25]. In
this work, we assumed errors are introduced by 5 different
faults (bit/column/pin/word/chip) [26]. A bit fault leads to
a single bit error in a data block. A column failure also leads
to a single bit error in a data block. A pin failure results
in 8 bit errors and these errors are all located in the same
data pin positions. A word failure corrupts 4 consecutive bit
errors in a single beat. A whole chip failure leads to 32 bit
errors (8 beats with 4 bits/beat) in a 512 bit data block.

Faults can also be classified into small granularity faults
(bit/column/pin/word) and large granularity faults (chip).
Several studies have shown that small granularity faults oc-
cur more frequently than large granularity faults and ac-
count for more than 70% among all DRAM faults [23, 24,
25]. Hence, errors due to small granularity faults should be
corrected with low latency in any ECC design.

beat 0
beat 1
beat 2
beat 3
beat 4
beat 5
beat 6
beat 7

x4 x4 x4 x4

Figure 5: The depicted normal ECC access reads 512 bits
from eighteen x4 chips, two of which are ECC chips. Two
beats are paired up to create 1 8-bit symbol per chip. The
first 4 and last 4 beats form two RS(36,32) codewords (green
and blue).

Checkpointing Exascale Memory Systems with Existing Memory Technologies | 23

Se
ss

ion
 1Session 1

4.1 Normal ECC
Normal ECC provides error correction coverage for regular

data accesses, similar to typical ECC DIMMs for servers. It
is designed to meet the following requirements:

1. To correct frequent errors due to single-bit/pin/word
failures without triggering restart from a checkpoint.

2. To have small decoding latency of syndrome calcula-
tion since it is in the critical path of memory access.

3. To activate one rank per memory access and to have
better timing/power/energy than Chipkill-Correct.

To satisfy these requirements, we use RS(36,32) over GF(28)
for normal ECC. It has a storage overhead of 12.5%, which
is the golden standard for ECC design [26]. RS(36,32) has
a minimum distance of 5 and supports the following setups:
(i) double error correction, (ii) four error detection, and (iii)
single error correction and triple error detection [22]. If the
decoder is designed for setup (i), then 2 symbol errors due
to 1 chip failure can be corrected. However, 4 symbol errors
due to 2 chip failures cannot be corrected and will lead to
silent data corruption [26]. If designed for setup (ii), errors
due to 2 chip failures can be detected but small errors due
to bit/pin/word failures cannot be corrected. These small
granularity faults are reported to occur frequently in mem-
ory systems and they must be corrected in order to avoid
unnecessary restarts from checkpoints. Setup (iii) can cor-
rect all errors due to small granularity (single bit/pin/word)
faults in a single chip, detect errors due to 1 chip failure, and
has strong detection capability for 2 chip failures. Specifi-
cally, for double chip failures, setup (iii) can correctly detect
several combinations of two small granularity faults and pro-
vide very strong detection for the other cases. Based on this
reasoning, RS(36,32) with setup (iii) is chosen to protect
normal data.

Results will later show that the normal ECC scheme has a
very low silent data corruption rate of 0.003% and a small la-
tency of 0.48ns for the syndrome calculation. Furthermore,
since only 1 rank is activated in each memory access, it
has better timing/power/energy performance than the tra-
ditional x4 Chipkill-Correct scheme.

Memory access pattern: As illustrated in Figure 5,
upon a memory read, one rank with 18 chips are activated
and 512 bits are read out over 8 beats. Each beat contains 4
bits from a single chip, thus two beats can be paired to form
an 8-bit symbol in an RS codeword. The 18×2 = 36 symbols
from the first 4 beats are sent to one RS(36,32) decoding
unit followed by the second set of 36 symbols from the next
4 beats. If a codeword has 1 symbol error, it is corrected
and sent to the last level cache (LLC). If an uncorrectable
error (i.e. >1 erroneous symbol) is encountered, then a flag
is set. In such a case, the OS would see the flag, terminate
the application, and trigger rollback and restart from the
checkpoint. Upon a memory write, the ECC encoder forms
two RS(36,32) codewords and stores them in a DRAM rank
as in a normal memory write.

4.2 Strong ECC
Checkpoints that are stored in DRAM memory have to

be protected by a strong ECC mechanism to preserve the
integrity of the checkpoint data. The proposed strong ECC
is designed to meet two requirements:

1. To provide Chipkill-Correct level reliability, which can
correct all errors due to a single chip failure and de-
tect all errors due to two chip failures. The strong

error correction capability reduces the probability of
accessing the SSD’s checkpoint during restart.

2. To require minimal differences in hardware so as to
be able to switch easily from and to normal ECC.
Since ramdisk pages can be mapped anywhere in phys-
ical memory, the DRAM modules should be flexible
in holding normal or checkpoint data without special
modifications to the DRAM devices.

We propose using RS(19,16) over GF(28) for strong ECC.
It works by a hierarchical two-layer scheme where 18 out of
the 19 symbols are stored in one rank and the 19th symbol
(the third parity symbol) is stored in another rank, as in
V-ECC [27].

The two-layer scheme works because of the embedded
structure of the RS code [22]. The parity check matrix
of RS(18,16) is embedded in the parity check matrix of
RS(19,16) and thus these two codes can share the same de-
coding circuitry. The two symbols in the syndrome vector of
RS(18,16) are identical to the first two symbols in the syn-
drome vector of RS(19,16). Once RS(18,16) detects errors,
the third ECC symbol can be used to generate the third
symbol of the syndrome vector of RS(19,16) and then the
RS(19,16) decoder can perform error correction [22].

A direct implementation of this scheme would result in
two memory accesses thereby degrading performance and
incurring higher power consumption. Thus, an ECC cache
is employed to store the third parity symbol and hide the
latency due to the extra read and write accesses as in [27].
Additionally, activating just one rank per memory access
has better timing/power/energy compared to conventional
Chipkill-Correct.

beat 0
beat 1
beat 2
beat 3
beat 4
beat 5
beat 6
beat 7

x4 x4 x4 x4
Rank 1

(a) Strong ECC, Memory access 1

beat 0
beat 1
beat 2

x4 x4 x4 x4
Rank 2

(b) Strong ECC, Memory access 2

Figure 6: (a) Strong ECC creates four RS(18,16) codewords
(green, blue, purple, and pink); each codeword is based on 2
beats of data; (b) If errors are detected, four additional ECC
symbols are retrieved to form four RS(19,16) codewords.

Memory access pattern: As illustrated in Figure 6a,
upon a memory read, only one rank is activated and 18 sym-

24 | Abeyratne

Se
ss

ion
 1Session 1

bols (16 data + 2 ECC) are sent to the RS(18,16) decoder.
Every two beats of data form one RS(18,16) codeword. The
RS(18,16) decoder is designed to perform detection only.
Note that RS(18,16) can detect up to 2 symbol errors (2
chip failures). If it detects errors, the decoder is halted and
the third parity symbol is fetched from the ECC cache and
sent to the RS(19,16) decoder. If the ECC cache does not
have the parity symbol, then a second memory access is used
to get it from another rank (Figure 6b). RS(19,16) can per-
form single symbol correction and double symbol detection
(SSC-DSD) and can thus provide Chipkill-Correct level pro-
tection. If the RS(19,16) decoder detects an uncorrectable
error, then the entire DRAM checkpoint is discarded and the
application retrieves a potentially older checkpoint from the
SSD. The recovery procedure was outlined in Section 3.4.

Upon a memory write, 512 data bits are encoded into 4
codewords. Two of the parity symbols in each codeword are
stored in the two ECC chips in the same rank by a regular
memory write operation. The third parity symbol is stored
in the ECC cache or in another DRAM rank.

4.3 Modification to the Memory Controller
The strong ECC mode exists simultaneously with normal

ECC that protects regular memory data; and only requires
modification to the memory controller, not the DRAM de-
vices. In order to identify ramdisk/checkpoint data, the
page table can be marked with a special flag to indicate
ramdisk pages. As illustrated in Figure 7, regular data is
routed via the normal encoder/decoder and ramdisk data
is routed via the strong encoder/decoder. We rely on an
ECC address translation unit to determine the location of
the second memory access for strong ECC as in V-ECC [28].

Normal
Enc/Dec

Strong
Enc/Dec

To Processor

To DRAM

M
em

or
y

C
on

tro
lle

r

ECC
App. Ramdisk

App. Ramdisk

Figure 7: Modified Memory Controller with two decoders
for normal and strong ECC.

5. EVALUATION SETUP

5.1 Microbenchmark
A microbenchmark was written to evaluate the perfor-

mance of writing a wide variety of checkpoint sizes to differ-
ent platforms. It was written as an MPI program in C++
to simulate typical parallel supercomputing applications. It
mainly consists of two phases: compute and checkpoint.
The compute phase runs an algorithm which takes roughly
5 seconds to finish, and the checkpoint phase writes a file
of a specified size to either the ramdisk or the SSD. The
microbenchmark consists of 100 total iterations of the two
phases.

The microbenchmark can be launched with any desired
number of MPI processes. To take our measurements, we
ran the microbenchmark with 64 MPI processes across 8
nodes. The desired checkpoint size is passed into the mi-
crobenchmark as an input, and the same size of checkpoint
is made in all 100 iterations. Although there are some super-
computing applications whose checkpoint sizes vary during
runtime, most applications save a particular data structure
such as the <x,y,z> position vectors of particles or a vec-
tor of temperatures. Thus, having a fixed checkpoint size
throughout is acceptable.

We measured the total runtime of the microbenchmark
under three näıve implementations i) no checkpointing, ii)
checkpointing to ramdisk only, and iii) checkpointing to SSD
only. The results, which were already shown in Figure 1 in
Section 2, indicated that writing the checkpoint to ramdisk
incurs only a small slowdown of 14%, whereas the SSD incurs
a 4.6× slowdown.

5.1.1 Typical Checkpoint Sizes
Checkpoint sizes can be reported for an MPI process, for a

node, or for an entire application. It is difficult to determine
real checkpoint sizes unless real HPC applications are run
at scale on a supercomputer. Even though mini-apps and
proxy-apps are representative of the algorithms of the HPC
applications, one of their shortcomings is that they are not
representative of the runtime or the memory size of large
HPC applications.

We conducted a survey of past literature to determine
typical checkpoint sizes. An older version of NAS Par-
allel Benchmark suite checkpointed 3.2MB-54MB per pro-
cess [29]. MCRENGINE, a checkpoint data aggregation en-
gine, was evaluated on applications having checkpoint sizes
between 0.2MB-154MB per process [30]. An experiment on
Sierra and Zin clusters at LLNL wrote 50MB and 128MB
per process, respectively [31]. A PFS-level checkpointing
evaluation on two large clusters HERMIT and LiMa wrote
294MB and 340MB per process, respectively [32]. Note that
often times more than one MPI process runs on a multi-
core node. Node level checkpoint sizes have been reported
between 460MB-4GB/node [16].

To illustrate the wide variety of existing checkpoint
sizes, our microbenchmark experiments use between 100MB-
1000MB per MPI process; and we run 8 MPI processes per
node.

5.2 Proxy-apps
The proposed Checkpoint Location Controller was vali-

dated against two real benchmarks: miniFE and Lulesh.
miniFE is a proxy-app whose main computation is solving
a sparse linear system using a conjugate-gradient (CG) algo-
rithm. In a checkpoint, miniFE saves solution and residual
vectors. Lulesh is a proxy-app that models shock hydrody-
namics. It solves a Sedov blast problem while iterating over
time steps. In a checkpoint, Lulesh saves the vectors for en-
ergy, pressure, viscosity, volume, speed, nodal coordinates,
and nodal velocities. The simulation setup and the param-
eters used to run the benchmarks are given in Table 2. The
parameters were decided upon using instructions that came
with each application on how to scale up the problem size
given the available memory in each node, which was 24GB
in our servers.

Checkpointing Exascale Memory Systems with Existing Memory Technologies | 25

Se
ss

ion
 1Session 1

Table 2: Simulations parameters for miniFE and Lulesh

miniFE Lulesh
Parameters 528×512×768 45×45×45
Setup 64 MPI processes, 8 nodes

24GB/node
Checkpoint sizes:

1 MPI proc: 50 MB 8 MB
1 node: 400 MB 64 MB
App. Total: 3.1 GB 512 MB

Baseline runtime: 236 sec. 74,470 sec.
Checkpoint once/iteration, once/iteration,
behavior: ∼1 sec/iter, ∼11 sec/iter,

200 iterations, 6,499 iterations

5.3 SSD Device Reference
We chose the Intel DC S3700 SSD in 800 GB using a

SATA 3 6Gbps connection for our experiments [4]. It re-
ported an endurance rating of 14.6 PBW and a maximum
sequential write speed of 460 MB/s. We were able to achieve
write speeds of only 250 MB/s during our checkpoint ex-
periments. The write bandwidth to the SSD is important
because faster writes lead to less application slowdown and
less overall power consumption. There is a PCIe version
of the same SSD available with higher bandwidth; however
PCIe is more expensive. On CDW-G, a popular IT prod-
ucts website, Intel’s PCIe-based SSDs for data centers retail
at upwards of 92¢ per gigabyte. On the other hand, their
SATA SSDs retail as low as 71¢ per gigabyte.

6. RESULTS

6.1 Controller Results

6.1.1 Lifetime Estimation Results
The first set of results are with only the lifetime estima-

tion (abbreviated LE) feature. Again, the controller uses
Eq. 1 and Eq. 2 (Section 3.3.1) before each checkpoint to
determine if the current rate of checkpointing by the appli-
cation will prematurely wear out the SSD. We assumed an
endurance rating of 14.6 PBW (on a brand new SSD) that
leads to 5 years of useful life.

Each node has a local SSD and the controller takes into
account the endurance of the local SSD and the cumulative
bandwidth of 8 MPI processes in the node writing checkpoint
files to it. As can be seen in Figure 8a, once the endurance
is taken into account, fewer checkpoints are written to the
SSD, especially at larger checkpoint sizes. At 1000MB per
process, only 12% of checkpoints are written to the SSD. Ad-
vantageously, this leads to a performance improvement; the
slowdown of the benchmark is considerably lessened to an
average of only 1.9× (Figure 8b)—as opposed to the nearly
8× slowdown (4.6× on average) if always checkpointing to
the SSD.

The shaded region above each bar for the CLC’s results in
Figure 8b indicates the overhead due to encoding the check-
point data with strong ECC before writing to the DRAM.
In experiments, the overhead of a second memory access was
simulated by writing the checkpoint twice to DRAM. Using
this method to measure ECC overhead predicted about 20%
additional slowdown, making the average slowdown about
2.1×. This is a worst case estimation of the ECC overhead;

in practice, the second memory access can be optimized by
using an ECC cache for parity symbols of strong ECC.

(a) Checkpoint Location (b) Slowdown

Figure 8: Microbenchmark results with the CLC’s lifetime
estimation (LE) feature enabled. (a) For bigger checkpoint
sizes, more checkpoints are written to the ramdisk. (b) The
CLC significantly reduced the slowdown. The shaded re-
gion above each bar is the overhead for strong ECC’s second
memory access.

Figure 9 shows the improvement in endurance gained by
the endurance-aware checkpoint controller. This result was
obtained after the application completed, and was based on
its runtime and how many checkpoints it wrote to the SSD.
If checkpoints were only written to the SSD as in Figure 9a,
then the SSD is estimated to last an average of 3 years across
all the checkpoint sizes. On the other hand, the LE feature
of the controller extended the SSD lifetime to an average
of 6.3 years (Figure 9b), ensuring that users can get the
guaranteed 5 years of life from their SSD.

(a) SSD Only (b) Controller: LE

Figure 9: Expected lifetime of the SSD is improved with the
LE feature in the CLC.

6.1.2 Performance Estimation Results
Although, the controller was able to successfully prolong

SSD endurance, the application still experienced 2.1× slow-
down, as was shown in Figure 8b. To further minimize per-
formance loss, with the LE feature still enabled, we also en-
abled the performance loss estimation (abbreviated PLE)
feature. The performance loss bound was set to 10% in
this experiment. Note that the 10% bound was optimistic
because even the ‘always-ramdisk’ checkpoint experienced
3%-25% slowdown across the checkpoint sizes.

As Figure 10a shows, the controller wrote even fewer
checkpoints to SSD when the PLE feature was enabled; al-

26 | Abeyratne

Se
ss

ion
 1Session 1

most 99% of checkpoints were written to ramdisk. Neverthe-
less, it was successful in decreasing slowdown even further
to only 36% on average (47% with strong ECC overhead).
More importantly, the controller’s achieved performance is
more closer to the ‘always-ramdisk’ approach which achieved
14% slowdown on average (42% with strong ECC overhead).

For the sake of comparison, we also implemented a näıve
scheme where every 10th checkpoint is written to the SSD,
labeled as “9:1 Ramdisk:SSD” in Figure 10b. This scheme
performed better than CLC’s smarter scheme for checkpoint
sizes of 100 MB and 200 MB per process, indicating that a
fixed scheme might be sufficient for applications with small
checkpoint sizes that want to achieve a balance between per-
formance and reliability. However, across all checkpointed
sizes, it’s average slowdown was 58% (72% with strong ECC
overhead), that is 22% worse than CLC’s PLE feature. The
ratio 9:1 was arbitrarily picked; a larger ratio can be chosen
for even smaller performance loss if the DRAM checkpoint
has strong ECC protection.

(a) Checkpoint Location (b) Slowdown

Figure 10: (a) Performance loss estimation (PLE) feature
attempts to contain the performance loss within a specified
bound (e.g. 10%) and leads to even fewer checkpoints to the
SSD. (b) PLE’s improved slowdown is closer to ramdisk’s.
Shaded regions above each bar represent worst-case over-
heads from strong ECC encoding.

6.1.3 Size Results
CLC’s size checking feature is configured to direct check-

points bigger than a particular size (e.g 0.5GB) to the SSD,
that is, these large checkpoints are never written to the
ramdisk. In this configuration, some checkpoints maybe
skipped if the LE and PLE features indicate unfavorable re-
sults. Figure 11a shows that for checkpoint sizes 600MB and
bigger, the CLC wrote less than 10% of the intended num-
ber of checkpoints. It also increased the average checkpoint
interval of this microbenchmark (ideally a 5-second interval)
from less than 10 seconds to 1-2.5 minutes (Figure 11b).
Skipping checkpoints leads to longer rollback distances

and, more severely, to unintended uncoordinated check-
pointing (Section 3.3.3). To avoid such issues, the CLC can
be changed forcefully write particular checkpoints.

6.1.4 Energy Results
Energy saved from writing checkpoints to the DRAM is an

additional benefit of our proposed hybrid method. First, we
measured the power consumed during a checkpoint opera-
tion to both the ramdisk and the SSD. Power measurements
were obtained via the “watts up?” meter and its smallest

(a) Checkpoints Made to SSD (b) Avg. Checkpoint Interval

Figure 11: (a) With CLC’s size checking feature, big check-
points are always written to the SSD. But this leads to only
a small fraction of checkpoints actually being written, while
the rest are skipped. (b) This feature drastically increases
the average checkpoint interval.

sampling rate is 1 second. It measures the load of one entire
server node; thus, the measured power includes everything
from CPU, DRAM, I/O bus, SSD, and more.

Figure 12a shows the node’s power consumption while
continuously writing a 10GB file. We chose a very large file
size to obtain a measurable power sample because writing
small files to the DRAM is very fast (under 1 second) and
does not get picked up by the “watts up?” meter. The idle
power of the server was 37W and checkpointing to the SSD
saw a jump to 50W on average. Interestingly, checkpoint-
ing to DRAM registers much higher power consumption at
79W on average. However, writing to the DRAM took only
3 seconds compared to the 42 seconds for the SSD. Overall,
DRAM uses less energy because of its speed advantage.

Second, the power numbers obtained from the power pro-
file and the ratio of checkpoints sent to the ramdisk vs. SSD
were used to calculate the total energy consumption dur-
ing checkpointing. Figure 12b shows that between 10×-12×
energy savings were gained from the checkpoints that were
written to the ramdisk instead of the SSD. These results
demonstrate the energy savings with only the LE feature
from Figure 8.

(a) Power Profile (b) Energy Savings

Figure 12: (a) The SSD consumes 50W during a write op-
eration, whereas the DRAM consumes 79W. (b) However,
due to DRAM’s faster write bandwidth, re-directing some
checkpoints to the DRAM saves overall checkpoint energy.

6.1.5 Real Application Results
Finally, we evaluated the CLC with real benchmarks

miniFE and Lulesh. miniFE wrote 50MB checkpoints per

Checkpointing Exascale Memory Systems with Existing Memory Technologies | 27

Se
ss

ion
 1Session 1

MPI process with only 1 second of computation in a check-
point interval. At a node level, 8 MPI processes write
400MB of checkpoints each iteration. As can be seen in
Figure 13a, the ‘always-SSD’ approach caused nearly a 19×
slowdown, as did the CLC with LE feature enabled. The
slowdown is a consequence of the frequent checkpoint be-
havior of this application. However the checkpoints were
small enough not to cause premature wearing out of the
SSD; hence, the CLC directed almost all checkpoints to the
SSD. Enabling the PLE feature with a bound of 10% was
able to decrease the slowdown to 1.2×, but then the CLC
directed almost all checkpoints to the ramdisk. In compari-
son the “9:1” scheme that sent 1 out of 10 checkpoints to the
SSD saw a 2.9× slowdown and ‘always-ramdisk’ approach
saw a 1.1× slowdown.

Figure 13b shows the results for Lulesh, which wrote very
small 8MB checkpoints per MPI process at a sufficiently
large interval of 11 seconds. Since the bandwidth to the
SSD is low enough so as not to cause accelerated endurance
decay, the CLC always chose the SSD. Enabling the PLE
feature reduced the performance loss from 17% down to 13%
by redirecting 17% of all checkpoints to the ramdisk. With
only 2% slowdown, Lulesh is an example of an application
that might be better suited for a static “9:1” scheme that
balances out both reliability and performance.

(a) miniFE (b) Lulesh

Figure 13: Neither miniFE nor Lulesh checkpoints with high
enough bandwidth to wear down the SSD; thus CLC’s LE
feature allows most checkpoints to the SSD. Enabling the
PLE feature, on the other hand, makes the CLC re-direct
most of miniFE’s checkpoints to the DRAM.

6.2 ECC Overhead & Error Coverage
The performance overhead of ECC on application runtime

were already included in results in Figures 8-13. This section
focuses on synthesis and error coverage results for ECC.

6.2.1 Synthesis Results
We synthesized the decoding units of RS(36,32),

RS(18,16) and RS(19,16) codes over GF(28) using 28nm
industry library. The syndrome calculation is performed
for every read and so we optimize it for very low la-
tency. The decoding latency of syndrome calculation is
0.48ns for RS(36,32) code and 0.41ns for RS(18,16) and
RS(19,16) codes. Thus the syndrome calculation latency is
less than one memory cycle (1.25ns if the DRAM frequency
is 800MHz).

For normal ECC, if syndrome vector is not a zero vec-
tor, RS(36,32) performs single symbol correction and triple
symbol detection. It takes an additional 0.47ns to correct
a single symbol error or declare that there are more errors.
For strong ECC, RS(18,16) is configured to only perform
detection. If the syndrome vector is not a zero vector, the

memory controller reads the third ECC symbol and forms
the RS(19,16) code. After calculating the syndrome vector
for RS(19,16), the decoder spends an additional 0.47ns to
correct a single symbol error and if it cannot correct the
error, it declares that there are more errors. The synthesis
results are shown in Table 3.

Table 3: Synthesis results for proposed RS codes

RS(36,32) RS(18,16) RS(19,16)
Syndrome 0.48ns (σ) 0.41ns (ρ) 0.41ns (ρ)
Calculation

Single Symbol Correction & N/A N/A ρ + 0.47ns
Double Symbol Detection

Single Symbol Correction & σ + 0.47ns N/A N/A
Triple Symbol Detection

Table 4: The error protection capability

Failure Mode RS(36,32) RS(18,16) RS(19,16) Chipkill-Correct
Single Chip Failures

1 bit DCE: 100% DCE: 0% DCE: 100% DCE: 100%
DUE: 0% DUE: 100% DUE: 0% DUE: 0%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 pin DCE: 100% DCE: 0% DCE: 100% DCE: 100%
DUE: 0% DUE: 100% DUE: 0% DUE: 0%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 word DCE: 100% DCE: 0% DCE: 100% DCE: 100%
DUE: 0% DUE: 100% DUE: 0% DUE: 0%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 chip DCE: 100% DCE: 0% DCE: 100% DCE: 100%
DUE: 0% DUE: 100% DUE: 0% DUE: 0%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

Double Chip Failures
1 bit + 1 bit DCE: 0% DCE: 0% DCE: 0% DCE: 0%

DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 bit + 1 pin DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 bit + 1 word DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 bit + 1 chip DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 pin + 1 word DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 pin + 1 pin DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 99.9999% DUE: 100% DUE: 100% DUE: 100%
SDC: 0.0001% SDC: 0% SDC: 0% SDC: 0%

1 pin + 1 chip DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 99.9969% DUE: 100% DUE: 100% DUE: 100%
SDC: 0.0031% SDC: 0% SDC: 0% SDC: 0%

1 word + 1 word DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 word + 1 chip DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 chip + 1 chip DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 99.9969% DUE: 100% DUE: 100% DUE: 100%
SDC: 0.0031% SDC: 0% SDC: 0% SDC: 0%

6.2.2 Error Coverage
The reliability of four ECC schemes, namely, RS(36,32)

for normal ECC, RS(18,16) and RS(19,16) for strong ECC,
and x4 Chipkill-Correct was evaluated. 10 million Monte
Carlo simulations for single bit, pin, word, and chip failure
events were conducted. Each fault type was injected into
a single chip or two chips. For each type of error event,
the corresponding detectable and correctable error (DCE)
rate, detectable but uncorrectable error (DUE) rate and
silent data corruption (SDC) rate [26] were calculated; Ta-
ble 4 gives the corresponding simulation results for these
four ECC codes.

RS(36,32) for normal ECC can correct all errors due to
small granularity faults and can detect all errors due to a

28 | Abeyratne

Se
ss

ion
 1Session 1

single chip failure. For faults across 2 chips, it can fully
detect errors due to a single bit fault in each chip, a single
bit fault in one chip and a single pin fault in another chip,
and several other error events as shown in Table 4. This
code has good detection capability for errors due to a pin
fault in each chip, 1 pin fault in one chip and 1 chip failure
and double chip failures.

The combination of RS(18,16) and RS(19,16) that is used
for strong ECC achieves Chipkill-Correct reliability. Recall
that RS(18,16) is activated every time to provide detection.
It can detect all errors due to double chip failures, and once
errors are detected, RS(19,16) decoder is activated. It can
correct all errors due to a single chip failure and detect errors
due to double chip failures and thus it achieves Chipkill-
Correct level reliability.

7. RELATED WORK
Zheng et. al [14] proposed to pair two processors in a

buddy system where each process makes two identical check-
points to its own local storage and to the buddy’s local stor-
age. The default local storage is the local memory, known as
double in-memory checkpointing ; if a local disk is available
then double in-disk checkpointing can be carried out instead.
At recovery, one of the two buddies provides the restoration
checkpoint. Similar to our results, their in-memory check-
point was faster, but the disk was more practical for applica-
tions with big memory footprints. We believe that our two
methods can be combined to form a better hybrid-buddy
checkpointing method where instead of wasting memory by
storing double checkpoints to attain resilience, either our
ramdisk or SSD checkpoint can be stored at the buddy’s
node.

Rajachandrasekar et. al [33] proposed a new in-memory
file system called CRUISE (Checkpoint Restart in User
SpacE) in which large checkpoints to main memory can
transparently spill over to SSD storage. CRUISE is mounted
similarly to a ramdisk. Our work can augment CRUISE by
providing the necessary strong ECC protection for memory
checkpoints. Similarly, CRUISE’s spill feature can augment
our CLC for checkpoints that are too large to fit in memory.
CLC’s lifetime estimation feature can provide CRUISE with
important information about the endurance of the SSD/spill
device.

Saito et al. [15] investigated improving energy consump-
tion during checkpoint write operations to a PCIe-attached
NAND-flash device. They suggest that there exists an opti-
mal number of I/O processes that can simultaneously write
to the device. They minimize energy consumption by apply-
ing DVFS and keeping an I/O profile that helps to quickly
determine the optimal number of I/O processes. This work
could possibly be added to our CLC as a new “energy esti-
mation” feature and help predict energy consumption for an
energy-limited system that checkpoints to SSDs.

Yoon and Erez [28] proposed Virtual ECC (V-ECC) to
protect memory systems with strong ECC mechanisms with-
out modifying existing DRAM packages. This idea makes it
possible to provide large parity even for systems that have
no dedicated parity hardware. We borrow their technique to
provide strong ECC protection for our checkpoints, where
the extra parity symbols for strong ECC is stored like data.

8. CONCLUSION
Exascale supercomputers have millions of components

that can fail. A 100 petabyte memory system—100× larger
than ORNL Titan supercomputer’s 1 petabyte memory sys-
tem—alone consists of millions of DDR4 DRAM devices
backed by hundreds of thousands of SSD flash devices. Re-
silience to failing components must be achieved by creating
a fast and reliable checkpoint/restart framework.

In this paper, we proposed a hybrid DRAM-SSD check-
pointing solution to achieve speed and reliability for local
checkpointing while also reducing the endurance decay of
SSDs. The Checkpoint Location Controller (CLC) that we
implemented monitors SSD endurance, performance degra-
dation, and checkpoint size to dynamically determine the
best checkpoint location. CLC running on a microbench-
mark showed an SSD lifetime improvement from 3 years to
6.3 years. Application results on miniFE and Lulesh vali-
dated that the online controller can make appropriate deci-
sions to limit the slowdown due to checkpointing.

Furthermore, our normal ECC provides low-latency cor-
rection for errors due to bit/pin/column/word faults and our
strong ECC provides Chipkill-Correct capability to DRAM
checkpoints to reduce the overheads of rollback. The system
presented in this paper demonstrates that it is in fact pos-
sible to build an exascale memory system using commodity
DRAM and SSD and gain both speed and reliability without
relying on emerging memory technologies.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their time and

input. We also thank the generous support of our industrial
sponsor, ARM Ltd.

References
[1] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich We-

ber. DRAM errors in the wild: a large-scale field study. In
ACM SIGMETRICS Performance Evaluation Review, vol-
ume 37, 2009.

[2] Bianca Schroeder and Garth A Gibson. Understanding fail-
ures in petascale computers. In Journal of Physics: Confer-
ence Series, volume 78, 2007.

[3] Xiangyong Ouyang, S. Marcarelli, and D.K. Panda. Enhanc-
ing checkpoint performance with staging io and ssd. SNAPI
2010.

[4] Intel Cooperation. Intel Solid-State Drive DC S3700 specifi-
cation, October 2012.

[5] Xiangyu Dong, Naveen Muralimanohar, Norm Jouppi,
Richard Kaufmann, and Yuan Xie. Leveraging 3D PCRAM
Technologies to Reduce Checkpoint Overhead for Future Ex-
ascale Systems. SC 2009.

[6] Ping Chi, Cong Xu, Tao Zhang, Xiangyu Dong, and Yuan
Xie. Using Multi-level Cell STT-RAM for Fast and Energy-
efficient Local Checkpointing. ICCAD 2014.

[7] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic.
Optimizing Checkpoints Using NVM as Virtual Memory.
IPDPS 2013.

[8] U.S Department of Energy Office of Science and National
Nuclear Security Administration. Preliminary Conceptual
Design for an Exascale Computing Initiative, November
2014.

[9] Ning Liu, Jason Cope, Philip Carns, Christopher Carothers,
Robert Ross, Gary Grider, Adam Crume, and Carlos
Maltzahn. On the role of burst buffers in leadership-class
storage systems. MSST 2012.

