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ABSTRACT

Datacenter Design for Future Cloud Radio Access Network

by

Qi Zheng

Co-Chair: Trevor Mudge

Co-Chair: Ronald Dreslinski

Cloud radio access network (C-RAN), an emerging cloud service that combines

the traditional radio access network (RAN) with cloud computing technology, has

been proposed as a solution in the future to handle the growing energy consumption

and cost of the traditional RAN. Through aggregating baseband units (BBUs) in

a centralized cloud datacenter, C-RAN reduces energy and cost, and improves

wireless throughput and quality of service. However, designing a datacenter for

C-RAN has not yet been studied. To this end, in this dissertation, I investigate how

a datacenter for C-RAN BBUs should be built on commodity servers.

I first design WiBench, an open-source benchmark suite that contains the key

signal processing kernels of many mainstream wireless protocols, and study its

xix



characteristics. The characterization study shows that there is abundant data level

parallelism (DLP) and thread level parallelism (TLP), and little branch instructions.

Based on this result, I then develop high performance software implementations

of C-RAN BBU kernels in C++ and CUDA for both CPUs and GPUs. In addi-

tion, I generalize the GPU parallelization techniques of the Turbo decoder to the

trellis algorithms, an important family of algorithms that are widely used in data

compression and channel coding.

Then I evaluate the performance of commodity CPU servers and GPU servers.

The study shows that the datacenter with GPU servers can meet the LTE standard

throughput with 4× to 16× fewer machines than with CPU servers. A further

energy and cost analysis show that GPU servers can save on average 13× more

energy and 6× more cost. Thus, I propose the C-RAN datacenter be built using

GPUs as a server platform.

Next I study resource management techniques to handle the temporal and

spatial traffic imbalance in a C-RAN datacenter. I propose a “hill-climbing”

power management that combines powering-off GPUs and DVFS to match the

temporal C-RAN traffic pattern. Under a practical traffic model, this technique

saves 40% of the BBU energy in a GPU-based C-RAN datacenter. For spatial

traffic imbalance, I propose three workload distribution techniques to improve load

balance and throughput. Among all three techniques, pipelining packets has the

most throughput improvement at 10% and 16% for balanced and unbalanced loads,

respectively.

xx



CHAPTER I

Introduction

1.1 Emerging of C-RAN

Mobile device users have increased rapidly over the two last decades. Based

on the CTIA–The Wireless Association’s annual wireless industry survey [6], the

number of wireless subscribers has increased over ten times since 1995 (shown

in Figure 1.1). By 2014, there were 355 million wireless subscribers and 300

thousand base stations in the United States, making wireless communication a

market worth $200 billion annually [6]. This rapid growth of the mobile market

has made wireless signal processing a key driving application of the computing

technology, and a major consumer of the computing resources.

A crucial component of wireless communication is a radio access network

(RAN), which connects mobile devices and the core network. Because of the

need for 24/7 service availability and the growing requirements for high data rate,

RAN systems consume significant energy and capital. In 2010, wireless base

1
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Figure 1.1 Annual wireless subscriber connections in the United States [6]

stations consumed 110 million kWh of energy and cost $40 billion on capital

expenditure [41]. This constrains the traditional RAN growth in terms of both

energy consumption and total cost of ownership (TCO).

In addition, the throughput of traditional RANs cannot meet the growing

demand for higher data rates. Global mobile traffic increased 66-fold with a com-

pound annual growth rate of 131% from 2008 to 2013, while the peak throughput

of the wireless network only increased at 55% annually [41]. This has resulted in

low data rates per user. For example, the typical user download speed of LTE is

only 10% of the specification’s peak data rate [19]. Therefore, the throughput of

the traditional RAN is not enough, especially with new applications demanding

high data rates, like 4K online videos and real-time online games. Consequently,

we must find solutions to improve the throughput, energy and cost efficiency of the

traditional RAN system.

2



To solve the problems that constrain the traditional RAN, cloud radio access

network (C-RAN), a new emerging cloud service, has been proposed [41]. C-

RAN is a domain specific cloud service that combines the traditional RAN with

cloud computing technology. In C-RAN, the non-compute intensive remote radio

heads (RRHs) are decoupled from the compute intensive baseband units (BBUs):

RRHs remain at the distributed base station sites while BBUs are aggregated into a

centralized cloud datacenter. The datacenter processes baseband computation from

all sites that are connected to the datacenter through a high speed front-haul link.

C-RAN has many advantages including reduction in energy and TCO, and

improvement in throughput and hardware utilization. On the front-end, removing

the BBU from the base station makes them smaller and simpler, which reduces

the energy and the TCO of the site. For example, site acquisition and rental fees

are smaller as well as electricity costs and hardware upgrade costs. In addition,

because the sites are smaller, more of them can be deployed in densely populated

areas, which improves the quality of service. On the back-end, aggregating BBUs

into a centralized datacenter saves maintenance cost, and improves hardware

utilization and energy efficiency by sharing computing resources among sites. It

also increases network capacity by enabling joint processing [93] (a technique to

reduce interference from multiple base stations when a mobile device is at the edge

of a coverage area). With higher hardware utilization, lower energy, and lower cost,

operators can deploy more hardware to improve the throughput.
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1.2 Contribution

Although C-RAN has been proposed for future wireless systems, the datacenter

design for the C-RAN has not yet been studied. Therefore, in this dissertation, I

explore the design of a datacenter for the future cloud based RAN. The primary

goal of this work is to investigate how to build a C-RAN datacenter. In particular,

we need to ensure C-RAN systems achieve the following targets:

• Meeting the throughput requirement specified in current and future wireless

standards with commodity servers.

• Supporting the number of sites required by the current C-RAN design, and

be able to scale up to support more sites for larger C-RANs in the future.

• Minimizing the energy consumption and the TCO of the C-RAN datacenter.

• Managing hardware resources in a C-RAN datacenter to handle the temporal

and spatial imbalance in traffic.

To understand these challenges, I first design WiBench, an open source con-

figurable benchmark suite that characterizes the computational features of the

baseband signal processing systems of mainstream wireless protocols. Through

the study of WiBench, several key features, such as the large amount of data level

parallelism (DLP) and few branch instructions, are identified in order to guide the

hardware choosing and software implementation for a C-RAN datacenter.

Based on WiBench, I realize a high-performance software model of the C-

RAN BBU uplink receiver that includes all the kernels in the physical (PHY)
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layer and the Turbo decoder. I focus on the receiver side as it is significantly

more computationally complex than the transmitter side, representing most of the

computations in the C-RAN BBU. I use this model to investigate how to build a

C-RAN datacenter with commodity general-purpose servers. I explore two major

server platforms, which are multi-core CPUs and general-purpose GPUs. I realize

high-performance implementation of an LTE BBU model in both C++ and CUDA

for the evaluation on CPUs and GPUs, respectively. For the C++ implementation,

I maximize the CPU performance by using automatic vectorization and openMP

optimizations. For the CUDA implementation, I utilize various types of parallelism

to maximize the GPU performance. In addition, I generalize the parallelization

techniques of the Turbo decoder on GPUs to the trellis algorithm, a broader family

of algorithms whose processing can be represented by a trellis. I explore different

parallelization techniques to achieve the best tradeoff among the throughput, latency

and the bit error rate.

To investigate the C-RAN datacenter design, we must first determine which

server platform is better to be deployed. To this end, I compare CPU servers

and GPU servers across performance, energy, and TCO. For the performance, I

compare the throughput achieved by each type of server to the throughput defined

by the LTE specification, and determine the amount of equipment that needs to be

deployed in a C-RAN datacenter supporting 32 sites. Since the data and thread

level parallelism present in many of the BBU kernels are better suited for the GPU

architecture, the GPU server consistently achieves better performance than the

CPU server. The results show that we need 4× to 16× as many CPU servers as
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the GPU servers in the equivalent datacenter. Then, I use the required number of

CPUs and GPUs to evaluate the energy consumption and TCO in a 32-site C-RAN

datacenter. The evaluation shows that the CPU servers consume, on average, 13×

more energy and 6× higher TCO than the GPU servers. Therefore, I decide to

choose GPU servers as the hardware platform to build the C-RAN datacenter.

In addition to the hardware platform selection, resource management in a C-

RAN datacenter is also important. Since the traffic in the radio network is rarely

equally distributed temporally and geographically, I investigate power manage-

ment techniques that leverage temporal traffic imbalance to save energy, and load

balancing techniques that leverage spatial traffic imbalance to improve datacenter

throughput. For power management, I propose a “hill-climbing” management tech-

nique that combines powering-off GPUs and DVFS to reduce the datacenter power

consumption without any performance impact. The study shows that in a 24-hour

RAN traffic model, a datacenter with the proposed power management saves 40%

of the BBU energy over no power management. For load balancing, I explore

three techniques including fixed assignment, pipelining kernels and pipelining

packets. These techniques methodically distribute the workload across multiple

servers to improve the datacenter’s throughput. The results show that pipelining

kernels and pipelining packets achieve 12% and 16% more throughput than the

fixed assignment at the cost of 40% longer latencies, which is still under the 4 ms

LTE BBU latency budget. Overall, pipelining packets is the best load balancing

technique due to its highest throughput and acceptable processing latency.

To sum up, the dissertation makes the following contributions:
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• I design and characterize an open source configurable wireless signal process-

ing kernel suite, which includes a rich set of key signal processing kernels

that are used widely in mainstream wireless protocols.

• I develop different parallelization techniques on GPUs for the trellis algo-

rithm, a family of algorithms that are widely used in data compression and

channel coding. I study tradeoffs among the throughput, latency and the bit

error rate.

• I investigate how C-RAN datacenters can be built on commodity server

platforms. I achieve high-performance implementation of a model of the

C-RAN BBU in both C++ and CUDA.

• I explore two major general-purpose server platforms, including multi-core

CPUs and GPUs. I evaluate each server platform with performance, energy

and TCO, and decide that GPU servers are the best hardware platforms to

build the C-RAN datacenter.

• I propose a “hill-climbing” power management that combines powering-off

GPUs and DVFS to match the temporal C-RAN traffic pattern. Under a

practical traffic model, this technique saves 40% of the BBU energy.

• I propose three workload distribution techniques to balance the loads between

sites. Among all three techniques, pipelining packets has the most throughput

improvement of 16%.
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In addition to the contributions mentioned above, I provide implications for

future C-RAN datacenter designs, indicating that a C-RAN datacenter can benefit

from architecture and instruction set support for trellis algorithms in general-

purpose processors, and the support for internet service at the wireless edge.

1.3 Organization

The rest of this dissertation is organized as follows: in Chapter II the back-

ground information of the limitations of the traditional RAN and the benefits of

C-RAN are discussed. In addition, traditional baseband processors and two major

server platforms used in a datacenter, multi-core CPUs and general-purpose GPUs

are introduced. Chapter III describes the design of WiBench, and the results of

the corresponding characterization study. In Chapter IV, the methods to achieve

high-performance implementation of the wireless baseband systems and trellis

algorithms on GPUs are presented and evaluated. Chapter V discusses the design

for a C-RAN datacenter, including the hardware choosing between multi-core

CPUs and GPUs. It also shows the new resource management techniques for

dealing with spatial and temporal traffic imbalance in a C-RAN datacenter. Finally,

Chapter VI concludes the dissertation and proposes future research directions.
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CHAPTER II

Background

In this chapter, I will introduce the radio access network, along with the

motivating factors that leads to the invention of C-RAN architectures. I will also

briefly introduce the traditional baseband processors, and the two major commercial

general-purpose processors used in datecenters these days.

2.1 Radio Access Network

A RAN (shown in Figure 2.1) provides the wide-area wireless connection

between mobile devices and the core network through radio technologies. Tra-

ditionally, it consists of a large number of distributed base transceiver stations

(BTSs), which is responsible for coordinating the traffic and signaling between

mobile devices and the network switching system [17], and a few centralized

base station controllers, which handles radio resource allocations and user device

handovers between BTSs. Since a RAN provides 24/7 services to mobile users, it
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Figure 2.1 Radio access network [1, 2]

is the most costly part of mobile system infrastructure.

2.1.1 The limitations of traditional radio networks

In order to be always available to support 24/7 services as well as to meet

the growing demands for high throughput, the traditional RAN requires every

distributed base station to be in continuous operation and have peak-throughput

computational capability. In addition, it needs to support frequent improvements

to system hardware. However, this leads to many problems in today’s RANs,

including high power consumption, high TCO, limited network capacity, and low

average hardware utilization.

High Power Consumption. Each BTS is responsible for the coverage of a

small area and handles transmission/reception signals for all the devices in that area.

BTSs must operate continuously. In addition, wireless providers are deploying

ever more BTSs to increase coverage and offer more wireless services. Based
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Figure 2.2 Power consumption breakdown in a wireless base station [41]

on a report from China Mobile [41], a major wireless operator, 72% of the RAN

power consumption is from BTSs, and almost half of that power is consumed

by the supporting facilities such as air conditioners (shown in Figure 2.2). Since

reducing the number of BTSs is not an option (this will result in worse service

quality and coverage), new technologies are in urgent demand to reduce the BTS

power consumption.

High TCO. Rapidly increasing mobile data consumption leads to a growth

in the operators’ cost of the radio network. To improve the average revenue per

user, operators need to reduce the RAN TCO. Currently, only 35% of the capital

expenses of a BTS is spent on wireless equipment, while the remaining 65% is

spent on site acquisition, civil works, equipment installation, etc. [41]. The most

effective way to reduce TCO is to have fewer distributed BTS sites, which reduces

the costs of both construction and maintenance. Since that is not an option, other

11



ways to decrease the cost of the non-wireless functionality must be found without

sacrificing network capacity and coverage.

Limited Network Capacity and Low Utilization. The fast growth of mobile

devices and applications requires higher data rate from the wireless network. From

2008-2013, global traffic increased 66-fold with a compound annual growth rate of

131%. This means that wireless operators need to continuously increase network

capacity and coverage. One way to achieve this is to have more BTSs to cover

each area. However, deploying more BTSs per coverage area results in higher

TCO and energy consumption, and is sometimes not even feasible due to inter-

cell interference in high density areas, such as a football stadium. Therefore, the

growth of network capacity of traditional RANs is limited by the energy and cost.

In addition, BTSs are typically over-provisioned to support peak capacity, but

the traffic of peak capacity only occupies 7% of the networks daily traffic [94],

resulting in low RAN hardware utilization at other times, which exacerbates the

problem of high energy consumption and TCO for the traditional RAN.

2.2 Cloud Radio Access Network

Due to the limitations mentioned above, the traditional RAN is constrained by

high energy consumption and high cost to provide continuously increasing network

capacity. This has inspired C-RAN, a new approach to designing base stations.
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2.2.1 Introducing C-RAN

Cloud computing has had much success in the IT domain for centralized

computing and energy/cost savings. The RAN and cloud computing share many

features such as a large customer base, big geographical coverage area, and high

traffic load. Recently, C-RAN, a domain specific cloud service that combines

the traditional RAN with cloud computing technology, was proposed to solve the

problems in the traditional RAN.

In the traditional RAN (shown in Figure 2.3a), a BTS is a distributed unit

consisting of closely connected pairs of RRHs and BBUs. Every BTS processes

data from the site that it covers, and transfers it back to the core network through

back-haul links. C-RAN (shown in Figure 2.3b), on the other hand, decouples the

RRH and BBU. The RRHs remain at distributed sites while the centralized cloud

aggregates all the BBUs (BBU pool). Given a large geographical area, the cloud

processes all the baseband computation jobs received from distributed RRHs. A

high speed front-haul link [28, 64, 40] connects these two components.

In C-RAN, each RRH at a site is still responsible for transmitting and receiving

radio signals and analog/digital conversion. Because the BBU no longer resides at

the site, the distributed RRH is much smaller and simpler; it consumes much less

energy and has less complexity that can lower its cost. This enables an increase

in the density of RRH deployments in crowded areas to improve the quality of

service. Typically, RAN base stations employ multiple BBUs to support different

protocols such as 3G, WiMax, and LTE. With C-RAN removing the BBU from the
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Figure 2.3 The structures of a traditional RAN system and C-RAN system. In a
traditional RAN, each BTS is consisted of its own RRH and BBU, and is distributed to
cover each site. In C-RAN, only RRHs are distributed, and BBUs sit in a centralized
location, i.e. the cloud.

base station, the RRH can be used as a universal solution for all the protocols to

further reduce cost.

2.2.2 Benefits of C-RAN

The biggest change that C-RAN has is that all of the baseband processing,

which consumes most of the computational resources, is now moved from the
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distributed sites to a centralized location (the cloud). This enables sharing of

computational resources between different sites, which achieves better hardware

utilization when there is unbalanced traffic from sites. Another major advantage

of C-RAN is the ability to more easily perform joint processing to remove inter-

site interference. A mobile device located at the edge of a BTS’s coverage area

experiences low signal strength and interference from neighboring BTSs. With

traditional RAN, multiple BTSs dynamically coordinate to jointly process signals

to/from the mobile device, a process which involves handoffs between BTSs that

incurs delay and wastes resources from multiple BTSs. In the C-RAN model, joint

processing is easier, faster, and frees up valuable bandwidth.

In summary, C-RAN has the promise to provide the following benefits:

Better Energy Efficiency. C-RAN can reduce the energy consumption in

the RAN system. The resource sharing in the cloud BBU pool leads to better

resource utilization, improving the energy efficiency of the hardware. In addition,

the distance between RRHs to users can be reduced due to the cancellation of

inter-site interference by joint processing, which leads to lower RHH transmission

power and thus saves energy. Based on field tests, C-RAN can save up to 71% of

power compared to a traditional RAN [41, 54].

Lower Cost. Because BBUs are aggregated in the cloud, C-RAN reduces the

cost of maintenance through centralized management and operation. In addition,

smaller sites have smaller initial costs in site acquisition and equipment installation

as well as smaller operational costs in site rental fees, electricity costs, and mainte-

nance. Overall, C-RAN can save 44% of TCO when compared with a traditional

15



RAN [41].

Higher Capacity, Better Utilization. In C-RAN, the cloud BBU pool allows

the sharing of traffic data and channel information between different sites. This

enables joint processing and increases network capacity. It also allows more sites to

be installed in high density areas, improving the quality of service. Since multiple

sites share the same C-RAN BBU pool, C-RAN can dynamically allocate the

compute resources to each site based on the traffic conditions, which achieves

better hardware utilization. Previous work shows that 19% of compute resources

can be saved by using C-RAN [35].

2.2.3 Design challenges for C-RAN

Although C-RANs outperform traditional RANs in every aspect, as shown in

previous works [41, 54, 35], there remain a number of design challenges of C-RAN

that has yet to be explored, such as designing a low-latency front-haul connection

and the virtualization of the BBUs. The front-haul connection between RRHs and

BBU datacenters in C-RAN is still an ongoing research area [80, 64, 29]. The

original solution proposed for C-RAN is to use optical cable [80], for fast data

transfer and very little latency impact. Cheap alternatives of optical cables are

under development. In this thesis, I focus on the computer architectural challenges

of the hardware and software design inside a C-RAN datacenter.

Many C-RAN solutions [63, 42, 41] opt for using general purpose processors

instead of system-on-chip (SoC) with DSP cores and ASIC accelerators. Their eval-
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uations show that general purpose platform based C-RAN datacenters outperform

SoCs with much lower TCOs. This is due to the fact that SoCs are custom-designed

for every wireless technology standard. Upgrading to newer wireless standards

requires a redesign of SoCs, resulting in longer time to market and higher capital

expenditure. Also, multiple versions of SoCs are required to support different

protocols used at the same time, leading to even higher costs. As a new standard is

introduced, the adoption rate is not instantaneous, meaning that ratios of hardware

for the old standards versus the new standards change over time. This results in

the need to continuously update the system. General purpose processors, on the

other hand, are easier and cheaper to deploy and upgrade, as the C-RAN BBU

system is implemented in software and can be dynamically configured for multiple

standards. Therefore, in this thesis, I only focus on designing C-RAN datacenters

with general purpose platforms, and will not consider SoCs. Although a solution

with SoCs may have better energy efficiency, the lack of flexibility will result in

higher TCOs of C-RAN systems, as shown in the previous works [63, 42, 41].

Moving BBUs to general purpose platforms introduces new challenges for

C-RAN design. We need to develop high-performance software implementations

of the wireless signal processing on general purpose servers. In addition, the

datacenter should be able to support at least 20 sites to fulfill the specification’s

throughput requirement of the wireless standards, at low energy consumption

and TCO. To achieve these, I analyze the computational features of the C-RAN

baseband system, and study how to optimize them for high throughput and low

latency processing.
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2.3 Traditional baseband processors

A baseband processor is a hardware processing unit that manages all the radio

related functions, and is one of the key devices in a RAN. Traditionally, there

are several different types of hardware platforms deployed for baseband process-

ing, achieving different design tradeoffs among performance, energy efficiency,

flexibility and cost.

2.3.1 ASIC

ASICs (Figure 2.4) are among the most widely used baseband processors in

today’s commercial wireless base stations, as well as mobile devices. ASICs

are customized integrated circuits for particular uses, therefore, they have fixed

functionalities and supported configurations. Because of the customization, ASICs

can achieve both good performance and high energy efficiency. In a wireless base

station, a baseband ASIC is usually called a modem, and there are many modems

in each base station to process data from different communication channels or

different cells.

However, the biggest issue of ASICs is the customized functionality, which

eliminates the flexibility. Consequently, ASIC-based baseband processors require

more efforts and longer time to market when a base station is upgrading to a new

protocol.
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Fig. 10. High-level block diagram of channel decoder architecture.

TABLE I
PHYSICAL CHARACTERISTICS OF THE BB-ASIC AND THE ATTACHED RF-IC

Fig. 11. Testbed of the first generation and die micrograph of the BB-ASIC for
the single antenna case.

the RF-ICs are connected to a Xilinx Zynq development board
and to a ML605 FPGA board, which hosts the logic of the
BB-ASIC described in this paper. One core of the Zynq runs
a real-time operating system controlling the BB-ASIC via
L1CTL commands over an SPI interface. The second core runs

Fig. 12. Testbed of the second generation for Rx-diversity measurements with
zynq (on Zedboard) and ASIC logic on the ML605 FPGA board.

an embedded Linux OS which displays or forwards the data to
the higher layers in the protocol stack or to a connected PC for
evaluation purposes.
At the antenna input of the RF transceiver, standard com-

pliant RF signals are supplied, which are generated by a channel
emulator (Propsim C8) and a wireless protocol tester (Agilent
8960). For the performance and power measurements, the test-
cases shown in Table II are chosen. These testcases are a repre-
sentative subset of the vast amount of requirements specified in
[19].
In order to achieve the rigorous 3GPP requirements, a joint

configuration of RF transceiver and the baseband is essential.
Our configuration approach is explained in Section V-B.

Figure 2.4 GSM/EDGE Baseband ASIC [78]

2.3.2 DSP

DSPs are specialized processors that target on digital signal processing appli-

cations, and also widely used in commercial wireless systems. There are many

DSPs designed by both industry and academia as baseband processors for different

wireless protocols [58, 86, 111, 112]. DSPs are usually designed with very long

instruction word (VLIW) and single instruction multiple data (SIMD) pipelines

to explore instruction level parallelism (ILP) and DLP in applications. Fully pro-

grammable DSPs only exist in the academic research [86, 112]. Commercial DSPs

contain many accelerators for different purposes, tyring to achieve a good tradeoff

between energy efficiency and flexibility. Therefore, when upgrading a base station

to new protocols, DSPs with new accelerators still need to be designed, which

leads to a long time to market. In addition, since many hardware components in a

DSP, such as the memory system and the shuffling network, are highly specialized,

it is non-trivial for a programmer to even write a working program.
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Figure 6: 8-wide SIMD Shuffle Network(SSN)

signed to handle computationally intensive DSP algorithms.
Each datapath includes a 2 read-port, 1 write-port 16 en-
try register file, and one 16bit ALU with multiplier. The
multiplier takes two execution cycles when running at the
targeted 400MHZ. Intra-processor data movements are sup-
ported through the SSN (SIMD Shuffle Network). Figure 6c
shows a simplified 8-wide version of the network, whereas
SODA’s SSN is actually 32-wide. SSN is consisted of a shuf-
fle exchange (SE) network (shown in Figure 6a), an inverse
shuffle exchange (ISE) network (shown in Figure 6b), and
a feedback path. Previous work [26] has shown that any
permutation of size N can be done with 2log2N − 1 itera-
tions of either the SE or ISE network, where N is the SIMD
width. For the permutation patterns of SDR algorithms,
we found that we can reduce the number of iterations if we
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Figure 7: Scalar-SIMD Operations for Various DSP
Algorithms

include both the SE and ISE networks. In addition to the
SSN network, a straight-through connection is also provided
for data that does not need to be permutated.

The AGU pipeline handles DMA (Direct Memory Access)
transfers and memory address calculations for both scalar
and SIMD pipelines. In wireless protocols, DSP kernels pro-
cess data in streams through data queues, that is supported
by the AGU’s DMA capability. In addition, it also han-
dles local memory accesses for both the scalar and SIMD
pipelines.

Asymmetric Dual SIMD Pipeline. As explained in
Section 2, inter-kernel communications are via scalar streams,
but intra-PE computations are vector operations. There-
fore, support for a scalar-vector interface between the scalar
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Figure 2.5 SODA, a DSP designed for WCDMA [86]

2.3.3 FPGA

Field-programmable gate array (FPGA) is another type of hardware platforms

that is traditionally used for baseband processing. Big companies like Xilinx

and Altera have developed commercial FPGA-based solutions. FPGAs have good

programmability, as users can change the hardware functionality by reprogramming

FPGAs through hardware description languages (HDLs), such as Verilog HDL and

VHDL. This makes FPGAs very attractive when finding tradeoffs between energy

efficiency and flexibility in a base station.

However, FPGAs have relatively high prices compared to other baseband

processors. In addition, the design and verification of the FPGA-based hardware is
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difficult and time consuming, compared with regular programming software.

2.4 General-purpose processors

There are two major types of general-purpose processors used in datacenters:

the traditional multi-core CPU, and the newly emerging GPU.

2.4.1 Central Processing Unit

Central Processing Units (CPUs) are the most commonly used general-purpose

processors in a datacenter these days. With many hardware designs to provide

high-performance computing, such as branch predictor, out-of-order execution,

SIMD extension, and cache-based memory hierarchy, CPUs can explore several

types of parallelism (like DLP and ILP) in a program, and provide fast processing

for a single job. In addition, with the quick development of the semiconductor

technology, CPUs with multiple cores and supports of multithreading to explore

thread level parallelism (TLP) are widely deployed. This enables CPUs also to

provide high throughputs for many concurrent works, making CPUs the perfect

hardware platform for current datacenter applications. As there will be higher

transistor density on a chip, processors with 10 to 100 cores will be available [25],

and the throughputs provided by CPUs will increase even higher.

In addition to the high performance, CPUs also have good general-purpose

programmability along with mature tool-chain supports. C libraries with SIMD

intrinsics and multithreading application programming interfaces (APIs) such as

21



OpenMP make it easy for regular programmers to make use of DLP and TLP in an

application. Compared to any ASIC or specialized hardware solution, this greatly

reduces the development time and maintenance effort of a product.

2.4.2 Graphics Processing Unit

Graphics Processing Unit (GPUs) are originally designed for graphics appli-

cations, and have become emerging general-purpose processors that achieve high

computing throughput through effectively explore DLP and TLP in a program.

Due to their highly parallel architecture, GPUs have high raw compute power per

dollar and Joule, make them very attractive for many datacenter applications.

2.4.2.1 GPU architecture

Although the microarchitectures of GPUs vary between different vendors, they

all deploy the single-instruction multi-thread (SIMT) execution model in a similarly

way. Therefore, in this section, I use the NVIDIA Fermi [96] architecture as an

example.

Figure 2.6 shows the architecture of a Fermi GPU. A Fermi GPU is consisted

of several streaming multiprocessors (SMs), a shared L2 cache and an external

high-bandwidth DRAM. Each SM contains thirty-two execution units, a workload

scheduler (warp schedule), a register file, and a 64 KB L1 memory that is configured

as a combination of data cache and shared memory. In each SM, threads are issued

to execution units in groups of 32, called warps. A warp works in the SIMD style:
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Figure 2.6 Fermi GPU Architecture

threads in the same warp execute the same instruction on different pieces of data.

In every clock cycle, a warp that is ready for execution is selected and issued

by the scheduler. To hide the long memory access latencies of the L2 cache and

external DRAM, a GPU also supports fine-grained multithreading. The scheduler

selects a warp from the active warp pool every cycle and issues an instruction from

that warp. In the next cycle, the scheduler can select a different warp, because

it supports a zero-cycle context switch. Thousands of threads are concurrently

present in an SM as candidates for issuing, in order to make full use of available

computing resources and keep execution units busy. In addition, there are usually

multiple SMs in a commercial GPU, making the total number of concurrent threads

supported even higher. Consequently, although the performance of a single thread
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is not improved, the overall throughput of a GPU is very high, usually on the level

of giga-FLOPs or even tera-FLOPs.

2.4.2.2 Computer Unified Device Architecture

Computer Unified Device Architecture (CUDA) is a parallel computing plat-

form and programming model generated by NVIDIA, which enables general-

purpose computing on their GPUs. By using CUDA, programmers have direct

access to the NVIDIA GPU’s virtual instruction set and parallel computing compo-

nents.

CUDA is designed similar to C/C++ in terms of the programming language

fashion. When writing a GPU function (called a “kernel”), programmers need to

use keywords “ global ” or “ device ” before the function definition to specify

that it is a GPU function. Inside a kernel, everything is the same as a function

written for CPU in C/C++, except that programmers need to specify the right index

of the data for every instruction, because multiple copies (each is called a “thread”)

of the same code with different data indices will be automatically created by the

CUDA driver during the runtime.

When launching the GPU kernel, programmers need to set the number of

threads that will be created. In order to manage the shared computing resources

(such as the shared memory and the register file) between threads, CUDA provides

“thread block” and “grid” as the resource managing units. A thread block is a

collection of threads that share computing resources and will be launched to the
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same SM. It is the smallest resource management unit in CUDA. A grid is a

collection of thread blocks, and can be set as a three dimensional structure. When

programmers set the number of threads, they need to specify the number of threads

per thread block, and the number of thread blocks per grid. In addition, the data

movement between the CPU and GPU memories needs to be explicitly coded in

the program.

CUDA also has mature tool-chain support, including debugger, optimized high-

performance libraries and profiler. This makes CUDA and GPUs promising and

attractive for general-purpose applications with plenty of DLP and TLP.
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CHAPTER III

WiBench: Characterize Wireless Baseband Signal

Processing

The rapid growth in the number of mobile devices and the higher data rate

requirements of mobile subscribers have made wireless signal processing a key

driving application of mobile computing technology. In addition, although the

future wireless access network will be cloud based, the underlying signal processing

algorithms are the same as existing wireless protocols. Therefore, to guide a

better design of hardware platforms for both the wireless network infrastructure

and mobile equipements, it is very important for computer architects and system

designers to understand and characterize the performance of existing and upcoming

wireless protocols.

In this chapter, I present a newly developed open-source benchmark suite

called WiBench. It consists of a wide range of signal processing kernels used

in many mainstream standards such as 802.11, WCDMA and LTE. The kernels
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include Fast Fourier transform (FFT), multiple-input and multiple-out (MIMO),

channel estimation, channel coding, constellation mapping, etc. Each kernel is a

self-contained configurable block which can be tuned to meet the different system

requirements. Several standard channel models have also been included to study

system performance, such as the bit error rate. The suite also contains an LTE

uplink system as a representative example of a wireless system that can be built

using these kernels. WiBench is provided in C++ to make it easier for computer

architects to profile and analyze the system.

Through characterizing WiBench, architectural analyses on each individual

kernel and on the entire LTE uplink are performed, indicating the hotspots, available

parallelism, and runtime performance.

3.1 Overview and Background

The mobile market has experienced a rapid increase over the last decade. It

is expected that by the end of 2013 there will be almost as many mobile-cellular

subscriptions as there are people in the world [75]. The number of mobile broad-

band subscribers, who access the internet wirelessly through mobile devices, has

climbed from 268 million in 2007 to 2.1 billion in 2013—a 40% annual increase

rate [75]. To support this growth the number of base stations has also increased

exponentially [101]. All indications show that this trend is likely to continue, at

least in the near future.

In order to design better hardware platforms for both the wireless access net-
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work and mobile devices, computer architects and system designers will have

to understand and characterize the performance of wireless protocols. In a nut-

shell, wireless protocols encode the raw information in the transmitter side, and

recover it in the receiver side. These processes consume significant computing

resources and power in a handheld system. For instance, a GSM subsystem in

a smartphone consumes 30%-50% of the overall power [39], and an even larger

portion is used in more recent WCDMA and LTE protocols. In addition, the

portion of the global CO2 footprint for wireless networks will be 13% of the total

allocation to information and communication technology (ICT) by 2020, according

to the Climate Group [44]. Clearly it is important that wireless devices be power-

efficient—requiring designers to understand the power/performance characteristics

of the algorithms within these protocols.

Benchmarks are an important tool for characterizing power/performance trade-

offs in different application domains. Examples of important benchmark suites

include SPEC benchmarks [100] for general-purpose computing, PARSEC bench-

marks [36] for multithreaded applications, MEVBench [43] for mobile computer

vision applications, and BBench [68] for interactive smartphone applications. Al-

though there exist some benchmarks for wireless communication, they either

are out-of-date, lack essential algorithm details, or distorted the computational

characteristics by introducing addition overhead.

In this chapter, I develop an open source configurable kernel set for wireless

signal processing called WiBench1. The set consists of important signal processing

1WiBench is available through http://wibench.eecs.umich.edu.
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kernels that are widely used in many wireless standards such as 802.11, WCDMA

or LTE. The kernels include FFT, MIMO detection, channel estimation, channel

coding, constellation mapping, and scrambling. Each kernel is a self-contained

configurable block. Such a system can be used to build multiple wireless protocols

and evaluate their performance. To demonstrate this feature, I include an LTE

uplink benchmark in WiBench. LTE is a fourth generation wireless communication

standard (4G) that is being deployed worldwide. It is designed to deliver data

rates up to 100 Mbps. The configurability of WiBench kernels allows the LTE

uplink to support a variety of specification data rates ranging from 1.56 to 100

Mbps. I also include several standard channel models in WiBench so that system

researchers can use it to evaluate the bit error rate (BER) performance of their

system. WiBench is provided in C++, which enables architecture researchers to

characterize applications, and MATLAB, which helps debugging and functional

verification.

The key contributions of this work are:

• An open source configurable wireless signal processing kernel suite, which

includes a rich set of key signal processing kernels that are used widely in

mainstream wireless protocols.

• An LTE uplink in the benchmark that illustrates how to build a wireless

application by assembling kernels. The configurability of the kernels allows

us to support different specification data rates. Users can similarly establish

their own applications to model WCDMA or Wi-Fi.
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• Benchmark support for several standard channel models that allows system

designers to evaluate their decisions by examining BER.

• A demonstration of WiBench for hardware design which analyses and iden-

tifies the hotspots, available parallelism, and runtime performance at the

kernel and system levels.

The rest of chapter is organized as follows. In Section 3.2, I describe the kernel

suite, and provide details of each kernel in the benchmark and the LTE uplink.

I also explain the design philosophy of WiBench. In Section 3.3, I examine the

characteristics of each individual kernel and the LTE uplink, and provide suggestion

for efficient hardware design. Section 3.4 presents the related work.

3.2 Benchmark Description

3.2.1 Design philosophy

WiBench was built to handle multiple wireless protocols. Thus, unlike some

recent benchmarks [101], WiBench was constructed with configurable kernels,

which are the basic blocks for multiple wireless systems. The intent is for users

of current and possibly future wireless systems to be able to design their own

system using these building blocks and characterize them. Figure 3.1 illustrates

the downlink flow charts of several mainstream wireless systems. It shows that

different wireless systems actually share a lot of common signal processing kernels.

In this work, I selected kernels that are most frequently used and are representative
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Table 3.1 The components of WiBench

Category Benchmark

Kernels

Channel coding/decoding

Rate matching

Scrambling/Descrambling

Constellation mapping/demapping

MIMO detection

FFT/IFFT

Sub-carrier mapping/demapping

Channel Estimation

Channel models

Gaussian Random Channel model (GRC)

Extended Pedestrian A model (EPA)

Extended Vehicular A model (EVA)

Extended Typical Urban model (ETU)

Applications LTE uplink

of the algorithms that are used in many wireless protocols. I also include several

standard channel models so that system designers can test the performance of their

systems under different channel conditions. Additionally, I show users how to

use these kernels to build their own wireless systems by including an LTE uplink

system in the benchmark. Table 3.1 summarizes the details of the benchmark.

WiBench is originally written in C++, but a MATLAB version is also provided to

facilitate debugging and functional verification.
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Figure 3.1 The downlink flow charts of 802.11a, WCDMA and LTE [86]. This figure
shows that different wireless systems have many common signal processing kernels, such
as FFT/IFFT, channel coding, constellation mapping, etc. I picked the most frequently
used algorithms to include in the benchmark.

3.2.2 Introduction of kernels

3.2.2.1 Channel coding

Channel coding is the technique used to control errors in data transmission over

noisy channels that enable reliable delivery of digital data. There are many different

channel coding techniques such as convolutional codes [109], Turbo codes [31],

and Low Density Parity Check codes (LDPC) [61], etc. The Turbo codes I chose
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Broadcaster FSM
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Systematic bit 0

Parity bit 1

Parity bit 2

Information 
bits

Figure 3.2 The structure of the Turbo code encoder. The Turbo encoder consists of
two FSMs and an interleaver. The outputs of the encoder are the original input sequences
interleaved with outputs of two FSMs.

belong to a high-performance forward error correction family of codes widely used

in 3G/4G mobile communications.

The scheme of the Turbo encoder is a Parallel Concatenated Convolutional

Code (PCCC) with two Finite State Machines (FSM) and one internal interleaver.

The structure of the Turbo encoder for R = 1/3 code is shown in Figure 3.2; One

information bit is encoded into three transmitted bits.

The Turbo decoder architecture includes two Soft-Input-Soft-Output (SISO)

decoders [87] and one internal interleaver/deinterleaver as illustrated in Figure 3.3.

Inside each SISO decoder, a forward and backward trellis traversal algorithm is

performed [87]. The Turbo decoder works in an iterative fashion—increasing the

iteration number results in a better error correction performance at the cost of

higher computation. The Turbo code implementation supports 188 different input
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Figure 3.3 The structure of the Turbo code decoder. It consists of two Soft-Input-
Soft-Output decoders and an interleaver. The decoder works in an iterative fashion.

lengths from 40 to 6144.

3.2.2.2 Rate matching

The purpose of rate matching is to provide a variety of channel coding rates

from a single “mother code” with a fixed rate R. This considerably increases the

flexibility of a system in terms of the performance-complexity tradeoff of channel

coding. Rate matching is performed by puncturing or by repeating coded bits.

Internally, the rate matching algorithm buffers the incoming bit stream and does

bit collection, selection and pruning.
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Figure 3.4 The constellation demapping of 16QAM. In constellation mapping, every
four binary bits are mapped to one of the sixteen complex values (circles and triangles). In
constellation demapping, the distances between a received symbol (square) and all sixteen
complex values (circles and triangles) is computed and the distances are used to recover
the four bits of data.

3.2.2.3 Scrambling/Descrambling

Scrambling encrypts and randomizes data. It encodes the transmitted infor-

mation to make it unintelligible to a potential eavesdropper. The bit stream in a

subframe is scrambled with a User Equipment (UE) specified scrambling sequence

in the transmitter, which is reversed by descrambling at the receiver side. The

implementation supports arbitrary lengths of scrambling.

3.2.2.4 Constellation mapping/demapping

The goal of constellation mapping is to represent a binary data stream with a

signal that matches the characteristics of the channel [98]. The binary sequences

are grouped and mapped into complex-valued constellation symbols. Figure 5.12
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Figure 3.5 The system flow graph of the LTE uplink. It contains the Turbo coding, rate
matching, scrambling, constellation mapping, transform precoding, sub-carrier mapping,
SC-FDMA modulation, channel estimation and equalization.

shows a 16 Quadrature Amplitude Modulation (16QAM) constellation, where

every four bits are mapped to one of the sixteen complex values (circles and

triangles in Figure 5.12). I implemented BPSK (1-bit Constellation), QPSK (2-bit

Constellation), 16QAM (4-bit constellation), and 64QAM (6-bit constellation)

mapping in the benchmark.

Constellation demapping retrieves the binary stream from the signal by gen-

erating either hard or soft information. Hard information selects and outputs the

binary representation of the closest symbol to the received signal (e.g., (0000)

in the example of Figure 5.12). Soft information computes likelihood ratios for

each bit that will be used by the channel code decoder as bit metrics. Figure 5.12

interprets the process of generating logarithmic likelihood ratios (LLRs) for the

second bit (i.e., bit b1) of a received symbol r.

36



3.2.2.5 Multiple-Input Multiple-Output

MIMO technology is the use of multiple antennae at both the transmitter and the

receiver with the aim of increasing performance and/or data rate. MIMO for spatial

multiplexing transmits independent data streams from each of the multiple transmit

antennae, thus increasing the system data rate. MIMO for diversity transmits a

single data stream from each of the multiple transmit antennae. The single data

stream is coded by space-time coding, which improves the reliability of data

transmission. There are various MIMO detection methods, for example, linear

detection, sphere decoder, lattice reduction detection, etc. I include some widely

used algorithms in WiBench, including a Least Square (LS) based zero forcing

detection and a tree based sphere decoder. The MIMO detection module includes

different antenna configurations including 1×1, 2×2 and 4×4.

3.2.2.6 FFT/IFFT

Discrete Fourier Transform (DFT) is one of the most frequently used trans-

formations in science and engineering. It transforms a finite set of samples of a

function in the time domain into frequency domain; inverse IDFT reverses this

operation. FFT is a fast algorithm to compute DFT. It requires only O(NlogN)

operations to get the same result as DFT. I utilized FFTW [60] to implement

FFT/IFFT. FFTW is a C library for computing the DFT that adapts to the running

hardware platform to maximize performance. Its performance is competitive with,

or even better than, some highly-tuned FFT implementations such as Suns Perfor-
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mance Library and IBMs ESSL library [59]. The kernel supports any FFT/IFFT

size in the form of 2a ·3b ·5c ·7d .

3.2.2.7 Sub-carrier mapping/demapping

The mapping kernel inserts data and reference symbols into the sub-carrier. If

multiple users exist in the system, their data will be mapped into non-overlapping

sub-carriers. The demapping kernel extracts data and reference symbols from the

sub-carrier for each user in the system.

3.2.2.8 Channel estimation

In order to achieve reliable communication most kernels in the receiver side

require knowledge of the channel parameters, also known as Channel State In-

formation (CSI) [18]. CSI can be obtained in two ways. One is to insert known

symbols as pilots into data sequences, and the performance of pilot signals is used

for estimation. The other is blind estimation by using knowledge of statistical

characteristics of the received signal. Most blind methods suffer from several draw-

backs such as slow convergence speed, high complexity, and poor performance.

As a result pilot aided channel estimation is more common, therefore, I adopt it

for WiBench. There is a choice of algorithms for pilot aided channel estimation,

including Least Square (LS) estimation and Minimum Mean Square Error (MMSE)

estimation. MMSE estimation provides better performance than LS, but requires

more computation and sophisticated statistical characteristics of the channel. I
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include both LS and MMSE kernels in the benchmark.

3.2.3 Channel models

The channel model represents the characteristic degradation of the signal as it

is transmitted wirelessly through the environment. In order for system designers

to measure the BER that a particular receiver configuration experiences there are

several standardized channel models. The basic channel model is a Gaussian

random channel (GRC) which introduces Gaussian noise to the signal. In addition

to the GRC, I include several other channel models—Extended Pedestrian A model

(EPA), Extended Vehicular A model (EVA), and Extended Typical Urban model

(ETU) [21]—which provide more realistic channel scenarios.

3.2.4 Introduction of the application: LTE uplink

I built an LTE uplink system to illustrate how to use the kernel and channel

models provided in WiBench to create a complete wireless link. In addition, the

LTE uplink system is an essential component consisting of the cloud wireless

access network. The LTE uplink system is organized as shown in Figure 3.5.

I implemented the entire physical layer as well as the most compute-intensive

parts of the transport layer including the Turbo decoder and rate matching. The

LTE uplink supports configurations covering all transmission bandwidths whose

specification data rate ranges from 1.56 to 100 Mbps. In Section 3.3 I will evaluate

the performance of each kernel in the LTE uplink and show an example system
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analysis by determining the BER under different channel conditions. In the follow-

ing subsections, I describe in more detail the specific kernel choices for the LTE

application.

3.2.4.1 Turbo encoder/decoder

The FSM of the Turbo encoder in the LTE specification is an 8-state recursive

systematic convolutional encoder [22]. For the analysis, I set the iteration number

of the Turbo decoder at 5. Although I have fixed the iteration number, WiBench

could be used to explore the trade-off between BER performance and the amount

of computation for different numbers of iterations.

3.2.4.2 Single carrier frequency diversity multiple access (SC-FDMA)

SC-FDMA is a precoded Orthogonal Frequency Diversity Multiplexing (OFDM)

scheme, which has an additional transform precoding step that precedes the con-

ventional OFDM processing. OFDM processing encodes data on multiple carrier

frequencies. OFDM is applied in the LTE downlink (base station to user equip-

ment), while SC-FDMA is realized in the uplink (user equipment to base station).

Compared to OFDM, SC-FDMA has two main advantages that are critical to the

uplink transmission: 1) SC-FDMA has a lower Peak-to-Average Power Ratio; 2)

SC-FDMA is less sensitive to frequency offsets than OFDM.

In the transmitter, I implement the OFDM step of SC-FDMA by performing

IFFT and inserting a Cyclic Prefix (CP). In the receiver, I eliminate the inter-symbol
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interference by removing CPs and converting data from the time domain to the

frequency domain by FFT. The transform precoding step of SC-FDMA is done

with a 2a ·3b ·5c mixed radix FFT, while the IFFT is performed in the transform

decoder at the receiver side.

3.2.4.3 Channel estimation

The LTE uplink transmission uses the comb-type pilot arrangement [23], where

only time domain interpolation needs to be applied. The uplink pilot reference sym-

bols from different transmit antennae occupy the same sub-carriers. However, pilot

reference symbols are designed so that they can be distinguished from each other

at the receiver side. Channel estimation takes the received signal and known pilot

reference symbols to estimate the CSI, which is then used to compute the channel

coefficients. I selected the frequency domain least square estimator that provides

an acceptable performance with reasonable computation under the assumption that

I have no knowledge of the channel [45].

3.2.4.4 Equalizer

The equalizer I apply is a zero forcing MIMO detector in the frequency domain.

Taking advantage of OFDM/SC-FDMA, channel equalization in LTE can be im-

plemented simply by a Frequency Domain Equalizer (FDE) with the coefficients

estimated by the channel estimator.
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3.3 Characterization of WiBench

Table 3.2 System configurations of the profiling platforms

Feature Configuration

Datacenter platform Mobile platform

Operating System Linux 3.2.0-38 Linux 3.2.0-39

Processor Intel Core i7 2600 Intel Atom 330

Frequency 3.40 GHz 1.60 GHz

L1 I-Cache 32 KB 32 KB

L1 D-Cache 32 KB 24 KB

L2 Cache 256 KB 512 KB

Last Level Cache 8 MB N/A

Memory 16 GB DDR3 4 GB SDRAM

Out-of-order Yes No

Single core issue
width

4 2

SIMD
128-bit, SSE2, SSE3, SSSE3,
SSE4

128-bit, SSE2, SSE3, SSSE3

To expose the computational features of the wireless signal processing as well

as illustrate how WiBench can be used for hardware design and system study, four

studies to characterize the benchmark suite are performed.In addition, two types of

processors, one for datacenters and the other for mobile systems, are deployed to

demonstrate the wireless system characteristics on both wireless base stations and

embedded platforms.

First, I profiled each individual kernel, determining how each performs on
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Table 3.3 The configurations of the individual kernel

Kernel Configuration

Turbo decoder
code rate = 1/3,

codeword length = 1184

Descrambling sequence length = 300

Constellation demapping QPSK, sequence length = 150

FFT 128

IFFT 75

MIMO 2×2, sequence length = 75

different processors. This type of analysis can be used by hardware architects to

design the underlying hardware to achieve power-efficient systems, and by code

designers to better target optimization points. Second, I explore the performance

of the LTE uplink included in the benchmark for different bandwidth requirements.

Third, I show how different LTE uplink configurations with the same bandwidth

impact the relative importance of each kernel. Finally, I perform an analysis of how

the LTE uplink performs, in terms of BER, under one type of channel conditions.

This type of analysis can be used by system designers to explore how their design

performs under different channel conditions.

3.3.1 Experimental setup

The analyses are performed on cores that are used in both datacenter systems

and embedded devices, because wireless applications run on both embedded plat-

forms (e.g. smartphones) and server-like machines (e.g. wireless base stations).
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Figure 3.6 IPCs for desktop and embedded processors. The IPCs of kernels on the
i7 processor are higher than those on the Atom processor even taking the issue width
difference into account. Because the i7 is an out-of-order processor, it can dynamically
schedule instructions and take advantage instruction and memory level parallelism.

For the server class processor, an Intel Core i7-2600 CPU running Linux 3.2.0-38-

generic was used. For the embedded system, an NVIDIA ION box with an Intel

Atom 330 processor and 4 GB of SDRAM was deployed. The Intel Atom is the

Intel’s line of low-power, low-cost microprocessors [10], whose SoC platform is

used in many smartphones and tablets such as Lenovo K800, Motorola RAZR i,

Safaricom Yolo, Samsung Series 5 Slate, and HP ElitePad 900 [3, 14]. The detailed

configuration of the systems are presented in Table 3.2. The benchmarks were

compiled using GNU g++ compiler suite version 4.6.3 with O2-level optimization.

Intel VTune Amplier XE 2013 was used to gather code hotspot information and

instructions per cycle (IPC) for the wireless benchmarks. VTune Amplifier XE is a

performance profiler provided by Intel for x86 based processors. It provides infor-
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mation on code performance, including the hotspots, CPU utilization, multithread

synchronization overhead, etc.
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Figure 3.7 Vectorization Impact on (a) i7 and (b) Atom for configurations in Ta-
ble 3.3. These graphs show speedups achieved when kernels were compiled with automatic
vectorization flags turned on. The results suggest that hardware platforms should include
vectorization support when running these kernels.
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3.3.2 Individual kernel characterization

I firstly analyze the performance of each individual kernel in WiBench. Ta-

ble 3.3 describes the configurations of every kernel used in this study.

Figure 3.6 compares IPCs when running WiBench kernels on the two platforms.

The IPC values demonstrate the raw processor performance of signal processing

kernels on different hardware platforms. Based on Figure 3.6, the i7 processor,

with dynamic out-of-order scheduling, can make use of ILP and memory level

parallelism (MLP) in order to issue more instructions per cycle than the Atom

processor, even taking the issue width difference into account. However, since

out-of-order execution requires more complex hardware, leading to a high power

consumption, this improvement must be balanced against the limited power budget

of embedded platforms.

Since digital signal processing algorithms are usually abundant in DLP, next, I

study the performance of using the SIMD extension in each processor to speedup

the kernel performance. I used automatic vectorization flags (-ftree-vectorize

-msse2 -ffast-math) during the compiling time to take advantage of the SIMD

extension. The corresponding results are shown in Figure 3.7. When the compiler

automatic vectorization is enabled, SIMD instructions are inserted automatically

by the compiler to replay mainly for loops. By using automatic vectorization, I can

get as much as 1.45× speedup on the i7 and 1.85× speedup on the Atom.

However, since vectorization is implemented by the compiler, there is a limited

range over which it works. Therefore, I study the algorithms of each kernel, and
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Table 3.4 The theoretical SIMD width of individual kernels for the configurations
in Table 3.3

Kernel SIMD width

Turbo decoder 8

Rate matching 1

Descrambling 300

Constellation demapping 600

LS detection 150

Tree-based detection 300

FFT 128

IFFT 75

Channel estimation 300

manually analyze the theoretical SIMD width of each kernel (shown in Table 3.4).

All of the kernels do not achieve this speedup when using automatic vectorization.

This is mainly because the for loops are written in the way that it is difficult for

the compiler to extract DLP, such as there is plenty of memory aliasing. More

speedup is expected if the program is vectorized manually using SIMD intrinsics.

Overall, the results indicate that hardware platforms designed for these kernels

should include SIMD-type support and that hand-optimized code/libraries will

continue to be needed in order to attain better performance.

3.3.3 Application example: LTE uplink system

Secondly, I profile the LTE Uplink provided in the benchmark with respect to

hotspots and runtime performance. Because most of the computations are done in
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the receiver side, I only profile kernels in the LTE uplink receiver. I perform four

studies: 1) a characterization of one LTE uplink modulation configuration across

different specification data rates; 2) a characterization of different LTE uplink

modulation configurations for a fixed specification data rate; 3) an analysis on the

sizes of data transfered between kernels; and, 4) a study of the BER for the LTE

uplink under a Gaussian Random Channel model.
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Figure 3.8 Breakdowns of the LTE uplink runtime among the kernels on (a) i7 and
(b) Atom. The results indicate that hardware designers should put much concern on
expediting the Turbo decoder. It should be either highly optimized for the specific platform
or implemented by a hardware accelerator.
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Table 3.5 The configurations of the LTE uplink at 100Mbps

Kernel Configuration

Turbo decoder
code rate = 1/3,

codeword length = 6144

Constellation demap-
ping

16QAM

FFT 2048

IFFT 1200

MIMO 2×2

3.3.3.1 LTE uplink characterization for different specification data rates

At first, I study the breakdown of runtime for the LTE uplink to determine the

computational hotspots. The configuration with 100Mbps specification data rate

is used in this hotspot study, and is specified in Table 3.5. Figure 3.8 shows the

time spent by each kernel as a fraction of the overall system runtime for both the i7

and the Atom platforms. As we can see from the results, the Turbo decoder takes

more than 70% of the execution time, indicating that it is the dominant kernel in

the LTE uplink. Thus, to achieve high throughput applications, the Turbo decoder

should be either highly optimized in the software for the specific platform or be

implemented as a hardware accelerator.

In addition, I evaluate the total runtime of the LTE uplink with different sub-

frame sizes, which illustrates the performance of the LTE uplink system as the

workload changes. Figure 3.9 demonstrates that the processing time of an LTE

uplink subframe increases proportionally to the subframe size. Since the size of a
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Figure 3.9 Processing times of an LTE uplink subframe with different subframe
sizes. The larger the subframe size, the higher the specification data rate. It shows that
the processing time of an LTE uplink subframe is proportional to the subframe size. This
indicates a linear scaling of the dynamic operation count for most LTE uplink kernels.

subframe is proportional to the system specification data rate, the processing time

of an LTE uplink subframe is therefore proportional to the system specification

data rate. This indicates that the dynamic operation count for most LTE uplink

kernels scale linearly.

Table 3.6 The configurations of the LTE uplink at 12.5 Mbps

Configuration FFT IFFT MIMO
Constellation
Demapping

A 256 150 2×2 16QAM

B 512 300 1×1 16QAM

C 512 300 2×2 QPSK

D 1024 600 1×1 QPSK
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Figure 3.10 The physical layer kernel runtimes in LTE uplink with different config-
urations at 12.5 Mbps on (a) i7 and (b) Atom processor. The results suggest optimiza-
tions on the constellation demapping and equalization, and show the kernel importance
change as the system configuration changes.

3.3.3.2 Different LTE configurations with the same specification data rate

To study the influence of the LTE uplink configuration on the computational

feature, I look into the runtime changes of each individual kernel for different

LTE uplink configurations. For this study, the LTE uplink specification data rate

is fixed at 12.5 Mbps. While this data rate can be achieved with many different

configurations, I choose four representative configurations, presented in Table 3.6.
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These configurations differ in the size of the OFDM symbol, number of anten-

nas and constellation size. For instance, a large FFT configuration with simpler

constellation can be used for bad channel conditions with larger bandwidth usage,

while a small FFT configuration with complex constellation and more antennae can

be used for good channel condition but limited bandwidth. The Turbo decoder is

assumed running on a specialized accelerator and its runtime is excluded. This is a

reasonable assumption because these accelerators are typical even in programmable

wireless signal processors. Figure 3.10 shows the results. From the figures, the

following conclusions can be derived.

• The constellation demapping and equalization kernels take most of the

execution time (when excluding Turbo) for all four configurations. Therefore,

hardware and software optimizations should be done to accelerate these two

kernels.

• The importance of each kernel changes as the system configuration changes,

even if the data rate remains the same. While constellation demapping is

much more important than all the other kernels, equalization, FFT and IFFT

are also important for Configuration D.

3.3.3.3 Data transfer between kernels

Memory system design is an important part for a computing system. In this

study, I look at how much data is transfered between different kernels. Figure 3.11

demonstrates the data movement between kernels when processing one LTE sub-
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frame for the configuration in Table 3.5. The values in the red circles represent

the amount of data movement, which indicates the minimum sizes needed for

the buffers containing the intermediate results between adjacent kernels. Because

on-chip memory is an expensive resource, this information helps domain specific

computer architects design their memory system.
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Figure 3.11 The sizes of data movement between kernels. The results show how
much data needs to be stored in the buffers for the intermediate results between adjacent
kernels to process one LTE subframe for the configuration in Table 3.5.

3.3.3.4 Exploring channel models and BER

In this section, I study the BER performance of the LTE uplink system under

a Gaussian random channel (the amplitude follows a Rayleigh distribution) with

additive white Gaussian noise (AWGN). This is an example to show how system

53



designers can connect kernels through a channel model, and inject noise to measure

BER of an LTE uplink. The kernel configurations are the same as those in Table 3.3.

The BER performance is shown in Figure 3.12. BER is calculated by collecting

the difference between the information bits encoded in the transmitter and those

decoded at the receiver end. Perfect CSI means that the receiver knows the exact

channel impulse response when processing received data. The FD LS curve

expresses the performance of a system running with a frequency domain least

square channel estimator, which is a more realistic scenario.
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Figure 3.12 BER of LTE uplink through Gaussian random channel with AWGN.
This graph shows the BER performance of the LTE uplink system under a Gaussian
random channel with AWGN.
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3.3.4 Architectural implications from the WiBench characterization

Based on the WiBench characterization study, I come up with the following

implications on the computing system design for wireless signal processing:

• The signal processing kernels in a wireless communication system are very

typical streaming applications, which are computation intensive with little

data reuse. This indicates that the traditional cache based memory hierarchy

may not be the most effective solution for wireless systems.

• As shown, the Turbo decoder is the most important kernel in an LTE uplink

system. Thus a processor designed for an LTE system should have archi-

tecture support to efficiently execute the Turbo decoder. Since the Turbo

decoder has a small SIMD width and little speedup with automatic vector-

ization, it should be mapped to a hardware accelerator—which is often the

case in today’s practice.

• Constellation demapping and equalization (consisting of MIMO detection

and channel estimation) have very large theoretical SIMD widths (from Ta-

ble 3.4), and also achieve appreciable speedups with automatic vectorization

by the compiler. Therefore, a wide SIMD-type engine should be included in

the processor to accelerate these two kernels.

• In addition, most kernels have very few branches and little control code.

Most of branches in these kernels are from the for loops, whose iterations are

pre-determined based on the wireless system configuration. This indicates
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that a complicated branch predictor is not needed in the processors for

wireless signal processing.

• Finally, I noted that the importance of each kernel varies when system

configurations are different. All together, these observations illustrate the

usefulness of a benchmarking infrastructure to evaluate wireless signal pro-

cessing systems.

3.4 Related Work

The wireless communication community works on open problems in telecom-

munication as well as next generation technologies. Their primary focus is on the

impact of communication theory and algorithm optimization on system perfor-

mance, typically measured in terms of BER. There are many open source system

simulators written in MATLAB or built through Simulink [13, 65, 12] to aid in this

analysis. MATLAB and Simulink are easy to use due to their interactive natures

and a large number of built-in functions. However, MATLAB and Simulink are

not suitable for hardware design because their abstraction levels are too high. To

aid in the co-design of systems and their underlying architecture, I release both

MATLAB and C++ versions of all kernels in WiBench—System designers may

explore BER through MATLAB, and architects can explore power-efficient hard-

ware organizations that execute the C++ code. While most system simulators are

in MATLAB/Simulink, there are several that include C/C++ versions which will

be discussed in the following paragraphs.
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First, the closest related work to WiBench is GNU Radio [9], a free and

open source software toolkit providing signal processing blocks for software

radio implementation. GNU Radio uses a “block” abstraction to connect signal

processing kernels, which are implemented in C++, together with a few lines of

Python code. Each block is equipped with its own input/output buffers. The GNU

Radio suite then uses a runtime scheduler that activates each block when there is

enough data in its input buffer and space in its output buffer to perform the function.

It is designed to run on commodity hardware. To construct a complete end-to-end

wireless system, the user must first understand algorithmic details of these blocks.

WiBench has a different goal, which is to support hardware exploration of domain

specific hardware solutions. To this end, I provide all key kernels as well as the

entire system in WiBench. In addition, the GNU radio block class introduces non-

kernel overheads. This may lead to a distorted picture of how the signal processing

algorithms would perform on domain specific hardware. WiBench’s behavior is

closer to the actual computational characteristics of wireless signal processing

kernels, similar to the approach used in the design of several high-performance

DSP prototypes [86, 111, 112].

Second, MiBench [67] is a set of embedded applications released over a decade

ago. Telecommunication, one of the six categories in the benchmark, contains GSM

related processing—FFT/IFFT, GSM voice encoding and decoding algorithms,

Adaptive Differential Pulse Code Modulation encode/decode, and CRC32 check-

sum algorithm. These represent only a small portion of wireless signal processing

kernels. Since the release of MiBench in 2001, communication technology has
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seen rapid development including several generations of technology enhancements

rendering many of the MiBench kernels irrelevant. WiBench is designed specifi-

cally for wireless signal processing and includes many state-of-the-art algorithms

that will be used in next generation technology.

Third, LTE Uplink Receiver PHY Benchmark [101] is an open source, freely

available benchmark that represents the baseband processing of an LTE base

station. The benchmark implements SC-FDMA modulation, channel estimation,

transform decoding and soft symbol demapping, and is capable of generating

different number of users with different workloads. However, this benchmark

mainly aims to simulate the workload change in an LTE base station to study the

power management strategy, rather than the characterization of wireless algorithms

for hardware design. In addition, it only includes some parts of the LTE uplink and

is missing the details of several important kernels, for example the Turbo decoder

is represented simply as a sleep function. Ultimately this limits the use of this

benchmark in a wider scope of wireless system design. The WiBench contains all

the signal processing kernels for LTE in both MATLAB and C++ versions.

Finally, the BDTIT M OFDM receiver benchmark [4] is a commercial bench-

mark for evaluating multi-core and other high-performance processing engines for

communication applications. Public information about this benchmark is limited,

but their website does indicate that they still use the Viterbi decoder rather than

the more state-of-the-art Turbo decoder present in WiBench. The BDTIT M OFDM

receiver benchmark requires a license for use, in contrast to WiBench.
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3.5 Summary

As the mobile market continues to grow rapidly wireless signal processing is

becoming one of the primary uses of computing technology. Consequently, closer

attention is being paid to the hardware platform design and its energy efficiency.

Computer architects usually benefit a great deal from analyzing application bench-

marks during design time to gain insight into energy and performance tradeoffs. In

this chapter, I presented an open source benchmark suite of wireless system kernels

and channel models to support hardware and system design of wireless signal

processing platforms. I characterized the benchmark suite on two different types of

processors to illustrate the computational features of the wireless communication

system. Users can easily build their own wireless systems by simply assembling

the kernels together to realize a target configuration.
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CHAPTER IV

Implementing Wireless Baseband on

General-Purpose GPUs

Based on the characterization study in Chapter III, a general-purpose processor

that can make use of abundant DLP in the wireless baseband signal processing

algorithms and provide high throughputs is an ideal candidate for the future C-RAN

datacenter. In addition, due to the large number of concurrent service requests

from many users in the wireless network, there is also a large amount of TLP in

a C-RAN datacenter. These make both traditional server based CPUs and newly

developed GPUs promising candidate processors for the future C-RAN datacenter.

However, one challenge of building the C-RAN datacenter is to realize high

performance software implementation of the baseband signal processing, which

was traditionally implemented in the hardware. Therefore, I study how to achieve

high performance software-based baseband signal processing for both CPUs and

GPUs, through exploring each of their architectural features.
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For the CPU implementation, I start with optimizing the WiBench C++ code.

Better floating-point functional units, multi-core parallelism and SIMD extensions

make multi-core CPUs more capable of processing wireless signals than ever before.

As the multi-core CPU platform, I use a state-of-the-art Intel Xeon server processor

with 32 hardware threads and SSE/AVX SIMD extensions. To maximize the CPU

performance, I extracted parallelism in the WiBench C++ code by using automatic

vectorization and openMP optimizations. OpenMP provides APIs that implement

multithreading across most processor platforms. By inserting OpenMP pragmas

around the code that can be parallelized, multiple concurrent and independent

threads are created. This can take advantage of the multi-core feature of the Intel

Xeon processor, improving the overall throughput of CPUs.

A more challenging work is to realize high performance software implementa-

tion on GPUs. This is due to the highly parallel processor architecture and long

memory access latencies that GPUs have. Therefore, in this chapter, I mainly

focus on techniques to achieve highly parallelized implementations of key wireless

baseband kernels on GPUs.

4.1 Overview

Over the last decade more and more people have been using mobile devices to

connect anywhere anytime. Applications supported by these devices, such as web

browsing and real-time gaming, require high data rates. To address these needs,

third (3G) and fourth (4G) generation wireless technologies have been deployed.
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3GPP Long Term Evolution (LTE) is a standard for 4G wireless communication

of high-speed data for mobile phones and data terminals. LTE is designed to

increase the cell capacity and provide high data rate and is expected to support

up to four times the data and voice capacity supported by HSPA [92]. LTE can

achieve a peak data rate of 75 Mbps for uplink and 150 Mbps for downlink. In

multiple antenna configurations the peak data rate for downlink can be as high as

300 Mbps.

A wireless base station is responsible for coordinating the traffic and signaling

between mobile devices and the network switching system, making them an integral

part of the cellular network. Baseband processing requires giga-operations-per-

second level throughput [106], making it one of the most computationally intensive

components of a base station. Further complicating baseband processor design

is the requirement that they must also support multiple wireless communication

protocols. This makes the cost of a fixed ASIC solution more costly and drives the

need for a programmable solution. To support easy migration to newer and updated

standards, a base station should be built with programmable processors that provide

high throughput and low power. While some commercial DSPs [106, 58, 5] provide

a good tradeoff between throughput and power consumption, they have to be

integrated with accelerators, often designed by different companies, to implement

a baseband system.

In this chapter, I will explore building an LTE base station with GPUs. These

processors provide GFLOPs/TFLOPs-level throughput, and have high compute

capability per Joule [73]. GPUs also have added language support like CUDA for
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general-purpose programming. They provide programmers the ability to exploit

high degrees of DLP and TLP. Thus, GPUs are ideal architectural platforms for

LTE baseband processing where DLP and TLP are abundant. In addition, due to

their high raw compute power per dollar, GPUs are very cost-efficient solutions.

I will demonstrate how the digital baseband system for an LTE base station

can be built with commercial GPUs. Firstly, I show the parallelization techniques

for trellis algorithms, a family of algorithms whose processing can be represented

as the value propagation in a trellis. Since the Turbo decoding algorithm is an

important member of the trellis algorithm, these parallelization techniques can be

implemented with the Turbo decoder on GPUs. Second, I parallelize the physical

layer kernels by exploring different types of parallelism to maximize the GPU

performance. Then I study kernels’ runtime performance under different antenna

configurations and modulation schemes when implemented on NVIDIA GPUs,

and explore a multi-GPU configuration for high data rate applications. Finally, I

estimate the power consumption by measuring the dynamic power of each kernel

running on a GTX680 GPU. For a 75 Mbps LTE baseband uplink, the digital

subsystem of the dual-GPU based LTE base station consumes 188 W, which is

competitive with commercial systems.

The rest of this chapter is organized as follows. Section 4.2 introduces the

performance challenges when implementing applications on GPUs. Section 4.3

introduces baseband processing in an LTE base station. The GPU parallelization

techniques of the trellis algorithm and key physical layer kernels are described in

Section 4.4 and Section 4.5, respectively. Section 4.6 introduces different multi-
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GPU systems, and different kernel mapping methods onto a multi-GPU system.

Section 4.7 shows the GPU performance, the minimum number of needed GPU

under different system configurations, and the power consumption. Related work

is discussed in section 4.8 and the paper is concluded in section 4.9.

4.2 Performance challenges on a GPU

A GPU is a programmable processor providing GFLOPs/TFLOPs-level through-

put, which makes it a good platform for computation intensive applications. How-

ever, it is a challenge to implement an algorithm that makes full use of the GPU

resources. There are two main causes of underutilization: pipeline stall and thread

inadequacy. Pipeline stall occurs when dispatch units fail to issue an instruction,

mainly due to long memory access. Thread inadequacy happens if the number

of thread blocks is smaller than that of SMs, or the number of threads in each

thread block is not a multiple of thread context size, 32 for the case. To keep all

the cores of a GPU active, an adequate amount of workload must be created. The

parallelization schemes proposed here help create such a workload.

The memory system consists of on-chip memory, off-chip L2 cache and ex-

ternal memory. On-chip memory can be configured as either 48KB/16KB or

16KB/48KB shared memory/L1 cache. Shared memory is software managed, so

when shared memory usage per thread is fixed, more shared memory leads to more

threads and the GPU is better utilized. However, this also leads to smaller L1 cache

and thus longer access time.
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4.3 Baseband processing in an LTE base station
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Figure 4.1 Baseband processing of the receiver in an LTE base station

The main baseband processing kernels in an LTE base station receiver are

shown in Fig 4.1. LTE uplink uses SC-FDMA for transmission [57]. The total

number of subcarriers is fixed based on how much radio bandwidth is used. When

there is more than one user, the subcarriers are shared, thereby lowering the data

rate for each user. The received data from the channel is first processed through

SC-FDMA FFT. Pilot signals are used to estimate the CSI, which is then used in

the MIMO detector to counteract the effects of the channel. The transform decoder

performs IDFT on the equalized data. The modulation demapper retrieves bits

by generating soft information, and the descrambling reorders soft information

based on a predefined pattern. The rate matcher punctures soft information into a

predefined length, and finally the Turbo decoder recovers binary information bits.

I give a brief description of the key kernels below.

SC-FDMA: SC-FDMA is a precoded OFDM scheme, which has an additional

transform decoding step after conventional OFDM processing. In the LTE uplink

receiver, the OFDM step is done using FFT, and the transform decoding step is
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done using a mixed radix IDFT. The largest size of OFDM FFT is 2048, and that

of transform decoding IDFT is 1200.

Channel estimation: The LTE uplink transmission uses the comb-type pilot

arrangement. Channel estimation takes the received signal and known pilot refer-

ence symbols to estimate the CSI, and then computes the channel coefficients. I

implemented frequency domain least square channel estimation [45].

MIMO detector: MIMO technology is the use of multiple antennae at both the

transmitter and the receiver with the aim of increasing performance and/or data rate.

There are various MIMO detection methods, such as equalization-based detection,

sphere decoding and lattice reduction detection. For LTE uplink, an equalization-

based MIMO detector, such as zero-forcing (ZF) and MMSE equalizer, is usually

used. I used the MMSE-based MIMO detector in the GPU implementation.

Modulation demapper: The goal of the modulation mapper is to represent a

binary data stream with a signal that matches the characteristics of the channel [98].

The binary sequences are grouped and mapped into complex-valued constellation

symbols. The modulation demapper, on the other hand, retrieves the binary stream

from the signal by generating either hard or soft information. LTE uplink supports

four different schemes: BPSK, QPSK, 16QAM and 64QAM. I implemented a soft

decision modulation demapper.

Turbo decoder: Turbo codes are used for channel coding in LTE. The Turbo de-

coder architecture includes two SISO decoders and one internal interleaver/deinterleaver.

Inside each SISO decoder, a forward and backward trellis traversal algorithm is

performed. The Turbo decoder works in an iterative fashion. For the GPU imple-
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mentation, I set the number of iterations to be 5.

4.4 Parallelizing trellis algorithms on GPUs

input=0
input=1

stage k-1 stage k

state 0

state 1

state 2

state 3

state 4

state 5

state 6

state 7

stage k+1
Figure 4.2 Trellis structure of Turbo codes used in LTE

4.4.1 Introduction of trellis algorithms

The trellis is a widely used graph in coding theory that describes the pro-

gression of symbols within a code. There are many popular trellis algorithms,

including Viterbi algorithm [55], Baum-Welch algorithm [33], Turbo decoding

algorithm [31], etc. These algorithms are used in many systems, such as in speech

recognition, communication protocols and data compression. In order to meet

the timing deadlines of such systems, high throughput implementations of trellis

algorithms are required. For example, the Viterbi algorithm that is used as the

convolutional code in the WCDMA wireless protocol requires a 2Mbps decoding

throughput in the downlink.
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The trellis is a graph representation of the state transitions of an FSM for

all possible input sequences. Fig. 4.2 is a typical structure of a trellis. Each

column is a unit of time called a stage and each node represents a possible FSM

state at each stage. A branch between two states corresponds to a possible state

transition, depending on the input to the FSM. In the forward direction, the forward

metric of a state sk at stage k is the maximum (over all possible transitions from

sk−1 to sk) of the sum of the forward metric of states sk−1 and the branch metric

corresponding to the transition from sk−1 to sk. Similarly for the backward direction.

After computing the forward and backward state metrics, the metric of each

possible transition at stage k is evaluated as the sum of the forward metric of the

starting state sk−1, the branch metric corresponding to the transition from sk−1

to sk and the backward state metric of sk. Finally at each stage k, the metric

corresponding to each input bit is evaluated as the maximum among all transition

metrics corresponding to the same input bit. In Fig. 4.2, for example, the metric

for bit 0 is the maximum metric of eight transition metrics represented with dashed

lines.

4.4.2 Parallelization techniques

As explained in Section 4.4.1, trellis algorithms have the inherit dependency be-

tween processing of adjacent stages, and are usually the hotspot of the applications

due to their iterative fashions. In addition, tradeoffs between achieved through-

put, worst case latency and bit error rate are required when implementing trellis
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algorithms. Therefore, it is critical to explore different parallelization techniques

to achieve the best tradeoff. In this work, I consider three levels of parallelism:

packet-level, subblock-level and trellis-level.

4.4.2.1 Packet-level Parallelism

A packet is a formatted unit of data in a computer or communication network.

In a GPU implementation, the input packets can be stored in a buffer so that they

can be processed in parallel. The disadvantage of packet-level parallelism is that

it results in long latency especially for the first packet in the buffer. This impairs

the quality of service of time-constrained applications. The number of threads in a

packet-level parallelism scheme is proportional to the number of packets that are

processed in parallel.

4.4.2.2 Subblock-level Parallelism

A packet can be divided into several subblocks, which are processed in parallel.

While this increases the number of threads, it leads to higher bit and packet error

rates since the computations in each of the subblocks are not really independent

from each other. Specifically, the computation of the ith subblock depends on the

computations in the last stage of the (i− 1)th subblock. Thus, if subblocks are

processed in parallel, the initial values of latter subblocks are incorrect resulting

in higher output error rate. One way to compensate for this performance loss is

by employing recovery algorithms, e.g., training sequence (TS) and next iteration
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initialization (NII) [116].

In the TS algorithm, additional computations are done on the (i−1)th subblock

to generate the dummy initial values of the ith subblock. The longer the training

sequence, the larger is the number of additional computations and lower is the

BER.

In the NII algorithm, the outputs of the (i− 1)th subblock in the previous

iteration are used as the initial values of the ith subblock in the current iteration.

The idea behind NII is that the results of each iteration converge closer to the correct

values than those of previous iterations. From an implementation perspective, TS

requires additional operations, and NII needs additional memory.

4.4.2.3 Trellis-level Parallelism

There are three types of trellis-level parallelism. The first is state-level par-

allelism, in which the nodes in a stage is processed in parallel. There are no

computational dependencies among the nodes in a stage and the processing of a

node only depends on the nodes that are connected to it in the adjacent stages.

State-level parallelism does not affect BER, and the number of threads due to

state-level parallelism is proportional to the number of states in a stage.

The second type of parallelism is forward-backward traversal where the values

are propagated in both forward and backward directions, and the propagations

are independent. Forward-backward traversal (FB) results in more complex index

and memory address computations, because two propagations must be separated
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Table 4.1 Summary of parallelization schemes
Scheme Throughput Latency Bit Error Rate

Packet-level Better Worse No Change
Subblock-level Better No Change Worse

Trellis-level Better No Change No Change
Subblock+NII Worse No Change Better
Subblock+TS Worse No Change Better

during the calculation. Therefore, more instructions are executed to support FB

parallelism, thereby lowering the throughput.

The third type of parallelism is branch-metric parallelism (BM), where the

branches from a node in stage k to others in stage k+1 are processed in parallel.

This is not as effective since the vector reduction parts cannot be parallelized.

However for higher radix trellis that is obtained by combining multiple stages

together, more threads can be generated from BM. Also less memory is used in

this case. Overall, two threads are created in FB and the number of threads created

by BM is equal to the radix degree.

Table 4.1 summarizes the parallelization schemes. From this table, we see that

trellis-level parallelism improves throughput without impairing latency and BER.

Packet-level and subblock-level parallelism improve throughput at the cost of either

longer latency or higher BER. Both recovery schemes degrade the throughput but

improve BER performance compared to only subblock-level parallelism.
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4.4.3 Exploring parallelization tradeoffs

4.4.3.1 Experimental framework

I selected a representative trellis algorithm, the Turbo decoding algorithm [31],

and an NVIDIA GTX470 GPU to evaluate the performance tradeoff of the different

parallelization schemes. The NVIDIA GTX470 GPU is based on Fermi architec-

ture [96]. It can support at most 448 threads running at a time. It has a 64KB

on-chip memory, a 768KB L2 cache and 1280MB external memory. I chose the

Turbo decoding algorithm as a case study since it is used in the Turbo code in LTE.

The corresponding trellis structure has 8 states in a stage, and is the same as shown

in Fig. 4.2; however, the values propagate through the trellis in both directions.

The LTE Turbo code configuration is used in the simulations: the packet size is

6144 bits and the code rate is 1/3 [24]. The baseline implementation is a sequential

one (without any parallelization) with 0.0178 Mbps throughput and 345ms packet

latency.

4.4.3.2 Performance of different parallelization techniques

I implemented two GPU memory configurations (48KB/16KB and 16KB/48KB

shared memory/L1 cache) with state-level, subblock-level and packet-level paral-

lelism. I varied the number of subblocks from 1 to 512, and the number of packets

from 1 to 84. I found that a larger L1 cache results in better timing performance.

For instance, for the configuration with small input size (1 packet) and 64 subblocks,

the larger L1 cache configuration achieves 30.8% higher throughput compared
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with smaller L1 cache configuration. So, I used the 48K L1 cache configuration in

the rest of the experiments.
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Figure 4.3 Throughputs and latencies of different trellis-level parallelization
schemes when the packet size is the same as the subblock size and multiple pack-
ets are processed in parallel

First, I studied the performance of different trellis-level parallelism schemes

for different packet latencies. I use packet buffering latency as a metric to represent

packet-level parallelism since it is a function of the number of packets being

processed in parallel. Fig. 4.3 shows the performance of the different schemes

when the subblock size is the same as the packet size. As the number of packets

increases, the throughput increases. However, the throughput gains slow down

when the number of packets is quite large. This is because the GPU is fully loaded

and having more threads is not beneficial any more. The throughput improves quite

a bit when state-level parallelism is combined with either FB or BM parallelism.

Compared with the baseline scheme, state-level, state-level+FB and state-level+BM
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achieve a speedup of 5.1x, 7.4x and 5.8x, respectively. All schemes achieve a BER

of 10−5 when the signal-to-noise ratio (SNR) is 1.0 dB.
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Figure 4.4 Throughputs of schemes with different number of subblocks (per
packet) and recovery schemes for bit error rate of 10−5

Next, I fixed the latency by considering only one packet and studied the effect of

different numbers of subblocks and recovery schemes such as TS and NII. Fig. 4.4

and Fig. 4.5 show the throughput and SNR requirement for the different schemes.

The length of a packet is 6144 bits, which equals the product of the subblock length

and the number of subblocks. The SNR requirement presented here is the lowest

value to achieve the given bit error rate of 10−5. The SNR requirement of the

baseline scheme is 0.9 dB. From this figure, I derive the following conclusions.

1) Increasing the number of subblocks provides higher throughput due to more

parallelism, but has higher SNR requirement due to wrong initial values and shorter

subblocks. 2) Longer training sequences have lower SNR requirement but lower
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Figure 4.5 SNR requirement of schemes with different number of subblocks (per
packet) and recovery schemes for bit error rate of 10−5

throughput due to additional calculations. The SNR requirement saturates when

the training sequence is long. For instance, TS-12 has almost the same SNR

requirement as TS-full in which the training sequence is as long as a subblock.

Additional computational overhead due to recovery schemes does not affect the

throughput as much because of the high computational power provided by GPU.

3) Among the recovery schemes, the combination of NII and TS is the best. The

scheme NII+TS-4 has nearly the lowest SNR requirement with a throughput of

4.26 Mbps when 512 subblocks are used per packet. Its throughput is comparable

with that of NII or TS-4, but it has a lower SNR requirement.

I also study the effect of increasing the radix of the trellis algorithm. Radix-4,

which is derived by combining two stages into one, helps to double threads from

BM compared with radix-2, and reduces the required memory because there is
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only half the number of stages. However, since twice the number of threads are

generated, the amount of work each thread undertakes is still the same and the

total amount of work done in a radix-4 implementation is two times that of radix-2.

So, radix-4 is useful only when GPU is not fully loaded and the benefits from

compactness outperform the overhead of redundancy. The experiment shows that

radix-4 outperforms radix-2 when the packet number ≤ 4.

Table 4.2 Parallelization tradeoff

Schemes TH* WPL* SNR*

BER*

TL+ Subblock
Num

Packet
Num

(Mbps) (ms) (dB)

- 512 1 4.26 1.44 1.7 1.6×10−3

SL+ 512 1 20.49 0.55 1.7 1.6×10−3

SL 256 2 21.09 1.07 1.3 4.1×10−4

SL,FB+ 256 1 19.65 0.56 1.3 4.1×10−4

SL,FB 128 10 29.00 4.58 1.1 2.0×10−4

* TH = Throughput, WPL = Worst-case Packet Latency, SNR = Signal-to-Noise Ratio requirement,
which is the lowest value to achieve BER of 10−5, BER = Bit Error Rate when SNR = 1.0 dB

+ TL = Trellis-level parallelism, SL = State-level parallelism, FB = Forward-Backward traversal

4.4.3.3 Parallelization tradeoff

Different systems have different requirements for throughput, latency and BER.

For instance, real-time gaming requires low latency but medium throughput and

BER; TCP-based service requires both low BER and high throughput but can

tolerate long latency. In the study, I combined different schemes to determine
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which combinations of parallelism were suitable for which applications. First, I

found that subblock parallelism with a combination of NII and short TS (NII+TS-

4) achieves the best tradeoff between bit error rate and throughput. Next, we

implemented NII+TS-4 with packet-level and trellis-level parallelization schemes

to meet the 16.67Mbps LTE uplink throughput. Table 4.8 shows the throughput,

latency, SNR requirement and BER of the different schemes. Note that trellis-level

parallelism improves the throughput significantly and should be used at all times

(row 2). If SNR requirement is low, subblock-level parallelism has to be used with

caution and trellis-level and packet-level parallelisms are better options (rows 3

and 4). If the system has a rigid latency constraint, trellis-level or subblock-level

parallelisms should be used to achieve high throughput with low latency (rows 2

and 4).

Table 4.3 Performance comparison

Work GPU
Original

Throughput
(Mbps)

Scaled
Throughput

(Mbps)
BER*

[81] Tesla C1060 2.1 3.77 1.0×10−2

[116] GeForce 9800 2.4 3.50 1.0×10−4

[114] GTX 470 27.5 27.5 Not known

This work GTX 470 29.0 29.0 2.0×10−4

* BER here is the bit error rate when SNR = 1.0 dB

Table 4.3 compares the performance of the techniques with other LTE Turbo

decoder implementations on a GPU. For a fair comparison, I scaled the throughputs
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in [81] and [116] by the processor frequency and the number of processors in the

GPU. The scheme achieves the best throughput with good BER. While [114] has

comparable throughput, it requires processing 50 packets to achieve 27.5 Mbps.

In comparison, the scheme needs to process 10 packets to achieve 29.0 Mbps

throughput, resulting in significant reduction in the worst-case packet latency.

4.5 Parallelizing physical layer kernels on GPUs

State-of-art GPUs, such as NVIDIA GTX680, can launch thousands of threads

at the same time. So an efficient implementation of kernels on a GPU involve

exploiting parallelism at all levels so that enough number of threads are created

to keep GPUs busy. There are several types of parallelism in the physical layer

kernels: user-level, antenna-level, symbol-level, subcarrier-level and algorithm-

level. The different types of parallelism are orthogonal to each other, and can be

used at the same time to achieve a better GPU utilization.

User-level Parallelism A base station serves several users simultaneously, and the

baseband signal processing that is done for each user data is independent from

others after some initial joint processing at least. Therefore, a kernel can process

data from different users at the same time. The number of generated threads is the

same as the number of users.

Antenna-level Parallelism Data received by the different antennae in the uplink

receiver can be processed simultaneously until they reach the transform decoder.

Therefore, in these instances, the number of threads is equal to the number of
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receiver antenna.

Symbol-level Parallelism The operations of a kernel for a subframe can be par-

allelized by processing SC-FDMA symbols in a subframe at the same time. The

number of threads is as many as SC-FDMA symbols in a subframe.

Subcarrier-level Parallelism I assume the subcarriers are evenly distributed

among all users. Each subcarrier in an SC-FDMA symbol of each user is in-

dependent, and can be calculated in parallel. The number of threads is the same as

the number of subcarriers.

Algorithm-level Parallelism There is parallelism inherent in each algorithm, and

it varies based on the kernel. For example in FFT, the operations in the nodes of

each butterfly stage can be done in parallel.

In order to show the parallelism of each physical layer kernel, I define the

following:

• NFT – FFT/IFFT size

• NT x×NRx – antenna configuration

• NMod – number of points in a modulation constellation

• Nsub – number of subcarriers in a symbol per user

• Nsym – number of symbols in a subframe

• Nusr – number of users
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SC-FDMA: The primary operations in SC-FDMA are FFT and IFFT. To map

FFT and IFFT efficiently onto a GPU, I employed user-level, antenna-level, symbol-

level and algorithm-level parallelism. In FFT/IFFT, in each stage, the butterfly

nodes can be processed independently. So the number of threads created from

algorithm-level parallelism is the same as the FFT/IFFT size. The total number of

threads that can be generated for FFT/IFFT is Nusr×NRx×Nsym×NFT .

In this study, I used cuFFT for the GPU implementation of FFT/IFFT. CuFFT is

a CUDA library provided by NVIDIA for computing FFT/IFFT with the input sizes

in the form of 2a×3b×5c×7d [8]. I can employ all four levels of parallelism by

using cuFFT: the FFT/IFFT implementation of cuFFT exploits the algorithm-level

parallelism, and I make use of the other types of parallelism by batching multiple

FFT/IFFT computations.

Channel estimation: I implemented a least square based frequency domain

channel estimation unit. User-level, antenna-level and subcarrier-level parallelism

are considered. The total number of threads that can be generated is Nusr×NRx×

Nsub.

MIMO detector: I mapped an MMSE-based MIMO detector on the GPU. I

considered user-level, symbol-level and subcarrier-level parallelism. The total

number of threads that can be generated for MIMO detector is Nusr×Nsym×Nsub.

Modulation demapper: Modulation demapping of a subcarrier value consists

of two parts: metric calculation and likelihood ratio computing. For metric cal-

culation, I computed the Euclidean distances between the subcarrier value and

all complex values in the mapping constellation as the metrics. Algorithm-level
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parallelism results in as many threads as points in the constellation mapping for

a subcarrier. For the logarithm likelihood ratio part, the number of threads is the

same as the number of bits in a bit sequence. For example, QPSK groups two bits

in a bit sequence and maps the sequence to a single value in the constellation, and

two threads are created for each subcarrier in this case. For metric calculation

and likelihood ratio computing, the total number of threads that can be generated

is Nusr×Nsym×Nsub×NRx×NMod , and Nusr×Nsym×Nsub×NRx× log2(NMod),

respectively.

Table 4.4 summarizes the number of threads that can be created for each kernel.

In the implementation using NVIDIA GTX680 GPU, I was able to generate all the

threads, resulting in very high GPU utilization.

Table 4.4 Number of threads in PHY layer kernels
Kernel Number of Threads

FFT/IFFT Nusr×NRx×Nsym×NFT
Channel

estimation
Nusr×NRx×Nsub

MIMO detector Nusr×Nsym×Nsub
Modulation Nusr×Nsym×Nsub×NRx×NMod
demapper Nusr×Nsym×Nsub×NRx× log2(NMod)

4.6 Mapping kernels onto a multi-GPU system

In order to support high peak data rates of the LTE uplink, we may need more

than one GPU to build the baseband subsystem in a base station. Therefore, it

is important to explore how to map kernels onto multiple GPUs, considering the
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communication overhead of different multi-GPU systems.

CPU IOH

GPU

PCI-E 
Switch

GPU

PCI-E

PCI-E

(a) Connected through PCI-E switch

CPU 0

IOH

GPUGPU

CPU 1

IOH

GPUGPU

PCI-E PCI-E PCI-E PCI-E

QPI QPI

(b) Connected through IOH chips

Figure 4.6 Multiple GPUs within a single network node (MGSN)

4.6.1 Multi-GPU system

Employing multiple GPUs in an LTE base station can further speedup compu-

tation to help kernels meet the real-time deadline of an LTE subframe, when a high

peek data rate is required. Inter-GPU communication overhead is a key concern of

a multi-GPU system when there is data movement between GPUs. Multi-GPU sys-

tems can be classified into two types based on the inter-GPU connection: multiple

GPUs within a single network node (MGSN), and multiple GPUs across multiple
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Figure 4.7 Multiple GPUs across multiple network nodes (MGMN)

network nodes (MGMN).

GPUs within a node In an MGSN systems, GPUs sit in the same network node,

and they communicate to each other through fast point-to-point interconnects

on board. Fig 4.6 shows two most commonly used on-board interconnects on a

commercial motherboard: connected through the PCI Express (PCI-E) switch, and

through the I/O hub (IOH) chip. The achievable throughput of inter-GPU data

movement is different between these two connections. When GPUs are connected

through the PCI-E switch (shown in Fig 4.6a), they can communicate through

direct peer-to-peer (P2P) memory copies, which leads to a high communication

throughput. When connected through IOH chips (shown in Fig 4.6b), GPUs

attached to the same IOH chip can still use direct P2P communication, achieving a

high throughput. However, GPUs attached to different IOH chips cannot. This is

because the GPUs connected through different IOH chips are not coherent with

each other [91]. Therefore, the data transfer between GPUs attached to different

IOH chips is staged via CPU memory, which lowers the communication throughput.
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Figure 4.8 Mapping kernels onto a multi-GPU system

GPUs across multiple nodes Due to the power supply and heat dissipation con-

straint, a motherboard can only support a limited number of GPUs. Commercial

motherboards today support up to four GPUs for general-purpose computing [20].

When more GPUs are required, multiple network nodes must be used, in which

each node is an MGSN system. In an MGMN system, GPUs in the same node

transfer data in the same way as an MGSN system. However, when GPUs in
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different nodes try to communicate, the data has to be staged via CPU memory and

inter-node connection that is usually Ethernet. This increases the communication

latency between GPUs, and makes it difficult to fulfill the real-time deadline of an

LTE subframe.

Table 4.5 Inter-GPU and CPU-GPU copy throughputs in a non-uniform memory
access system

Inter-GPU copy Throughput (GB/s)

Via PCI-E switch 6.3

Via IOH chip (attached to the same IOH chip) 5.3

Via CPU (attached to different IOH chips) 2.2

CPU-GPU copy

GPU to local CPU 6.3

GPU to remote CPU 4.3

CPU to local GPU 5.7

CPU to remote GPU 4.9

I use the inter-GPU and CPU-GPU communication throughputs from [91]

in this study. Table 4.5 summarizes the throughput numbers. The experiment

configurations of Table 4.5 were not specified in [91], and it should be noted that

these numbers may vary among different BIOS settings and IOH chips. For the

inter-node connection, I simplify the communication overhead calculation by only

taking the transfer latency on Ethernet cable into account. Since the data transfer

between GPUs on different nodes is staged through several steps and has a fairly

long latency, this simplification is reasonable and will not change the conclusion of

the study.
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4.6.2 Mapping kernels on a multi-GPU system

Fig 4.8 shows two different ways mapping the LTE baseband kernels onto a

multi-GPU system: sequential and pipelined.

Sequential mapping Fig 4.8a shows an example of the sequential mapping, in

which kernel 1 and 2 are executed in sequence. All GPUs process kernel 1 in

the time slot [t0, t1], and kernel 2 in time slot [t1, t2]. The overall execution time

T (= t2− t0) must be shorter than the deadline of the real-time system.

Pipelined mapping The other way to process kernel 1 and 2 is the pipelined

mapping, which is shown in Fig 4.8b. During time slot [t ′0, t
′
1], GPU 0 processes

kernel 1 on the packet k, while GPU 1 and 2 process kernel 2 on the previous

packet k−1. Since kernel 2 takes a longer time to run, its execution also overlaps

with the inter-kernel data transfer from GPU 0 to GPU 1 and 2. Then GPU 1 and

2 start working on the packet k, and at the same time GPU 0 processes the next

packet. Because the processing of a packet is pipelined into multiple stages, only

the runtime of each stage is required to be shorter than the real-time deadline.

Every mapping method has its advantages and disadvantages. The sequential

mapping has a short overall processing time of each packet, because all kernels

together must be done within the real-time deadline. In addition, there is usually no

additional inter-GPU communication overhead. However, it requires more GPUs

to accelerate the processing so that all kernels can be packed into one time slot

of the real-time deadline. The pipelined method, on the other hand, needs fewer

GPUs because of a looser timing requirement. It only requires each pipelined stage,
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either a kernel processing or a data transfer, to be done in a time slot of the deadline.

The disadvantage of the pipelined method is that the overall processing time of

each packet is longer, because the total processing time of a packet is the sum of

runtimes of all the pipeline stages. The two mapping methods can be combined to

get a better tradeoff between the number of GPUs and the overall packet processing

latency. For instance, kernels can be combined into several groups in which kernels

run sequentially on the same GPUs, and the groups can be pipelined on different

sets of GPUs.

In order to help decide the best mapping method of the LTE baseband kernels

onto a multi-GPU system, I assume that a mix of the sequential and pipelined

mapping methods is employed. The overall processing is pipelined into several

stages. In each stage, some kernels are processed on the same GPUs sequentially.

Let S be the number of pipelined stages, K be the number of kernels, Ni be

the number of used GPUs in the ith stage, Pi be the number of kernels running

sequentially in the ith stage, trun(i, j) be the runtime of the kernel j in the ith

stage, tcomm(i,i+1) be the inter-GPU communication overhead between the ith and

(i+1)th stage, and tdeadline be the real-time deadline. The mapping decision is to

minimize the number of GPUs and the overall packet processing latency. This can

be expressed as follows:

min(
S

∑
i=1

Ni) (4.1)

min(
S

∑
i=1

Pi

∑
j=1

trun(i, j)+
S

∑
i=1

tcomm(i,i+1)) (4.2)
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and for the ith stage, there is a deadline to fulfill:

Pi

∑
j=1

trun(i, j)+ tcomm(i,i+1) ≤ tdeadline (4.3)

4.7 GPU performance evaluation

4.7.1 Experimental Environment

I used an NVIDIA GTX680 GPU to evaluate the performance of the key

kernels. GTX680 is based on the Kepler architecture [95]. It has 8 Streaming

Multiprocessors (SMX), and in each SMX there are 192 Streaming Processors

clocked at 1GHz. A GTX680 GPU can launch at most 1024 threads at a time.

There is a 64 KB on-chip memory, a 512 KB L2 cache and 2048 MB external

memory. To monitor the GPU, I used GPU-Z, which is a lightweight tool designed

to provide information such as the dynamic power consumption, the dynamic GPU

load, the fan speed, etc. To launch GPU kernels, I used a 2.13 GHz Intel Core 2

processor, running the Linux 3.2.0-39 generic operating system.

In this study, I simulated a fading channel with additive white Gaussian noise.

I evaluated kernel implementation performance corresponding to peak data rate. I

also focused on the single-user scenario because it gives a worst case estimate of

the GPU performance, due to the lack of parallelism presented by multiple users.

In this operating scenario, the computations in a base station depend on the total

number of available subcarriers.
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Table 4.6 The configurations of kernels

Kernel Configuration

Turbo decoder
code rate = 1/3,

codeword length = 6144

iteration number = 5

Modulation demapper 16QAM and 64QAM

SC-FDMA FFT 2048

Decoding IFFT 1200

MIMO 1×1, 2×2, 4×4

Table 4.7 PHY layer kernel runtimes (ms) of an LTE subframe
Antenna configuration 1×1 2×2 4×4

FFT 0.06 0.07 0.08
IFFT 0.10 0.10 0.10

MIMO detector 0.02 0.03 0.52
Channel estimation 0.02 0.05 0.46

Modulation 16QAM 0.08 0.15 0.28
demapper 64QAM 0.47 0.92 1.81

4.7.2 Kernel Runtimes

I ran each physical layer kernel for the different configurations shown in

Table 4.6. The implementation of these kernels exploits the parallelism at multiple

levels. For instance, in the GPU implementation of a 4×4 64QAM system, there

are 14,336 threads created for FFT, 4,800 threads for channel estimation, 14,400

threads for MIMO detection, 3,686,400 threads for modulation demapping metric

calculation, 345,600 threads for modulation demapping likelihood ratio computing,

and 8,192 threads for the Turbo decoder. Because an NVIDIA GTX680 GPU can
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launch at most 1,024 threads at a time, it is almost always fully utilized.

Table 4.7 shows the runtimes of different physical layer kernels of an LTE

subframe. It demonstrates that modulation demapping takes the longest runtime.

In addition, MIMO detection, channel estimation and modulation demapping have

fairly long runtimes when more antennae or more complex modulation schemes

are used.

Table 4.8 Performance of Turbo decoder implementations

Schemes TH1 WPL1

BER1,4

TL2 Subblock
Num

CW1Num (Mbps) (ms)

SL2 512 2 77.64 0.72 1.6×10−3

SL 256 4 78.15 1.68 4.1×10−4

SL,FB2 256 2 78.30 0.72 4.1×10−4

SL,FB 128 7 80.58 3.08 2.0×10−4

1 TH = Throughput, WPL = Worst-case codeword Latency, SNR = Signal-to-Noise Ratio require-
ment, BER = Bit Error Rate, CW = Codeword

2 TL = Trellis-level parallelism, SL = State-level parallelism, FB = Forward-Backward traversal
3 BER here is the bit error rate when SNR = 1.0 dB

For the Turbo decoder, I ran the same experiments of the tradeoff study, and

tried to find the new best tradeoff on the new GTX680 GPU. Table 4.8 shows

the performance of the Turbo decoder implementations. It demonstrates that the

implementation in row 3 achieves the best tradeoff. I use this implementation in

the rest of the paper.
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4.7.3 GPU-based Wireless Baseband System

Table 4.9 Kernel configurations for different peak data rates
Data rate
(Mbps)

SC-FDMA
FFT

Decoding
IFFT

MIMO
Modulation
demapper

50 2048 1200 1×1 16QAM
75 2048 1200 1×1 64QAM

100 2048 1200 2×2 16QAM
150 2048 1200 2×2 64QAM
200 2048 1200 4×4 16QAM
300 2048 1200 4×4 64QAM

A baseband signal processing processor must meet both the latency and through-

put requirements of the communication protocol. LTE supports multiple data rates

up to 300 Mbps. Table 4.9 describes the kernel configurations for the different data

rates. For high data rates, the computational load of LTE baseband processing is

very high and a single GPU is not enough. For instance, to process a subframe of

1ms, the sum of runtimes of all kernels on PHY layer can be no larger than 1 ms.

Based on runtimes presented in Table 4.7, one GPU is not enough to meet this

requirement for high data rates when multiple antennae or more complex modula-

tion schemes are used. In such cases, I assign the processing of subcarriers in a

symbol onto multiple GPUs. Assuming that the subcarriers are allocated evenly

among GPUs and that Turbo decoding is done by a separate set of GPUs, I estimate

the minimum number of GPUs needed to meet the 1ms deadline under different

system configurations. Table 4.10 shows the minimum number of GTX680 GPUs

needed for PHY layer processing and the Turbo decoder. This analysis shows that

for a 75 Mbps data rate, two GPUs are needed–one for processing the physical
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layer kernels and one for the Turbo decoder. When the peak data rate is higher,

100 Mbps, two GPUs are needed for the Turbo decoder. This is because a single

GPU can only support Turbo decoder up to a 78 Mbps data rate. The GPUs are

connected through PCI-Express on a board with low communication latency. A

commercial motherboard can support up to four GPUs [103]. When more GPUs are

required for higher data rates, multiple boards have to be interconnected through

Ethernet, which leads to longer latency.

Table 4.10 The minimum number of GTX680 GPUs needed for covering a cell
Data rate Number of GPUs
(Mbps) PHY Turbo Total

50 1 1 2
75 1 1 2

100 1 2 3
150 2 2 4
200 2 3 5
300 5 4 9

4.7.4 Power Consumption

Energy consumption a key metric when building a wireless network system.

Therefore, I measured the GPU dynamic power consumption of the LTE kernels

by using GPU-Z. Table 4.11 shows the power consumption of each kernel and the

corresponding configuration. I also measured the power consumed by each kernel

under different configurations, and observed very limited variation. The actual

energy consumed by each kernel is presented in Table 4.12. It shows that the Turbo

decoder consumes most of the system energy followed by modulation demapper.
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Table 4.11 Power of each kernel on a GTX680 GPU
Kernel Configuration Power (W)

Turbo decoder Row 3 in Table 4.8 63.3
SC-FDMA FFT 2048 56.7
Decoding IFFT 1200 56.9

Modulation demapper 64QAM 56.3
Channel estimation - 61.8

MIMO detector 4×4 57.7

For a system-level power assessment, I considered the configuration corre-

sponding to a 75 Mbps data rate. Based on Table 4.10, I need two GTX680 GPUs

for a 75 Mbps data rate, one for the Turbo decoder and the other for the PHY layer.

I also need one Intel Core 2 CPU, whose maximum power is 63 W. Thus, the total

power of the digital subsystem of the receiver is 188 W. I compared it with the

Alcatel-Lucent 9926 Base Band Unit [27] whose maximum power is 370 W with

74 Mbps peak uplink throughput. While 370 W includes both the transmitter and

receiver power, the receiver processes more complex kernels, like Turbo decoding

and MIMO detection, and consumes a significantly larger portion of the compute

power. Even if I conservatively estimate that half of the power, 185 W, is consumed

by the receiver, then the proposed GPU-based solution is still quite competitive.

4.8 Related Work

There have been several previous works that implemented the wireless baseband

system on different hardware platforms.

GPU-based solutions: The GPU implementation of the transmitter in an LTE
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Table 4.12 Energy consumption of each kernel processing 1 subframe at 75Mbps
on a GTX680 GPU

Kernel Energy (mJ/subframe)
Turbo decoder 144.0

SC-FDMA FFT 3.4
Decoding IFFT 5.7

Modulation demapper 26.5
Channel estimation 1.2

MIMO detector 1.3

base station was presented in [82]. In contrast, I provided the GPU implementation

of the receiver along with a detailed analysis of possible parallelization schemes

and their effectiveness.

DSP-based solutions: There are several DSP-based solutions. Freescale’s

Modular AdvancedMC Platform [58] contains three MSC8156 DSPs for baseband

processing. Each DSP has six StarCore SC3850, and a MAPLE-B baseband

accelerator for Turbo/Viterbi decoder, FFT/IFFT, and multi-standard CRC check

and insertion [26]. CommAgility’s AMC-3C87F3 is a signal processing card for

4G wireless baseband. It contains three Texas Instruments’ TCI6487 DSPs, each

with three C64x+ cores and coprocessors for Viterbi decoder, Turbo decoder and

Rake search/spread.

Although the DSPs mentioned above are programmable, several key kernels

are implemented using accelerators, which impairs the system flexibility. To

support new protocols, new accelerators have to be designed and integrated with

DSPs, leading to a long development cycle and high cost. In contrast, GPU-based

solutions only need new software for the system update, which dramatically reduces
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time-to-market and cost. Additionally, if GPUs cannot support the high data rate

of future protocols, they can be replaced by newer and faster GPUs, provided these

newer GPUs support a high level programming paradigm such as CUDA.

FPGA-based solutions: Xilinx [115] and Altera [11] have developed FPGA

solutions for baseband processing in LTE base stations. Although FPGAs have

good flexibility, their relatively high price increases the cost of using them to build

a base station. A GPU-based base station has a fairly short development cycle and

little updating effort, because the software is implemented in a relatively simple

high-level language.

GPP-based solutions: The Vanu Anywave base station [108] is the only

fully programmable commercial base station to date. It is built with 4-13 Intel

MPCBL0040 single board computers [74] based on the required cell capacity.

An MPCBL0040 computer contains two Dual-Core Intel Xeon E7520 2.0 GHz

processors. The Vanu Anywave uses GPPs instead of DSP. Currently it supports

GSM/EDGE/CDMA2000 but does not support LTE.

GPPs have good flexibility and portability, but they cannot make full use of

the available DLP in a wireless base station. This is why Vanu needs as many as

52 Intel Xeon cores to support CDMA2000, and more are expected in order to

support LTE, leading to even higher power consumption. A GPU-based solution

takes advantage of massive DLP. So fewer GPUs are needed in an LTE base station,

which makes a GPU-based solution power efficient.
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4.9 Summary

In this chapter, I presented the work on implementing an LTE baseband signal

processing system on commercial GPUs. Most kernels of the LTE baseband

processing are highly parallel, and thus amenable to efficient GPU implementation.

I firstly studied the parallelization techniques for trellis algorithms, a family of

algorithms that is widely used. Since the Turbo decoder, the hotspot of the LTE

uplink baseband system, is a member of the trellis algorithm, these techniques can

be applied for the GPU implementation of the Turbo decoder. Then I implemented

all the key kernels of an LTE baseband system on NVIDIA GTX680 GPUs, and

evaluated their runtime performance. I showed that an LTE base station that

supports a 75 Mbps peak uplink data rate can be built by using two GPUs. To

support higher uplink data rates, more complex antennae and modulation schemes

are needed. In these situations a dual-GPU solution is no longer sufficient. I also

showed that the GPU-based solution is power efficient. To support the digital

subsystem of a 75 Mbps uplink, a dual-GPU LTE base station consumes 188 W,

which is quite competitive with commercial solutions.
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CHAPTER V

The C-RAN Edge: future RAN on General Cloud

Platform

In this chapter, I will study how to design general-purpose datacenters for

C-RAN. Firstly, I will compare the performance, energy efficiency and total cost of

ownership between the multi-core CPUs based C-RAN datacenters with general-

purpose GPUs based ones. The results indicate that a GPU-based C-RAN datacen-

ter outperforms a CPU-based solution. Therefore, I propose the C-RAN datacenter

be built using GPUs as a server platform.

Next, I further study resource management techniques to handle the temporal

and spatial traffic imbalance in a GPU-based C-RAN datacenter. I propose a

“hill-climbing” power management that combines powering-off GPUs and dynamic

voltage and frequency scaling (DVFS) to match the temporal C-RAN traffic pattern.

For spatial traffic imbalance, I propose three workload distribution techniques to

improve load balance and throughput.
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Finally, I provide implications for future C-RAN datacenter designs, indicating

that a C-RAN datacenter can benefit from architecture support for trellis algorithms

in general-purpose processors, and the support for internet service at the wireless

edge.

5.1 LTE C-RAN baseband unit

An LTE baseband unit contains the downlink transmitter and the uplink receiver.

Since the receiver recovers the information from a noisy communication channel,

it needs to estimate the channel conditions and iteratively decode the data. This

means that most of the computations in an LTE baseband unit occur on the receiver

side. Therefore, I focus on the baseband processing in the uplink receiver in this

work.

Figure 5.1 shows the main signal processing components in an LTE C-RAN

BBU. The LTE uplink uses the SC-FDMA scheme [57]. For every remote radio

site, data received from all of its users is first converted into the digital signal by

the RF module. Then the digital signal passes through baseband kernels as shown

in Figure 5.1, and is recovered into binary information bits and fed to the core

network. In addition, a C-RAN BBU executes the same process on data from

multiple radio sites at the same time.

Table 5.1 summarizes algorithms and configurations for each C-RAN BBU

kernel as being implemented. In the rest of this chapter, I use this implementation as

a benchmark to design a complete datacenter for the C-RAN BBU uplink receiver.
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Figure 5.1 LTE baseband uplink receiver

5.2 C-RAN datacenter design

A C-RAN datacenter design is largely influenced by a push towards general-

purpose processors and away from proprietary hardware platforms [41, 69]. The

two major design spaces for general-purpose servers are multi-core CPUs and

GPUs. In this section, I explore both design spaces and compare not only the

performance, but energy and TCO to determine the best general-purpose platform

for C-RAN datacenters.

(1) Multi-core CPU: Better floating-point functional units, multi-core paral-

lelism, SIMD extensions, and large on-chip caches make CPUs more capable of

processing wireless signals than ever before. In fact, Intel Labs China has already

shown interest in using x86-based servers in C-RAN datacenters [63]. As the
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Table 5.1 The algorithms and configurations of BBU kernels

Kernel Algorithm Configuration

SC-FDMA
demodulation

FFT
2048, 1536, 1024, 512,

256, 128

Transform decode Mixed-radix IFFT
1200, 900, 600, 300, 144,

72

Channel
estimation

Least-square [46] Pilot-based

MIMO detect
Minimum mean-square error

equalizer [80]
1×1, 2×2, 4×4

Modulation
demapper

Soft decision demapper [105] QPSK, 16QAM

Turbo decoder Max-log MAP [110] 1/3 code rate, 5 iterations

multi-core CPU platform in this study, I use a state-of-the-art Intel Xeon server

with 32 hardware threads, SSE/AVX SIMD extensions, and 20MB L3 cache. To

implement a C-RAN BBU, I modified the CPU implementation in Chapter IV with

the extension to support multiple sites.

(2) GPU: GPUs are attractive platforms for C-RAN datacenters due to many

vector and matrix operations and transform computations in BBU kernels that are

well suited for the GPU architecture. Many works have already studied various

implementations of wireless signal processing and LTE kernels on the GPU [117,

118, 62, 97, 30, 104]. As the GPU platform, I use NVIDIA Tesla K40 GPUs. The

details of the CUDA implementation on GPUs are presented in Chapter IV.
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Table 5.2 Description of CPU and GPU Test Platform
Unit Multi-core CPU Platform CPU+GPU Platform
CPUs 2× Xeon E5-2630 v3 @ 2.40GHz 2× Xeon E5-2620 v2 @ 2.10GHz
GPUs - 1× NVIDIA Tesla K40 m
Caches 64KB L1, 256KB L2, 20MB L3 64KB L1, 256KB L2, 15MB L3
Memory 64GB DDR3 @ 2133 MHz CPU: 16× 16GB DDR3 @ 1866 MHz

GPU: 8× 12GB GDDR5, 288GB/s

Table 5.3 BBU Configurations
Configuration LTE Specification Throughput per site
1×1 + QPSK 25 Mbps
1×1 + 16QAM 50 Mbps
2×2 + QPSK 50 Mbps
2×2 + 16QAM 100 Mbps

5.2.1 Experimental setup

In the study, I evaluate using the off-the-shelf CPU and GPU servers to build a

C-RAN datacenter, whose information is summarized in Table 5.2. For the LTE

BBU, Table 5.3 shows the four configurations that I evaluated with 1 and 2 antennae

and with modulation schemes QPSK and 16QAM. The throughput expected by the

LTE specification depends on the number of antennae and the modulation scheme.

For each configuration, I varied the number of base stations (sites) between 1 and

32, and the specification throughput is directly proportional to the number of sites.

To simplify the experiment, I assume that the user data is already stored in the

CPU and GPU memories, and I evaluate processing a sequence of LTE subframes

that are loaded from the server memory. In addition, I assume that every user

deploys the same modulation and antenna configuration, and the LTE subcarriers

are evenly distributed among users. For the GPU implementation, a single host
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program manages multiple sites through a single CUDA stream.

5.2.2 C-RAN performance evaluation on CPUs and GPUs

First I present the results of running the CPU and GPU implementations of the

C-RAN BBU kernels.
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Figure 5.2 Throughput of the PHY layer kernels compared to the throughput spec-
ified by the LTE specification

Figure 5.2 shows the results of the throughput achieved in the PHY layer by

both the CPU and GPU in comparison to the expected throughput of the LTE

specification. From the graph we can see as the complexity of the algorithm

increases from 1 antenna to 2 antennae and from QPSK to 16QAM, the LTE
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specification throughput also increases and it becomes harder for both the CPU

and the GPU to meet. However, the GPU always demonstrates better achievable

throughput across all configurations and any number of sites. This is because

that the abundance of threads available on GPUs can make use of many types of

parallelism present in the BBU kernels. On the whole, GPUs can take advantage

of three key computational features common to all BBU kernels:

1. Data level parallelism. Most kernels consist of nested loops with inde-

pendent iterations, showing a high degree of DLP. Transform and matrix

operations are performed over large data sets stored in vectors, which are

easily parallelized.

2. Low branch divergence. Kernels have simple control flow and consist

mostly of loop iterations. Control flow is data independent and data accesses

are regular and predictable.

3. Thread level parallelism. C-RAN aggregates the processing of multiple

sites, exhibiting TLP.

The throughput achieved for the Turbo decoder in the MAC layer is shown in

Figure 5.3. The Turbo decoder had similar results across all four BBU configura-

tions, therefore I show here only the 1×1+QPSK result. As it shows, the Turbo

decoder throughput on both the CPU and GPU are much lower than the specifi-

cation throughput. To investigate this, I used the NVIDIA Profiler [7] to profile

the GPU utilization when running the LTE BBU. Figure 5.4 shows the achieved
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GPU occupancy for the PHY layer kernels and the Turbo decoder. As it presents,

the GPU occupancies of the PHY layer configurations saturate at 80%, while the

Turbo decoder only reaches 60%. This low occupancy of the Turbo decoder is

due to the fact that the Turbo decoder uses almost twice as many registers as the

PHY layer kernels, limiting the number of concurrent threads that can be issued.

In addition, the Turbo decoder starts saturating with 4 sites, which is earlier than

the PHY layer. This is because that the Turbo decoder is computationally intensive

and reaches the GPU concurrent thread limitation with a small number of sites.
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Figure 5.3 Throughput of the Turbo kernel compared to the LTE specification

5.2.3 Building a C-RAN datacenter with CPUs and GPUs

A C-RAN datacenter is expected to cover an area with a radius over 20 km

and more than 20 sites [63, 69]. To satisfy this design goal, I target on building

a datacenter capable of supporting 32 RRH sites at peak load. In this section, I

aim to identify how many servers of each platform type are required in a 32-site
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Figure 5.4 Achieved GPU Occupancy of the C-RAN BBU. The PHY layer kernels
saturate at 80% occupancy, and the Turbo decoder saturates at 60%.

C-RAN datacenter.

In order to identify the number of machine per BBU configuration, I first

identify how many sites at full load one machine can support. For example, in

the 1×1+QPSK configuration in Figure 5.2(a), a single GPU can achieve the

specification throughput at 32 sites. Thus, a single GPU will be sufficient in that

datacenter. However, a CPU server can achieve the specification throughput of only

4 sites. Thus, 8 CPU servers will be required in that datacenter to support 32 sites.

In this manner, I calculate the number of CPU servers and GPU servers required

per datacenter of each configuration. Results are presented in Figure 5.5. As

shown, the GPU-based solution requires 4× to 16×more CPUs than the equivalent

GPU-based datacenter.
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Figure 5.5 Number of servers to realize a 32-site datacenter

5.2.4 Energy and TCO analysis

Although the GPU achieves better performance than the CPU, servers that

accommodate GPUs are more power hungry and expensive. Thus, the energy and

cost efficiency are among the primary concerns when building a C-RAN datacenter.

In this section, I evaluate the energy and TCO for both platforms.

5.2.4.1 Energy analysis

I measured the CPU energy using the “Watts Up?” power meter, which samples

and logs power values every second. I subtract the idle power to eliminate the

influence of peripherals. I measured the GPU energy using the NVIDIA system

management interface —NVIDIA-smi. I sampled the GPU power every 100 ms and

averaged them to get the power for each configuration. I found that the GPU power

did not vary much between configurations, and was roughly between 64W – 66W.
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Figure 5.6 Energy required to process 32 sites at full load

In Figure 5.6, I present the energy consumed by CPUs normalized to the energy

consumed by GPUs. These results are collected for a C-RAN datacenter processing

32 sites at peak load. The CPU consumes between 6× to 25× more energy than

the GPU.

Table 5.4 Server Design for TCO Analysis
Parameter High-Density CPU Server [15] GPU-Server [16]
CPU 8× Intel Xeon E5-2630 v3 2× Intel Xeon E5-2620 v3
GPU - {1-4}× Tesla K40 m
Memory 32× 4GB DDR4 DIMM 16× 8GB DDR4 DIMM
HDD 4× 500GB 3.5” SATA 4× 500GB 3.5” SATA
Server Price $13,032 $5,978 + #GPUs×$3,099
Server Power 1000W 357W + #GPUs×235W

5.2.4.2 TCO analysis

A TCO analysis is important in building a C-RAN datacenter because while

GPUs have better performance and energy consumption, they increase the cost of

designing a datacenter. Expensive GPU boards can cost as much as a non-GPU
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server and need to be programmed with platform-specific languages such as CUDA.

I present a cost analysis to determine whether the benefits gotten from GPUs are

worth the cost.

Table 5.5 TCO Parameters
Parameter CPU-Only GPU-Server

Server Price $13,032 $5,978
Price per 235W GPU - $3,099
Server Power 1000W 357.0W
Server Maintenance 5% of Capex/mo
Server Lifetime 3 years
Datacenter Price $10/W
Datacenter Maintenance $0.04/W/mo
Loan Amortization Period 12 years
Power Usage Efficiency 1.1
Electricity Cost $0.067 per kWh
Interest Rate 8%

The TCO analysis is modeled after the technique from Barroso and Hölzle [32].

To minimize costs of the CPU, I chose high-density servers, which are larger than

typical servers at 2U or 4U and can accommodate many server cartrdiges, allowing

the cost of the chassis, cooling, and network switches to be shared. The server

configurations and the server prices I used were obtained from Thinkmate.com and

are shown in Table 5.4. The parameters used for the TCO calculation are shown in

Table 5.5.

Figure 5.7 shows the results of the TCO analysis. The results are normalized to

the TCO of the GPU-based datacenter. Assuming all 32 sites are always operating

at peak load, the TCO of the CPU-based datacenter is on average 6× higher and

can be up to 12× higher than that of the GPU-based datacenter. I conclude that in
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Figure 5.7 TCO of the 32-site datacenter

addition to better performance and lower energy, the GPU-based server also has

lower cost than the CPU-based server, indicating that the GPU-based server is the

best general-purpose platform for the C-RAN datacenter.

5.3 Resource Management in a C-RAN Datacenter

In the previous section, I determined that a datacenter consisting of GPUs

are the best design option for C-RAN. One of the major benefits of centralizing

the BBUs into a datacenter is the capability to share resources and save power.

We must be able to effectively allocate the datacenter’s resources to match the

workload and maintain quality-of-service.

In the radio network, traffic is never equally distributed in a day or between

sites. If we have all machines up and running and do not carefully distribute the

workload among the machines, it results in over-provisioned power consumption

and unbalanced load. In this section, I investigate power management techniques
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to reduce the datacenter’s power consumption. In addition, I try to find the best

way to distribute the workload to achieve better throughput during times when

traffic is unequally distributed.

5.3.1 Power management

The RAN traffic varies constantly, and the peak traffic only carries 7% of the

time in a day [94]. Because a C-RAN datacenter is over-provisioned for the peak

traffic, power management is required to reduce energy during most times of a day

when the traffic is below the peak. There are two typical power saving techniques

in the server domain: coarse-grained turning on/off of processors and fine-grained

DVFS.

5.3.1.1 Power management techniques

With shutting down of processors, a minimum number of processors are kept

powered on to meet the quality-of-service, and the rest of the processors are turned

off to save power. While shutting down processors is an effective method to reduce

power consumption in a datacenter, turning on/off a processor has long transition

overhead, usually on the minute level. This means that this technique cannot react

to a quick fluctuation in traffic.

DVFS, on the other hand, can react to quick traffic changes due to its micro-

second level transition overhead [83]. Compared to the latency budget in an LTE

BBU (usually 4 ms), the DVFS transition overhead is negligible. The drawback of
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DVFS is that every processor has a limited number of frequencies and voltages,

restricting the achievable power saving. For example, an NVIDIA K40 GPU has

only five (core, memory) frequency settings in MHz: (324, 324), (666, 3004), (745,

3004), (815, 3004) and (875, 3004).
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Figure 5.8 Power consumption of different power management techniques. Four
GPUs and 2×2+QPSK are used in the study. Due to the coarse-grained frequency adjust-
ment of NVIDIA K40 GPUs, DVFS saves less power than GPU shutdown.
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Figure 5.9 Power consumption of combining GPU shutdown and DVFS. Four GPUs
and 2×2+QPSK are used in the study. Per-GPU DVFS achieves more power savings due
to the flexibility of choosing an optimal frequency for each GPU.
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5.3.1.2 Power management for a C-RAN datacenter

In Figure 5.8, I compare the power consumption of both the GPU shutdown

technique and the DVFS technique. I used four GPUs and 2×2+QPSK as the

case study. The traffic metric is the number of sites, i.e. I consider one unit of

the workload to be the workload from a single site running at peak load. The

baseline has no power management techniques with all four GPUs turned on and

operating at the highest frequency to handle traffic from all 32 sites. For the

GPU shutdown technique, the minimum number of GPUs required to meet the

throughput and latency is powered on and workload is evenly distributed among

all active GPUs. For the DVFS technique, all four GPUs are active, but only

operating at the minimum frequency that is needed to meet the throughput and

latency. As shown, both GPU shutdown and DVFS save power compared to no

power management. In addition, GPU shutdown saves more power than DVFS.

This is because that NVIDIA K40 GPUs have limited coarse-grained frequency

adjustment as stated earlier. On average, GPU shutdown and DVFS saves 36% and

20% of power respectively.

Although GPU shutdown saves more power than DVFS, it cannot react to

short traffic changes, which is typical in the RAN. In addition, the GPU peak

frequency is still over-provisioned for low traffic cases. Therefore, I combine

the GPU shutdown and DVFS as the power management technique in a C-RAN

datacenter. To assess the effectiveness of this technique, I study its power saving

under the oracle knowledge of traffic and power consumption of each combination
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Figure 5.10 C-RAN traffic in 24 hours. The wireless traffic follows the typical periodic
night/day pattern, and I use a sinusoidal function to model the C-RAN traffic in a 24-hour
period [37].
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Figure 5.11 Power consumption of a quad-GPU C-RAN datacenter with and with-
out power management in 24 hours. Four GPUs and 2×2+QPSK are used in the study.
The values are the minimum power required to meet the throughput and latency require-
ments, following the traffic pattern in Figure 5.10.

of the GPU number and the frequency. For every traffic case in Figure 5.8, I

evaluate all possible combinations of the number of GPUs and the frequency

that can meet the performance requirement, and select the one consuming the

least power. In this way, I get the global optimal power consumption under the

proposed power management technique, and Figure 5.9 shows the results. As we

can see, combining GPU shutdown and DVFS achieves more power savings than

each technique individually. In addition, using individual GPU DVFS is better
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than using same DVFS for all GPUs, due to the flexibility of choosing an optimal

frequency for each GPU. However, individual GPU DVFS requires load monitoring

for each GPU, which is more costly than load monitoring the datacenter as a whole.

Overall, GPU shutdown with same DVFS across all GPUs and individual DVFS per

GPU save 40% and 42% power compared with no power management respectively,

which are 4% and 6% more than GPU shutdown.

5.3.1.3 “Hill-climbing” power management evaluation under practical traf-

fic model

To validate the proposed power management technique, I evaluate its energy

savings under a practical C-RAN traffic model. The wireless traffic follows the

typical periodic night/day pattern, and I use a sinusoidal model from [37] to build

the C-RAN traffic model in this study(Figure 5.10).

Because there is no oracle information about the power of different GPU and

frequency combinations available in practice, I use a “hill-climbing” method in

the proposed power management technique. I assume that no GPU is active when

there is zero traffic. When the traffic starts increasing/decreasing, I first adjust the

frequency of all active GPUs to meet the performance requirement. If it cannot,

I turn on/off one GPU and adjust frequencies until the performance is met. This

“hill-climbing” method is simple and can find a local optimal solution, but it may

not find the global optimal solution. For example, if there are two solutions, two

GPUs with a high frequency and three GPUs with a low frequency, when starting
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from one GPU, the “hill-climbing” will stop at the two-GPU solution, and will

never reach the three-GPU one which could be the global optimal solution. In

addition, I assume an accurate prediction of the traffic change, and conservatively

assume that turning on/off GPUs takes 5 minutes. Therefore, in the 5 minutes

before/after every traffic change, the GPUs that will be turned on/off are idle, and

consume 18 W each.

Figure 5.11 shows the power consumption of a quad-GPU C-RAN datacenter

with and without the “hill-climbing” power management under the 24-hour traffic

model. Based on Figure 5.11, a C-RAN datacenter consumes 6 kWh in 24 hours

without power management and 3.6 kWh with power management. Therefore,

with power management, a C-RAN datacenter saves 40% of the BBU energy.

5.3.2 Load balancing

In addition to the power management, we must also think carefully about how

to distribute the workload when multiple GPUs are available in the datacenter such

that we are maximizing the capacity of the datacenter. Since the RAN traffic is

rarely equally distributed between sites (i.e. some sites maybe servicing higher

load), determining how many sites should be serviced by each GPU with load

balancing techniques is necessary to improve the GPU throughput and utilization. I

develop three techniques to achieve different extents of load balancing. Figure 5.12

presents these three techniques: fixed assignment, pipelining kernels and pipelining

packets.
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(c) Pipelining Packets

Figure 5.12 C-RAN BBU implementation on multiple GPUs

5.3.2.1 Workload distribution with load balancing

For this section, I assume a simplified datacenter with 2 GPUs and 16 sites

with 2×2+QPSK.

Fixed assignment (Figure 5.12a) – The first technique assigns all traffic from

a single site to be processed by the same GPU, and all its processing is done on

that GPU only. For example, sites 0-7 are assigned to GPU 0, and sites 8-15 are
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assigned to GPU 1. The fixed assignment is simple, and has a short processing

latency because only a subset of sites are processed on each GPU. However, it

can only balance load among the group of sites also assigned to the same GPU,

which is very limited. When there is imbalance across site groups (e.g. sites 0-7

are sending traffic while sites 8-15 are idle), it suffers from low throughput due to

low hardware utilization.

A better technique is to use multiple GPUs to pipeline the processing. There

are two types of pipelining techniques: pipelining kernels and pipelining packets.

Pipelining kernels (Figure 5.12b) – In pipelining kernels, kernels are assigned

to different GPUs and each GPU processes those kernels for all the sites. In this

case, GPUs form a pipeline of kernels. For example, GPU 0 processes Kernel 1

and GPU 1 processes Kernel 2 for all 16 sites.

Pipelining packets (Figure 5.12c) – In pipelining packets, each packet has

traffic from all sites. All the kernels for that packet are processed by one GPU. The

next packet is sent to another GPU. In the example, one subframe1 is a packet. GPU

0 processes subframes with odd indices from all 16 sites, and GPU 1 processes

subframes with even indices.

Compared to the fixed assignment technique, both pipelining techniques bal-

ance the workload by aggregating the processing of all sites. This results in better

hardware utilization and system throughput. In addition, pipelining kernels allows

GPUs to be different from each other and be selected specifically to accelerate

kernels allocated to them. However, pipelining techniques suffer from longer la-

1A subframe is a sub-component of a radio frame. It lasts 1ms in length.
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tency due to aggregated processing of all sites (for both techniques) and inter-GPU

communication through PCI-E (for pipelining kernels only).

5.3.2.2 Performance evaluation of distribution techniques

I evaluate the three techniques with balanced and unbalanced loads to identify

which achieves the best performance. For the balanced case, all 16 sites are

running with full workload; for the unbalanced case, sites 0-7 are running with

full workload and sites 8-15 are running with half workload. I measure both the

achieved throughput and subframe processing latencies of all three techniques.
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Figure 5.13 Throughput improvements of two pipelining techniques over the fixed
assignment. Overall, pipelining packets improves throughput by 10% and 16% under
balanced and unbalanced loads respectively, over the fixed assignment.

Figure 5.13 presents the throughput improvements of two pipelining techniques

over the fixed assignment. As shown, both pipelining techniques achieve better

throughput than the fixed assignment. In addition, pipelining techniques accom-

plish more throughput improvements in the case of unbalanced loads, indicating

that they have better load balancing capabilities. Pipelining packets achieves better
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Figure 5.14 Subframe processing latencies of three distribution techniques. The
fixed assignment has the shortest processing latency, due to processing a subset of sites on
each GPU.

throughput than pipelining kernels, because pipelining kernels suffers from the

extra inter-GPU communication. Also, I use homogeneous GPUs in this study,

which limits the benefit of supporting heterogeneous GPUs from pipelining kernels.

Overall, pipelining packets improves throughput by 10% and 16% under balanced

and unbalanced loads, respectively.

Figure 5.14 presents the subframe processing latencies of all three techniques.

Both pipelining techniques have longer latencies, due to aggregating processing of

all sites to achieve better load balancing. In addition, pipelining kernels has the

worst latencies, which are caused by the PCI-E inter-GPU communication. Overall,

both pipelining techniques incur 40% more latencies than the fixed assignment

under unbalanced workload, which are still in the 4 ms LTE BBU latency budget.

In summary, when multiple GPUs are available in the datacenter, pipelining

techniques achieve better throughput than the fixed assignment through load bal-

ancing, but at the cost of longer processing latencies. Overall, pipelining packets is
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the best technique, due to its highest throughput and acceptable processing latency.

In addition, pipelining packets allows dynamic adjustment of the number of GPUs,

which is required by “hill-climbing” power management.

5.4 Implications for C-RAN datacenter design

Based on the study in the prior sections, I now discuss implications of the C-

RAN datacenter design. Section 5.4.1 suggests an alternate solution to addressing

the limited throughput of the Turbo decoder. Section 5.4.2 suggests other ways to

make use of the idle hardware during non-peak times of the day.

5.4.1 ISA extension support for trellis algorithms

One key observation I made in the study was that due to its heavy computation

and high register usage, the Turbo decoder’s achievable throughput was much lower

than the PHY layer kernels. Therefore, there is a need to improve the performance

of the Turbo decoder in the C-RAN datacenter.

In fact, the Turbo decoder algorithm is a member of trellis algorithms, a family

of algorithms widely used in many areas such as coding theory, speech recognition

and data compression. Other well-known members of the trellis algorithms include

Viterbi algorithm [56] and Baum-Welch algorithm [34]. As trellis algorithms

are widely used and share similar computational features, accelerating them on

general-purpose platforms is a worthwhile research goal to pursue.

I suggest that GPUs have the trellis accelerator and instruction set extension
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to improve the performance of the Turbo decoder. Several similar hardware

accelerators with instruction set support already existed in commercial CPUs, such

as the AES instruction extension [48] in x86 CPUs.

5.4.2 Service at the wireless edge

Although C-RAN has better hardware utilization by centralizing the processing

of multiple sites, there are still times that the datacenter utilization is low due to

the overall low traffic load from the area. A good example is that there are more

tourists on the Manhattan island in the summer than the winter because of the

severe weather in winter. To guarantee the quality and the coverage of the service,

the C-RAN datacenter needs to be designed to support the peak amount of tourists

during the summer. This leads to low utilization of the datacenter in the rest of the

year, and opens up opportunities to use the hardware during idle time.

One solution is to run internet services in the C-RAN server, pushing the

internet service from the core network to the wireless edge. Since the C-RAN

server is closer to the end-users, the latency of a service request can be greatly

reduced, improving the quality of the internet service. In addition, some services

that have been proven to fit in the GPU-based server [71, 70] can take advantage

of local information that is only available in the C-RAN server, also improving the

service quality and reducing the complexity of the server system.
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5.5 Related Work

Since C-RAN is still a new cloud service, there is little study on the datacenter

design for the C-RAN. Authors of [63] evaluated a CPU-based C-RAN BBU

pool, and showed that 20 Intel CPUs are required for the C-RAN BBU datacenter.

The paper lacks details on the hardware platform used for evaluation, and the

deployed algorithms for each kernel, making it difficult for readers to get take-

home messages. Their result of having 20 CPUs proves the discovery to some

extent that a GPU-based cloud datacenter is more energy and cost efficient than

a CPU-based datacenter. Open wireless system cloud [42] is a RAN architecture

similar to C-RAN. Authors used an Intel x86 blade server and a Cell/B.E. blade

server to evaluate a C-RAN WiMax datacenter. The paper mainly focuses on the

radio network design, instead of the cloud datacenter design.

There are several previous works on using GPUs to build software-defined LTE

base stations [117, 118, 62, 97, 30, 104]. They discussed the GPU implementations

of key signal processing kernels, and evaluated the performance. The main focus

of these papers is the GPU implementations of a traditional LTE base station. This

work targets on the C-RAN BBU datacenter design, and focuses on improving

the performance and energy efficiency through resource management. There are

previous works on the C-RAN datacenter resource management [35, 113]. They

focus on the high-level management algorithm design, without the implementation

details on the actual hardware.

A great number of prior works have been done on the power management in
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datacenters. Many works examined the power management techniques on process-

ing units, including DVFS [51, 52, 102, 53], processor power gating [84, 90] and

using heterogeneous computing components in datacenters [85, 76, 79]. Other

works focused on the memory system, such as DRAM [47, 49, 50] and hard

disks [38, 66]. There are also several works that examined various approaches

to accomplish energy-proportionality in datacenters [89, 107, 88, 72]. And fi-

nally, [99] combined many existing power management techniques, and studied

the coordinations between these techniques to achieve better energy saving in a

datacenter. My proposed power management deploys existing power management

techniques, and applies them to handle the C-RAN temporal traffic pattern.

There are papers on accelerating other services on a GPU-based datacenter.

[71] and [77] evaluated using GPUs to improve of the throughput of a warehouse

scale datacenter for the new emerging voice personal assistant. This work focuses

on C-RAN, the emerging wireless application as cloud service, and is orthogonal

to these previous works.

5.6 Summary

In this chapter, I discussed designing a datacenter for C-RAN using commodity

server platforms. C-RAN was proposed to be a future wireless network that will

solve the scalability and cost problems of the traditional RAN. Unfortunately,

C-RAN is still a new concept with no clear models for deployment using general-

purpose server platforms. With my work, I bring to light the challenges of designing

123



C-RAN BBUs on general-purpose platforms, and outline design objectives that

C-RAN designers should adhere to.

I design the C-RAN datacenter and also investigate how to manage its resources

to best fit the needs of C-RAN services. I compare CPU-based servers and GPU-

based servers, and find that across the three metrics of performance, energy, and

TCO, GPU-based datacenters best meet my design objectives: 1) meeting the

throughput requirement of the LTE specification, 2) supporting 20 sites or more

and 3) reducing energy by 13× and TCO by 6× over CPU-based datacenters

(Section 5.2).

To effectively manage the resources of the datacenter, I have two objectives:

save power and balance the load. Among the few power management techniques I

evaluated, the combination of turning on/off GPUs and DVFS is able to save 40%

of the BBU energy without violating throughput and latency requirements. Among

the three load balancing techniques I evaluated, pipelining packets using multiple

GPUs is the best at managing spatial imbalance in the traffic pattern, achieving

16% throughput improvement (Section 5.3).
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CHAPTER VI

Conclusion

Wireless communication has become one of the critical uses of computing

resources and technologies. The increasing number of mobile device users result in

more energy consumption and cost in the traditional wireless radio access network

with worst throughput and quality of service. In addition, emerging wireless

protocols and fast wireless technology development make using hardwired ASIC

solutions more expensive and complex in wireless base stations. Therefore, as a

future radio access network, C-RAN was proposed to solve all these problems.

However, the design of a C-RAN datacenter has yet been studied. This dissertation

characterizes the wireless signal processing applications, and explores both the

software and hardware design of a datacenter using commodity servers for C-RAN

BBUs. Resource management techniques are then studied to save power and

balance the load in the presence of the temporal or spatial workload imbalance.
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6.1 Summary

In this thesis, I study how to design a datacenter for the future C-RAN BBUs.

In Chapter III, I presents the design of WiBench, which is used to characterize

the wireless signal processing applications. WiBench contains the key signal

processing kernels of major wireless protocols. The characterization study of

WiBench indicates that processors that can explore DLP and TLP to provide high

computing throughputs are the good hardware platforms for a C-RAN datacenter.

In Chapter IV, high performance software implementations of the LTE uplink

kernels are explored and discussed. Particularly, I present the parallelization

techniques in CUDA for GPUs. These techniques are deployed to make full

use of the GPU computing resources, in order to achieve high throughputs. In

addition, since the Turbo decoder is a member of the trellis algorithms, I extend its

parallelization techniques to study the tradeoffs between throughput, latency and

the bit error rate for the trellis algorithms.

Chapter V finally discusses the design of a C-RAN datacenter. As the first and

the most important step, I evaluate two major commodity general-purpose servers,

multi-core CPUs and GPUs. By comparing them through the performance, energy

efficiency and TCO, I come up with the conclusion that GPUs are the better servers

be used in C-RAN datacenters. Then I study the resource management schemes

in a GPU-based C-RAN datacenter to handle the temporal and spatial workload

imbalance in the radio access network.

As C-RAN will be more widely deployed in the future, a high-performance
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and energy-efficient datacenter design for C-RAN will become more crucial, and

there will be more research being done in this area.

6.2 Future Work

There are several opening topics that are potential future research directions to

extend this thesis.

6.2.1 Fixed-point implementations of C-RAN BBU
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Figure 6.1 Runtimes of 32-bit floating-point and 16-bit fixed-point implementa-
tions of demodulation

In this thesis, BBU kernels were implemented based on single precision floating-

point data (32 bits) to take advantage of the powerful floating-point engines on

general purpose platforms. However, sometimes data with less precision, such as

16-bit fixed-point values, may be enough for wireless signal processing. Therefore,
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it is interesting as a future work to investigate the influence of using fixed-point

data with less precision in C-RAN BBU on performance, power consumption and

bit error rate. As an initial study, I implement a 16-bit fixed-point version of de-

modulation in both C++ and CUDA, and compare its performance and power with

the floating-point implementation. Figure 6.1 and 6.2 show the performance and
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Figure 6.2 Power of 32-bit floating-point and 16-bit fixed-point implementations of
demodulation

power comparisons between 32-bit floating-point and 16-bit fixed-point implemen-

tations of the demodulation kernel. As we can see, for the CUDA implementation

on GPUs, there is hardly any difference between floating-point and fixed-point

implementations for both performance and power. However, for the CPU code,

although the power consumption is still quite close between two implementations,

the fixed-point version has significant better performance. This is due to the fact

that the 16-bit fixed-point data can make better use of the AVX extension in an Intel

CPU, and double the throughput of each AVX instruction compared with the 32-bit
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floating-point data. Therefore, in the future work, fixed-point implementations

of the BBU system should be investigated to further improve the software in a

C-RAN datacenter.

6.2.2 Streaming input data into the GPU memory

When using GPUs for the wireless communication, one key stage is to stream

the input raw data into the GPU memory. Traditionally, GPUs have no I/O capa-

bility to read data from the external devices, and thus require data to be staged

through the CPU memory first. This results in long data movement latency, which

harms the quality of service of C-RAN. Therefore, how to stream input data into

the GPU memory is important for a GPU-based C-RAN datacenter. There are two

possible solutions: one is to use integrated CPU+GPU SoC, and the other is to

enable GPUs with I/O to the external devices.

Through using the integrated CPU+GPU SoC, CPUs and GPUs on the same

chip will share the main memory and even the last level cache. As a result, the

data movement latency between CPUs and GPUs is greatly reduced. In fact, many

commercial CPU+GPU SoCs are available already, such as Intel Ivy Bridge and

NVIDIA Tegra K1. However, how to manage the CPU and GPU data in the shared

memory is still under study, and can greatly affect the performance of GPUs.

Enabling GPU-based I/O to the external devices is another possible solution to

solve the input data problem. In this case, many additional software and hardware

supports are required, including the operating system, the I/P hub and the modified
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drivers. NVIDIA Kepler GPUs already have GPUDirect to support the RDMA

feature and allow direct access to GPU memory by third-part devices. Therefore,

the future work can evaluate the performance of using GPUDirect in a C-RAN

datacenter, and design an even better I/O interface for GPUs to support future

wireless protocols.

6.2.3 Providing internet service at the wireless edge

As discussed in Chapter V, internet services can benefit significantly from

being pushed to C-RAN datacenters, because the round-trip latency of a service

request is greatly reduced, and more accurate geographical information is available

to provide better customized services. However, since the internet and wireless

services will share the hardware resources, good management technologies are

required to coordinate the hardware sharing in order to maintain the good quality

of both services. In addition, careful decisions need to be made to determine what

internet services should be offloaded to the wireless edge, to take advantage of the

available geographical information.
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