ENERGY-EFFICIENT COMPUTING
FOR MOBILE SIGNAL PROCESSING

by

Sangwon Seo

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering)
in The University of Michigan
2011

Doctoral Committee:
Professor Trevor N. Mudge, Chair
Professor David Blaauw
Professor William Martin
Associate Professor Scott A. Mahlke
Professor Chaitali Chakrabarti, Arizona State University

(© Sangwon Seo 2011
All Rights Reserved

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance and support
of many people. First and foremost, I would like to thank my advisor, Trevor Mudge.
His insight, expertise, enthusiasm, and encouragement played a large part in my
success in graduate school. Without his guidance, this dissertation would not exist.

I would also like to thank my thesis committee, Professors Scott Mahlke, David
Blaauw, William Martin, and Chaitali Chakrabarti. They donated their time, pro-
viding valuable comments and suggestions that helped me refine my thesis.

The research presented in this dissertation is not the work of one person; I was
fortunate to have the assistance of a number of other students. In particular, Mark
Woh gave me valuable help in virtually every aspect of my graduate school life.
Yongjun Park also contributed significantly, helping me debug codes and perform
hardware experiments.

As much as those who provided technical expertise, those who offered engag-
ing conversation and moral support were crucial to my graduate school experience,
namely: Hyunchul Park, Yuan Lin, Amin Ansari, Hyounkyu Cho, Ganesh Dasika,

Shuguang Feng, Shantanu Gupta, Amir Hormati, Po-Chun Hsu. I have shared offices

i

with them, and my time in Ann Arbor would not have been the same without their
friendship.

Finally, I would like to thank my family for their support, encouragement, and ad-
vice. My parents and brother provided their unconditional love and support through-

out this whole process.

il

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

LIST OF FIGURES vii

LIST OF TABLES e xi

ABSTRACT xiii
CHAPTERS

1 Imtroduction 1

1.1 Background o 1

1.2 Motivation 3

1.3 Contributionso o 6

1.4 Organization 8

2 Background o 9

2.1 SDRsolutions 9

2.1.1 SIMD-based Architectures 10

2.1.2 Reconfigurable Architectures 17

2.2 Near-threshold computing 20

3 Design and Analysis of LDPC Decoders for Software Defined Radio . 24

3.1 Imtroduction 25

3.2 LDPCBasics. 27

3.2.1 Imtroduction oL 27

3.2.2 LDPC Decoding Process 27

3.2.3 LDPC Matrix Partition 29

3.3 LDPCon SODA 30

3.4 Scalable LDPC Implementation 31

3.4.1 LDPC Accelerator 31

3.4.2 Memory Units 32

3.4.3 Modified Decoding Algorithm 34

3.4.4 Assembly Support 37

v

3.4.5 Scalability Issues 38

3.5 Analysis 39
3.5.1 Memory Size Analysis 39
3.5.2 Throughput Analysis 41

3.6 Summary 42

4 Customizing Wide-SIMD Architectures for H264 43

4.1 Introduction 44

4.2 H.264 CODEC 45

4.3 H.264 Algorithm Analysis and Design Decisions 47
4.3.1 Multiple SIMD Widths 47
4.3.2 Diagonal Memory Organization 49
4.3.3 Bypass and Temporary Buffer Support 50
4.3.4 Fused Operation 51
4.3.5 Programmable Crossbar 52

4.4 Proposed Architecture 53
4.4.1 PE Architecture 53
4.4.2 SIMD Partitioning 54
4.4.3 SIMD Functional Units 55
4.4.4 Temporary Buffer and Bypass Support 56
4.4.5 Multi SIMD Partition Shuffle Network o7
4.4.6 Multiple Output Adder Tree Support 57

4.5 Mapping of H.264 Kernels 57
4.5.1 Intra Prediction 58
4.5.2 Deblocking Filter 59
4.5.3 Motion Compensation 60
4.5.4 Motion Estimation 62

4.6 Results and Analysis oL 64
4.6.1 Methodology oo 64
4.6.2 Results 65

4.7 Related Work 67

4.8 Summary 68

5 Diet SODA: A Power-Efficient Processor for Digital Cameras 69

5.1 Introduction L 69

5.2 Near Threshold Operation 72

5.3 DSC Algorithm Analysis 73
5.3.1 DSC Signal Processing Pipeline 73
5.3.2 Characteristics of DSC Algorithms 74

5.4 Diet SODA Architecture 78
5.4.1 Diet SODA PE Design 78
5.4.2 SIMD Pipeline Width 79
5.4.3 Scatter-Gather Data Prefetcher 82
5.4.4 Operating Modes 83

5.4.5 Buffer and Bypass Network 85

5.4.6 Mapping Examples 85
5.5 Results and Analysis L. 89
5.5.1 Methodology 89
55.2 Areaand Power 89
5.5.3 Performance, 90
5.5.4 Comparison with SODA 91
5.5.5 Comparison With Other Solutions 94
5.6 Related Worko 96
5.7 Summary . . .o ... 98
6 Managing Process Variation in Near-Threshold Wide SIMD Architec-
tures e 99
6.1 Introduction 100
6.2 Variations in Near-threshold Operation 102
6.2.1 Circuit-level Variations 103
6.2.2 Architecture-level Variations 106
6.3 Techniques to Control Effect of Variations 109
6.3.1 Structural Duplication 110
6.3.2 Voltage Margining 112
6.3.3 Frequency Margining 115
6.3.4 Comparisons Between Variation-Tolerating Techniques 116
6.4 Variation-Aware SIMD Architecture 118
6.4.1 PEDesign 118
6.4.2 Placement Method: Global vs. Local 121
6.4.3 Results and Analysis 124
6.5 Related Worko 126
6.6 Summary 127
7 Conclusion 129
71 Summary 130
7.2 Future Work 132
BIBLIOGRAPHY 133

vi

Figure
1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
4.1

4.2

4.3
4.4
4.5

4.6
4.7

LIST OF FIGURES

Throughput and power requirements for various mobile computing ap-
plications [18].
A SDR architecture: SODA [1]
Supply voltage operating regions and the energy and delay associated
at each point. The near-threshold region provides considerable energy
savings for non-timing critical low power applications such as DSCs. .
LDPC matrix H and the corresponding bipartite graph
Partitioning of H into z-by-z cyclic identity matrices
Modified SIMD pipeline in a SODAPE
LDPC accelerator
Data alignment in buffers
H.264 encoder/decoder reference design. ME: Motion Estimation, MC:
Motion Compensation, T: Transformation, Q: Quantization, NAL: Net-
work Abstract Layer. Grey area represents functional blocks of the
H.264 decoder, which is the subset of the H.264 encoder [26].
Diagonal memory organization and shuffle network, which allows the
horizontal and vertical memory access without conflict. The 64x64
shuffle network realigns 64 16-bit data.
Subgraphs for the inner loops for two H.264 kernels; The bypass path
is not shown for simplicity. L.
Permutation Patterns for H.264 Intra-prediction Modes
PE architecture consists of multi-bank local SIMD memory, SIMD RF's,
multi-SIMD datapath, scalar pipeline, four AGU pipelines dedicated
to four 16-wide SIMD partitions, and DMA (not shown here)
16-wide SIMD Functional Unit
Mapping a 16x16 luma macroblock intra-prediction process on the
proposed architecture. Example of the Diagonal Down Right intra-
prediction for a 4x4 sub block (grey block) is presented with fused
operations.o

vil

11

21
26
29
31
33
34

46

49
50
52

53
55

4.8
4.9
4.10
4.11

4.12

4.13

5.1
5.2

5.3

5.4

5.5

5.6
5.7

5.8

5.9
5.10
6.1

Mapping macroblocks into SIMD partitions such that all SIMD lanes
are utilizedo
Mapping a deblocking filter process when BS (Block Strength)=4. . .
Example of interpolation of motion compensation (half-pel).
Mapping a motion estimation process for a 4x4 block on the proposed
architecture; The search area is 8x8..
Speedup over SODA for the key H.264 algorithms. The improvements
are broken down into several architectural enhancements - wider SIMD
width, fused operation, buffer+bypass support and fast programmable
crossbar.
Normalized Energy-Delay Product for H.264 kernel algorithms com-
pared to SODA.
A typical DSC image signal processing pipeline [42], [43]
Diet SODA processing element (PE) for DSCs. The PE contains two
different voltage domains: full voltage (FV) and dual voltage (DV). DV
domain operates at either full or near-threshold supply voltage. The
PE consists of: 1) multi-banked SIMD memory; 2) scalar memory; 3)
SIMD data prefetcher; 4) SIMD pipeline; 5a) scalar pipeline in full
voltage domain; 5b) scalar pipeline in dual voltage domain; and 6)
4-wide address generation unit (AGU) pipeline.
Minimum clock frequencies based on different SIMD width configura-
tions to run the preview mode of DSC signal processing pipeline shown
in Figure 5.1.o
Near-threshold operation is applied to four different SIMD width con-
figurations: 32, 64, 128, and 256. Solid vertical lines provide guidelines
for the minimum supply voltage necessary to meet VGA and full-HD
processing demands. Gray boxes represent the near-threshold regions.
Example of complex data shuffling with 4-bank 4-wide SIMD memory,
SIMD data prefetcher, and 16-wide buffer.
An Edge-directed CFA interpolation mapped on Diet SODA.

A 3x3 Convolution operation mapped on Diet SODA. A 3x3 convolu-
tion mask is applied to 3x3 pixels.o
Normalized throughput of Diet SODA FV and DV modes over SODA
for kernel DSC algorithms. Speedups are broken into five categories:
wider SIMD width (128), XRAM crossbar, buffer+bypass, fused in-

struction, and data prefetcher. Data-prefetcher runs only in DV mode.

Normalized energy for the DSC kernel algorithms over SODA.

A Test DSC image signal pipeline [42]
Delay distributions of (a) a single inverter and (b) a chain of 50 FO4
inverters with different supply voltages (0.5V, 0.6V, 0.7V, 0.8V, 0.9V
and 1.0V) using 90nm GP technology. A thousand samples for each
supply voltage are simulated.

viil

60
61
62

63

65

66
73

79

30

81

82
87

88

92
93
94

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Delay variations (30/u) (%) at 0.55V of a chain of FO4 inverters vs.
chain length (N) using four technology models (90nm GP, 45nm GP,
32nm PTM HP, and 22nm PTM HP). A thousand samples for each
data point are simulated.o
Delay variations (30 /u) (%) of a chain of 50 FO4 inverters vs. supply
voltage (Vyq) using four technology models (90nm GP, 45nm GP, 32nm
PTM HP, and 22nm PTM HP). A thousand samples for each data point
are simulated. Lo oL
Delay distributions for a critical path (a chain of 50 FO4 inverters) at
V4q=1V, one SIMD lane at V=1V, and 128-wide SIMD datapath at
near-threshold supply voltages from 0.5V to 1V. 90nm GP model is
used and a 10,000 samples are simulated.
Performance drop (%) in the near-threshold voltage region for a 128-
wide SIMD architecture. 90nm/45nm GP and 32nm/22nm PTM HP
models are used.
Delay distributions for SIMD duplicated systems (128-wide + a-spares)

using 90nm GP model. A 10,000 samples for each curve are simulated.

Delay distributions of 128-wide SIMD architecture operating at 600mV,
605mV, 610mV, 615mV and 620mV. For comparison, delay distri-
butions of 128-wide+a-spare SIMD duplicated systems operating at
600mV are also presented. A 10,000 samples for each curve are simu-
lated with 45nm GP model.
Power overhead comparison between structural duplication and voltage
margining schemes for four technology nodes: (a) 90nm GP, (b) 45nm
GP, (¢) 32nm PTM HP, and (d) 22nm PTM HP
Chip delays for a 128-wide SIMD datapath operating at from 600mV
to 620mV. Target delay is a design constraint for the 128-wide near-
threshold system operating at 600mV. 45nm GP model is used.

Processing element (PE) of a variation-ware SIMD architecture. The
PE contains two different voltage domains: full voltage (FV) and near-
threshold voltage (NTV). The PE consists of 1) multi-banked SIMD
memory; 2) scalar memory; 3) data prefetcher, 4) SIMD pipeline, 5a)
scalar pipeline in FV domain, 5b) scalar pipeline in NTV domain, and
6) four address generation unit (AGU) pipelines. The modified and
inserted modules have been shown using shaded blocks.
(a) Local sparing method. An example of I out of 4. (b) XRAM
shuffle configuration to bypass faulty SIMD lanes. (c¢) Global sparing
method. An Example of 10 functional units (8 4 2 spares) with support
of XRAM crossbar. Shaded SIMD functional units are identified as
faulty ones at test time.o

X

104

105

107

108

111

114

116

118

119

6.12 Delay distribution of local sparing and global sparing schemes. One
global sparing scheme (8 spares) and four local sparing schemes (4, 8,

16 and 32 spares) are considered. A 128-wide SIMD datapath is used
for the simulation. oo

Table
3.1

3.2
4.1

4.2
4.3
4.4
4.5
5.1

5.2

5.3

5.4

5.5

5.6

LIST OF TABLES

Memory/Buffer requirements for n=2304 and R=5/6 LDPC code in
the IEEE 802.16e standard
Cycle reductions due to enhancements
Kernel operations, SIMD workload, required SIMD width, and the
amount of thread level parallelism (TLP) for H.264 encoder/decoder
algorithmso
Instruction pair frequency for H.264 kernel algorithms
Shuffle patterns for six intra prediction modes for 4x4 luma
Summary of Area and Power Running H.264 CIF video at 30fps . . .
Comparison with state-of-the art H.264 encoders.
Data level parallelism analysis for DSC image signal processing algo-
rithms. Instructions are categorized into three groups: SIMD, scalar,
and overhead instructions.
Instruction pairs for some DSC image processing algorithms. *LD-
OP-ST represents an operation chain — LOAD-ALU/MULT-STORE.
**Others represents instructions that cannot be paired.
Architectural modules that are turned on and off for dual voltage (DV)
and full voltage (FV) modes.
Area and Power Summary of Diet SODA for Preview Mode of Full-HD
Images at 30 fps. For comparison, the results of both DV mode and
FV mode are presented. L.
The Latencies of DSC signal processing pipeline algorithms for the
preview mode of a VGA image and a Full-HD image.
Execution Time Comparison with TT TMS320C64x, CRISP, and Diet
SODA. Task Group 1 - White Balance, Gamma Correction, CFA Inter-
polation; Task Group 2 - Noise Reduction, Smooth Filter; Task Group
3 - Color Space Conversion, Edge Enhancement. *Diet SODA operates
in DVmode.

x1

40
41

48
o1
29
64
66

75

7

84

90

91

5.7

6.1

6.2

6.3

6.4

6.5

Chip Statistics and Energy Comparison with TT TMS320C64x, CRISP
and Diet SODA. *Area and energy are normalized to 90nm technology.
**Diet SODA operates in DV mode - 1V and 600mV.
The required number of spares and corresponding area and power over-
head of structural duplication scheme for four technology nodes. The
area and power numbers are based on Diet SODA [60].
Required voltage margin to tolerate variation-induced timing errors
for a 128-wide SIMD architecture operating at near-threshold voltages
and corresponding power overhead for four technology nodes. The final
supply voltage should be Vg + Vg margin (V). The power overhead
is based on Diet SODA [60].
Designed clock period (Ty), variation-aware clock period (Tyq—c),
and corresponding performance degradation at near-threshold volt-
ages for four technology nodes. The power overhead is based on Diet
SODA [60].
Design choices for a 128-wide@600mV system in 45nm technology
node. Combinations of structural duplication and voltage margining
are presented with corresponding power overhead./pact2011/figures//.
Area and power summary of the variation-aware SIMD architecture
running preview mode of full-HD images at 30 fps using near-threshold
operation. The area and power numbers of Diet SODA are also pro-
vided for comparison.

x1i

112

117

ABSTRACT

Energy-Efficient Computing for Mobile Signal Processing

by

Sangwon Seo

Chair: Trevor N. Mudge

Mobile devices have rapidly proliferated, and deployment of handheld devices contin-
ues to increase at a spectacular rate. As today’s devices not only support advanced
signal processing of wireless communication data but also provide rich sets of appli-
cations, contemporary mobile computing requires both demanding computation and
efficiency. Most mobile processors combine general-purpose processors, digital sig-
nal processors, and hardwired application-specific integrated circuits to satisfy their
high-performance and low-power requirements. However, such a heterogeneous plat-
form is inefficient in area, power and programmability. Improving the efficiency of
programmable mobile systems is a critical challenge and an active area of computer
systems research.

SIMD (single instruction multiple data) architectures are very effective for data-

xiil

level-parallelism intense algorithms in mobile signal processing. However, new charac-
teristics of advanced wireless/multimedia algorithms require architectural re-evaluation
to achieve better energy efficiency. Therefore, fourth generation wireless protocol and
high definition mobile video algorithms are analyzed to enhance a wide-SIMD archi-
tecture. The key enhancements include 1) programmable crossbar to support complex
data alignment, 2) SIMD partitioning to support fine-grain SIMD computation, and
3) fused operation to support accelerating frequently used instruction pairs.

Near-threshold computation has been attractive in low-power architecture re-
search because it balances performance and power. To further improve energy ef-
ficiency in mobile computing, near-threshold computation is applied to a wide SIMD
architecture. This proposed near-threshold wide SIMD architecture—Diet SODA—
presents interesting architectural design decisions such as 1) very wide SIMD datapath
to compensate for degraded performance induced by near-threshold computation and
2) scatter-gather data prefetcher to exploit large latency gap between memory and
the SIMD datapath. Although near-threshold computation provides excellent energy
efficiency, it suffers from increased delay variations. A systematic study of delay vari-
ations in near-threshold computing is performed and simple techniques—structural
duplication and voltage/frequency margining—are explored to tolerate and mitigate
the delay variations in near-threshold wide SIMD architectures.

This dissertation analyzes representative wireless/multimedia mobile signal pro-
cessing algorithms, proposes an energy-efficient programmable platform, and evalu-

ates performance and power. A main theme of this dissertation is that the perfor-

Xiv

mance and efficiency of programmable embedded systems can be significantly im-

proved with a combination of parallel SIMD and near-threshold computations.

XV

CHAPTER 1

Introduction

1.1 Background

Mobile computing has become ubiquitous. As the proliferation of mobile devices
has increased at a spectacular rate, mobile devices have become one of the dominant
computing platforms. This trend will continue as mobile devices cover broader ap-
plication areas such as high-bandwidth internet access, high-quality video, biometric
computations (voice and fingerprint recognition), and interactive conferencing. The
advanced functionalities for next generation mobile computing require higher data
rates, more sophisticated algorithms, and greater computational diversity with strin-
gent power requirements.

The current mobile platforms are designed as heterogeneous system-on-a-chip
(SoC) that employs a combination of general-purpose processors (GPPs), digital sig-
nal processors (DSPs), application-specific integrated circuits (ASICs), and hardwired

accelerators to provide giga-operations-per-second on sub-watt power budget. How-

ever, such heterogeneous organizations are inefficient to build and maintain, and
waste silicon area and power. As state-of-the-art applications are adopted, these
mobile platforms need to be redesigned with additional ASICs and specialized func-
tional accelerators because current ones are designed only for outdated specifications.
Therefore, as more applications and features are introduced to the devices, develop-
ment and material costs become more expensive.

To solve these problems, programmable mobile platforms that can support mul-
tiple standards and applications are being actively investigated. Software Defined
Radio (SDR) is one of these mobile platforms that promises to deliver a cost effective
and flexible solution by implementing various wireless applications in software. The
key advantages of SDR are 1) Multi-mode operation—running multiple protocols,
2) Fast time-to-market—reusing the same hardware for new applications, 3) Easy
prototyping and bug fixes—changing software without redesign, and 4) High chip
volume.

Many baseband processing architectures for SDR have been proposed in the last
few years. They can be broadly categorized into two classes: single instruction mul-
tiple data (SIMD)-based and reconfigurable architectures. SIMD-based architectures
usually consist of several high performance SIMD processing elements (PEs) that are
typically connected together through a shared bus, a shared global memory connected
to the bus, and a general purpose control processor that manages these SIMD PEs.
Many of SIMD-based architectures support VLIW execution by allowing concurrent

memory and SIMD arithmetic operations. SODA [1], Ardbeg [2], EVP [8], Tiger-

SHARC [7], MuSIC-1 [9], Sandblaster [6], and SIMT [5] fall under the SIMD-based
architecture category. Reconfigurable architectures, on the other hand, usually con-
sist of many simpler PEs. Depending on the particular design, these PEs range from
fine-grain LUTSs (lookup tables) to coarse-grain ALUs (arithmetic logic units) or even
ASICs. The PEs are usually connected through a reconfigurable fabric. Compared
with SIMD-based designs, reconfigurable architectures are more flexible at the cost
of higher power. ADRES [10], Montium [11], and XiRisc [13] are categorized in the

reconfigurable architecture group.

1.2 Motivation

This dissertation takes a SIMD-based architecture, SODA, to explore the archi-
tectural impacts of emerging wireless protocols and advanced signal processing. As
wireless signal processing contains vast amounts of vector parallelism, SIMD hard-
ware is recognized as an effective strategy to achieve high efficiency in performance
and energy due to its regular structure, ability to scale SIMD lanes, and low control
cost. However, the next generation of mobile computing requires higher performance
and /or lower power as shown in Figure 1.1.

Figure 1.1 presents the demands of the third generation (3G) and the fourth gener-
ation (4G) wireless technology protocols in terms of peak processing throughput and
power budget. Conventional processors cannot meet the power-throughput require-
ments of these protocols. 3G protocols, such as W-CDMA, require approximately 100

Mops/mW. Desktop processors, such as the Pentium M, operate below 1 Mop/mW,

10000
8 1000 IBM Cell
é S
[}
e Mobile HD " sopa
S 100- - =
E = Video {90nm) :)
° Imagine 04_
E 3G Wireless L4 A o@
o ® N%
10— @ 22N\CA
® . O/‘
VIRAM Pentium M %
TI C6X 5\
'E . .
0.1 1 Power (Watts) 10 100

Figure 1.1: Throughput and power requirements for various mobile computing ap-
plications [18].

while digital signal processors, such as the TT C6x, operate around 10 Mops/mW.
High performance systems such as the IBM Cell can provide excellent throughput, but
its power consumption makes it infeasible for mobile devices [14]. Research solutions,
such as VIRAM [16] and Imagine [50], can achieve the performance requirements
for 3G, but exceed the power budgets of mobile terminals. SODA improved upon
these solutions and was able to meet both the power and throughput requirements
for 3G wireless [1]. Companies such as Phillips [8], Infineon [9], ARM [2], and Sand-
bridge [6] have also proposed domain-specific systems that meet the requirements for
3G wireless.

However, 4G increases the bandwidth to maximum data rates of 100 Mbps for
high mobility and 1 Gbps for low mobility. This translates to an increase in the com-
putational requirements of 10-1000x over previous 3G with a power envelope that

can only increase by 2-5x [15]. Mobile computing systems are not limited to wire-

less signal processing. High-definition video, audio, 3-D graphics, and other forms of
media processing are high value applications for mobile devices. Media applications
in mobile devices offer a number of challenges different from those in wireless signal
processing. First, the complexity of media processing algorithms is typically higher
than that of signal processing algorithms. Computation is no longer dominated by
simple vectorizable loops. Instead, significant amounts of control flow exist to handle
different operating modes and the inherent complexity of media coding. As a result,
SIMD parallelism becomes less efficient in media algorithms. Second, the data access
complexity in media processing is higher. Wireless signal processing algorithms typi-
cally operate on single dimension vectors, whereas video algorithms operate on two or
three dimensional vectors. Thus, media processing push designs to have higher band-
width and more flexible memory systems. In addition, the power budget is generally
more constrained for media processing than for wireless signal processing because of
higher usage times. As shown in Figure 1.1, high-definition video is 10-100x more
compute intensive than 3G protocols.

Therefore, the design of the next generation of mobile platforms must address
three critical issues: efficiency, programmability, and adaptivity. The existing com-
putational efficiency of 3G solutions is inadequate and must be increased by at least
an order of magnitude for 4G. As a result, straightforward scaling of 3G solutions by
increasing the number of cores or the amount of data-level parallelism is not enough.
Programmability provides the opportunity for a single platform to support multiple

applications and even multiple standards within each application domain. It also

provides faster time to market and higher chip volumes, thereby reducing manufac-
turing cost. Lastly, hardware adaptivity is necessary to maintain efficiency as the core
computational characteristics of the applications change. 3G solutions rely heavily on
the widespread amounts of vector parallelism in wireless signal processing algorithms,
but lose most of their efficiency when vector parallelism is unavailable or constrained
as in other application domains like high-definition video.

This dissertation focuses mostly on techniques for improving efficiency. The effi-
cient mobile computing in Diet SODA exploits massively parallel systems and near-

threshold voltage operations to provide efficiency and programmability as well.

1.3 Contributions

This dissertation presents a set of design proposals for an energy-efficient pro-
grammable wireless protocol implementation. In order to satisfy demanding perfor-
mance and power requirements of next generation mobile computing, this dissertation
takes a hardware-software co-design approach that optimizes and evaluates a mobile
computing platform based on the characteristics of wireless signal processing algo-
rithms. This dissertation makes the following contributions.

Design and Analysis of advanced signal processing algorithms This dis-
sertation presents algorithmic characterization of two major mobile signal process-
ing algorithms: a representative 4G protocol algorithm (Low Density Parity Check
(LDPC)) and high definition mobile video (H.264). Based on insights from their char-

acteristics, a wide-SIMD architecture for SDR, SODA, is revisited and optimized to

meet performance and power requirements. The key enhancements on SODA are 1)
use of programmable crossbar to support complex shuffle operations, 2) SIMD parti-
tioning to support fine-grain SIMD computation, 3) Bypass and temporary buffer to
support efficient access for short-lived intermediate data, and 4) fused operation to
support accelerating frequently used instruction pairs.

Design, implementation, and evaluation of an energy efficient signal
processing architecture, Diet SODA This dissertation presents an energy ef-
ficient signal processing architecture, Diet SODA. The key design idea is to apply
near-threshold operation on a wide-SIMD architecture to achieve both high energy
efficiency and high throughput performance in a synergistic manner. A combination
of near-threshold circuit techniques and parallel SIMD computations offer several
new promising architectural design options: 1) very wide SIMD datapath to com-
pensate for degraded throughput performance induced by near-threshold operations,
2) scatter-gather data prefetcher to exploit the large latency gap between memory
operating at full voltage and the SIMD datapath operating at near-threshold voltage,
and 3) dual operating mode to support both less stringent realtime-constrained tasks
and high-throughput demanding tasks.

In-depth study of variations in near-threshold operations This dissertation
presents a systematic study of delay variations induced by near-threshold operations
at both circuit- and architecture-levels. The variation-induced timing errors in wide
SIMD architectures are shown to be fairly small; therefore three simple techniques—

1) structural duplication, 2) voltage margining and 3) frequency margining—are ex-

plored to tolerate and mitigate the timing variability problems. Through a case study
based on Diet SODA in 90nm technology node, the variation-induced timing errors
in wide SIMD architectures can be handled by the structural duplication scheme by
increasing the number of SIMD functional units to replace underperforming ones and
exploiting XRAM crossbars to build a new error-free datapath. However, for lower
technology nodes, use of only structural duplication is not as efficient; rather a com-
bination of structural duplication and voltage margining leads to a solution with the

lowest power overhead.

1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces
two types of contemporary baseband processing architectures—SIMD-based and Re-
configurable for SDR and presents a SIMD-based architecture, SODA, in detail.
Chapter 3 and Chapter 4 present case studies of the implementation of LDPC decoders
and H.264 codecs on wide-SIMD architectures. Chapter 5 proposes an energy-efficient
signal processing architecture, Diet SODA, and presents the central themes and ideas
of the dissertation. Chapter 6 addresses increased process variation issues in Diet
SODA. Finally Chapter 7 concludes the dissertation, summarizing contributions and

suggesting future research directions.

CHAPTER 2

Background

2.1 SDR solutions

There has been tremendous industrial interest in SDR from universities and many
leading semiconductor companies. The proposed SDR solutions can be categorized
into two types: SIMD-based architectures and reconfigurable architectures.

SIMD-based architectures usually consist of several high performance SIMD PEs
and a shared global memory; these components are connected through a shared bus
and managed by a general purpose control processor. Many SIMD-based architec-
tures support VLIW execution by allowing concurrent memory and SIMD arithmetic
operations. Reconfigurable architectures, on the other hand, usually consist of many
simple PEs that are connected through a interconnection fabric. These PEs range
from fine-grain LUTSs to coarse-grain ALUs or even ASICs. Appendix A and B in-
troduces existing SIMD-based and reconfigurable architectures for SDR baseband

processing. In this chapter, we present a SIMD-based architecture, SODA, which

serves as a baseline architecture throughout this dissertation.

2.1.1 SIMD-based Architectures

SIMD-based architectures usually consist of one or more high-performance SIMD
DSP processors that are connected through a shared bus and managed by a gen-
eral purpose control processor. These types of architectures usually use software-
managed scratchpad data memories to meet real-time constraints. Most SIMD-based
SDR processors support VLIW execution by allowing concurrent memory and SIMD
arithmetic operations. Some commercial solutions choose to incorporate accelerators

for error correction algorithms, including Viterbi and Turbo decoders.

2.1.1.1 University of Michigan, SODA

SODA (Signal Processing On Demand) is an academic research prototype for
mobile SDR [1]. It is a SIMD-based DSP architecture designed to meet both perfor-
mance and power requirements for two representative protocols, WCDMA and IEEE
802.11a.

The SODA multiprocessor architecture is shown in Fig. 2.1. It consists of mul-
tiple data processing elements (PEs), one control processor and a global scratchpad
memory, all of which are connected through a shared bus. Each SODA PE consists
of five major components: 1) a 32-way, 16-bit datapath SIMD pipeline for support-
ing vector operations. Each datapath includes one 16-bit ALU with multiplier and

a 2 read-port, 1 write-port 16 entry register file. Intra-processor data movements

10

SODA System

.| Control
Processor
Global
> Scratchpad
Memory
g
m L | PE
- oca -
o > Execution
9 > .
c Memories [€—>| Unit
o
et
FE’ 1 | PE
£ oca ;
> . Execution
Memories [€—>| Unit
] | PE
» it Execution
"1 | Memories [« Unit
[N X)

SODA

1. SIMD pipeline

PE —
Pred.
3. Local Regs
TETY »| 512-bit | |y
To siMp [l
System —p ALU+
Bus Mult
\ 4 L
512-bit [
5. DMA Local SIMD SIMD
Iq > Shuffle
» SIMD Reg. 5 > Net- _)‘é“_
Memory File > work
> | (ssN)
\ 4
A _ > to V]
DMA N ? Scalar ['S':
A
R o jees) T
Local
Scalar - 2. Scalar pipeline
Memory Scalar > E Scalar
FEF Gl
, f

AGU

" ALU

4. AGU pipeline

[ws]

H

Figure 2.1: A SDR architecture: SODA [1]

are supported through a SIMD Shuffle Network (SSN); 2) a 16-bit datapath scalar

pipeline for sequential operations.

The scalar pipeline executes in lock-step with

SIMD pipeline; SIMD-to-scalar and scalar-to-SIMD operations exchange data be-

tween two pipelines through the STV (Scalar-To-Vector) and VTS (Vector-To-Scalar)

registers; 3) two local scratchpad memories for the SIMD pipeline and the scalar

pipeline; 4) an AGU (Address-Generation-Unit) pipeline for providing the addresses

for local memory accesses; and 5) a programmable DMA (Direct-Memory-Access)

unit for transferring data between scratchpad memories and interface with the out-

side system (inter-processor data transfer). The SIMD pipeline, the scalar pipeline

11

and the AGU pipeline execute in VLIW-styled lock-step manner, controlled with one
program counter (PC) [1].

Arithmetic Data Precision. SODA PE only provides support for 8 and 16-bit
fixed-point operations because many DSP algorithms in both WCDMA and 802.11a
wireless protocols operate on 8- or 16-bit fixed point data. Each lane in the SIMD
pipeline and the scalar pipeline support 16-bit fixed-point arithmetic operations. The
AGU pipeline supports 8-bit addition and subtraction because 8 bits are sufficient for
software-managed data buffers.

Vector Permutation Operations. SODA’s SSN consists of a shuffle exchange
(SE) and an inverse shuffle exchange (ISE) networks to support any 32-wide vector
permutation. By including both the SE and ISE networks, the number of iterations
can be reduced to a maximum of 9 clock cycles and a straight-through connection
is also provided. Combining with predicated move operations, the SSN can support
any vector length permutation.

Performance. For W-CDMA and 802.11a, the SODA architecture achieves large
speed ups over a general purpose Alpha processor. For example, W-CDMA’s searcher
algorithm requires 26.5Gops on the general purpose processor; however the algorithm
requires only 200Mops on SODA. The performance improvements are mainly due to
SODA’s wide SIMD execution.

The RTL Verilog model of SODA was synthesized in TSMC 180nm technology.
The results show for a clock frequency of 400MHz, SODA consumes 2.95W for W-

CDMA 2Mbps system and 3.2W for 802.11a 24Mbps system. However, with technol-

12

ogy scaling, the power numbers are expected to reduce to acceptable levels such as

450mW for 90nm technology and 250mW for 65nm technology.

2.1.1.2 ARM, Ardbeg

The Ardbeg system architecture consists of two PEs, an ARM general purpose
controller, and a turbo coprocessor, all of which are connected through a 64-bit AMBA
3 AXI interconnect bus. The overall architecture of the Ardbeg PE is very similar to
the SODA PE, with a 512-bit SIMD pipeline, a scalar pipeline, an AGU pipeline, and
local memory. In addition to SODA’s 16-fixed point operations, Ardbeg also supports
8-bit and 32-bit fixed operation as well as 16-bit block floating point operations. To
implement SIMD shuffle network, Ardbeg adopts a 7-stage single-cycle Banyon net-
work, which allows faster data alignment operations that are more important tasks
in upcoming wireless algorithms. Ardbeg PE uses one unified scratchpad memory
because DLP-dominant DSP algorithms make it more efficient to share the memory
space between the SIMD datapath and the scalar datapath. Turbo decoding, one of
the widely used error correction algorithms in wireless communications, is very com-
putationally intensive and hard to vectorize. Therefore, Ardbeg offloads the task to a
turbo coprocessor to increase performance and power-efficiency. Ardbeg is designed
using the OptimoDE framework [3], which allows the generation of custom VLIW-
style architecture and faster evaluation of the architecture. The instruction set for

Ardbeg is derived from the ARM NEON extensions [17].

13

2.1.1.3 Icera, DXP

The Icera’s Deep eXecution Processor (DXP) [4] is a 2-LIW 4-way SIMD archi-
tecture. Its key features are deeply pipelined execution units and a programmable
configuration map which holds pseudo-static configurations and constants for the ex-
ecution units. In the SIMD execution datapath, SIMD ALUs are chained to exploit
the characteristics of streaming data. The chained operation saves register file access
power at the cost of less flexible SIMD datapath. Icera’s processors do not use any

hardware accelerators.

2.1.1.4 Linkoping University, SIMT

SIMT [5] architecture consists of Complex MAC (CMAC) SIMD units, Complex
ALU (CALU) SIMD units, memory banks, on-chip network, accelerators, and a con-
troller unit. The controller core efficiently manages the two SIMD units and the
matching memory bank system so that several threads can be run simultaneously.
The CMAC unit consists of four complex MAC lanes each of which uses 14x14 bit
complex multipliers and has eight 2x40 bit accumulator registers. The CALU unit
is similar to the CMAC unit except with simplified complex multiplier supporting
only 0,+/—1,+/ —4 multiplications. To provide required memory bandwidth to the
SIMD units and accelerators, SIMT architecture uses a number of memory banks.
Each memory bank contains its own address generation unit to minimize memory
access conflicts. The programmable reconfigurable crossbar switch is used as the

on-chip network.

14

2.1.1.5 Sandbridge Technology, Sandblaster

Sandblaster [6] is an example of a multi-threaded SIMD vector architecture. It
consists of a RISC-based integer execution unit and multiple SIMD vector units. In
addition, multiple copies of I-cache and data memory are available for each thread.
Each instruction has four fields: load/store, ALU, integer multiplier, and vector mul-
tiplier. Therefore, the architecture can issue up to four simultaneous instructions
where one may be a data parallel vector operation. This architecture also uses To-
ken Triggered Threading (T3) which consumes much less power than simultaneous
multithreading (SMT), because T3 issues instructions in round-robin fashion. The

Sandblaster architecture supports up to eight threads.

2.1.1.6 Analog Devices, TigerSHARC

The TigerSHARC [7] implementation, ADSP-TS001, adopts several mechanisms
that are found in general-purpose processors such as 1) a register-based load-store
architecture with a static super-scalar dispatch mechanism, 2) highly parallel short-
vector-oriented memory architecture, 3) support for multiple data types including
32-bit single-precision floating point and 8-bit/16-bit fixed point, 4) parallel arith-
metic instructions for two floating-point multiply-accumulate (MAC) operation or
eight 16-bit MACs, 5) 128-entry four-way set associative branch target buffer (BTB),
and 6) 128 architecturally visible, fully interlocked registers in four orthogonal register
files. TigerSHARC architecture provides concurrent SIMD arithmetic operations by

having two 4-lane SIMD computation blocks controlled with two instructions. This

15

VLIW /superscalar architecture fetches four instructions and issues one to four in-
structions per clock cycle. The 128 32-bit registers are memory mapped and divided
into four separate register files of size 32x32 bit. The multiple data type supports

subword parallelism in addition to inherent SIMD data parallelism.

2.1.1.7 NXP, EVP

The Embedded Vector Processor, EVP [8], consists of 16-wide 16-bit SIMD data-
path, one scalar datapath, programmable memory, and VLIW controller. The SIMD
datapath comprises of vector memory, 16 vector registers, load/store unit, ALU,
MAC/shift unit, intravector unit, and code generation unit. The 16-bit datapath sup-
ports 8-bit and 32-bit data to allow word-level parallelism. The EVP also supports
multiple data types such as complex numbers. This architecture allows maximum par-
allelism using VLIW execution: five vector operations, four scalar operations, three
address operations and one loop control can be executed at once. In the SIMD datap-
ath, the shuffle unit rearrange the elements of a single vector according to any pattern;
intravector unit supports summation, maximum, and split operations, and the code

generation unit supports various CDMA-code generations for different systems and

Cyclic Redundancy Checks (CRC) as well.

2.1.1.8 Infineon Technologies, MuSIC-1

Infineon baseband processor, MuSIC-1[9], consists of four SIMD core clusters, a
general-purpose processor, shared memory, and dedicated programmable processors

for FIR filter and Turbo/Viterbi decoder. Each SIMD core contains four processing

16

elements (PEs) and supports special instructions and LIW features for arithmetic
operations, local memory accesses, and inter-PE communications in parallel. The
general-purpose processor runs control programs to provide the PE controller with
instruction addresses. The code and data are stored in an external memory; therefore,
all of the baseband processor’s components are shared through on-chip memory, which

consists of multiple banks to support simultaneous accesses.

2.1.2 Reconfigurable Architectures

Reconfigurable architectures usually consist of many small PEs which are con-
nected through a interconnection fabric. These architectures can be categorized as
either homogeneous or heterogeneous based on the type of PE. In addition, these PEs

range from fine-grain LUTSs to coarse-grain ALU units and even ASICs.

2.1.2.1 IMEC, ADRES

ADRES [10], Architecture for Dynamically Reconfigurable Embedded System, is
an example of a coarse-grain reconfigurable tile architecture that tightly couples a
VLIW processor and a coarse-grain reconfigurable matrix. This tightly coupled sys-
tem has advantages such as shared resources, reduced communication costs, improved
performance, and simplified programming model. The VLIW processor and the re-
configurable matrix share Functional Units (FUs) and Register Files (RFs). For the
reconfigurable matrix part, there are many reconfigurable cells (RCs) which comprise

FUs, RFs, and configuration RAM. These RCs are connected to nearest neighbor RCs

17

and RCs within the same row or column in the tile. Therefore, kernels with a high
level of DLP are assigned to the ADRES tiles whereas sequential codes are run on
the VLIW processor. In ADRES architecture, the data communication is performed
through the shared RF and memory; this approach is more compiler-friendly than
the message-passing method. In addition, ADRES relies on modulo scheduling and
traditional VLIW compiler support to exploit both DLP and ILP to maximize PE

utilization.

2.1.2.2 Delft, Montium

Montium [11] is a coarse-grained reconfigurable processor targeting 16-bit algo-
rithms. Montium consists of two parts: 1) Communication and Configuration Unit
(CCU) and 2) Montium Tile Processor (TP). The CCU configures the Montium TP
and parts of the CCU itself for either block-based communication mode or stream-
ing communication mode based on a particular algorithm. The TP consists of five
Montium ALUs and ten local memories that are vertically segmented into a five pro-
cessing part array (PPA). A relatively simple sequencer controls the entire PPA and
selects configurable PPA instructions that are stored in the decoders. Montium ALU
consists of four functional units in level 1 followed by multiplier and adder in level 2.
Neighboring ALUs can also communicate directly on level 2 in the tile processor. In
the Montium implementation, each local SRAM is 16-bit wide and accompanies each
address generation unit (AGU), and the memory can be used for both integer and

fixed point lookup tables.

18

2.1.2.3 QuickSilver Technology, Adapt2400 ACM

Adapt2400 ACM (Adaptive Computing Machine) [12] consists of the two basic
components: Nodes and Matrix Interconnection Network (MIN). Nodes are the com-
puting resources in the ACM architecture that perform actual work. Each node
consists of its own controller, memory, and computational resources so that it inde-
pendently executes algorithms that are downloaded in the form of SilverWare binary
files. A node is capable of implementing a first come, first served, non preemptive
multitasking system with the support of hardware task manager. The MIN ties
the heterogeneous nodes together carrying data, SilverWare, and control information
between nodes as well as outside the system. This network is hierarchically struc-
tured, and data within the MIN is transported in single 32-bit word packets to any
other node or external interface. This heterogeneous coarse-grain reconfigurable ar-
chitecture cooperates with InSpire SDK Tool Set to provide an integrated scalable

hardware /software platform.

2.1.2.4 XiSystem, XiRisc

XiRisc [13] is an example of a fine-grain reconfigurable architecture. This VLIW
RISC processor features two concurrent execution datapaths and a set of DSP-like
functional units that are shared between two datapaths. The concurrent execution
path represented by a Pipelined Configurable Gate Array (PiCoGA) provides a run-
time extension of the processor ISA for application-specific functions. The PiCoGA is

a programmable pipelined datapath composed of an array of rows that can function

19

as customized pipeline stages. Each row is composed of 16 Reconfigurable Logic Cells
(RLCs) containing two 4-input 2-output LUTs, four registers, and dedicated logic for
a fast carry chain. Each RLC is connected to the others through a programmable
interconnection matrix with 2-bit granularity switches. XiRisc exploits the synergy of
the different execution units, ranging from a 32-bit dedicated MAC unit to bit-level

processing blocks on PiGoGA., which increases execution efficiency and saves energy.

2.2 Near-threshold computing

Near-threshold computation has been attractive in low-power architecture re-
search due to its characteristics of balancing energy savings and performance loss.
Near-threshold operation, as described by Zhai et al. [54], defines three regions of
operation, pictured in Figure 2.2. In the superthreshold regime (Vg3 >Vy,), en-
ergy is highly sensitive to V44 due to the quadratic scaling of switching energy with
Vaq. Hence, voltage scaling down to the near-threshold regime (Vgq ~ Vi) yields
an 10x energy reduction at the expense of approximately 10x performance degrada-
tion. However, the dependence of energy on Vg becomes more complex as voltage
is scaled below Vy,. In subthreshold regime (Vg4 <Vy,), circuit delay increases expo-
nentially with Vg4, causing leakage energy (the product of leakage current, V44, and
delay) to increase in a near-exponential fashion. This rise in leakage energy eventually
dominates any reduction in switching energy, creating an energy minimum.

The identification of an energy minimum led to interest in processors that operate

at this energy optimal supply voltage [58]. However, the energy minimum is relatively

20

Sub-Vy, + Near-Vy+ Super-Vy,
.5 Region + Region Region
®
j
8 ~10X
o
o~
>
[®)]
—
()
C -- L e TS -
w H ~2X
....... poe--c=c=cccec-l
I]
Large Delay . Balanced L Large energy
Increase : Trade-Offs|s reduction
' '
. L}
[} L}
L) L}
L} L}
—_ L] L}
> [] [
E . L}
o} Leccacae Lecccccccccacas
©]
ke ' ~50-100X
. L}
3 L} (]
[} L}
' cepecccccccccaaa:
: ‘ } ~10X
. L}
| | 1
1 T 1
Vth Vnominal

Supply Voltage

Figure 2.2: Supply voltage operating regions and the energy and delay associated
at each point. The near-threshold region provides considerable energy
savings for non-timing critical low power applications such as DSCs.

shallow. Energy typically reduces by only ~2x when Vy; is scaled from the near-
threshold regime to the subthreshold regime, though delay rises by 50-100x over the
same region. While acceptable in ultra-low energy sensor-based systems, this delay
penalty is not tolerable for a broader set of applications.

The identification of an energy minimum led to interest in processors that operate
at this energy optimal supply voltage [58]. However, the energy minimum is relatively
shallow. Energy typically reduces by only ~2x when Vg, is scaled from the near-
threshold regime to the subthreshold regime, though delay rises by 50-100x over the
same region. While acceptable in ultra-low energy sensor-based systems, this delay

penalty is not tolerable for a broader set of applications.

21

The near-threshold region offers an opportunity for many applications to reduce
energy further. In order to do so, the design must overcome one hurdle, the 10x
increase in delay. This delay impacts the ability of designs to meet more stringent
real time constraints without scaling the voltage higher and losing energy efficiency.
However, in cases where the application can be parallelized, simply using more near-
threshold processing elements can meet the timing constraint with greater efficiency.
Near-threshold operation, therefore, has a natural synergy with data parallel envi-
ronments like SIMD. In a SIMD architecture, the number of functional units can be
increased to help meet a timing critical code, provided the application has sufficient
DLP.

However, Near-threshold designs are impacted greater by process variations than
traditional designs, because the on-current (/,,) in the near-threshold voltage region
is highly sensitive to variations in V;;,. Increased process variations in advanced tech-
nology nodes further exacerbates the problem, providing many challenges for process
engineers and circuit designers [62]. These variation-induced timing errors are much
more critical in wide SIMD architectures for two reasons. First, the probability that
all SIMD datapaths are error-free decreases when variations are severe, because the
number of critical paths are multiplied by the SIMD width. Recent work also shows
that there is a significant performance drop in SIMD architectures as single-stage-error
probabilities increase [63]. Second, commonly used error-tolerating methods such as
pipeline stalling or re-execution result in greater performance and power penalties due

to problems in one lane impacting all other lanes. To tolerate variation-induced timing

22

errors in near-threshold operations, complex architectural enhancements have been
considered. For example, Synctium [63] proposed decoupled parallel SIMD pipelines
and pipeline weaving using decoupling queues and micro-barriers.

The details about how near-threshold computing affects wide SIMD architectures
and how the increased delay variation affects the architectures will be discussed in

Chapter 5 and Chapter 6 respectively.

23

CHAPTER 3

Design and Analysis of LDPC Decoders for

Software Defined Radio

Wireless communication has grown at a spectacular rate. As the number of users
and the demand for high quality contents increase, the current bandwidth that 3G
wireless technology provides becomes insufficient. To address these issues, Interna-
tional Telecommunications Union (ITU) proposes 4G wireless technology that in-
creases the bandwidth to maximum data rates of 100Mbps for high mobility and
1Gbps for stationary/low mobility. This increase in bandwidth requires significant
computations to process 4G wireless standard.

Low Density Parity Check (LDPC) codes are one of the most promising error cor-
rection codes that are being adopted by many 4G wireless standards. This chapter
presents a case study for a scalable LDPC decoder supporting multiple code rates and
multiple block sizes on a software defined radio (SDR) platform. Since technology

scaling alone is not sufficient for current SDR architectures to meet the requirements

24

of the next generation wireless standards, this chapter presents three techniques to
improve the throughput performance. The techniques are use of data path acceler-
ators, addition of a few assembly instructions and addition of a memory interface.
The proposed LDPC decoder implementation on an SDR platform achieves 30.01
Mbps decoding throughput for n=2304 and R=5/6 LDPC code outlined in the IEEE

802.16e standard.

3.1 Introduction

Low density parity check (LPDC) codes have excellent error correction perfor-
mance that approaches the Shannon capacity limit [20], [21]. As a result, they have
been adopted in many current and next generation wireless protocols such as DVB-
S2 and the IEEE 802.16¢ standard (WiMAX). Decoders used for LDPC codes have
high throughput requirements and have been successfully implemented using ASICs
and FPGAs [22]. However, the emergence of a wide variety of wireless protocols
that are rapidly changing makes custom hardware for these decoders relatively time
consuming and expensive to develop.

This chapter presents a case study for a LDPC decoder implementation that sup-
ports multiple code rates and multiple block sizes on a SDR platform, SODA. When
the LDPC matrix is represented by structured submatrices, the data-level parallelism
can be efficiently handled by the SIMD pipeline. However the current SODA archi-
tecture is unable to meet the high decoding throughput and the scalability require-

ments (multiple block sizes and multiple code rates) of the IEEE 802.16e standard.

25

Figure 3.1: LDPC matrix H and the corresponding bipartite graph

In this chapter we present use of data path accelerators, addition of memory units
and addition of a few assembly instructions to address the throughput and scalabil-
ity requirements. The proposed LDPC decoder implementation achieves 30.4 Mbps
decoding throughput for the n=2304 and R=5/6 LDPC code outlined in the IEEE
802.16e standard.

The rest of the chapter is organized as follows. Section 3.2 gives a brief overview of
LDPC codes. Section 3.3 introduces the mapping of the LDPC decoder onto SODA.
Section 3.4 describes LDPC accelerators, memory controller /buffer organization and
assembly support required for the high throughput scalable LDPC decoder imple-
mentation. Section 3.5 presents memory and throughput analysis of the augmented

architecture. Section 3.6 concludes the chapter.

26

3.2 LDPC Basics

3.2.1 Introduction

A LDPC code is a class of linear block codes whose codewords satisfy a set of linear
parity-check constraints [20]. These constraints are typically defined by an m-by-n
parity-check matrix H, whose m rows specify each of the m constraints (the number of
parity checks), and n represents the length of a codeword. H is also characterized by
W, and W,, which represent the number of 1’s in the rows and columns, respectively.
A LDPC code can be represented by a bipartite graph, which consists of two types
of nodes, Variable Nodes (VN) and Check Nodes (CN). Check node i is connected to
variable node j whenever h;; of H is non-zero. Fig. 3.1 describes the matrix H and

the corresponding bipartite graph of a simple LDPC code.

3.2.2 LDPC Decoding Process

LDPC codes are decoded iteratively using a message passing algorithm [20]. This
algorithm involves exchanging the belief information among the variable nodes and
check nodes that are connected by edges in the bipartite graph. Let I,, be the intrinsic
information from the received signal, L,, be the reliable information for variable node
n, Ly, be the information conveyed from variable node n to check node m, and E,, ,,
be the extrinsic information generated in check node m that is passed to variable
node n. The belief information is updated in an iterative manner and implemented

in two phases. In the first phase, the variable nodes send their belief information,

27

L,, m, to check nodes connected to them; in the second phase, the check nodes send
the updated belief information (new F, ,,) to the variable nodes connected to them

for updating L, (See Fig. 3.1). The iteration steps are summarized in Algorithm 1.

Algorithm 1: Min-sum LDPC Decoding Algorithm

1. Imitialization: £, ,, =0, L,, = I,

2. VNtoCN: L, ,, = L, - By

3. Update E, ,,: BN = f(Lwm|n' € S C N(m))
4. Update L,: L) = Ly + Eﬁ;”

5. Repeat the steps 2,3,4 for NUM iteration times

6. Make a decision of bit n based on the corresponding L,, value

Here, N(m) is the set of variable nodes which are connected with check node m
in the bipartite graph. Similarly, M (n) is the set of check nodes which are connected
with variable node n. The decoding algorithms differ in how the function f in Step
3 of Algorithm 1 is evaluated.

There are three options for the LDPC iterative decoding algorithm: Belief Propa-
gation (BP), A-min and min-sum algorithms [23]. Although BP and A-min algorithms
show better error correction performance compared to min-sum algorithm, these al-
gorithms require a look-up table for hyperbolic function values, which requires addi-

tional memory space. The min-sum algorithm is selected here because of the limited

28

memory size and easy computation patterns. The min-sum algorithm f is shown as

follows. Here, n’ € N(m), n’ # n.

new __

Erey = - (I sign(Lnm)) X ming [Ly |

As can be seen, the operations in the min-sum LDPC decoding algorithm are
limited to addition, subtraction and finding a minimum value, all of which can be
supported by our SDR architecture described in Section 3.3.

Theoretically, the LDPC decoding process finishes when all parity-check equations

are satisfied. In reality, a predefined number of iterations (NUM) based on SNR is

generally used.

3.2.3 LDPC Matrix Partition

AN e A e o
Z/lr I2 l17 l1o | lo : Z-by-n
\A : block row #1
8 it e e e et e A R R o 25 o) V20 0|
zl | Is I lo I20
/4\\ block row #2
|
[l7 Is l30 | e l13 I29
m
I Y I21 lo l1e
|
|
\\ ls I24 l10 Is | 11
\O-——F==t-—d-—-—fs==t——t1-——d=—c—-—poogooo———=
ZK‘ l14 I23 I20 1 : Z-by-n
3 {block row #6

e e =

Figure 3.2: Partitioning of H into z-by-z cyclic identity matrices

A LDPC matrix H has randomly distributed 1’s which results in complex data
routing and is a major challenge for building a high-performance and low-power LDPC

decoder. [22] and [24] show that introduction of some structural regularity in the

29

matrix does not degrade its error correction performance. Moreover the regularity
enables partially parallel implementation of LDPC decoders and has been utilized in
the ITEEE 802.16e standard. Fig. 3.2 shows the partitioning of H into z-by-z cyclic
identity submatrices. Here, I, represents a cyclic identity matrix with rows shifted
cyclically to the right by x positions. This characteristic reduces the routing overhead
and has been exploited efficiently in our architecture. Fig. 3.2 also shows how the
2 of the identity matrices along a row can be grouped to form a block row. So, in
essence, the H matrix can also be partitioned into ™ block rows each of size z-by-n.

z

3.3 LDPC on SODA

The min-sum LDPC decoding algorithm (Algorithm 1) is mapped onto SODA
(See Figure 2.1) in the following way. Step 2 of Algorithm 1 is applied to non-zero
z-by-z submatrices. However, because Step 3 uses the L, ,, values related with check
node m, the SIMD pipeline loads z values of type L,, and aligns the data in check node
order by using SSN before executing Step 2. The shuffied L, ,,, values for all non-zero
2-by-z submatrices in one z-by-n block row are calculated in the SIMD datapath.
After that, the SIMD-to-Scalar unit is used for finding the minimum £S5 among W,
of Lpm values for the same check node m. Next, ;S and the corresponding sign
indicator are used to update a L,, value (Step 4). This procedure implies that some
SIMD slices execute additions and others execute subtractions based on sign values

— a feature that is supported by predicated instructions in SODA. After updating

the L,, values, the data is inversely shuffled and stored in variable node order. This

30

process is repeated for every z-by-n block row in every iteration.

3.4 Scalable LDPC Implementation

In this section, we study a scalable LDPC decoder implementation for block size
n, code rate R=k/n, and (W,, W,)-LDPC code as specified by the IEEE 802.16e
standard on a SODA PE. We describe the enhancements that had to be made in terms
of accelerators, memory units, and new assembly instructions to support multiple
code rates and multiple block sizes. Fig. 3.3 shows the modified SIMD pipeline — the

additional units have been shown using shaded blocks.

Memory | | HH sivpaLu#t | H LDPC
Controller Aligrl;]eFJ [accelarator #1
I
LDPC
o R M 7 SIMPALU#2 19 1 ccelarator #2
N BUF2 g
Aligned Ln“P% [|
S
Local L4 T
SIMD E
Memory || BUF3 1| R
Em1,Em2
L BUF4 | | ||| SIMDALU | ||| LDPC accelarator
Pm, Sm #Wsimd #Wsimd

Figure 3.3: Modified SIMD pipeline in a SODA PE

3.4.1 LDPC Accelerator

In order to meet the high decoding throughput requirements, we introduce a LDPC
accelerator in every SIMD slice as shown in the Fig. 3.3. There are only two possible

En? values for check node m in Step 3 of Algorithm 1 (which are selected from W,

,m

31

values of type Ly, ,,): the minimum £,,; and the second minimum FE,,;. Each LDPC
accelerator expedites finding the minimum values using two compare/store units with
two W,-bit special registers, a selection register P, and a sign register .S,,, as can be

seen in Fig. 3.4. The operation of the LDPC accelerator is summarized below.

The Algorithm of LDPC Accelerator

if (Ln,m <= Eml) \\ operations in Cmp&Store 1

Eml <= Ln,m; Em2 <= Emil;
if (Ln,m < Em1) Pm = 1 << i; else Pm = 0;
}
else if (Ln,m < Em2) \\ operations in Cmp&Store 2
{
Em2 <= Ln,m;
}

Sm = (Sm | sign(Ln,m)) << 1;

E, Ene, P, and S, are extracted using a flush signal and these values are used

to compute E,,, using the following operation (Step 7 and 14 of Algorithm 2).

=}
=
i
&5
3
3
I

(Sali]) Emt, else Epnlil = (Smli]) Enms

3.4.2 Memory Units

A major challenge in decoding LDPC codes is the large number of data alignment

operations required for every z-by-z permutation matrix. z values of type L,, need to

32

—Flush— Em1 Wr
—1nm Cmpg&Store 1 | | | : | | I__
- Selection Reg. - Pm
Wr
Em?2
Cmp&Store 2 |_{ | | | | | I__'
] Sign Reg. - Sm

Figure 3.4: LDPC accelerator

be shuffled so that they can be correctly aligned for check node processing. If z is less
than the SIMD width (Wg;,q), the data alignment can be executed in one clock cycle
using SSN. However, the IEEE 802.16e standard uses different 2 values (24, 28, 32,
..., 96) for different block sizes [25]. If z is larger than W4, many clock cycles are
required for data alignment operation when SSN is used. This causes a degradation
in the LDPC decoding throughput performance.

To solve the alignment issue, we propose a memory controller and buffer organi-
zation (instead of using the shuffle network) as shown in Fig. 3.3. BUF1 and BUF2
contain aligned L, and L“% (to be described in Section. 3.4.3) respectively; BUF3
contains F,,; and F,,»; and BUF4 contains P, and .S,,.

The memory controller handles movement of L,, data between the SIMD memory
and BUF1. Since the z-by-z permutation matrices in the LDPC codes used in the
IEEE 802.16e standard are circular right-shifted identity matrices, each permutation
matrix can be defined by a single right-shifted amount s. The alignment operation

can now be achieved by two memory copy operations described below. If the shifted

33

Wsimd . Wsimd - Wsimd Wr.
Loading ord PR AN
- [FE——=—=—=== ——-X,
04 |5 1[5 nd Group 1: q Em1_1 Pm_1 ||
The 1” noazero — |
Wre Subrfatrixina | Em2_1 sm_1 |,
21| awr+1 |z [0a | zbynblock s -~ —Emi2-— — T[PmZ T
2 | Group,Z: Em2 2 Sm 2
Wre2 The 2™ nonzero ET 3 —
Local SIMD Subrr:{a{frlx in the = _
Scratchpad Memory | 2Wr+2 | Z-by,N block row Em2_3 Sm_3
(Contain initial /
Ln Values) //
BUF1/BUF2 |, BUF3 BUF4
. /
Wr Group Wr:
The Wr" nonzero
Wr+Wr | Submatrix in the
2Wr+Wr | z-by-n block row

Figure 3.5: Data alignment in buffers

amount is s and the start memory address is Mg, the memory controller first
copies MEM[mgart + 8 ... Magare + 2 — 1] to BUF1, and then copies MEM[m

Mstart + 5 — 1] to BUF1. This is shown in Fig. 3.5 for an example where s=5,
Mtart=0. This is done for all non-zero W, submatrices in a z-by-n block row. At the
end of this process, BUF1 contains W, groups of aligned L,, data (see Fig. 3.5). In
a similar way, the memory controller fills BUF2 for L% data with another shift
amount ((s —

s'P9ate) mod Wima) (to be described in Section. 3.4.3). Note that the

width of BUF1 and BUF2 is Wg;,,4.

3.4.3 Modified Decoding Algorithm

Algorithm 2 shows the LDPC decoding algorithm on the modified SODA archi-
tecture. The L, and L“9 values are aligned and stored in BUF1 and BUF2 (Steps

1 and 2 of Algorithm 2). The aligned values of L, and L% (Step 5) along with

34

Emi, Ens (Step 4), P, and S, (Step 6) of the first row of the first group (see for
example Group 1 in Fig. 3.5) are fed to the ALU unit and LDPC accelerator in each
SIMD slice. These values are updated in Steps 7, 8, 9 of Algorithm 2. The process
is repeated for the first row of the next group (see for example Group 2 in Fig.6),
and so on. After completing processing of all the first rows of all the W, groups
(Step 10), the updated values of E,,1, E2, P, and S, are stored in their respective
buffers (Steps 11, 12). The updated values are used to compute £, and [update
(Step 15, 16) of the first row of each W, group (Step 17). The process is repeated for
the second row of each W, group, and so on (Step 18). The above schedule results in
high decoding throughput performance; it reduces the number of data switches and
also speeds up the operation of finding the minimum values in the min-sum decoding
algorithm. After processing all the data for one z-by-n block row, the data for the
next z-by-n block row is loaded into BUF1 and BUF2, and the process repeats the

number of z-by-n block rows(:@) times.

Algorithm 2: LDPC decoding algorithm in the modified SODA PE

1. load aligned L, to BUF1

2. load aligned LUrdate to BUF2

3. load W, for the current z-by-n block row
4. load Ep,1, Enmo from BUF3

5. load L,, L' from BUF1, BUF2

6. load Py, S, from BUF4

35

7. compute EZ'T using Eri, Emg, Py, and Sp,.
8. update Ly, = Ly, + Lupdete - peurr
9. update E,,1, Em2, Py, and Sy, using Ly, p,
10. repeat step 5 to step 9 W,. times
11. store updated Ep,1, Epa (EMGY,ENSY) in BUF3
12. store updated Py, Sy, (Pr¢*, Sre?) in BUF4
13. load LuPdate from BUF2 again
14. compute E}CT using Ep9Y, ENS°, P, and Sp7
15. update Lypdete 4= Enew
16. store updated LUPdate in MEM
17. repeat step 12 to step 16 W, times

z

18. repeat step 4 to step 17 [~ d} times

19. repeat step 1 to step 18 =B times.

z

20. repeat step 1 to step 19 NUM times.

In order to reduce the memory for storing L,,,,, we introduce the parameter
Lupdate - which is (-Ey, + Erer). In fact, the memory space is reduced by a factor
of m by keeping one L“P% value for each check node n instead of storing all L, ,

values for every n and m combination.

36

Since updated L“9% values are processed in check node order, inverse alignment
operation is required to store the data in variable node order in memory. After Lupdate
is stored back in memory, for the next z-by-n block row computation, the data is
realigned with a different shift amount. However, these two alignment operations can
be reduced to one alignment operation using another shift amount s*7%; instead of
inverse alignment operation, L' is stored with the current shifted amount st

and then, in the next iteration, the memory controller use ((s — s*7%%) mod Wy;mq)

as a shift amount to align LuPdete,

3.4.4 Assembly Support

New assembly instructions are required for the proposed architecture to improve
the decoding throughput performance. Steps 1 and 2 of Algorithm 2 are inde-
pendent and can be executed in parallel. These are combined to form instruction
ldpc.mem2buf. Similarly steps 5 and 6 of Algorithm 2 can be executed in paral-
lel and combined to form instruction (dbufs. Steps 8 and 9 of Algorithm 2 can be
executed in a pipelined manner through the ALU unit and the LDPC accelerator
unit. We combine these two instructions and introduce a macro-operation instruc-
tion, ldpc_in. To implement steps 11 and 12 of Algorithm 2, the new instruction,
ldpc_out.(vp), is introduced to flush E,,1, Ene, P, and S, from LDPC accelerators
and store them in BUF3 and BUF4. The additional new assembly instructions are

listed below.

The New Assembly Instructions

37

1. ldpc-mem2buf Addr[Mem],Addr[BUF1],Addr[BUF2],S1,52
: send a control signal to the memory controller
: the controller loads L,,, L“P%¢ from a memory and aligns the data with shift amounts

(S1, S2) in BUF1 and BUF2

2. ldbuf3 V3,V4,Addr[BUF3]

: load V3=FE,,1, V4=E,,» from BUF3

3. ldbufs V1,V2,P1,P2 Addr[BUF1],Addr[BUF2],Addr[BUF4]

: load V1=L,, V2=Ludate P1—=p, P2=8,, from BUF1, BUF2, BUF4

4. ldpcin V1,V6
: 1) calculate Ly, ,, with V1=L,, and V6=Ludate ES5

: 2) update Ep1,Em2,Py,Sy in LDPC accelerators with Ly, ,.

5. ldpc_out.v V7,V8,Addr[BUF3|

: extract VI=E,,1, V8=E,,» from LDPC accelerators and store them in BUF3

6. ldpc_out.p P3,P4,Addr[BUF4]

: extract P3=P,,, P4=S5,, from LDPC accelerators and store them in BUF4

The overhead of adding these new instructions is the increased instruction bit

width and the instruction decoder complexity.

3.4.5 Scalability Issues

The proposed architecture supports different values of z and W, corresponding

to the different code sizes and code rates mandated by the IEEE 802.16e standard.

38

The memory configuration described in Section 4.2 handles the more difficult case of
when z > W;,,q. Larger z results in more computations and so a larger W;,,q would
help in achieving higher decoding throughput. The penalty is the larger area, both
is terms of datapath and memory, and larger power. The parameter W, affects the
decoding throughput (number of iterations in Algorithm 2). Since it also affects the
buffer size and P,,, .S,, registers in the LDPC accelerators, the architecture has to be

designed for the largest value of W,.

3.5 Analysis

In this section, we study the required memory and buffer size, and also analyze the
improvement in the decoding throughput due to the memory organization, datapath

accelerators and assembly instruction support.

3.5.1 Memory Size Analysis

LDPC decoding process consists of computationally simple operations and multi-
ple memory operations. As a result, if the memory is not organized properly, then it
is highly likely that the SIMD pipeline would have to wait for the data to arrive. In
a typical implementation, there are four main values that are to be stored: L,,, Ly .,
E, m, and shuffle information. For n=2304 and R=5/6 LDPC codes outlined in the
IEEE 802.16¢ standard, a brute-force decoding method needs 3.456GB for storing
the L, ., and E, ,, values. Even if we consider only non-zero elements, the storage

still requires 30KB (15KB+15KB), which is a still large memory space for an SDR

39

platform. Therefore, a new scheme to reduce memory space should be considered.
There is no way to reduce the storage of L, because the data is used to decide the
final decoded bit value. However, the storage for L, ,, and E, ,, can be significantly
reduced.

To reduce E,, ,, storage size, we exploited the fact that there are only two possible
Eye, values for check node m: FE,,; and E,,5. This two-minimum method reduces
the required memory space by a factor of W, /2. For the case mentioned above, the
storage requirement for £, ,,, values is reduced to 1.5KB. Also, instead of storing all

Ly values, we store LUP% yalues, thereby reducing the storage by a factor of m(=4)

to 3.75KB.
Storage Size(B) Ex.(KB)
MEM: L,,, L% 4n 9
BUF1: L, 2Weima Ve [| 3.75
BUF2: Luiate 2Weaima W [77— 3.75
BUF3: Ept, Epz | AWaima[77— "2 | 15
BUF4: P, Sy 2W, [| "1 0.94

Table 3.1: Memory/Buffer requirements for n=2304 and R=5/6 LDPC code in the
IEEE 802.16e standard

Table 3.1 summarizes the memory and buffer requirements for a block size n, code
rate R=k/n, and (W,,IW,.)-LDPC code. We list the memory requirements for n=2304
and R=5/6 LDPC code (the IEEE 802.16e standard) when W;,a = 32, W, = 20,

and z = 96 under the column 'Ex.” in the table.

40

3.5.2 Throughput Analysis

The data path accelerators, the memory units, and the new instructions all help
in increasing the decoding throughput. For the n=2304 and R=5/6 LDPC code in
the IEEE 802.16e standard and for NUM=10, the achievable clock cycle reductions
for each of the enhancements are shown in Table 3.2. Here 40000 is the number of

cycles in the original SODA implementation.

Reduction in Cycles | Reduction Percentage
LDPC Accelerators 5760(40000) 14.4 %
Memory Units 6912(40000) 17.3 %
New Instructions 4608(40000) 11.5 %

Table 3.2: Cycle reductions due to enhancements

The proposed SODA PE is implemented in 0.18um technology and is clocked at
400MHz. The LDPC decoding throughput for n=2304 and R=5/6 LDPC code can
be boosted from 18.3 Mbps to 30.4 Mbps using the proposed enhancements. With
technology scaling, the decoding throughput is expected to increase to around 62.2
Mbps in 90nm technology.

The area and power overhead in the datapath and memory is quite small. For in-
stance the area of the memory controller and LDPC accelerators is negligible (5.37%)
compared to the original design. However the complexity of adding CISC-type in-

structions requires careful evaluation.

41

3.6 Summary

In this chapter, we presented a software-hardware co-design case study of LDPC
decoder for SDR. We first provided an overview of LDPC codes and then showed
how LDPC decoding can be done by the SDR architecture. Next we showed how use
of datapath accelerators, memory buffers and additional instructions can be used to
improve the decoding throughput performance. We implemented a scalable LDPC
decoder for the IEEE 802.16e standard. Our results show that we can achieve 30.4

Mbps decoding throughput for n=2304 and R=5/6 LDPC code.

42

CHAPTER 4

Customizing Wide-SIMD Architectures for H.264

In recent years, the mobile phone industry has become one of the most dynamic
technology sectors. Mobile computing systems are not limited only to wireless signal
processing. The increasing demands of multimedia services such as high-definition
video, audio, and 3-D graphics on the cellular networks have accelerated this trend.

This chapter presents a low power SIMD architecture that has been tailored for
efficient implementation of H.264 encoder/decoder kernel algorithms. Several cus-
tomized features have been added to improve the processing performance and lower
the power consumption. These include support for different SIMD widths to increase
the SIMD utilization efficiency, diagonal memory organization to support both col-
umn and row access, temporary buffer and bypass support to reduce the register file
power consumption, fused operation support to increase the processing performance,
and a fast programmable crossbar to support complex data permutation patterns.
The proposed architecture increases the throughput of H.264 encoder/decoder kernel

algorithms by a factor of 2.13 while achieving 29% of energy-delay improvement on

43

average compared to our previous SIMD architecture, SODA.

4.1 Introduction

In the past decade, mobile devices have rapidly proliferated. Today’s devices not
only support advanced signal processing of wireless communication data, but also
multimedia services such as video encoding/decoding, interactive video conferencing
and image manipulation. All of this requires a powerful processor which has to be
very power-efficient.

H.264 is a state-of-the art video compression standard of I'TU-T Video Coding
Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG).
This standard provides higher quality video with lower bit rates than earlier standards
and has been adopted in many of current and next generation video applications. For
instance, both the Bluray Disc and HD-DVD format ratified H.264 as one of three
mandatory video compression codecs for High Definition DVD, and the Digital Video
Broadcast (DVB) also selected the use of H.264 for broadcast television.

In this chapter, we present a programmable wide SIMD architecture that has
been optimized for H.264. The wide-SIMD architecture like SODA [1] is customized
to exploit the characteristics of the H.264 kernel algorithms with following features:
1) support of multiple SIMD widths to increase the SIMD utilization efficiency, 2)
diagonal memory organization to avoid memory access conflict, 3) bypass and buffer
support to reduce the register file (RF) power consumption, 4) fused operation sup-

port to speed up the processing, and 5) a fast programmable crossbar to support

44

complex data shuffle operations. The proposed architecture is similar to AnySP [18],
but customized more for video codecs.

The rest of the chapter is organized as follows. Section 4.2 gives a brief overview of
H.264 encoder/decoder. Section 4.3 introduces the new architectural features incurred
by H.264 algorithms and Section 4.4 describes the modified processing element (PE)
architecture in SODA architecture. Section 4.5 shows how H.264 kernel algorithms
are mapped on the modified SIMD architecture. Section 4.6 presents the throughput
and power analysis of the augmented architecture. Section 4.7 introduces the related

work and Section 4.8 concludes the chapter.

4.2 H.264 CODEC

Video compression is being actively considered for mobile communication systems
because of the increasing demand of multimedia services on mobile devices. In this
chapter, we focus on H.264 because it is representative of contemporary video coding
standards and achieves better performance than earlier standards such as MPEG-1,
MPEG-2, MPEG-4, and H.263.

Fig. 4.1 shows the block diagram of H.264 encoder a