A Study of Mobile Device Utilization

Cao Gao', Anthony Gutierrez!, Madhav Rajan?, Ronald G. Dreslinski', Trevor Mudge', and Carole-Jean Wu?

"University of Michigan, Ann Arbor, {caogao, atgutier, rdreslin, thm} @umich.edu
2Arizona State University, {mrajan, carole-jean.wu}@asu.edu

Abstract—Mobile devices are becoming more powerful and
versatile than ever, calling for better embedded processors.
Following the trend in desktop CPUs, microprocessor vendors
are trying to meet such needs by increasing the number of cores
in mobile device SoCs. However, increasing the number does
not translate proportionally into performance gain and power
reduction. In the past, studies have shown that there exists little
parallelism to be exploited by a multi-core processor in desktop
platform applications, and many cores sit idle during runtime.
In this paper, we investigate whether the same is true for current
mobile applications.

We analyze the behavior of a broad range of commonly
used mobile applications on real devices. We measure their
Thread Level Parallelism (TLP), which is the machine utilization
over the non-idle runtime. Qur results demonstrate that mobile
applications are utilizing less than 2 cores on average, even
with background applications running concurrently. We observe
a diminishing return on TLP with increasing the number of
cores, and low TLP even with heavy-load scenarios. These studies
suggest that having many powerful cores is over-provisioning.
Further analysis of TLP behavior and big-little core energy
efficiency suggests that current mobile workloads can benefit from
an architecture that has the flexibility to accommodate both high
performance and good energy-efficiency for different application
phases.

I. INTRODUCTION

Nowadays, mobile devices are gradually taking over the
functions of traditional desktop applications. High-definition
video playback, interactive games and web browsing are
commonly supported by the latest smartphones and tablets.
These performance-intensive tasks need powerful hardware
support, which drives microprocessor vendors to continuously
produce better mobile CPUs. Given the strict power budget
of mobile devices, vendors reached the limits of frequency
scaling quickly and turned to multi-processors. The first dual-
core smartphones, such as Galaxy S II and HTC Sensation,
came to market in 2011. Most of the high-end smartphones
released in 2012 were dual-core or quad-core; in April 2013,
the Samsung Galaxy S4 was released with the Exynos 5 Octa,
which uses ARM’s big.LITTLE architecture and has a total
of eight cores. Mediatek shipped their octa-core SoC in late
2013, and Qualcomm announced their octa-core CPU with
eight A53s in early 2014 as well.

However, some recent smartphones are still equipped with
dual cores. Apple’s new A8 Chip for the iPhone 6, released
in September 2014, uses a dual-core CPU and still provides
satisfactory performance. This leads to the question: How
much of the computation potential residing in multi-core CPUs
is actually being utilized? On the desktop end, Blake et al. [1]
did a study on Thread Level Parallelism (TLP) on a suite of

representative desktop applications. Their work was to measure
the core utilization in modern multi-core CPUs, and they
suggested that the number of cores that can be profitably
used is less than 3 for most commonly used applications.
It is possible that mobile device applications have similar
characteristics and cannot effectively utilize a quad-core CPU,
let alone hexa- and octa-core. Moreover, the GPU, DSPs,
and ASICs in these systems already exploit much of the
parallelism, leaving little for the CPU.

To make some observations about the benefit of multi-core,
we performed two preliminary experiments on an up-to-date
quad-core mobile device platform. First, we measured how
many cores are actually activated by the Android OS when
running an application. We found that the fourth core was
only activated in 2 out of 21 apps, and the OS also shut off
the third core for nearly half of the apps. Note that activation
does not mean the core is in use; it only means the OS thinks
that the core might be used. Second, we overrode system setup
and manually set the number of activated cores in the system.
Then we ran a browser benchmark [2]; we saw a significant
performance improvement from single-core to dual-core, but
negligible improvements from dual-core to triple- and quad-
core. Both of these results show rather modest gains from
high numbers of cores (here more than 2). In all, to measure
how much parallelism actually exists is helpful to: a) inform
vendors and prevent them from over-provisioning hardware
that cannot be effectively used, b) highlight the need to find
more parallelism, c) provide suggestions for a better design.

In this work, we analyze a broad range of popular mobile
applications to determine how the growing number of cores
are utilized. We measure the Thread Level Parallelism (TLP)
of these applications. The results show that mobile apps are
utilizing less than 2 cores on average, which means multiple
cores are used rather infrequently. A small TLP scalability
is observed for most applications, and increasing the number
of cores has diminishing return on TLP. Even in heavy-
load real-world scenarios with background applications or
multi-tab browsing, there is still not enough work to keep
utilization high. Due to the physical constraint and interactive
user pattern, mobile applications tend to have less parallelism
to exploit than desktop applications. The GPU and mobile co-
processors on chip also reduce CPU load. All these factors,
and the history of the slow pace of exploiting parallelism
in desktop and mobile software environments [1, 3], indicate
that having many powerful cores is over-provisioning. Further
analysis suggests that current mobile applications can benefit
from a system with the flexbility to satisfy high performance
and good energy-efficiency for different application phases. We
find that TLP behavior exhibits short peaks and long valleys
rather than remaining constant. Peaks require high perfor-

mance, but not necessary good energy-efficiency because these
peaks are usually short, meaning that power has less affect
on overall energy consumption. Valleys, on the other hand,
desire better energy-efficiency because they do not require high
performance but usually dominate the application execution.
There is also a number of other research opportunities that
arise, such as building accelerators or customized hardware
to further reduce the thread’s TLP peaks with better energy
efficiency, or building better OS infrastructure to utilize mobile
heterogeneous systems.

To summarize, we make the following contributions:

e We construct a suite containing representative Android
applications from a variety of categories, as well as
their corresponding test actions.

e We measure the Thread Level Parallelism (TLP) of
mobile applications on current mobile device plat-
forms and show it is less than 2 on average.

e We observe diminishing returns of TLP when increas-
ing the number of cores. Heavy-load test cases also
show low TLPs, which suggests there is not a lack
of hardware resources. Both demonstrate that having
many powerful cores is over-provisioning.

e We make the case for the need of a flexible system that
can accommodate both high performance and good
energy-efficiency for different program phases.

II. MOTIVATION

We perform two preliminary experiments on an Origen
board, a current mobile device platform with a quad-core
1.4GHz ARM Cortex-A9 CPU. First, we measure how many
cores are actually activated by the OS when running an appli-
cation. The Android system employs a CPU governor which
turns individual cores on or off and changes their frequencies
based on CPU loads. When it finds that a core sits idle for most
of the time, it will turn it off to save power. We run a suite
of commonly used applications with the default governor—
ondemand. We find that the fourth core is only activated in 2
out of the 21 apps we tested. For nearly half of the apps, the
OS also shuts off the third core for most of the time. We show
part of our results in Fig. 1. We plot a breakdown of the time
percentage that each system configuration spends for these
applications. Different colors represent system configurations
with different numbers of cores activated. The only app in this
graph that activates the fourth core is Google Maps. Browser
and Jetpack (a game) do activate three cores for most of the
time, but Facebook does so only for half of the time, and Email
never. Note that activation does not mean utilization; it only
means the OS thinks that this core might be utilized. The core
could still sit activated and idle at the same time. We will show
the core utilization in the results section.

In the second experiment, we override system setup and
manually set the number of cores activated in the system. Since
web-browsing is among the most commonly used features on
mobile devices [4], we run a browser benchmark, BBench [2]
on two browsers, and compare the performance of different
CPU configurations. We plot the results in Fig. 2. The score
is the time taken to render the complete set of webpages
in BBench, and lower score means better performance. It

100%
l Number of

80% | — -
Cores
__turned on:
LK
40% —— — — m3
2
1

60% -

Time breakdown

20% -] | —

0% T T T T T T !l
BBench Kindle Facebook Jetpack Google Music Gallery
(browser) (game) Maps

Fig. 1: Time breakdown of number of cores activated by the
Android OS. For most of the applications, the fourth core is
always shut down, For some of them, namely Email, Facebook,
Music and Gallery in this graph, most of the time the third core
is not activated as well.

Web Brower Performance
(normalized to the worst case)

1-core | 2-core | 3-core | 4-core

1-core | 2-core | 3-core | 4-core

Android stock Browser ‘ ‘ Firefox ‘

Fig. 2: BBench score for different number of cores. The scores
here are webpage rendering time, so lower is better. Note the
tiny difference in performance among 2 core, 3 core and 4
core configurations.

is clear from the graph that a single-core system suffers
from poor performance. However, the performance gain is
negligible from dual-core to triple-core and quad-core. It may
seem confusing why the OS activates 3 cores for BBench
when there is such little performance improvement. Actually
it again proves that activation does not mean utilization; the
ondemand CPU governor in Android OS is performance-aware
and will keep the core activated unless it is very unlikely to
be utilized [5].

Both of these tests suggest a more thorough quantitive
investigation of quad-core CPU utilization.

III. BACKGROUND
A. TLP

To evaluate the utilization of a multi-core system, we
need a metric for system profiling. A commonly used metric
would be CPU utilization, which is simply the overall average
CPU usage during runtime. However, it would underestimate
the parallelism in mobile applications. Most of these apps
are interactive, and there is a large portion of idle time for
interactive applications. The program itself could be highly
parallelized with a high utilization during busy time. However,
it sits in the idle state waiting for user input for most of the total
running time, which would drag down the average utilization
number. To avoid this bias, we use Thread Level Parallelism

(TLP) [1, 6]. TLP is defined as the machine utilization over the
non-idle portions of the benchmark’s execution. The formula
for TLP is given by Equation 1:

i=1Ci?

TLP = 2 (1)
1-— Co

where c; is the fraction of time that i cores are concurrently
running different threads, and n is the number of cores.
Specifically, cy represents idle time fraction, which is excluded
because it does not count towards the program’s parallelism.
Note that TLP is not a performance metric; the software
could still spawn threads that do not perform useful work.
Nevertheless, it is the natural metric to measure multi-core
utilization, especially for interactive applications like the ones
on a smartphone. The TLP serves as a good indicator of the
number of processors needed to support the execution of a
parallelized workload.

B. Early Studies on TLP

Flautner et al. [6] proposed the definition of TLP in 2000.
At that time, multi-core was mostly exploited in research labs
and appeared only in workstations and servers. They performed
a study of TLP on desktop applications and found that a
dual-core system improves the responsiveness of interactive
programs. However, they also showed that desktop applications
leveraged TLP very sparingly. This result was echoed 10 years
later by Blake et al. [1] with a similar study of TLP of
contemporary software and hardware, when multi-core had
become the norm rather than the exception in home and
office desktops. They reported that 2-3 cores were more than
adequate for almost all but a few domain specific applications
like Video Authoring. After observing low single-thread per-
formance could have a small impact on the TLP, they claimed
that software is lagging behind and is the main limiting factor
in TLP.

Smartphones were already becoming popular during the
time when Blake et al. presented their results, and they have
continued to supplant desktops for many applications. To
reflect this it is important to analyze TLP behavior on mobile
devices because the original studies did not. Besides exploring
a different hardware platform, we are also using a slightly
different set of benchmarks from the original work. Some
categories of desktop applications are rarely seen on mobile
devices, such as Video Authoring and professional Image
Authoring.

IV. METHODOLOGY
A. System Setup

We use the Odroid XU+E board. It has a Samsung Exynos
5410 SoC, which contains an ARM big.LITTLE octa core of
four 1.6GHz A15s and four 1.2GHz A7s. Each core has its own
32KB/32KB L1 instruction and data cache; the four A15s share
a 2MB L2 cache and the A7s share a 512KB L2 cache. Either
four A15s or four A7s can be enabled at the same time, but not
a mixture of them. The Odroid board has a PowerVR tri-core
GPU running at 480MHz and with 2GB main memory. It also
has an on-board current/power semiconductor sensor which
measures the current/power consumption of CPUs, GPU and
memory separately'. We run Android version 4.4.2 (Kitkat)

'For CPU power, we measure the sum of power of big and little clusters.

and Linux kernel version 3.4.5. We choose the use the ART
runtime instead of the older Dalvik.

B. Measurement

1) TLP: To get the TLP number, we track all the context
switches that happen in the system, which reveals the infor-
mation about the status of each core. For instance, a context
switch from SurfaceFlinger to swapper on Core #0 indicates
this core has turned from busy to idle. This information gives
us the number of running cores at any time, which is sufficient
to calculate TLP. Moreover, we can get information about
which thread is running and filter out observation overhead
threads. For example, we treat adbd, the Android Debug
Bridge thread, as swapper. The core that is running adbd
would then be treated as idle, preventing an overestimation
of TLP. We use ftrace, a Linux kernel internal trace, to get
context switches. The data we gathered contains task names,
ids, CPU Number, and timestamp.

2) GPU utilization: For the PowerVR on the Odroid board,
we directly read GPU utilization numbers from the sysfs
interface provided.

C. Benchmarks

In this work we test a diverse range of real-world An-
droid applications. We prefer applications that are: a) most
widely used by users; b) from a broad range of diversified
categories. Based on these requirements, we choose 18 top-
pick applications from the Google Play Android App store,
and 4 native ones in the Android OS. This means they are
the applications commonly used in their category and are thus
representative of current mobile software. They come from 10
different categories: browser, video player, music player, image
viewer, communication, games, social networking, navigation,
office, and file browser. They make use of important hardware
resources on a mobile device (CPU, GPU, co-processors, etc).

We then perform test actions on each of the testing
applications. Three applications (browser, Adobe reader and
MX Player) are so widely used that they have already been
included in some benchmarks [2, 7, 8], therefore we leverage
the existing work and use their implementation directly. For
other applications, we design a series of actions that cover most
typical functions of the application under test. We also refer
to the study in [9] on mobile applications usages, including
what the popular applications are and how long each session
(from opening to closing) normally last. Test actions on the
Odroid board are automated using android adb commands and
RERAN, a record and replay tool for Android OS [10]. All
experiments are repeated at least 5 times for more accurate
results, and applications that require an internet connection
are repeated for at least 10 runs. We observe a low standard
deviation of TLP results as shown in Section. V-A.

It is also important to test TLP of scenarios with back-
ground applications, to reflect common daily usage. We also
test three applications with a set of other applications running
in the background. The three applications under test are Angry
Birds, Adobe reader, and Chrome, while the background
applications are Hangout, Spotify, and Email.

We briefly introduce each application, and its correspond-
ing test actions in the following subsections.

1) Web browser: We use the Realistic General Web Brows-
ing (R-GWB)[8], an automatic webpage rendering benchmark.
It comprises offline pages of several most popular webpages,
all of which utilize modern web technology such as CSS,
HTML, ash, and multi-media. During the experiment, Mo-
bileBench uses JavaScript to load each webpage and then scroll
over it with a pre-set speed. By doing so, it simulates an
actual web browsing scenario. We run MobileBench on three
popular browsers: the Android stock web browser, Firefox, and
Chrome. For each test, we iterate through the MobileBench
webpage set five times, and profile the third one. We do not
impose any other user input as MobileBench is automatic itself.

2) Video Player: We use two applications: MXPlayer, a
video playback application and Netflix, an online streaming
application. We test both applications by playing a video for
30 seconds, with a 1 second pause at the 15th second of each
of the tests.

3) Music Player: We use the Android stock music player
and Spotify for testing music players. Spotify is a music player
that supports online music streamling. We test both of the two
apps by running a series of actions including open new song,
jump to an arbitrary position of the song (not in spotify), and
open another song.

4) Image Viewer: We use Android stock image viewer
(Gallery) and Instagram for testing image viewers. We test it
by opening images, scrolling between images, opening another
image and new folders, and playing a slideshow for a couple
of seconds. Instagram is mobile photo-sharing service. Users
take pictures share them on a variety of social networking
platforms. We test it by scrolling new feeds, opening a picture,
applying Amaro filter and changing brightness to 75, and then
sharing the picture.

5) Communication: We use Google Hangout and Skype
here. We test both of these applications by initiaing a 1
minute video call, 30 seconds in foreground and 30 seconds
in background (approximating an audio call).

6) Games: The three games we choose are Angry Birds,
Fruit Ninja, and Jetpack. Angry Bird is a puzzle video game;
in the game, players use a slingshot to launch birds at pigs
stationed on or within various structures, with the intent of
killing all the pigs on the playing field. We play this game
by entering the first stage, firing two birds with one miss and
one hit. Fruit Ninja is an action game with lots of floating
objects and high-frequency user input. It represents a more
intensive mobile game comparing to Angry Birds. We play
this game in the “zen mode”, where fruit keeps spawning
for 90 seconds. During testing, the tester keeps sliding with
a constant frequency horizontally in the upper middle of the
screen. Jetpack Joyride is a game where the player tries to
control the rider to avoid barriers and collect coins. We play
this game by tapping the screen at a regular frequency for 45
seconds.

7) Social Networking: We choose the apps from two major
Social networking service providers, Facebook and Twitter.
When testing Facebook, we scroll feeds, open up the pictures
in the feeds and browse the profile of the user. The action of
testing Twitter includes clicks on tweets, checking out picture
in the tweets and looking at the profile of the tweeter.

8) Navigation: The most popular navigation application on
Android platform is Google Maps. We test Google Maps by
searching directions between airports in New York city: we
search driving directions from Newark to JFK, then public
transportation from JFK to LaGuardia. We also save an offline
map of New York city to avoid fetching map data from the
internet during testing.

9) Office: The office category contains a broad range of
commonly used apps. We test the following: 1) Android stock
Email — we test it by writing an email and save that as a draft,
sending it, checking and downloading new email. 2) Adobe
reader — actions here include opening a pdf, zooming in and
out, scrolling pages and searching for a keyword. 3) Amazon
Kindle — actions here include opening a book, scrolling and
jumping to arbitrary positions.

10) File Browser: We test Dropbox and ES File Browser.
For Dropbox, we open and change folders, sort the content
in the folder, do searching and editing new text file. For ES
File Browser, we open the folders on the SD cards, scroll the
images in it, sort and change the view of the folder.

11) Background: The background applications we choose
are Google Hangout (video chatting), Spotify (playing music),
Email (checking emails)?. With those applications we test Fruit
Ninja, Maps, and Adobe Reader.

V. RESULTS

In this section, we present our experimental results and
analysis of mobile device utilization, specifically on CPU and
GPU. First, we show that current mobile applications have a
rather low average TLP on modern mobile device platforms.
We show that increasing the number of cores has diminishing
returns on TLP. Even some heavy-load real-world scenarios do
not use many cores. High GPU utilization also indicates that
some of the parallelism is already offloaded from the CPU
to the GPU. All these factors, and the history of the slow
pace of exploiting parallelism in desktop environments [1],
suggests that having many powerful cores is likely to be over-
provisioning.

A. Overall Results

We list a summary of the results in Table I. Each row
in the table shows the TLP and standard deviation (o) for
an application type. The first line, “System”, refers to the
plain Android OS testing environment without any application
running; the last line, “Average”, is the average of the statistics
of all tested applications. The standard deviation of the TLP
over runs for each application is low. This indicates the tests
are reproducible and insensitive to user input variation.

We make two observations based on these results:

1) All the applications demonstrate some, but quite
limited TLP.

For Android, even in a case where a developer writes
code with no awareness of multi-threading, a number of
threads are still created for external 1/O, garbage collection,
graphics rendering, etc. This means that even a programmer

2During the test we automatically send an email to the account on board
from the host machine every half minute

| Category [[App | TLP [[o (TLP) |
[System [[[None] [1.03 [[0.00 |
Browser Stock Browser 1.47 0.03
Firefox 1.31 0.02
Chrome 1.66 0.01
Video Player MXPlayer 1.34 0.01
Netflix 1.53 0.07
Music Player Stock Music 1.29 0.03
Spotify 1.23 0.05
Image Viewer Stock Gallery 1.46 0.03
Instagram 1.31 0.03
Communication Google Hangout 1.82 0.15
Skype 1.55 0.13
Games Angry Birds 1.31 0.08
Fruit Ninja 1.40 0.12
Jetpack 1.54 0.09
Social Network Facebook 1.43 0.04
Twitter 1.32 0.04
Navigation Google Maps 1.59 0.06
Office Stock Email 1.52 0.04
Adobe Reader 1.30 0.05
Kindle 1.45 0.01
File Browser Dropbox 1.33 0.02
ES file browser 1.22 0.02
Background Back_Fruit 1.65 0.12
Back_Maps 191 0.11
Back_Adobe 1.60 0.14
| Average I [146 [[0.06 |

TABLE I: TLP results for the Odroid board — using onde-
mand governor.

with no idea about multithreading could benefit from parallel
processing on different CPU cores. Moreover, many software
developers are aware of the multi-core hardware they are using
and write applications explicitly with multiple threads.

However, the parallelism we observed is generally still
quite low. On average, we see a TLP of 1.46. The application
with the highest TLP, Google Hangout, has a TLP of just 1.8.
Applications like Music and File Browser have rather low TLP,
around 1.2 to 1.3. This result shows, on average, the system
is using less than 2 cores.

2) Multi-core is utilized infrequently.

We present a time breakdown of how the multi-core system
is utilized in Fig. 3. The big pie chart on the right shows
an average result of all application categories we tested. The
smaller pie charts show the breakdown of three representative
application categories. We observe a very low 4-core and 3-
core utilization; on average only 0.68% of all the non-idle time
is the system fully utilized (all four cores running), and 5.81%
of the time when three cores are used — this means there is
only a small amount of time that four or three cores are being
utilized at the same time.

B. Core Scaling

Microprocessor vendors put more cores on a chip to exploit
more parallelism in the system. Therefore, it is important to
consider the change of TLP as the system scales from 2 to 3
to 4 cores.

We show our TLP results in Fig. 4a. We change the number
of active cores in the system and repeat the same experiments

1 2.0 1 core 2 cores 4 core system
% m3cores Macores 0-8% Y
30.6 56.2
% %
Google Maps
6.4 0.5
% %
24.3%
32.2
% 60.9
%
Browser
188 3 0.9
” % 68.7%
76.8
%
Music

Fig. 3: Time breakdown of how the multi-core is utilized.
The big pie chart on the right shows an average result of all
application categories we tested. The smaller pie charts show
the breakdown of three representative kinds of apps: Google
Maps with the highest TLP, stock Browser, and stock Music
with a low TLP.

for TLP. For each category, the leftmost bar shows the TLP
when 4 cores are kept activated. The middle one shows the
TLP when the fourth core is shut down and the remaining 3
cores are kept activated. Similarly, the rightmost bar shows the
system configuration with 2 cores. The results demonstrate:

1) Increasing the number of cores has little impact on
TLP.

On average, TLP increased by 7.03% when we switch from
a 2-core system to a 3-core system, and only 3.47% from a
3-core system to a 4-core system.

2) Most applications show some scalability, but not
much.

Particularly, Games, Navigation, Office and Social apps
show over a 10% increase of TLP from a 2-core to a 4-core
system. File manager only shows a 5.6% increase. Most apps
show small increases in TLP from 3-core to 4-core which are
below 4%. This indicates that the software does not generate
many concurrently parallel threads during its execution.

C. Heavy Load Scenarios

Intuitively, a multi-core system is beneficial when the CPU
load is high. In this section we test the TLP of a couple of
heavy load scenarios.

1) Background Applications: It is now common to have
several applications like music or email checking running
in background concurrently with a foreground application.
One argument that favors having more cores is that they can
boost performance of such scenarios. We measure the TLP
of several applications with a set of background applications
running concurrently (described in Section. IV-C), and present
our result in Table I and Fig. 4b. The results demonstrate
that background applications only lead to limited increase in
TLP, and we are still not fully utilizing all four cores with
background activities.

M 4 core H3c 2 core

Video Comm- Games Social

unication

Browser Music Image Navigation

(a) TLP

Office

File

Browser Fruit Maps Adobe

(b) The red regions show the increase of TLP in the presence of

background apps

Fig. 4: Overall TLP result

2) Multi-tab Web Browsing: We test multi-tab scenarios
to see how mobile browser applications exploit parallelism
under high load circumstances. We measure the TLP and
performance of MobileBench on different CPU configurations.
We run one, two and three MobileBench tabs concurrently
and measure the average of the metrics. We manually switch
between tabs constantly to make them appear in the foreground
for similar amount of time. Fig. 5 shows the results. The
maximum TLP is still below 2 for big cores and 2.2 for little
cores, and there is significant performance degradation when
increasing the number of tabs.

The reason for low TLP here is that even for these two
cases, we do not see a real “multi-tasking” scenario; instead,
we see a main task and several light-load tasks, and that does
not exhibit a high TLP. For instance, for multi-tab browsing,
only the visible web pages will be loaded at regular speed,
and all background pages will be given much less priority
and use less CPU. Energy and thermal constraints are tight
in mobile devices. It might be that the developers realize
there is not enough need for implementing a fast but energy-
hungry multi-tab browser for mobile phones. Reasons may
include small display size or typical user behavior. In other
words, the physical constraints and use pattern could reduce
the amount of parallelizable work of mobile applications. In
the future, we may have phones with bigger screens and higher
resolutions, but human user perception will not change. On
the other hand, the desktop TLP study by Blake et al. [1]
showed the TLP of desktop applications remained relatively
low, even after 10 years of effort writing parallelized software.
Similarly, we have not seen a significant increase in TLP
compared work from one year ago [3]. Clearly, parallelizing
software is an extremely challenging problem, particularly for
desktop/mobile applications.

D. Little Cores

We also perform the same set of TLP tests on the little
cores in order to see how a less powerful CPU would affect
TLP. We present our results in Fig. 6. Both the TLP and the
average percentage of time that four or three cores are utilized
has increased when using little cores compared to big cores.
One reason is that tasks on more powerful cores run faster and
finish earlier, reducing the overlap between them. This result
suggests that as CPU architecture designs improve, exploiting
TLP will be harder. The CPUs will be less utilized if software
developers fail to produce better parallelized program.

Nevertheless, we still have TLP less than 2. Further

suggesting that software is still the main limiting factor in
exploiting TLP.

E. GPU

Applications like games and web browsers require large
amount of graphical computation. On the hardware side, al-
most all mobile device SoCs now contain their own GPU units.
On the OS side, the Android 2D rendering pipeline has started
to support hardware acceleration in Android 3.0 (Honeycomb).
Hardware acceleration is enabled by default from Android 4.0
(Ice Cream Sandwich). Therefore, it is important to analyze
the actual utilization of mobile device GPUs.

We measure the GPU utilization of the same suite of
applications on the Odroid board. We show our experimental
result of GPU usage in Fig. 7. For each category, the leftmost
bar shows the average GPU utilization when 4 big cores are
kept activated, then 3 big cores, 2 big cores, and little cores. We
have not found much variance when we change the number
and type of CPU cores. Average GPU utilization is 24.1%,
and some specific applications such as games, communcation
(chats in the graph) and navigation utilize a considerable
amount of the GPU. This is an indication that a part of the
parallelism is already offloaded from the CPU to the GPU,
which reduces the amount of parallelism that the CPU can
exploit.

Given the availability of programmable GPUs, an increas-
ing amount of general-purpose, non-graphics work can be
offloaded from the application cores to the GPU or other
accelerators for performance and energy efficiency. This led us
to examine the energy efficiency of computation offloading for
mobile platforms. We analyze several applications on both the
CPU and the GPU and present the results in Fig. 8. We run the
OpenMP and OpenCL versions of three machine learning algo-
rithms — kmeans, backpropagation (BP), and nearest neighbor
(NN) as well as a streaming algorithm Daxpy on a Qualcomm
Snapdragon board, one of the few development boards which
support offloading for general-purpose GPU applications. We
evaluate the machine learning algorithms because these are
the important building blocks of application domains such as
audio recognition, image recognition/processing, and recom-
mendation algorithms.

The programs running on the Krait CPU are written in
OpenMP whereas the programs running on the Adreno GPU
use OpenCL to exploit the heterogeneous GPU compute unit.
We find that for Daxpy, the Krait CPU achieves higher energy

3.0 0.50

score_bCl “score_bC2 uiscore_bC3 kaiscore_bC4

28 0.45

a 1.

826 0.40

vt
o §2.4 T 0.35
é H 22 0.30 N
5020 TLP_4core 025
T 318 | e 0.20
[-

|16 - — ; 0.15

1.4 0.10

(=3

12 0.05

1.0 T " 1core 0.00
1 2 3
Number of Concurrently Running Browser Tabs

(a) Big cores / Chrome

3.0 score_IC1 iiscore_IC2 Eaiscore_IC3 Eidscore_|C4 050
2.8 0.45
N
® 2.6 0.40
o
-
g § 24 0.35
ég 2.2 r 0.30 o
20 - 025 &2
S 2 TLP_3core =
T T8 TLP_2core==e . 020
[
® 1.6 | 015
£
g 1.4 r 0.10
1.2 r 0.05
1.0 ~ 0.00

1 2 3
Number of Concurrently Running Browser Tabs

(b) Little cores / Chrome

Fig. 5: Performance and TLP results for browser. Performance are shown in columns and TLP in lines. Performance scores
are calculated by taking the inverse of MobileBench rendering time then normalize against the worst score in each graphs. For
instance, score_bC4 stands for performance of four big cores, 1C2 for two little cores, etc. For each CPU configuration, we test
three scenarios: 1, 2 and 3 tabs running MobileBench on Chrome.

1.9

18 W 4 core M 3 core 2 core
17 sgy 15% Breakdown: little cores
1.6
15 - 1 core
14 -
13 2 cores

) 27.5%
1.2 |- M 3 cores
11 1 | 62.2%

: W 4 cores
1.0 -

Browser Video Music Comm- Games Image Social Navigation Office File
unication Browser
(a) TLP (b) Average CPU Time breakdown for a 4-core configurations

Fig. 6: TLP result for little cores

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

2 ilttle cores

M 4 big cores ™ 3 big cores

2 big cores N 4 little cores 3 little cores

Browser Video Music Chat Games Image Social Navigation Office File Browser

Fig. 7: GPU utilization of different category of apps. Columns
with different colors represent system configuration with dif-
ferent number and kind of cores activated.

efficiency than the GPU (less than 1). This means that when
the parallelism can be well exploited by the software, Daxpy,
and when the instructions are simple enough for the CPU, the
energy efficiency of the multicore CPU can be equivalent or
slightly higher than that of the GPU. On the other hand, for
the machine learning algorithms, GPU offers higher energy
efficiency of varying degrees. This suggests that, for software
where there is an ample amount of thread- and data-level
parallelism, e.g., the machine learning algorithms, and where
there are instructions that can be accelerated by the GPU,

70

N
wn

N CPU Energy GPU Energy ~——Energy Efficiency

60 -

N~

50

,_.
[0
Energy Efficiency of GPU
normalized to CPU

40 -

30

[,

20

ENERGY CONSUMPTION (J)
o
wn

10

0 _ mm

Kmeans BP NN
APPLICATION

o

Daxpy

Fig. 8: Energy consumption and energy efficiency (defined as
performance per watt) comparison for Krait CPU vs. Adreno
GPU.

e.g., the multiplication, sqaure root mathematical functions,
it is more beneficial to offload the computation to the GPU
or other accelerators for performance and energy efficiency.
For workloads with more branch-divergence, or with a small
amount of parallelism, it is more efficient to run them on the
CPU. In short, the variety of mobile workloads suggests that
we should look deeper into building a suitable heterogeneous
system to take advantage of the different types and the varying
degree of parallelism and better utilizing the existing hardware
real estate.

VI. SUGGESTIONS

In the previous section, we demonstrate that current mobile
applications are not fully utilizing mobile devices, and simply
adding more cores can be over-provisioning. However, it is
not clear yet what kind of system is more desired for mobile
devices. In this section, we try to shed light on this question
by further analyzing the TLP behavior and energy efficiency
of current CPUs. We make the following two observations:

a) TLP behavior exhibits short peaks and long valleys
rather than staying constant. This suggests that during peak
TLP times, higher performance is desired: the system needs
to be kept responsive for better user experience, also these
peaks are short so the extra computation power will not have
a big impact on total energy consumption. During low TLP
times when the performance requirement is low, better energy-
efficiency is required as any extra power will be a waste and
will affect battery life.

b) For current systems, there is a distinct energy-efficiency
difference between the big and little cores.

Based on these observations, we argue that current mobile
applications can benefit from a system that has flexibility
to accommodate both high performance and good energy-
efficiency under different applications as well as different
program phases. Architectures including heterogenous multi-
cores[11, 12] and flexible core architectures[13—15] might be
among the possible solutions.

A. TLP vs. Time

We record the TLP over time for applications and present
the results in Fig. 9. We choose the 20 seconds®of the test
starting from launching the applications. For Browser, pro-
nounced peaks can be seen in TLP (Fig. 9a). In MobileBench
these occur when the application is launched and new browser
webpages are opened (these actions are labeled in circled num-
bers in Fig. 9a). We also see a shift of peaks towards the right
from a 4 core system to a 2 core system corresponding with the
actions, which reflects a quicker webpage load time in a 4 core
system. For MXPlayer, there are more significant peaks during
application launch and when starting, pausing and resuming a
video. For Angry Birds, there are less pronounced peaks during
runtime but it still shows one when the application launches
as well as few others during the game.

These results show that the interactive nature of most
mobile application can cause TLP to fluctuating above 2, but
the average TLP still remains low. The peaks do suggest a
need for multiple cores for quicker response time, which is
critical for better user experience. However, multiple cores are
used only during brief bursts, mostly at the application launch
time. Moreover, even during these peaks, we do not observe
a constant high peak TLP (above 3). This suggests that the
idea of keeping many big cores (four or even more) for short
bursts may not be a good choice for mobile devices. Instead,
a system that can provide high performance during peaks and
good energy-efficiency fits better with the fluctuate TLP pattern
of mobile applications.

o
'S
[

Little core:
Better Energy-

o
>
S}

e~
£ -
3 efficency Big core:
- - s :
< 3 - =———® Better peak
5 0.35 ; N~ 16GH, Performance
< / ' 1.2GHz)
2 / -
2030 0.8GHZ
=
o ,' Performance and power :
§ 0.25 1 12GHz left part is little core, right part is big core
g =0=4 big cores =i=3 big cores 2 big cores =& 1 big core
]
£ 0.20
0.8GH.

E : =4 little cores 3 little cores 2 little cores 1 little core

0.15 0.5GHz

0 0.4 0.8 1 1.2

0.6
CPU Power (W)

Fig. 10: Performance and power under different frequency and
cores (tested using MobileBench). Lines represent different
cores configurations; dots on lines represent different frequen-
cies, with lower frequencies (thus poor performance) on the
left. Error bars are drawn to a show range of scores for each
dot.

B. Energy Efficiency of Big and Little Cores

The processor takes up a substantial portion of power con-
sumption in mobile devices [16]. It is meaningful to analyze
the energy efficiency between big cores and little cores. We run
MobileBench on the Odroid board for different types of cores,
different number of cores, and three different frequencies*
on each cluster (big and little). We show the results on
two different clusters in Fig. 10. For every core/frequency
combination, we did four repeated runs. The results show a
distinct energy-efficiency difference between the big and little
cores: big cores have better performance, but little cores only
use roughly a quarter of the power consumption than big cores.
Though big cores have approximately 25% less execution time,
their power consumption is 3x more than little cores so they
consume more total energy. In a system with flexbility, we can
use little cores as much as possible, and big cores in situations
that are both computational intensive.

Additionally, the importance of user experience makes
such architecture more desirable. Human users want to deliver
a response within a user acceptable timeframe rather than
finishing the task as fast as possible. For instance, literature
shows that a latency less than 0.1s is not perceivable by a
human [17]. Any extra resources that are used in accelerating
the program to finish faster than 0.1s is unnecessary. In the case
of browser performance, as shown in Fig. 10, we may or may
not need to switch to a big core depending on the workload of
the webpage and the quality of experience demanded by the
user. More flexibility in such scenarios will be beneficial for
both performance and energy-efficiency.

VII. RELATED WORKS

A. Mobile Workload Characterization

Extensive research has been done on characterizing mobile
workloads. Gutierrez et al. [2] measure the microarchitec-
tural behavior of a set of mobile applications. Hayenga et

320 seconds is enough for apps to reach steady state.
4We use 1.6, 1.2 and 0.8GHz for big cores, and 1.2, 0.8, 0.5GHz for little

cores.

= =4 core action
3.5 I

T
3 | |
|

2.5

|
1.§ [\\“’\- /jl,f\\,v ;

1

2 core action =4 core tlp 2 coretlp

et ol e !

“\'\'\«-’/;\I!\“\-—\... .I

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(a) Browser (4 cores)
35 —tlp
3
2.5
2
1.5
1 —
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

(c) MXPlayer

35 —tlp
3
2.5
2
15
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(b) Chrome
33 —tlp
3
2.5
2
15
1
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(d) Angry Birds

Fig. 9: TLP vs. time in seconds for mobile applications. For Browser, the solid lines represent TLP, and the dashed vertical lines
show when there is an action, such as application startup or opening a new webpage. Actions are labeled by circled numbers.

al. [18] present a workload characterization and memory-
level analysis of internet and media-centric applications for
an embedded system used for mobile applications. Sunwoo
et al. [19] propose a methodology to tractably explore the
processor design space and to characterize applications in a
full-system simulation environment. Zhang et al. [20] study
the performance of mobile applications using multicore CPUs
and develop a new CPU power model with a high accuracy.
Their results also show that even large applications like web
browsers with multi-threading acceleration cannot fully utilize
the multicore CPUs. Narancic et al. [21] evalute the memory
system behavior of smartphone workloads and show that
many workloads are memory throughput bound, especially
with specialized compute engines providing enough compute
performance. We directly measure multi-core utilization of
mobile applications and analyze its implications.

B. Mobile Benchmarks

There has been literature which argue traditional desktop
benchmarks such as PARSEC or SPEC are not suitable for
mobile devices [2]. Several mobile benchmarks have been
proposed. MobileBench [8] is a collection of applications,
including a revised version of BBench, Adobe PDF reader,
Photo viewer and video playback. Mobybench [7] is also
comprised of popular applications, which has already been
ported to the gem5 simulator [22]. AM-Bench [23] is an
open source based mobile multimedia benchmark for Android
platform. Some more application-specific benchmarks have
also been proposed [24, 25]. Compared to these benchmarks,
we have a boarder coverage of common categories with more
applications such as social networking or communication.

C. Mobile CPU Architectures

Zhu and Reddi [4, 26] propose two specialized hardware
and an event-based scheduling for mobile web applications.
Several papers have presented work on addressing the Dark
Silicon problem [27-30]. They propose specialized, energy-
efficient hetergeneous co-processors which provides much

better energy-efficiency. By providing quantitive analysis of
mobile workload CPU utilization, we provide a written record
of information that can benefit researchers pursuing better
mobile CPU designs.

VIII. CONCLUSION AND DISCUSSION

In this paper, we considered how multi-core processors in
mobile devices are being used. We have shown that current
mobile applications cannot effectively use a large number of
cores. Instead, we suggest that a flexible system that can ac-
commodate both high performance and good energy-efficiency
is a more preferable choice for current mobile applications.

We have analyzed a wide range of common mobile ap-
plications, and calculated the Thread Level Parallelism (TLP)
of these applications. The average TLP across all categories
is 1.46, which shows that mobile apps are utilizing less than
2 cores on average. The applications with the highest TLP,
Google Hangout, only has a TLP of just 1.8. We have also
evaluated a number of different CPU configurations, including
different numbers of cores, core frequencies, and CPU types.
We observe a diminishing return on TLP when the number of
cores increases. Even in those heavy-load real-world scenarios
with background applications or multi-tab browsing, there is
still not enough work to keep utilization high. Both these
results suggests that having many powerful cores is over-
provisioning. Due to physical constraint and interactive user
patterns, mobile applications tend to have less parallelism to
exploit than desktop applications. The GPU and mobile co-
processors on chip also takes off work from CPU. Historically,
the desktop TLP study by Blake et al. [1] showed the TLP of
desktop applications remained relatively low, even after a 10
year gap. It indicates that parallelizing software is an extremely
challenging problem. All these contribute to the low TLP for
current mobile applications.

On the other hand, we find out that TLP behavior exhibits
peaks and valleys rather than remaining constant. User expe-
rience, which is critical for mobile applications, also varies by
different application scenarios and different users. A system

with the flexiblity to satisfy both high performance and good
energy-efficiency for different program phases is a good choice
for mobile devices.

We believe this work can motivate new research directions.
TLP is a utilization metric rather than a performance metric.
We have only used web browser benchmarks [2, 8] as per-
formance metrics in this paper; the research community can
benefit from having benchmarks that quantitatively measure
the performance for popular applications of various categories
such as games, social, office, etc. Responsiveness is another
metric worth noting, especially for user experience of inter-
active mobile applications [5]. This is also where the peak
TLP mainly comes from. Building an accelerator or specific
processor architecture tailored for such phases may be an
interesting avenue of research into.

IX. ACKNOWLEDGEMENT

We would like to thank our shepherd, Vijay Janapa Reddi,
and the anonymous reviewers for their valuable feedback. This
work is supported in part by a grant from ARM Ltd and NSF
I/UCRC Center for Embedded Systems (NSF grant #0856090).

REFERENCES

[1] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner, “Evolution of
thread-level parallelism in desktop applications,” in Proceedings of the
37th annual International Symposium on Computer Architecture (ISCA),
2010.

[2] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver, “Full-system analysis and characterization
of interactive smartphone applications,” in Workload Characterization
(IISWC), 2011 IEEE International Symposium on, 2011.

[3] C. Gao, A. Gutierrez, R. Dreslinski, T. Mudge, K. Flautner, and
G. Blake, “A study of thread level parallelism on mobile devices,” in
Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on, 2014.

[4] Y. Zhu and V. J. Reddi, “Webcore: architectural support for mobileweb
browsing,” in Proceedings of the 41th annual International Symposium
on Computer Architecture (ISCA), 2014.

[5] L. Yang, R. Dick, G. Memik, and P. Dinda, “Happe: Human and
application driven frequency scaling for processor power efficiency,”
in Mobile Computing, IEEE Transactions on, 2013.

[6] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge, “Thread-level
parallelism and interactive performance of desktop applications,” in
Proceedings of the ninth international conference on Architectural
support for programming languages and operating systems (ASPLOS),
2000.

[71 Y. Huang, Z. Zha, M. Chen, and L. Zhang, “Moby: A mobile benchmark
suite for architectural simulators,” in Performance Analysis of Systems
and Software (ISPASS), 2014 IEEE International Symposium on, 2014.

[8] D. Pandiyan, S.-Y. Lee, and C.-J. Wu, “Performance, energy character-
izations and architectural implications of an emerging mobile platform
benchmark suite: Mobilebench,” in Workload Characterization (IISWC),
2013 IEEE International Symposium on, 2013.

[9] M. Bohmer, B. Hecht, J. Schoning, A. Kriiger, and G. Bauer, “Falling
asleep with angry birds, facebook and kindle: A large scale study on
mobile application usage,” in Proceedings of the 13th International
Conference on Human Computer Interaction with Mobile Devices and
Services, 2011.

[10] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing- and
touch-sensitive record and replay for android,” in Software Engineering
(ICSE), 2013 35th International Conference on, 2013.

[11] big.little processing with arm cortex-al5 & cortex-a7. [Online]. Avail-
able: http://www.arm.com/files/download/big_LITTLE_Final_Final.pdf

[12] Variable smp a multi-core cpu architecture for
low power and high performance. [Online]. Avail-
able: http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-
whitepaper-0911b.pdf

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

K. Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N.
Patt, “Morphcore: An energy-efficient microarchitecture for high perfor-
mance ilp and high throughput tlp,” in Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture, 2012.

P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker,
“Flicker: A dynamically adaptive architecture for power limited multi-
core systems,” in Proceedings of the 40th Annual International Sympo-
sium on Computer Architecture (ISCA), 2013.

A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski,
T. F. Wenisch, and S. Mahlke, “Composite cores: Pushing heterogeneity
into a core,” in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, 2012.

A. Carroll and G. Heiser, “An analysis of power consumption in
a smartphone,” in Proceedings of the 2010 USENIX conference on
USENIX annual technical conference, 2010.

R. B. Miller, “Response time in man-computer conversational transac-
tions,” in Proceedings of Fall Joint Computer Conference, Part I, 1968.

M. Hayenga, C. Sudanthi, M. Ghosh, P. Ramrakhyani, and N. Paver,
“Accurate system-level performance modeling and workload characteri-
zation for mobile internet devices,” in Proceedings of the 9th workshop
on MEmory performance: DEaling with Applications, systems and
architecture, 2008.

D. Sunwoo, W. Wang, M. Ghosh, C. Sudanthi, G. Blake, C. D.
Emmons, and N. C. Paver, “A structured approach to the simulation,
analysis and characterization of smartphone applications,” in Workload
Characterization (IISWC), IEEE International Symposium on, 2013.

Y. Zhang, X. Wang, X. Liu, Y. Liu, L. Zhuang, and F. Zhao, “Towards
better cpu power management on multicore smartphones,” in Proceed-
ings of the Workshop on Power-Aware Computing and Systems, 2013.

G. Narancic, P. Judd, D. Wu, I. Atta, M. Elnacouzi, J. Zebchuk,
J. Albericio, N. Enright Jerger, A. Moshovos, K. Kutulakos, and
S. Gadelrab, “Evaluating the memory system behavior of smartphone
workloads,” in Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIV), 2014 International Conference on, 2014.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” in SIGARCH Comput. Archit. News, 2011.

E. K. Chayong Lee and H. Kim, “The am-bench: An android multime-
dia benchmark suite,” in Technical Report, School of Computer Science,
Georgia Institute of Technology, 2012.

Aurora softworks: Quadrant. [Online]. Available:
http://www.aurorasoftworks.com/products/quadrant

Gfxbench: unified graphics benchmark based on dxbenchmark
(directx) and glbenchmark (opengl es). [Online]. Available:

http://gfxbench.com/result.jsp

Y. Zhu, M. Halpem, and V. J. Reddi, “Event-based scheduling for
energy-efficient qos (eqos) in mobile web applications,” in Proceedings
of the 42th annual International Symposium on Computer Architecture
(ISCA), 2015.

G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: Reducing
the energy of mature computations,” in Proceedings of the 15th interna-
tional conference on Architectural support for programming languages
and operating systems (ASPLOS), 2010.

G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B.
Taylor, and S. Swanson, “Qscores: Trading dark silicon for scalable en-
ergy efficiency with quasi-specific cores,” in Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture, 2011.

A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe,
T. F. Wenisch, and M. M. K. Martin, “Computational sprinting,” in
Proceedings of the 2012 IEEE 18th International Symposium on High-
Performance Computer Architecture (HPCA), 2012.

H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th annual International Symposium on Computer
Architecture (ISCA), 2011.

