
Compiler and Microarchitecture Mechanisms for
Exploiting Registers to Improve Memory

Performance

by

Matthew Allan Postiff

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

 in The University of Michigan
2001

Doctoral Committee:

Professor Trevor Mudge, Chair
Professor Richard Brown
Professor Edward Davidson
Assistant Professor Gary Tyson

Jesus saith unto him, “ I am the way, the truth, and the life: no man cometh unto the

Father, but by me.” – The Gospel of John, Chapter 14, Verse 6, The Bible.

©
All Rights Reserved

Matthew Allan Postiff
2001

ii

Now unto Him that is able to keep you from falling, and to present you faultless before the

presence of His glory with exceeding joy, To the only wise God our Saviour, be glory and

majesty, dominion and power, both now and ever. Amen.

– The General Epistle of Jude 24, 25

The work herein is dedicated to this God.

iii

Acknowledgments

Whenever acknowledgments are given, there is a danger of leaving someone out or

forgetting something they have done. Hoping that I will not make any major omissions, I

proceed to give thanks to those who have been close to me over the years, first in familial

relationships, then in professional ones.

First of all, the living God of the Bible deserves much thanksgiving for his provi-

sion of the life, breath, and ability to use my mind which have been crucial to this work.

Without Him, His sustenance and care, I could not even arise out of my bed every morning

(Acts 17:28). O give thanks unto the LORD; for he is good: for his mercy endureth for

ever (Psalm 136:1). He has enabled me to do this work.

Without question, my parents deserve the next thanks. Marvin and Vicki Postiff

have been quiet and stable supporters over the last nearly 27 years. The number of things

that they have provided for me are innumerable. In an age where the family is disintegrat-

ing before our eyes, they have maintained their marriage in a godly way, as it should be,

for 28 years, and have been so helpful to me. Thanks Mom and Dad! My brothers Scott

and Ben and my sister Deb have also been benefactors of this arrangement and my thanks

to them also for being great to me. My grandmother Katherine Glenn was instrumental in

my spiritual development early on; I thank her for being diligent in that regard. My grand-

mother Jacqueline Bianco has also shown a lot of interest and encouragement during this

work.

So many friends have helped and prayed for me during this work. Steve Moss and

Luman Strong, who have become good friends since October of 1997 when we began a

Bible study together, have been constant supporters in prayer and other ways. My thanks

to them. Bill Smith and his wife Andi have been close friends since 1999 when I first

began attending Fellowship Bible Church, and my thanks are due them as well for their

constant interest in my work and prayer support. Pastor Raymond Saxe and his wife Viv-

ian have become close friends and spiritual mentors and I thank them for their encourage-

iv

ment and support. Thanks to the saints at Fellowship Bible Church as well for their

support. Jerry and Nancy Benjamin have been close friends and mentors as well since my

middle school days. Karl and Kelly Vollmar taught the small Sunday school class during

my undergraduate studies. Thanks to both of these couples for their spiritual emphasis.

Last, but certainly not least, is Naomi Kornilakis. She has been my closest friend over the

last months and has been a constant encouragement. Thanks Naomi!

Beyond “ family” support, Trevor Mudge, my advisor, has certainly been a major

supporter over the past five years. Even before we worked together on this Ph.D., we had

worked in a consulting arrangement with National Semiconductor Corporation to produce

a 16-bit microcontroller design. Though we often have our disagreements in matters of

faith, we have worked well together on technical subjects, for which I owe him thanks.

The advisor/student relationship has been very easy because of his laid-back management

style.

The person that I have worked most closely with the last few years has been David

Greene. He has written the lion’s share of the code in the MIRV compiler, particularly in

the frontend and optimization and analysis filters. He knows MIRV the best and was a

constant source of information when I had difficulties with it. In addition, David provided

the much needed sounding board for all of the ideas in this work. He has also been a co-

author on all the latest papers I have written. Many thanks Dave!

This work would also not have been possible without the help of Charles Lefurgy,

now at IBM. His work on MIRV has been invaluable. He worked on the function inliner,

and his primary contribution, the MIRV high-level linker, has made this work much easier.

I would also like to thank Steve Raasch for his help on the register caching work

which appears as a chapter in this dissertation.

Two old friends from my early school days are also due thanks. Mike Kelley and

John Hall, now both at Tellabs, were lab partners during our undergraduate days and

through the Master’s degree. Before that, we all went to the same middle school and high

school. Thanks to Mike and John for their help on all of the class projects and other work

that we shared. We worked a particularly long time together on the Microcontroller Mem-

ory Tester (fondly known as the MMT). This project “haunted” Mike and John while they

were at the University, but it turned out that it actually worked!

v

Thanks also are due to Tim Strong who helped Mike and me build a multiply-accu-

mulate circuit that was awarded in the University of Michigan VLSI Design Contest

Experienced Class in 1998. An earlier design that Mike and I did, a CMOS floating point

unit, received an honorable mention in the 1997 version of this contest. Tim also helped

numerous times with computer software problems.

I would also like to thank Vijayalakshmi Srinivasan for her suggestions and

encouragement throughout the course of this work.

My thanks are also due to David Helder, a former member of the MIRV develop-

ment team, who wrote a number of the testing tools and backend optimizations as well as

helped with debugging the compiler.

Thanks also to Kris Flautner, who originated the idea for the MIRV compiler and

wrote several of the early works on the frontend analysis infrastructure.

My thanks are also due to the anonymous reviewers of several conferences for

their comments, which significantly improved the quality of this research.

I would also like to thank those who provided the financial backing for my gradu-

ate studies. The people of the United States funded the first two years of my research

through DARPA grant DAAH04-94-G-0327 (May 1996 to April 1998); they also funded

the next two years on grant DABT63-97-C-0047 (May 1998 to April 2000). My thanks are

also due to the University of Michigan Rackham Fellowship program, which funded my

last year of research on a Rackham Predoctoral Fellowship. Simulations were performed

on computers donated through the Intel Education 2000 Grant.

Thanks are also due to Microsoft Corporation and University of Michigan College

of Engineering for providing generous scholarships to help pay for my undergraduate edu-

cation, the stepping stone to this work. This made it easier on my parents, who paid the

balance of my undergraduate education.

This project has been more than simply earning a degree from the University of

Michigan. It has been accompanied with an effort to be a missionary for the sake of the

Lord Jesus Christ. As His ambassador, I have made effort to show His gospel to those I

with whom I have worked. While this is very difficult in a highly academic and intellec-

tual environment, certainly those who have worked with me know my stand in the Chris-

tian faith. The major need of the day, which I have tried to communicate, is not for more

vi

computer engineering, but for people to understand their sinfulness, their need of someone

to save them from an awful eternity in Hell, and the substitutionary work that the Lord

Jesus Christ did in their behalf. All that is left is to believe on Him for salvation. To those

who have heard this over and over, I thank you for being patient and listening. To those

who have heard and not responded, I make request once more in writing that you hear the

Word of God and turn to Him. Then, whatsoever ye do in word or deed, do all in the name

of the Lord Jesus, giving thanks to God and the Father by Him (Colossians 3:17).

vii

Table of Contents

Dedication ii

Acknowledgments iii

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1

1.1. Theoretical Framework 4
1.1.1. The Source of Memory Operations 4
1.1.2. Alleviating the Memory Bottleneck 6

1.2. Foundational Assumptions 6

Chapter 2 Background 8

2.1. Registers, Caches and Memory 8
2.2. Register File Design 10

2.2.1. Large Architected Register Files 12
2.2.2. No Architected Register File 12
2.2.3. Register Windows 14

2.3. Register Allocation and Spilling 15
2.4. Alias analysis 16

2.4.1. Background on Alias Analysis 17
2.4.2. Modern Processor Memory Disambiguation 19
2.4.3. Static Analysis 19
2.4.4. Register Promotion 20
2.4.5. CRegs 21
2.4.6. EPIC 21
2.4.7. Memory Renaming 22
2.4.8. Other 22

2.5. Summary 23

Chapter 3 Register Utilization in Integer Codes 24

3.1. Introduction 24
3.2. Background and Motivation 24
3.3. Compilation Environment 28

3.3.1. Register Promotion 29
3.3.2. Link-time Global Variable Register Allocation 30
3.3.3. Inlining 33

3.4. Simulation Environment 35
3.5. Experiment Results 36

3.5.1. Register Promotion 37

viii

3.5.2. Inlining 42
3.5.3. Combined Results 44
3.5.4. Data Cache Effects 46
3.5.5. Instruction Bandwidth and Cache Effects 48

3.6. Theoretical Register Requirements 50
3.6.1. Variable Count Arguments 50
3.6.2. Instruction Count Argument 52
3.6.3. Cross-Function Argument 55

3.7. Register Windows Simulations 58
3.8. Related Work 64

3.8.1. Intra-Procedural Allocation 64
3.8.2. Inter-Procedural Allocation 65
3.8.3. Register Promotion 67

3.9. Conclusions 67

Chapter 4 Register Caching 70

4.1. Introduction 70
4.2. Background and Motivation 70

4.2.1. Register Renaming 72
4.2.2. Register Architecture 75
4.2.3. The Physical Register Cache 76

4.3. The Physical Register Cache Design 78
4.3.1. Microarchitecture Components 78
4.3.2. Design Constraints 79

4.4. Operation of the Physical Register Cache 80
4.5. Physical Register Cache Advantages and Disadvantages 85

4.5.1. Advantages Due to the Split LRF and PRF 85
4.5.2. Advantages Due to the Use of Virtual Register Numbers 85
4.5.3. Advantages Due to the Direct Virtual to Physical Mapping 86
4.5.4. Other Advantages 87
4.5.5. Disadvantages 88

4.6. Experimental Evaluation 89
4.6.1. Experiment Setup 89
4.6.2. Results 91
4.6.3. Results with Perfect Prediction, Caching, and TLBs 96
4.6.4. Results of Varying Cache Size 100
4.6.5. Results of Varying Available Register Ports 103

4.7. Comparison to Previous Work 107
4.8. Conclusions 110

Chapter 5 Store-Load Address Table and Speculative Register Promotion 112

5.1. Introduction 112
5.2. Background and Motivation 112
5.3. The Store-Load Address Table (SLAT) 114
5.4. Speculative Register Promotion Using the SLAT 117

ix

5.5. Experimental Setup 118
5.6. Experimental Evaluation 119

5.6.1. Register Promotion 119
5.6.2. Speculative Register Promotion using the SLAT 122

5.7. Background and Related Work 130
5.8. Conclusions 132

Chapter 6 Effect of Compiler Optimizations on Hardware Requirements 134

6.1. Introduction 134
6.2. Effect of Compiler Optimization on Cache Performance 135
6.3. Hardware-Compiler Trade-offs for the Cache 137
6.4. Hardware-Compiler Trade-offs for Issue Width 139
6.5. Characterization of Memory Operations 140

6.5.1. Experimental Setup 140
6.5.2. From the Viewpoint of the Memory System 141
6.5.3. From the Viewpoint of the Instruction Stream 148
6.5.4. Correlation of Data Address and PC with Access and Misses 152
6.5.5. Source Code Examples 153

6.6. Conclusions 160

Chapter 7 Design and Engineering of the MIRV C Compiler 162

7.1. Introduction 162
7.2. History and Development Team 163
7.3. Overall Compilation flow 163
7.4. MIRV Frontend 164
7.5. The MIRV High Level Intermediate Language 166

7.5.1. Basic Symbol Information: Unids 166
7.5.2. Packaging Constructs 167
7.5.3. Simple Type Declarations 167
7.5.4. Complex Type Declarations 168
7.5.5. Function Declarations 169
7.5.6. Constant Declarations 170
7.5.7. Function Definitions 171
7.5.8. Global and Local Variable Declarations 171
7.5.9. Statements 173

7.5.10. Looping Constructs 174
7.5.11. Simple Control Constructs 174
7.5.12. Complex Control Structures 175
7.5.13. Attributes 176
7.5.14. Potential MIRV IR Modifications 179

7.6. MIRV High-Level Linker 180
7.7. MIRV Filters 182

7.7.1. The Register Promote Filter 183
7.8. The MIRV Backend and Low-Level Intermediate Form 186
7.9. Register Allocation and Spilling 188

x

7.9.1. Coalescing 190
7.9.2. Spilling 193

7.10. Comparisons to other compilers 195
7.11. MIRV Example 195
7.12. Test and Debug Environment 198

7.12.1. Regression testing 199
7.12.2. The bughunt Tool 200
7.12.3. The cleaver and machete Tool 201
7.12.4. The brutal tool 201
7.12.5. The lmrvOptimizeAndRun Tool 201
7.12.6. The cmdshrinker Tool 202
7.12.7. Transformation Limit Tool 202
7.12.8. Miscellaneous Test Generator Tools 203
7.12.9. The mirvbot Tool 203

7.12.10. The ssprofcomp tool 203
7.12.11. Select Optimization Subset (SOS) 203
7.12.12. Generic findbug 204
7.12.13. Future Tools 205

7.13. Profiling Support in MIRV 205
7.13.1. Block Profile Filter 205
7.13.2. Value Profile Filter 206
7.13.3. Time Profile Filter 206

7.14. Approach to High-Level Dataflow Analysis 207
7.15. MIRV Simulator 207
7.16. Software Engineering Considerations 207
7.17. MIRV as a Teaching Tool 209
7.18. Conclusions 209

Chapter 8 Conclusions 211

Bibliography 215

xi

List of Tables

Table 2.1: Comparison of registers and cache. 9
Table 2.2: A partial history of hardware registers. 11
Table 3.1: Register configurations for embedded and workstation processors. 27
Table 3.2: Functions in SPEC called from 0 or 1 call sites (-O1 optimization). 34
Table 3.3: Description of benchmark inputs. 35
Table 3.4: Simulation parameters for sim-outorder (the defaults) 36
Table 3.5: Data cache misses of the best configurations relative to O1-32 48
Table 3.6: Statistics on local variables under different optimizations levels. 51
Table 3.7: Statistics on global variables under -O1 optimization. 52
Table 4.1: Summary of terminology 77
Table 4.2: Physical register cache parameters used in this study. 80
Table 4.3: Register cache simulation configurations 91
Table 4.4: Minimum ports requirements on the PRF and LRF. 104
Table 5.1: Various strategies for allocating registers 115
Table 5.2: Actions that take place at various points in the SLAT simulator. 119
Table 5.3: An explanation of the legend in Figure 5.2 122
Table 5.4: Reductions in dynamic loads and stores possible with the SLAT. 124
Table 5.5: Summary of SLAT utilization. 128
Table 6.1: Cache configurations of some modern processors. 137
Table 6.2: The memory footprint of selected SPEC benchmarks. 142
Table 6.3: Data addresses and instructions which both access and miss often. 154
Table 6.4: The worst missing functions in SPECint95. 159
Table 7.1: Order of optimization filter application in MIRV. 165
Table 7.2: The MIRV high-level IR operators. 166
Table 7.3: MIRV attributes. 177
Table 7.4: The MIRV analysis and transformation filters. 184
Table 7.5: The MIRV low-level IR operators. 187

xii

List of Figures

Figure 3.1: The conventional way that global variables are referenced. 30
Figure 3.2: Performance of register promotion. 37
Figure 3.3: Loads eliminated by register promotion. 38
Figure 3.4: Stores eliminated by register promotion. 38
Figure 3.5: Performance of post-link allocation. 39
Figure 3.6: Loads eliminated by link-time global variable allocation. 40
Figure 3.7: Stores eliminated by link-time global variable allocation. 40
Figure 3.8: Performance of inlining. 42
Figure 3.9: Loads eliminated by inlining. 43
Figure 3.10: Stores eliminated due to inlining. 43
Figure 3.11: Performance of the “best” configurations. 45
Figure 3.12: Load instructions eliminated by best. 45
Figure 3.13: Store instructions eliminated by best. 46
Figure 3.14: Data cache accesses in O1 and best various configurations. 47
Figure 3.15: Dynamic instruction reduction due to best optimizations. 49
Figure 3.16: Instruction cache miss rates for the -O1-32 and best configurations. 50
Figure 3.17: Other estimates of register pressure in the benchmarks. 53
Figure 3.18: Register requirements for go across several optimization levels. 54
Figure 3.19: Maximum subroutine linkage depth reached in the benchmarks. 57
Figure 3.20: An estimate of register pressure based on the dynamic call graph. 57
Figure 3.21: Register windows performance compared to -O2. 59
Figure 3.22: Register window instruction count improvement over -O2. 60
Figure 3.23: Register window memory instruction count improvement. 60
Figure 3.24: The number of register windows concurrently active. 61
Figure 3.25: High-water mark of number of register windows concurrently active. 62
Figure 3.26: Performance of best112+register windows relative to -O1. 62
Figure 3.27: Instruction count improvements of best112+register windows. 63
Figure 3.28: Memory reference reductions of best112+register windows. 63
Figure 4.1: The machine model considered in this chapter. 77
Figure 4.2: The mechanism for renaming a destination register. 81
Figure 4.3: Mechanism to access a register value from the cache or backing store. 83
Figure 4.4: IPC of the four register configurations studied. 91
Figure 4.5: Hit rate of the integer physical register file (cache). 92
Figure 4.6: Hit rate of the floating point physical register file. 93
Figure 4.7: Average bandwidths SPECint95. 94
Figure 4.8: Average bandwidths for SPEC2000. 95
Figure 4.9: Average bandwidths for floating point register files. 95
Figure 4.10: IPC of the four perfect register configurations studied 97
Figure 4.11: Hit rate of the integer physical register file (cache), perf configuration. 98
Figure 4.12: The hit rate of the float physical register file, perfect configuration. 98
Figure 4.13: Average bandwidths SPECint95, perfect configuration. 99
Figure 4.14: Average bandwidths for SPEC2000, perfect configuration. 99
Figure 4.15: Average bandwidths for float register files, perfect configuration 100

xiii

Figure 4.16: IPC for go for various cache configurations. 101
Figure 4.17: Average bandwidths for integer register files in go. 102
Figure 4.18: Hit rate of the various cache configurations. 102
Figure 4.19: IPC of several limited port configurations on go. 104
Figure 4.20: The IPC of limited port configurations for SPECint95. 106
Figure 4.21: The IPC of limited port configurations for SPEC2000. 106
Figure 4.22: The lifetimes of physical registers in various schemes 110
Figure 5.1: The results of using different register allocation strategies. 114
Figure 5.2: Why scalar candidates could not be promoted. 121
Figure 5.3: Why candidates could not be promoted with speculative promotion. 125
Figure 5.4: Coverage of dynamic instructions over various SLAT sizes. 130
Figure 6.1: L1 data cache miss rates before and after optimization. 136
Figure 6.2: Misses per 1000 instructions before and after optimization. 136
Figure 6.3: The effect of cache latency on performance. 138
Figure 6.4: The effect of issue width on performance. 139
Figure 6.5: Memory accesses due to the top 30 frequently used addresses. 143
Figure 6.6: Address reuse. 145
Figure 6.7: Misses due to the top 30 frequently missed addresses. 145
Figure 6.8: Fraction of address space referenced only one time. 146
Figure 6.9: Fraction of address space never loaded or never stored. 148
Figure 6.10: Memory accesses due to the top 30 frequently executed PCs. 149
Figure 6.11: Misses due to the most frequently used memory instructions. 150
Figure 6.12: Misses due to the top 30 frequently missing memory instructions. 150
Figure 6.13: Accesses due to the most frequently missed program counters. 151
Figure 6.14: Correlation of data address and PC to access and misses. 153
Figure 6.15: Code in art that is responsible for accesses and misses. 155
Figure 6.16: Code in m88ksim that is responsible for memory activity. 156
Figure 6.17: Code in m88ksim that is responsible for misses. 156
Figure 6.18: Code in compress that is responsible for memory activity. 157
Figure 6.19: Code in compress that is responsible for cache misses. 158
Figure 6.20: Code in go that is responsible for memory accesses. 158
Figure 6.21: Code in go that is responsible for cache misses. 159
Figure 7.1: A diagram showing the overall flow of compilation in MIRV 164
Figure 7.2: Example package and module declarations. 167
Figure 7.3: Example simple type declarations. 168
Figure 7.4: Example complex type declarations. 169
Figure 7.5: Example function declarations. 170
Figure 7.6: Example constant declarations. 171
Figure 7.7: Example function definition. 171
Figure 7.8: Example global and local variable declarations. 172
Figure 7.9: Example statements. 173
Figure 7.10: Example looping constructs. 174
Figure 7.11: Example simple control constructs. 175
Figure 7.12: Example complex control structures. 176
Figure 7.13: Example of promotion of an indirect memory reference. 185
Figure 7.14: Operation of the MIRV backend 186

xiv

Figure 7.15: Operation of the MIRV register allocator. 188
Figure 7.16: An example demonstrating the utility of register coalescing. 191
Figure 7.17: Coalescing for a two-operand architecture. 191
Figure 7.18: Failure of the simple-minded coalescing algorithm. 192
Figure 7.19: Early insertion of two-operand fixup code. 193
Figure 7.20: Example C source code. 196
Figure 7.21: MIRV code for the example. 196
Figure 7.22: Low-level IR code for the example. 197
Figure 7.23: Low-level IR code for the example, after further lowering. 198
Figure 7.24: SimpleScalar/PISA assembly code for the example (unoptimized). 199

1

Chapter 1

Introduction

The performance of the memory hierarchy has become one of the most critical ele-

ment in the performance of desktop, workstation and server computer systems. This is due

in large part to the growing gap between memory and processor speed. Memory latency

has been decreasing by 7% per year while processor frequency has been increasing at a

rate of 55% per year since 1986 [Henn96]. This means that memory access time, as mea-

sured in processor clock cycles, is growing ever slower. Designers have found that using

on-chip cache memory is one way to combat this memory gap. Putting caches on chip is

possible because integration levels have been increasing according to Moore’s law

[Moor65]. The result is processor chips with 128KB or more of on-chip L1 and L2 cache

[MDR99]. Still, the growing speed gap results in pipelines that are idle for as much as half

of all cycles and CPIs no better than 1.5 on a two-issue superscalar processor [Barr98].

The memory gap is not the only problem with memory, however. The sheer num-

ber of load and store operations – 35% of instructions in the typical RISC instruction

stream [Henn96] – place a great burden on instruction fetch, decode, dependence checking

logic in addition to the cache and memory hierarchy. Binaries compiled to the CISC IA32

architecture have an even higher percentage of memory operations–50-80% in some cases

[Vlao00].

The memory bottleneck, a term that encompasses both the memory gap and the fre-

quency of memory operations in the system, forms the motivation for this research. This

dissertation presents both hardware and software methods to implement and manage the

register file more effectively. The register file is the highest level in the memory hierarchy

and the more effectively it is used, the more the cache and memory hierarchy is shielded

2

from memory operations. The overriding goal of this work is to eliminate memory instruc-

tions and their associated operations as much as possible.

The elimination of memory operations has several benefits. First, it reduces the

amount of instruction fetch and decode that needs to be performed by the processor. Sec-

ond, it reduces the pressure on memory load and store ports, freeing them for more critical

memory operations and allowing the hardware to exploit more parallelism. Third, it

directs operations to the higher-bandwidth register file, away from the lower bandwidth

and memory system. Fourth, register operands make for easier dependence checking in

both the hardware and the compiler. Fifth, register access latency is much lower than

memory access latency–typically a register can be forwarded in zero effective cycles,

whereas forwarding a memory operand to a dependent use usually incurs a one- or two-

cycle pipeline bubble. All of these advantages can reduce power consumption as well.

This dissertation makes a number of contributions to the understanding and solu-

tion of the memory bottleneck. After considering background work in Chapter 2, the

remainder of this dissertation is devoted to the study of the following:

1. Earlier studies of integer programs reported widely varying register require-

ments, some claiming that integer codes could use many registers and others

claiming that only few were necessary. Chapter 3 shows, in contrast to some

previous work, that a combination of pre-existing, aggressive compiler optimi-

zations, when allowed to use a large number of registers, can indeed make use

of those registers. The combination of the optimizations lead to performance

improvements that are benchmark-dependent, non-additive, but significant

across all the benchmarks studied. This chapter forms the basis and motivation

for the remainder of the work by showing that register files larger than 32 reg-

isters are necessary and useful for the compiler.

2. Since a large register file is desirable, a mechanism is needed to implement one

efficiently. The feasibility of a large register file is shown in Chapter 4, which

introduces a new mechanism which integrates superscalar processor hardware

and a novel renaming technique to implement a large architected register file

using a caching mechanism. This approach is shown to be nearly as effective

as an impossibly-fast large register file. Such a system makes it realistic to

3

implement a very large register file for use in systems that require either a flat

file or a windowed file. The same technique can be used to implement a

smaller rename register file for a cheaper microprocessor.

3. The larger register file has more capacity, which in some instances cannot be

utilized because the conventional compiler is limited in its application of regis-

ter allocation. This happens because of the compiler’s static uncertainty of

address aliases. Chapter 5 introduces a new optimization called speculative

register promotion and a new hardware structure called the store-load address

table (SLAT) to address this concern. The SLAT can be used to promote scalars

and array elements even in locations where it is not certain they can be legally

allocated to a register using conventional means.

4. Once aggressive optimizations are performed, there is still a significant frac-

tion of memory operations. Chapter 6 studies these operations, with a view

toward understanding some hardware-software trade-offs and characteristics of

the memory operations. Two new metrics are introduced for evaluation of the

trade-off between compiler optimization and hardware design. The characteris-

tics of problematic (frequently used or frequently missed) memory operations

are shown as well.

5. Finally, Chapter 7 introduces a new research compiler called MIRV which was

developed and used for this work. Various facets of the compilation framework

and engineering are considered, including the intermediate representations

used, the high-level source linker, the debug and test environment, and details

of various filters and optimizations.

It is not the primary focus of this work to reduce effective memory access time

through techniques such as prefetching or instruction scheduling, but instead to remove

the memory operations altogether. Those techniques, as well as others to address cache

miss penalties, are orthogonal to this work and can be used for additional performance

benefits.

4

1.1. Theoretical Framework

The central processor of a computer has storage locations called registers that can

be used to hold heavily-used scalar values or as a scratch pad for intermediate computa-

tional results. These registers can be accessed very quickly. Other data is stored in the

main memory address space of the computer. This is commonly known as random access

memory (RAM), which can be up to two orders of magnitude slower than a register. Thus,

it is important to reduce the number of memory operations executed by the program and to

increase the number of references that are made from registers. Cache memories are used

as buffers between the processor registers and the main memory and reduce the impact of

slow main memory speeds.

The compiler is a piece of software which translates human-written code in a pro-

gramming language into computer-readable instructions. It is responsible for placing data

into processor registers for fastest access. If it cannot allocate a datum into a register, then

it must place it in RAM and direct the processor to use a memory operation to access the

datum. Memory operations typically make up 30 to 35% of a program’s total operation

count. Somewhat surprisingly, this is true whether the computer is a reduced instruction

set computer (RISC) or complex instruction set computer (CISC). So not only are memory

operations expensive, but conventional compilers produce programs that use many of

them.

1.1.1. The Source of Memory Operations

There are several reasons why memory operations make up such a large percent-

age of program execution. One may simply be that the computer’s architecture does not

provide enough registers. In processors that support multiple instruction issue (both super-

scalar and VLIW/EPIC styles) the availability of a large number of registers is particularly

important. With only a few registers, program performance can be limited by spill instruc-

tions inserted by the compiler to deal with the small number of registers. These additional

instructions can nullify the benefit of multiple issue as the extra issue slots are used for the

data movement operations (overhead) instead of operations directly related to the algo-

rithm.

5

A primary reason for the prevalence of memory operations is programmer-speci-

fied indirect memory accesses through arrays and pointers. The programmer uses indirec-

tion to solve his problem in an efficient way. Computed addresses for arrays, and stored

addresses for lists, trees, and other structures are convenient and necessary to solve soft-

ware problems. Such structures are often far too large to fit into any realistic register file.

Memory operations can also be attributed to compiler overhead. For example,

many conventional compilers assign global variables to reside in memory for their whole

lifetime and shuttle the variables into and out of the processor. Chapter 3 shows how allo-

cating these variables to registers can significantly improve performance. Another exam-

ple is function call overhead induced by the application binary interface. Variables which

reside in registers are saved at the start of the function and restored at exit.

Aliasing is a another reason why memory operations are so prevalent. An alias is a

condition where a datum is referenced through more than one name. The compiler cannot

determine statically the values of computed addresses. Thus it often cannot be sure

whether an alias could occur or not. It must also assume the worst–that the computed

addresses can refer to the same location. The result is that the compiler must be conserva-

tive. It does this by leaving variables in memory and referring to them through load and

store instructions. If it were to copy the value of a variable into a register and then the

value of that variable was changed through a second name, the copy would be inconsistent

with the actual value in memory. These extra load and store instructions are not always

necessary, though, because the aliasing condition might not happen all the time. Chapter 5

shows how this problem can be addressed.

Dynamic memory allocation is another reason that data cannot be placed into pro-

cessor registers. Dynamically allocated memory is also usually accessed with computed or

stored addresses.

Most of these reasons have to do with the fact that registers can only be accessed

with a direct address whereas memory can be accessed with a computed address. Those

things which the programmer specifies through an indirect address generally cannot be

allocated to registers.

Finally, computer input/output is specified with memory operations.

6

1.1.2. Alleviating the Memory Bottleneck

There are several approaches to deal with memory accesses. Perhaps the most

important is to employ a small, fast “cache” memory structure as a buffer between the

(fast) processor and the (slow) memory [Wilk65]. While numerous cache configurations

have been proposed, caches cannot eliminate all of the accesses to memory. Primarily, this

is because the cache must be small in order to be fast. Physical and cost limits prevent the

cache from being as large as necessary to hold the entire working set of a program. Fur-

thermore, caching relies on past information to predict what will be needed in the future.

This means that caches cannot capture data at unanticipated addresses.

Prefetching of various forms, either in the compiler or in the hardware, have been

utilized to address this problem, but this is still difficult due to the need for prefetching

which is timely enough to avoid waiting for long memory latencies, and which is accurate

enough to prefetch the right data and not pollute the cache [Vand00]. Data in Chapter 6

shows that the instructions which miss do so to many different addresses; this makes it dif-

ficult for a prefetching algorithm to determine the right address to prefetch.

Our approach is to attempt to allocate more data to the processor registers. This

eliminates memory operations altogether. This is effectively a software caching technique.

1.2. Foundational Assumptions

This section enumerates two assumptions that are foundational to this work. First,

we assume that binary compatibility is not of primary importance, unlike most previous

work. Strict backward binary compatibility means that the architecture cannot be arbi-

trarily changed to accommodate new microarchitectural techniques. With the advent of

binary-to-binary translation and optimization technology such as FX32!, Dynamo, and

Transmeta’s code morphing software [Hook97, Bala99, Klai00], this constraint can be

removed so the compiler, architecture, and system designer is free to select a better point

in the design space than previously allowed. Still, many of the techniques proposed herein

can be applied directly to existing architectures with little modification.

Second, we assume that the compiler is capable of complex analyses and transfor-

mations. Work in the early- to mid-1980s assumed it was too expensive to do global regis-

7

ter allocation because of compiler runtime or software bugs [Harb82, Bere87]. It is

evident from current compilers that complexity is not a concern as it was years ago–the

IA64 architecture is evidence that complexity is shifting from the hardware to the com-

piler [IA6499]. We are not as concerned with compiler runtime as with the runtime of the

generated code, especially in light of trends in processor speed and memory size that are

evident in today’s processors. We do not leave the job completely up to the compiler,

though, as is the case in several VLIW architectures. We believe the best trade-off is

somewhere in the middle, where strengths are taken from both the compiler and hardware.

This philosophy may mean some duplication of effort as some things may be done by

hardware that were also done in the software.

8

Chapter 2

Background

This chapter on background work briefly outlines the various areas of research that

are related to this dissertation. We start by discussing the basic trade-off between the use

of registers and cache memory. We then look at basic register allocation and spilling and

show how it fails to allocate variables to registers under conditions where aliases are

present. Alias analysis, a compilation step which is necessary for correct optimization, is

examined next. The optimization called register promotion is then described; it uses the

results of alias analysis and tries to alleviate the aliasing problem somewhat as it moves

scalars from memory into registers in regions where the compiler is sure there are no

potential aliasing relationships. We then briefly compare work in compiler-based control

and data speculation to this research. The chapter ends with some summary remarks.

2.1. Registers, Caches and Memory

A fundamental trade-off in computer architecture is the structure of registers and

cache memory in the processor. This trade-off will be examined in this section.

The benefits of registers are primarily short access time and short instruction

encoding. Registers are accessed with direct addresses which simplifies value lookup.

Since there are generally few register locations (compared to memory locations), the reg-

ister address can be encoded in a few bits. However, registers complicate code generation

because machine calling conventions typically require some registers to be saved across

function call boundaries. This is an important consideration since function calls occur fre-

quently [Emer84]. There are many other trade-offs in the design of a register architecture

for a processor. Table 2.1 catalogs them.

9

Cache memory structures have also been studied extensively, at least back to 1965

with the slave memories described by Wilkes [Wilk65]. Since our focus is on the register

file, caches will not be considered here in any further detail. An excellent early survey is

[Smit82].

A primary concern of this dissertation is the problem that registers cannot gener-

ally contain aliased data. Because of the many positive aspects of registers, it is desirable

that aliased scalar variables (and even non-scalars) should be referred to through register

names. Caches and main memory can contain such aliased data because the hardware

maintains consistency among the copies at the various levels. The movement of data from

memory address space to the register file has in the past meant that consistency could not

be maintained simply because address information was not associated with the register

Registers Cache
– storage size 1-128 registers (4B-512B) + storage size 256B-64KB typical
+ fast access (few and direct index) – slower access (large, computed address,

tags, memory management and protection
checks necessary)

+ fewer address bits (less instruction
bandwidth because of denser code)

– more address bits

+ lower memory traffic (fewer ld/st insts,
cache and memory accesses, and power)

+ ld/st insts (expand the code again)

– more ld/st for synchronization at alias + no synchronization
– more ld/st at fcall boundary + no saves/restores at function call bound-

aries
– more ld/st at context switch boundary – data can be automatically kicked out at

context switch boundary
+ multiple ports less expensive because
few entries

– more costly to multi-port because of
many entries

+ easy dependence check for hazards – hard dependence check
– aliases (computed addrs) and stale data + no need for aliases or stale data
– cannot take address of variable resident
in (the C ’& ’ operator)

+ can take address of variable resident in

– limited addressing modes (direct) + any addressing mode (computed)
– word-sized data only (ISA dependent) + any-sized data
– must have compiler to manage + dumb compiler will do

Table 2.1: Comparison of registers and cache.

10

data. Registers are meant for extremely fast access and adding hardware to keep this con-

sistency must not be allowed to slow them down too much.

The remainder of this chapter surveys some of the work related to register file

design, register allocation, and alias analysis. The keys to understanding all of this previ-

ous research is that it attempts do one or both of the following:

1.Reduce the number of memory operations

2.Reduce the apparent latency of memory operations

Both are essential to microprocessor performance because of the growing gap

between processor and memory speed [Henn96].

2.2. Register File Design

Research into the trade-offs between register files and caches has resulted in a

wide variety of engineering solutions since the earliest days of computer architecture.

Hardware registers (also called scratchpads) have been used since the early 1960s

[Kuck78]. Table 2.2 gives a selected overview of this history. We will comment on a few

of the machines listed in the table where they are relevant.

The CDC 6600 series machines had a total of 24 registers. Loads to 7 of the 8

address registers had interesting side effects. A load into register A[1,2,3,4,5] resulted in

the data at that address being automatically loaded into data register X[1,2,3,4,5], respec-

tively. Similarly, loading an address into A6 or A7 resulted in a store from X6 or X7 to

that address. This allowed efficient encoding of vector operations because the load and

store operations did not need to be explicitly specified. The Cray-1 later made this vector

optimization explicit in its vector registers and instructions [Great].

The Cray-1 [Siew82] has a set of primary registers and a set of secondary or back-

ground registers. There are fewer primary registers, which allows them to be fast, while

the secondary registers are slower but many in number. Long-lived values are stored in the

secondary register files and promoted to the primary register files when used. The Cray-1

contains a total of 656 address and data registers (including the vector registers but not

counting the control registers).

11

Machine Description Date, Refs
Burroughs B5000 Stack-based computer. Registers hold the

top two values on the stack. Eliminates
some data movement introduced by stack.

1961
[Lone61]

Ferranti ATLAS 128 24-bit registers for data or address
computation; 1 accumulator register

1961 [Kilb62,
Siew82]

ETL Mk-6 Still looking for info on this one... 1962
[Taka63]

CDC 6600 8 18-bit index regs, 8 18-bit address regs,
and 8 60-bit floating point regs. Side
effects of loading an address into an
address register are described in the text.

1964
[Siew82,
Great]

IBM System/360 16 32-bit integer regs, 16 64-bit floating
point regs.

1964
[IBM98]

TI Advanced Scientific
Computer (ASC)

16 base regs, 16 arithmetic, 8 index, 8 vec-
tor-parameter regs, all 32-bits

1966
[Siew82]

PDP-11 8 16-bit integer regs (PC and SP
included), 6 64-bit floating point regs.
Extended to 16 integer regs in 1972.

1970
[Siew82,
DEC83]

Cray-1 8 24-bit addr (A) regs, 64 24-bit addr-save
(B) regs, 8 64-bit scalar (S) regs, 64 64-bit
scalar-save regs (T), 8 vector (V) regs. A
vector is 64 64-bits regs.

1977
[Siew82]

VAX 16 32-bit regs for integer or floating point.
(PC, SP, FP, and AP regs included).

1978
[Siew82,
Brun91]

Intel 80x86, IA-32 8 integer, 8-entry floating point stack (16-
bits, extended to 32-bits later)

1978
[Siew82]

Sparc 8 globals, 16-register window with 8 ins
and 8 locals, as well as access to 8 outs
which are the next window’s ins, all 32-
bits. Number of windows from 3 to 32. 32
64-bit floating point regs.

1987
[Weav94]

AM29000 256 registers, all completely general pur-
pose. 64 global, 128 “stack cache”, 64
reserved.

1987 [Great]

Alpha AXP 32 integer, 32 floating point, 64-bits each 1992 [Site92,
Case92]

IA-64 128 integer, 64 predicate, 128 floating
point registers, some with rotating seman-
tics for software pipelining.

1998
[IA6499]

Table 2.2: A partial history of hardware registers.

12

The hierarchical register file, which is very similar to the Cray-1 organization, is

proposed in [Swen88]. The authors present the classic argument that a large fast memory

store can be simulated by a small fast store and a large slow store (in their case, 1024 reg-

isters). The results show speedups of 2X over a machine with only 8 registers. The trade-

offs noted include higher instruction bandwidth and storage, larger context switch times,

and increased compiler complexity. The instruction bandwidth and storage requirement is

reduced by including an indirect access mode where a short specifier can be used to indi-

cate the source value “comes from the instruction which is N instructions before the cur-

rent instruction.”

2.2.1. Large Architected Register Files

Sites presented perhaps the first in-depth discussion of the advantages of being

able to support large numbers of registers, in his paper “How to use 1000 registers”

[Site79]. He also noted the limitation caused by aliasing and coined the term short-term

memory to denote a high-speed register set under compiler control. Besides cataloging

some of the design issues related to short term memory systems, it was noted that it is

often not possible to maintain data values in registers due to aliasing problems. If such val-

ues are placed in registers, they must be written and read from main memory as necessary

to maintain coherence. Even though a machine may have 1000’s of registers, it is likely

that most of them will be left unused by conventional compilers (in 1979).

2.2.2. No Architected Register File

Work done in the 1980s at Bell Laboratories took a different approach by suggest-

ing the complete removal of registers from the compiler-visible architecture. The work

was embodied in the “C-machine” and its “stack cache”, the “CRISP”, and later the

“Habit” [Band87, Ditz87a, Ditz87b, Bere87a, Bere87b]. Instead of programmer-visible

registers, the architecture has a “stack cache” which is a special purpose data cache for

program stack locations; as such, it caches references to local scalar, array, and structure

variables in the function linkage stack. The goal of this cache was to eliminate register

allocation from the compiler and reduce the amount of data movement at function call

13

boundaries. This allows the use of a large number of hardware registers without needing

compiler allocation and without requiring every implementation of the ISA to have the

same number of registers. Initial proposals were for 1024 registers in this cache, but the

first reported implementation had 64 entries [Bere87a].

The essential features of the stack cache that distinguish it from a normal data

cache are as follows: 1) it has no tags; 2) it caches a contiguous range of memory, i.e. the

top of the program stack; and 3) the range being cached is delimited by high and low

address registers. Alias checking is enabled by comparing any computed address with the

high and low ranges of the stack cache; if the address falls within the limits of the high and

low bounds, the data is in the stack cache. If not, memory is accessed (there is no other

internal data cache in the processor). In this way, data objects can be allocated to the stack

cache without fear of aliasing. Special handling is needed when the stack cache is over-

flowed, but this is rarely the case. The authors found that a large percentage of data

addresses can be computed early in the pipeline because they are simple base+offset cal-

culations where the base is the stack (or frame) pointer. The stack pointer remains constant

for the life of the function (except when calling out to children functions).

The stack cache was designed to incorporate the best features of both registers and

cache memory. It was direct mapped and had no tag comparison, so it was fast. The

instruction encoding only required a short stack offset from the current stack frame, much

like the short direct register specifier of a conventional architecture. The stack cache could

hold strings, structures, and other odd-sized data. Finally, the compiler could take the

address of a variable in the stack cache.

It is important to note that the C-machine research assumes that compilation is

expensive and that compilers are hard to write correctly. Therefore, simplifying the com-

piler was the motivation for the decision to eliminate register allocation in favor of the

more straightforward stack allocation of local variables. The single-pass compilers in the

1980s were not able to determine if a variable could be placed in a register because of

aliasing. The requirement of simple compilers is no longer widely held, as evidenced by

the large number of optimizing compilers for register-based architectures. In fact, later

versions of the CRISP compiler used an optimization similar to register allocation to pack

variables into the stack space in order to reduce stack cache misses. The other primary

14

assumption in the CRISP work is that function calls are frequent and that overhead of the

function linkage mechanism is very important to overall performance. This has been and

is still true [Emer84, Ayers97] so an important criterion of a register-architecture is how it

handles function calls.

2.2.3. Register Windows

The Sparc architecture’s register windows [Weav94] are a hybrid register/memory

architecture intended to optimize function calls. It is a cross between the C-machine’s

stack cache and a conventional single-level register file. Each subroutine gets a new win-

dow of registers, with some overlap between adjacent register windows for the passing of

function arguments. Because the windowed register file is large and many ports are

required to implement parallel instruction dispatch, Sun researchers proposed the register

cache and scoreboard [Yung95a, Yung95b]. The register cache takes advantage of the

locality of register reference and the fact that register file bandwidth is not utilized effi-

ciently for large multi-ported files. This is another fundamental trade-off between registers

and memory. Sun and others report that about 50% of data values are provided by the

bypass network [Yung95a, Yung95b, Ahuj95] and there is an average of less than one read

and 3/4 writes per instruction. The Sun work also noticed that a small number of the archi-

tected registers are heavily used (stack and frame pointer, outgoing arguments, etc.).

Because of these factors, the register file cache can be quite small and still capture a large

portion of the register references. Fully associative register caches of size 20 to 32 were

found to have miss rates of less than a few percent. This can provide a significant savings

in cycle time and power consumption compared to the 140-register file in the SPARC

architecture (for an implementation with 8 windows [Weav94]). Other architectures that

could benefit from a register cache include the IA-64 and AM29000 because they have a

large number of architected registers. It is unclear from the previous work what the com-

piler could do to more evenly utilize the register file.

There is other work that attempts to reduce the implementation cost of large regis-

ter files. One is a technique called “virtual-physical registers” which is described in

[Gonz97, Gonz98, Monr99]. Here the goal is to allocate physical registers as late as possi-

ble so that their live ranges (in terms of processor cycles) are reduced. This is based on the

15

observation that the actual lifetime of a value begins at the end of instruction execution

rather than when the instruction is decoded. The difference could be a large number of

cycles. Tags, called virtual-physical registers, are used to specify instruction dependen-

cies, but these have no storage associated with them. The actual physical register storage

is not allocated until instruction writeback. This has the effect of either 1) increasing the

perceived instruction window size or 2) allowing the window to be reduced in size without

negatively affecting performance. The second option is interesting because it allows the

processor to implement a smaller number of physical registers. The only difficulty is that

sometimes the processor may run out of physical registers and the instruction cannot be

written back. In this case, the instruction is re-executed.

2.3. Register Allocation and Spilling

The problem of allocating scalar variables to registers, called the register alloca-

tion problem, is usually reduced to a graph coloring problem [Chai81, Chai82, Brig92,

Chow84], where an optimal solution is well-known to be NP-complete. Other research has

cast the problem as set of constraints passed to an integer programming solver [Good96,

Kong98], or bin packing [Blic92]. We focus on graph coloring in this work because it is

the most common technique for optimizing compilers. This section outlines some previ-

ous work in expanding the register set of an architecture so that the compiler can do more

effective allocation and spilling.

Mahlke et. al. examined the trade-off between architected register file size and

multiple instruction issue per cycle [Mahl92a]. They found that aggressive optimizations

such as loop unrolling, and induction variable expansion are effective for machines with

large, moderate, and even small register files, but that for small register files, the benefits

are limited because of the excessive spill code introduced. Additional instruction issue

slots can ameliorate this by effectively hiding spill code. This work noticed little speedup

or reduction in memory traffic for register files larger than about 24 allocatable registers

(often fewer registers were required)1.

1. We hypothesize that because of a conventional application binary interface [SysV91] and tradi-
tional alias management the compiler was not able to take advantage of any more registers.

16

Register Connection adds registers to the architecture. It does so in a way that is

very careful to maintain backward compatibility and requires a minimum of changes to

the instruction set architecture [Kiyo93]. Connect instructions map the logical register set

onto a larger set of physical registers instead of actually moving data between the logical

and physical registers. This is similar to register renaming [Toma67, Kell75] but is under

compiler control so that register allocation and code optimization and scheduling can take

advantage of the larger set of registers available. This technique is helpful for instruction

sets with very few registers (8-16) but does not help much after 32 registers (where not

much spill code is generated). The connection instructions were carefully designed to min-

imize execution delay and code size.

The compiler-controlled memory [Coop98a] combines hardware and software

modifications to attempt to reduce the cost of spill code. The hardware mechanism pro-

posed is a small compiler-controlled memory (CCM) that is used as a secondary register

file for spill code. The compiler allocates spill locations in the CCM either by a post-pass

allocator that runs after a standard graph-coloring allocator, or by an integrated allocator

that runs with the spill code insertion part of the Chaitin-Briggs register allocator. A num-

ber of routines in SPEC95, SPEC89, and various numerical algorithms were found to

require significant spill code, but rarely were more than 250 additional storage locations

required to house the spilled variables. Potential performance improvements were on the

order of 10-15% but did not include effects from larger traditional caches, write buffers,

victim caches, or prefetching. These results show the potential benefit of providing a large

number of architected registers–not only simplifying the compilation process in the com-

mon case, but also reducing spill code and memory traffic.

2.4. Alias analysis

Compiler alias analysis is yet another field related to the SRF. Alias analysis is

important because it enables optimizations such as common sub-expression elimination,

loop-invariant code motion, instruction scheduling and register allocation to be applied

correctly to the program. While alias analysis is used to determine potential data depen-

dencies for all of these optimizations, we view it as taking two distinct roles. The first is in

17

register allocation, where it determines whether a variable can be allocated to a register or

not. The second is in code transformation, where it determines whether a code transforma-

tion is legal. While both kinds of decisions are necessary for correctness (the overriding

concern), the first is a data layout decision and the second is a code-layout decision. Alias

analysis is used to ensure correctness of an optimization but if it is conservative it limits

the scope and potential of applied optimizations. In other words, alias analysis is neces-

sary, but aggressive alias analysis is needed to allow good optimization.

In deciding how the code-layout can be changed, the compiler is deciding whether

it is semantically correct to move code out of loops, to eliminate redundant computations,

or to otherwise re-arrange the code.

When the compiler addresses the data-layout problem, it must trade off the speed

of the allocated memory against the functionality of it. In the case of an on-chip, direct

addressed register file, the speed is very high but its functionality is low because data is

accessed by statically specified indexes. Furthermore, the conventional register file does

not have built-in checking for aliases between data in a register and data in memory.

The remainder of this section is organized into subsections describing the various

previous research. These could also be divided into software, hardware, and combined

hardware/software solutions.

2.4.1. Background on Alias Analysis

A location in a computer’s memory is referred to by a numerical address which is

computed during the execution of any instruction that accesses that particular location.

Memory aliasing occurs when a storage location is referenced by two or more names. This

can happen in languages like C that have pointers. Data at a memory location can be tem-

porarily kept in a register only if we can assure that all instructions that might refer to that

memory location can be made to refer to the register instead. Because instructions com-

pute the address of the data they refer to at their time of execution, it is often impossible to

tell before execution (i.e. at compile time) which instructions refer to a particular memory

location; thus we run the danger of substituting two or more registers for what appears to

be different memory locations, when we should have substituted only a single register. If

this occurs, copies of the same data will be placed in two or more registers, leaving open

18

the possibility that the copies can be changed separately. Thus data that was meant to rep-

resent the value of a unique variable can end up with two or more distinct values. Clearly

this is wrong.

The allocation of data to registers is done by a compiler–the program that trans-

lates a programming language like C into basic machine instructions. The compiler ana-

lyzes a program before it executes and thus cannot detect if address aliasing does occur

when the program runs. To avoid possible errors the compiler must make conservative

assumptions about the values of addresses, and, as a consequence, must be conservative

about what data can be kept in registers. This in turn means that whole classes of data can-

not be placed in registers, at least for part of their lifetime.

Aliasing through memory is problematic because modification of a value through

the use of one name will change the value examined through another name when both

names refer to the same location in memory, (e.g., a[i] and a[j] may refer to the same loca-

tion). If the compiler can determine with certainty that the names refer to disjoint loca-

tions, it is possible to allocate each name to a machine register where the value will reside.

Similarly, if the compiler can be certain that both names always refer to the same location,

it is possible to replace uses of both names with a single register name and allocate the

location to a machine register.

Unfortunately, making such determinations is difficult. The use of pointers or

accessing of arrays with different index variables creates new names. Furthermore, the

pointer or index can be modified programmatically, thus changing the names at runtime.

Such locations cannot be easily placed in registers because a traditional machine register

has only one name.

Such values can be allocated to registers within regions of the program where the

compiler can determine the exact set of names that refer to the location. In fact, this is a

necessity in a load-store architecture, because the memory value must be placed in a regis-

ter before use. However, such allocations are short-lived, because a modification of the

memory value through another name will not be reflected by a change in the value in the

register. Thus, the value must be updated by re-loading the value from memory. Likewise,

any modification of the value through the register name must be written out to memory in

case the value is accessed through an alias.

19

Languages with stronger typing than C allow the compiler to make more assump-

tions during alias analysis because only those names which have the same type as the vari-

able can refer to the variable.

2.4.2. Modern Processor Memory Disambiguation

The conventional disambiguation hardware in a microprocessor (see for example

Tyso97]) is not open to the compiler. This forces the compiler into the very conservative

mode described in the last section, which requires loads and stores around the references

to aliased data. Furthermore, loads cannot be moved past branches or stores on which they

may (or may not) depend.

2.4.3. Static Analysis

The fact that aliasing information is not provided by the hardware to the compiled

code forces most compilers to do static alias analysis to prove correctness of optimiza-

tions. Examples can be found in [Much97, Wils95, Rein98, Lu98, Emam94]. These refer-

ences represent a range of complexity in the analysis phase; compile time is an important

consideration in such analyses because they are so complex.

As far as register allocation is concerned, the simplest approach is to note which

variables are potentially aliased and then simply not allocate them to registers. For code

motion, simple heuristics can be employed to determine whether a load has a potential

dependence on a previous store.

When the aliasing relationship between two instructions is not known, they can be

moved relative to each other conditionally by the software. This is done by runtime mem-

ory disambiguation [Nico89], where explicit comparison instructions are used to route the

code to the best execution path. If two addresses do not match, then the better code sched-

ule can be selected. In the case they do match, the original, less aggressive code schedule

must be provided.

20

2.4.4. Register Promotion

In function-level2 register allocation, a variable is typically marked as ’allocatable’

or ’not allocatable’ depending on whether it can be resident in a register for its entire life-

time or not. In a conventional compiler and processor, a variable cannot be placed perma-

nently into a register if there is more than one name used to access that variable. For the C

language, if the address of the variable is taken the variable is said to be aliased and cannot

be placed in a register. Global variables are also typically marked as “not allocatable”

because register allocation algorithms are designed to run at the function level instead of

the program level. Those variables which cannot be permanently allocated to registers are

left in memory and require a load before each use and a store after each definition.

Register promotion [Chow90, Coop97, Sast98, Lo98] allows aliased variables to

be placed into registers in code ranges where aliasing cannot occur. The variable is pro-

moted to a register by loading it from memory at the beginning of the range. At the end of

the range, the variable is demoted back to memory so that subsequent definitions and uses

through other names are correctly maintained. It is apparent that this optimization

increases register pressure because more values are maintained in registers during the non-

aliased regions. The loads and stores are removed from these regions.

Several variants have been examined which use different code regions as the basic

unit of promotion. In one, loops are considered as the basic range for promotion [Coop97];

another uses arbitrary program intervals as the promotion regions [Sast98]; and another

did not consider explicit program regions but instead used a variant of partial redundancy

elimination to remove unnecessary loads and stores [Lo98]. All of the previous work

shows substantial reductions in the number of dynamic load instructions executed and

varying reduction in the number of stores eliminated.

The promotion loads and demotion stores can be placed in infrequently executed

paths in the control flow graph; this is shown to require more static loads and stores but

results in fewer dynamic loads and stores. Register pressure was shown to increase by up

to 25% in the most common cases [Sast98].

2. “Function level” register allocation is typically called “global” register allocation. We use the
former to avoid overloading the term “global.”

21

Explicit load/store instructions are needed for register promotion, and the compiler

must demote a value to memory whenever there is a potential aliasing relationship.

2.4.5. CRegs

The Short-Term Memories described by Sites are the inspiration for CRegs

[Diet88, Nowa92, Dahl94]. CRegs solves the aliasing problem much the same way as the

Smart Short-Term Memory of this proposal. Registers have associated address tags which

are checked against loads and stores to keep the registers and memory consistent. How-

ever, because the compiler may assign aliased variables to different registers, memory

contents potentially have many duplicates in the CReg set. On a store, the associative

lookup must find all copies of the data in the CReg array and update them accordingly.

CRegs reduces the number of memory operations by eliminating redundant loads and

stores from the program. These loads and stores were introduced in the conventional

architecture because of aliasing.

2.4.6. EPIC

Work done at Illinois on the Impact EPIC architecture [Augu98] is concerned with

scheduling load instructions ahead of control dependencies and aliased stores. Allowing

loads to move past stores in the instruction schedule has a large impact on performance

because otherwise the scheduling is very constrained. In previous work, the same

researchers proposed the memory conflict buffer (MCB), which associates addresses with

registers and tracks later writes to the addresses [Gall94]. In this way, a load can be sched-

uled above a store and the hardware will report when an aliasing condition actually occurs.

Explicit check instructions which access the MCB state are required to determine if an

aliased memory operation occurred between the check and the earlier, hoisted load

instruction (called a checked load), at which time recovery code can be initiated. The

recovery code and check instructions increase both the static and dynamic instruction

counts, but the speedups reported are significant for benchmarks limited by memory ambi-

guities. The later research [Augu98] is concerned with generating efficient recovery code.

22

If a checked load instruction is followed by instructions which use the loaded

value speculatively, exception information can be propagated through the uses so that one

check can happen at the end of a long string of code. This reduces the number of check

operations.

The Merced implementation of IA-64 utilizes a hardware structure very similar to

the memory conflict buffer call the Advanced Load Address Table (ALAT). It allows the

IA-64 compiler to advance load instructions and associated uses beyond branches and

stores [IA6499]. To propagate exception information through a string of instructions, a

NaT bit is employed. There is one per architected register. When the NaT bit is set on a

register (say because of a page fault), all subsequent instructions which use that register

essentially become NOPs and set their output register’s NaT bit.

2.4.7. Memory Renaming

Tyson and Austin proposed memory renaming which allow loads to execute early

in out-of-order processors [Tyso97]. This optimization is done entirely in hardware with

no modification to the binary. This is achieved by tracking the loads and stores that fre-

quently communicate with each other. Once a stable relationship has developed between a

load and a store, the load’s data can be accurately predicted to be coming from the store it

is associated with. This allows memory to be bypassed entirely in the critical path–the

address and the data are both predicted at once by the producer-consumer relationship

between the load and store. A value file contains the data shared between the load and

store. The key to early (speculative) resolution of the load is that the load and store PC’s

are used as the index of the value in the value file.

The prediction must be checked by performing the actual load, but this is off the

critical execution path. The authors found that some of the load-store pairing comes from

aliased data and global data, which they assume cannot be allocated to registers.

2.4.8. Other

Other work has focused on early generation of load addresses, prediction of load

addresses, or prediction of load values in order to speed up program execution. None of

23

these techniques assumed compiler involvement and thus worked with conventional

binary programs.

2.5. Summary

This chapter has outlined a number of areas of research that are related to Smart

Short Term Memories. Because the SRF relies on both hardware and software support, the

previous work is a large body of computer architecture research. The previous work can

be divided into three major categories: 1) that which deals with register file design; 2) that

which deals with register allocation; and 3) that which deals with memory alias analysis

and optimization in the face of aliasing. All of these are important foundational work to

the designs considered in the rest of this dissertation.

24

Chapter 3

Register Utilization in Integer Codes

3.1. Introduction

Register allocation is an important optimization for high performance micropro-

cessors but there is no consensus in the architecture or compiler communities as to the

best number of registers to provide in an instruction set architecture. This chapter dis-

cusses reasons why this situation has occurred. Additional registers free compiler optimi-

zations to be more effective, and the optimizations cause the compiler to need more

registers. Essentially, if there are not enough registers and compiler optimizations to use

them, the register requirements of programs will look artificially small. We show from a

compiler perspective that, compared to the conventional 32-register file, 64 or more regis-

ters enables performance improvements from 5% to 20%. This is demonstrated with exist-

ing advanced compiler optimizations on the SPECint95 and SPEC2000 benchmarks. This

work also documents that the optimizations eliminate cache hit operations, converting

common-case cache hits to faster register accesses. Finally, this work provides additional

measurements for the proper number of registers in a high-performance instruction set and

shows that most programs can easily use 100 to 200 registers when multiple active func-

tions are considered for simultaneous allocation to the register file. The performance

improvements demonstrate that a large register file is important to high-performance com-

puting, a result not clearly stated by previous research.

3.2. Background and Motivation

Large register files have many advantages. If used effectively they can: 1) reduce

memory traffic by removing load and store operations; 2) improve performance by

25

decreasing path length; and 3) decrease power consumption by eliminating operations to

the memory hierarchy. Their merit derives from the fact that they require few address bits

and act as a very high-speed cache.

On the other hand, large, multi-ported register files can become the critical path

that sets the cycle time of the processor. There have been a number of proposals to circum-

vent this problem by implementing the register file either by physically splitting it, or pro-

viding a cache of the most frequently used registers and having a large backing store for

the full architected set of registers. [Swen88, Yung95a, Yung95b, Gwen96]. The caching

technique is particularly useful in a register renaming processor, where the architected

(logical) register file can be much larger than the physical register file. In such a case, the

physical register file acts as a cache for the larger architected register set. In this chapter,

we assume that the implementation issues can be solved using such techniques.

Instead of considering implementation issues of large register files, we focus on

their performance advantages. In scientific and DSP code, there are well-known tech-

niques for exploiting large register files. However, a common view has been that large

files are difficult to use effectively or are not necessary in general purpose code. In this

chapter we will show that this is not indeed the case by applying several existing advanced

compiler optimizations separately and then in combination. The results show that at least

64 registers are required for highest performance, and many more if the scope of register

allocation is increased beyond the function boundary to include multiple functions which

are active simultaneously on the call stack.

For control-intensive integer codes, the kind we are focusing on in this work, pre-

vious research to determine the best number of registers has not arrived at a clear consen-

sus. For example, one study suggests that the number of processor registers that can be

effectively used is limited to a couple dozen [Mahl92a]. Others have suggested that exist-

ing compiler technology cannot make effective use of a large number of registers

[Beni93]. Studies on the RISC I architecture refer to earlier work which shows that 4 to 8

windows of 22 registers each (for a total of 80 to 144 registers) is sufficient to house the

locals and parameters for over 95% of function calls [Tami83, Patt81]. In addition there

has been much effort in the area of optimizing spill code; this is indicative of a need for

more registers.

26

Floating point and DSP codes are generally thought to be able to take advantage of

a large number of processor registers if the compiler utilizes advanced transformations

such as loop unrolling, register renaming, accumulator and induction variable expansion,

and software pipelining. One study confirmed this by showing that for a set of loop nests

from the PERFECT and SPEC suites, register utilization increases by a factor of 2.6 after

all ILP transformations were applied. While most optimized loops required fewer than 128

registers, the average register usage was about 70 for the loops studied [Mahl92b]. How-

ever, other work which used some similar benchmarks found that after 32 registers, adding

registers produced only a marginal performance improvements, particularly if sophisti-

cated code generation techniques are used [Brad91]. Finally another study showed that

optimal performance for a number of Livermore kernels requires 128 to 256 registers

[Swen88].

This lack of agreement in the architecture and compiler research communities is

mirrored in commercial processor designs. Table 3.1 shows the register configuration of

several embedded and workstation-class processors. While it is true that the register set

size on some of these machines was constrained by backward compatibility and cost con-

cerns, it is interesting to note the wide variety of register configurations. Incidentally,

many of the high performance machines have larger physical register files to implement

out-of-order execution. These additional registers are not available to the compiler.

There are several possible reasons for these mixed results, at least as far as integer

codes are concerned. First, a small number of registers is suggested by the fact that a typi-

cal programmer does not usually have a large number of scalar variables in each function.

Second, temporary variables are short-lived and can be packed into a small number of reg-

isters. Third, many data references are made through structure or array variables whose

components cannot be easily allocated to registers. Fourth, variables local to a function are

typically the only candidates considered for permanent register allocation. Though some

global variables could be allocated to registers for their entire lifetime, most compilers

leave them in memory and shuttle them in and out of registers with load and store opera-

tions. Fifth, local variables cannot generally live in the register file while a called function

is executing unless a register windowing approach is used to house the variables from

27

multiple functions in different regions of the register file. Sixth, compiler optimizations

are often deliberately throttled in order to avoid introduction of spill code. Thus 32 regis-

ters might appear to be sufficient because the optimizations have been artificially

restricted to that level.

On the other hand, sophisticated compiler optimizations can significantly increase

the number of variables by performing loop optimizations. These optimization temporar-

ies can create greater register pressure than arithmetic and other simple temporaries since

they live over longer ranges. The pool of register allocation candidates can also be

enlarged by including array elements and scalar global variables. Furthermore, global

variable register allocation can increase the number of registers that are required. Finally,

variables that are aliased can be allocated to registers for some portions of their lifetime,

further increasing the number of candidates for register allocation.

Many of the earlier studies did not have access to the advanced compiler transfor-

mations used today, either because the transformations were not known, or were not avail-

able in the compilers used for the studies. The lack of freely available optimizing

compilers suitable for research studies has had a limiting effect on earlier research.

Architecture
Type

Architecture/Family Register Configuration

Embedded

SHARC ADSP-2106x [AD96] 16 primary; 16 alternate; 40 bits wide

TI TMS320C6x [TI97]
2 files of 16 registers; 32 bits wide; 1
Mbit on-chip program/cache/data mem-
ory

Philips TriMedia TM1000
[TM1K] 128 registers; 32 bits each

Siemens TriCore [Siem97] 16 address; 16 data; 32 bits wide

Patriot PSC1000 [PTSC] 52 general purpose registers; 32 bits wide

Workstation

Intel IA32 [Inte96] 8 int; 8 float in a stack; 32 bits wide

Transmeta Crusoe TM3120,
TM5400 [Klai00] 64 int; 32-bits wide

Intel IA64 [IA6499]
128 int, rotating and variable-size win-
dows; 128 float; 64 bits wide; 64 1-bit
predicates

DEC Alpha 21x64 [Site92] 32 int; 32 float; 64 bits wide

Sun Sparc V9 [Weav94]

8 globals, 16-register window with 8 ins
and 8 locals, as well as access to 8 outs
which are the next window’s ins, all 32-
bits. Number of fixed-sized windows
from 3 to 32. 32 64-bit floating point regs.

Table 3.1: Register configurations for embedded and workstation processors.

28

This chapter makes the case that for integer codes, a large architecturally-visible

register file is necessary for high performance, and such large files can easily be utilized

by current compiler technology. In fact, if the compiler does not use the right optimiza-

tions, the apparent register requirements of the program can be significantly lower than

reality. To this end, we explore the performance effects of four sets of optimizations in this

chapter. The first is traditional function-level optimizations. These increase register pres-

sure by adding temporary scalar values and extending scalar lifetimes [Much97, Aho86].

The second optimization allocates global scalar variables and addresses to registers for

their lifetime. The third is register promotion for aliased variables and global scalars. The

fourth is function inlining, which effectively combines the live registers of two functions

into one allocation pool. Each of these techniques increases the pool of register allocation

candidates and depending on the benchmark can significantly impact performance. All of

these optimizations have been examined in previous work but this study examines them in

combination in order to present the register requirements of a modern optimizing com-

piler.

The presentation will proceed as follows. Section 3.3 describes the compilation

environment and includes descriptions of the optimizations that we report on in this chap-

ter. Section 3.4 describes our simulation setup. In Section 3.5 we present our experimental

results. Each transformation is analyzed for its effects on overall performance, register

pressure, and other effects. In addition, an incremental analysis is provided to examine

how much benefit the non-traditional transformations provide over classical optimization.

Section 3.6 presents some more evidence that a large number of registers is necessary for

integer codes. Section 3.8 describes some previous work on register architecture. We sum-

marize our conclusions in Section 3.9 and provide directions for future research.

3.3. Compilation Environment

This section describes the optimizations that were applied to increase register

usage. We use the MIRV C compiler. MIRV is an ANSI C compiler which targets the Intel

IA32 and SimpleScalar PISA architectures; for this work, the PISA architecture is used

because it offers the ability to use up to 256 registers. The baseline optimization level is -

29

O1, which includes classical optimizations. The compiler performs graph-coloring register

allocation and does scheduling both before and after allocation. The number of registers

available for allocation is passed as a command-line argument to the compiler. A complete

description of the MIRV compiler, the types and order of optimizations, and a comparison

against GCC is outside of the scope of this chapter. This information can be found in our

technical report [Post00a].

We use MIRV to transform the C files of the SPECint95 and SPEC2000 bench-

marks into the MIRV high-level intermediate representation (IR). The IR files for each

module are then linked together, producing a single “ linked MIRV” file for the bench-

mark. Once linking is done, the MIRV compiler can apply the optimizations that are used

in this work to show that general purpose code can take advantage of a larger register set.

The following subsections briefly describe these optimizations.

3.3.1. Register Promotion

Register promotion allows scalar values to be allocated to registers for regions of

their lifetime where the compiler can prove that there are no aliases for the value. The

value is promoted to a register for that region by a load instruction at the top of the region.

When the region is finished, the value is demoted back to memory. The region can be

either a loop or a function body in our compiler. The benefit is that the value is loaded

once at the start of the region and stored once at the end, and all other accesses to it during

the region come from a register allocated to the value by the compiler.

Constant values that cannot fit into an instruction can also be promoted to a regis-

ter in order to eliminate load-immediate instructions. Finally, indirect pointer references

can also be promoted to a register. The register promoter in MIRV can promote global sca-

lar variables, aliased local scalar variables, constants, and indirect pointer references (we

call these dereferences). For the remainder of this chapter, we will only consider loop

regions.

30

3.3.2. Link-time Global Variable Register Allocation

One shortcoming of register promotion is that promoted global scalars are moved

into and out of registers each time the loop (promotion region) is invoked. This causes

unnecessary load and store instructions, as shown in Figure 3.1. In this example, a global

variable called pt r is initialized to point to another variable. The assembly code on the

right shows that this results in a load operation. This load operation is a simple load rela-

tive to the global pointer ($28). On other machines, it might be even more expensive to

reference a global variable. MIRV can allocate global variables to registers for their entire

lifetime, avoiding all such overhead. This eliminates the need to move the globals in and

out of registers at region boundaries.

Post-link allocation can be used separately from register promotion, in which case

it achieves much the same effect, in addition to avoiding the movement of values at region

boundaries. It could also be applied after register promotion. In our experiments, we con-

sider its application apart from promotion to isolate its benefit.

Allocating Global Variables
Instead of allocating globals into the set of local registers, we allocate them to a

separate area of the register file. This is similar to the global registers in the SPARC and

IA-64 architectures [Weav94, IA6499]. After linking the program’s intermediate repre-

sentation into one file and doing the appropriate coalescing of global variable declarations

Figure 3.1: The conventional way that global variables are referenced.

/ * C sour ce code * /

i nt * pt r = &poi nt edTo;

. . .

i = pt r ;

Assembl y
. sdat a
 . gl obl pt r
pt r :
 . l ong myAddr Taken

. . .

l w $2, pt r

Di sassembl ed obj ect code
l w $2, - 32760($28)

31

and definitions, the compiler determines if the global’s address is ever taken and annotates

that into the global’s declaration in the intermediate representation.

Next we run the MIRV SimpleScalar/PISA backend and select the global variables

to allocate to registers. Because the usage of registers 0-31 is fixed by the System V ABI,

MIRV allocates global variables to registers 32..32+N, where N is set by a compiler com-

mand-line option. A global variable must satisfy two conditions before it is considered a

candidate for permanent allocation to a register. First, its address cannot be taken any-

where in the program. This ensures that we can allocate the variable to a register for its

entire lifetime without being concerned about aliasing conditions. Second, the global can-

not be an imported variable. The second condition ensures that we only allocate user vari-

ables to registers—we have opted not to modify the C library code and thus do not attempt

to allocate imported library variables to registers.

MIRV uses three heuristics to determine which global scalars to put into registers.

The first is a simple first-come-first served algorithm. It selects the first N allocatable glo-

bal variables and allocates them. The second heuristic is based on a static frequency count

estimate. It is determined by the following formula:

(Eq. 1)

That is, a reference to a variable within the top level of a function is given weight

1. A use within a loop is given weight 4 << 1 = 8. A use within a doubly-nested loop is

given weight 16, and so on. Candidates are sorted by frequency count with the highest fre-

quency variables getting preference for registers.

The third and final heuristic is based on a dynamic frequency-of-use. The program

is instrumented with counters which are used to keep track of the execution frequency of

the block statements in the program. The program is then run on a training data set and the

final counter values are used to compute how many times a given global variable was

accessed. This data is more accurate than the static frequency count estimate.

We only consider the static frequency count heuristic in this chapter since the first-

come-first-serve is dependent on variable declaration order and the dynamic heuristic does

not provide appreciable performance improvements when there are more than a few regis-

static frequency count (loop nest level ? 4 << loop nest level : 1)
all uses and
definitions

∑=

32

ters available for globals. We call the configurations based on the static heuristic “statX”

where X is the number of registers in the machine. In our experiments, X minus 32 of

those registers are permanently set aside for global variables; the original 32 registers are

left to behave according to the ABI specification.

Once the candidates are chosen, they are allocated to a register by the MIRV back-

end. If the variable being allocated has an initial value, initialization code is inserted into

the beginning of mai n() .

We do not use lifetime ranges to compact more global variables into the given

number of registers. We think that trying to compact globals into fewer registers will not

yield much appreciable benefit unless the machine has very few registers. Of course, if an

existing ISA is used, then there are very few registers in general so it would be beneficial

to try to compact them. Compacting globals by sharing registers requires movement of

data between memory and registers. Register promotion does exactly that, so it is evident

that these two optimizations are related.

Allocating Global Constants
Global arrays are responsible for a large portion of the computation in some pro-

grams. Each time a global array is referenced, its base address is formed and then used as

part of an indexing calculation. This address formation (or materialization) takes two

instructions on the PISA (MIPS IV) ISA because of the range limit on immediate con-

stants. Even with loop invariant code motion that moves these address computations out of

loops, many such instructions are executed.

We optimize this case by creating a new global scalar variable pointer which is ini-

tialized to point to the base of the global array. This pointer is then used in all array index-

ing computations instead of materializing the address. The new pointer variable is

allocated to a global register for the entire program so that instead of materializing it at

each point of use, a single register reference is all that is required. This reduces the number

of load-immediate and add instructions that are executed. We call this optimization

address promotion. Address promotion should not be performed if the pointer cannot be

allocated to a register because rematerializing the address is probably cheaper than load-

ing it from memory.

33

Loop invariant code motion can move many of these instructions out of local loops

because they compute an invariant base address. Promoting the base address into a register

removes all such instructions entirely instead of just moving them outside of the loops,

which is important for functions which are themselves called within a loop. This optimiza-

tion may seem wasteful at first because it is allocating a constant value (label) to a register.

However, the frequency of these operations and the ease with which register allocation can

memoize them make these operations prime candidates for optimization. Thus address

promotion eliminates redundant computation by memoization. This effect is present in the

go benchmark as will be mentioned later.

Local arrays cannot benefit from this optimization since their base address is

already essentially in a register (at a constant offset relative to the frame pointer).

3.3.3. Inlining

MIRV inlines two kinds of functions: those that are called from one call site and

those that are “small.” Functions that are invoked from one call site are called singletons.

There are a surprising number of singleton functions in the SPEC benchmarks as shown in

the fifth numeric column of Table 3.2. From 17% to 63% of functions are called from a

single call site. These can be inlined profitably without causing code expansion because

the original function can be removed after inlining.

Singleton functions are inlined in MIRV if the estimated register pressure is below

a certain bound. Otherwise, if inlining were performed, there might be extra spill code

introduced. For example, if there are 3 live registers at the call site and a maximum of 8

live registers in the singleton callee, then inlining will require 11 registers whereas before

inlining, 8 registers was sufficient because of the prologue spills and epilogue reloads

present in the singleton callee. As more registers are made available to the inliner, this

quickly becomes a non-problem.1 The bound is set to the total number of registers

available to the compiler for the specific simulation (either 32, 64, or 256 in this chapter).

1. Some have disagreed with our approach. It is true that there are no more live values before inlin-
ing than after. However, combining the allocation candidates of the two functions together can
cause spill code which performs worse than the original prologue/epilogue code. Our heuristic
for this is to look at register pressure to determine if more spilling code will be introduced.

34

Small functions are those with fewer than 10 C statements. No register pressure measure-

ments are examined for small function inlining.

Small functions are currently inlined until the code is expanded to a user-defined

limit. The limit we use for this chapter is 10%, which means that we do not allow inlining

to expand the static code size by more than 10%. This is not a problem in practice. For

example, inlining all the small functions in go at every call site only results in a 7% code

expansion. Once a singleton is determined to be suitable for inlining based on our register

pressure heuristic, the function is inlined without regard for code expansion because the

original copy of the function will be deleted after inlining. The net code expansion will be

about zero.

A potential negative effect of inlining is that of poor code layout. Inlining a func-

tion can make performance worse if functions are aligned in such a way that they conflict

with each other or if the working set size of the program has been made large enough that

Category Benchmark
Total

Functions

% Functions
called from
0 or 1 call

sites

SPECint95

compress 30 23% 40%

gcc 2,046 15% 26%

go 383 0% 63%

ijpeg 475 46% 29%

li 382 49% 17%

m88ksim 291 22% 30%

perl 349 4% 26%

vortex 959 29% 33%

SPECfp2000

ammp 206 23% 42%

art 41 12% 34%

equake 36 11% 53%

mesa 1127 56% 25%

SPECint2000

bzip 92 16% 34%

gcc 2275 14% 27%

gzip 140 16% 31%

mcf 39 8% 54%

parser 349 6% 36%

vortex 959 29% 33%

vpr 301 5% 43%

Table 3.2: Functions in SPEC called from 0 or 1 call sites (-O1 optimization).
These are compile-time measurements and do not include functions never called dynamically.

35

it does not fit into the cache. These issues are not examined in this chapter but are

described elsewhere in the literature [Chen91].

3.4. Simulation Environment

All simulations were done using the SimpleScalar 3.0 simulation toolset [Burg97].

We have modified the toolset (simulators, assembler, and disassembler) to support up to

256 registers. Registers 0-31 are used as defined in the MIPS System V ABI [SysV91].

Registers 32-255 are used either as additional registers for global variables OR additional

registers for local caller/callee save variables.

We ran variants of the SPEC training inputs in order to keep simulation time rea-

sonable. Table 3.3 shows the data sets used for these experiments. Our baseline timing

simulator is the default si m- out or der configuration; it is detailed in Table 3.4.

Detailed information is available elsewhere [Post00a].

Category Benchmark Input

SPECint95

compr ess 30000 q 2131

gcc regclass.i

go 9 9 null.in

i j peg specmun.ppm, -compression.quality 25, other args as in training run

l i boyer.lsp (reference input)

m88ksi m ctl.lit (train input)

per l jumble.pl < jumble.in, dictionary up to ’angeline’ only

vor t ex 250 parts and 1000 people, other variables scaled accordingly

SPECfp2000

ammp test input modified so that numstp is 1, short.tether has the first 162
lines, and all.init.ammp has a subset of the statements in the original

ar t -scanfile c756hel.in -trainfile1 a10.img -stride 2 -startx 134 -starty
220 -endx 139 -endy 225 -objects 1 (test input)

equake < inp.in (test input)

SPECint2000

gcc first 1442 lines of test input cccp.i

gzi p input.compressed 1 (test input)

mcf inp.in (test input)

par ser 2.1.dict -batch < test.in

vor t ex 250 parts and 1000 people, other variables scaled accordingly

vpr
net.in arch.in place.in route.out -nodisp -route_only -
route_chan_width 15 -pres_fac_mult 2 -acc_fac 1 -
first_iter_pres_fac 4 -initial_pres_fac 8 (test input)

Table 3.3: Description of benchmark inputs.

36

3.5. Experiment Results

The results of our experiments are presented in the following subsections. The

baseline in all cases is MIRV -O1 with 32 registers. In each set of graphs in the following

subsections, the first two bars are the MIRV -O1 results with 64, and 256 registers. The

graphs show simulated cycles for each of the SPECint and SPEC2000 benchmarks

described in the previous section. Each figure shows the performance improvement of the

respective optimization compared to -O1 with 32 registers so that it is clear what the indi-

vidual optimization is doing to performance. Section 3.5.1 shows -O1 versus -O1 with

register promotion. Section shows -O1 versus -O1 with link-time allocation. Section 3.5.2

shows -O1 versus -O1 with inlining. Section 3.5.3 shows the combination of all 4 sets of

optimizations. The final subsection, Section 3.5.4, shows some information on the cache

effects of the optimizations.

Note that -O1 performance can actually become worse when the number of local

registers is increased because of extra spill code in the prologue and epilogue to handle

callee save registers.

SimpleScalar
parameter

Value

fetch queue size 16

fetch speed 1

decode, width 4

issue width 4 out-of-order, wrong-path issue included

commit width 4

RUU (window) size 64

LSQ 32

FUs alu:4, mult:2, memport:2, fpalu:4, fpmult:1

branch prediction 2048-entry bimod, 4-way 512-set BTB, 3 cycle extra mispredict latency, non-
spec update, 8-entry RAS

L1 D-cache 128-set, 4-way, 32-byte lines, LRU, 1-cycle hit, 16KB

L1 I-cache 512-set, direct-mapped 32-byte line, LRU, 1-cycle hit, 16KB

L2 unified cache 1024-set, 4-way, 64-byte line, 6-cycle hit, 256KB

memory latency 60 cycles for first chunk, 10 thereafter

memory width 8 bytes

Instruction TLB 16-way, 4096 byte page, 4-way, LRU, 30 cycle miss penalty

Data TLB 32-way, 4096 byte page, 4-way, LRU, 30 cycle miss penalty

Table 3.4: Simulation parameters for sim-outorder (the defaults)

37

3.5.1. Register Promotion

Our first set of results, Figure 3.2, shows the performance increases due to register

promotion. In addition to the two -O1 bars, each graph has three bars for register promo-

tion, for 32, 64, and 256 registers. Register promotion improves performance from 5% to

15% on some benchmarks. Other benchmarks, most notably l i , actually get worse with

register promotion. This is due to spilling caused by the promotion. Figure 3.3 and Figure

3.4 show the load and store instruction reductions from these optimizations. A few of the

benchmarks have 10% reductions in loads and stores; the notable exception is ar t , where

there is nearly 50% reduction in load instructions due to promotion.

Examination of ar t ’s benchmark source reveals five integer global variables

which are used heavily in loops for comparison and array indexing operations. In addition,

there are several global pointers into arrays and other data structures that are promoted.

Promotion provides a significant performance win by reducing the number of loads by

46%. A small reduction in store instructions (2.3%) indicates that these variables are not

Figure 3.2: Performance of register promotion.

Cycles Relative to O1-32: Regis ter Prom otion

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

C
yc

le
s

R
el

at
iv

e
to

 O
1-

32

O1-64

O1-256

RP-32

RP-64

RP-256

38

modified often by the program. These variables may not require full promotion but can

use a weaker form that only considers load instructions.

Dynamic Loads Relative to O1-32

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

R
el

at
iv

e
D

yn
am

ic
 L

o
ad

s

O1-64

O1-256

RP-32

RP-64

RP-256

Figure 3.3: Loads eliminated by register promotion.

Dynam ic Stores Relative to O1-32

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

R
el

at
iv

e
D

yn
am

ic
 S

to
re

s

O1-64

O1-256

RP-32

RP-64

RP-256

Figure 3.4: Stores eliminated by register promotion.

39

As the number of registers is increased for promotion, results generally improve

slightly. Some benchmarks, such as m88ksi m and vor t ex , show a performance degra-

dation. This is due to the extra register save and restore operations at function call bound-

aries. This overhead outweighs the benefit of promotion. While the reduction in the

number of memory operations for go, i j peg and equake is significant (10%-15% of

each category), performance only improves by about 5%-8%.

Link-time Global Variable Register Allocation
Figure 3.5 shows the performance results when link time allocation is applied. The

results reported are for 32 and 224 registers specifically set aside for global variables.

Because of pre-compiled libraries, we could not permanently allocate any global variables

to registers 0-31. This optimization reduces the number of load instructions anywhere

from 0% to 50%. Some benchmarks, such as i j peg, vor t ex and equake see little or

no reduction in memory operations. For those benchmarks that do see a significant reduc-

tion, performance improves up to 15%. The corresponding reductions in load and store

operations are shown in Figure 3.6 and Figure 3.7.

Figure 3.5: Performance of post-link allocation.

Cycles Relative to O1-32: Link -tim e Global Allocation

0.6

0.7

0.8

0.9

1

1.1

1.2

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

C
yc

le
s

R
el

at
iv

e
to

 O
1-

32

O1-64

O1-256

stat64

stat256

40

Performance actually degrades in some cases when the number of registers set

aside for global variables is increased from 32 to 224 (the stat64 and stat256 configura-

tions, respectively). This is not intuitive and indeed is due to another effect: code layout.

Dynam ic Loads Relative to O1-32

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

R
el

at
iv

e
D

yn
am

ic
 L

o
ad

s

O1-64

O1-256

stat64

stat256

Figure 3.6: Loads eliminated by link-time global variable allocation.

Dynam ic Stores Relative to O1-32

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

R
el

at
iv

e
D

yn
am

ic
 S

to
re

s

O1-64

O1-256

stat64

stat256

Figure 3.7: Stores eliminated by link-time global variable allocation.

41

For example, for vor t ex compiled with -O1 optimizations, the instruction cache miss

rate is 7%. For the same program compiled with link-time allocation, the instruction cache

miss rate is over 9%.

The effect of allocating base addresses is significant for some benchmarks, partic-

ularly go, which accesses a lot of global arrays. In this case, loads and stores are reduced

as well as address arithmetic. Essentially, the base address has been memoized into a reg-

ister. This reduces the amount of redundancy in computation that is seen during program

execution.

Compr ess is not a particularly good benchmark to study in this context because

most of the benefit of link-time allocation comes from two global pointer variables which

index into I/O buffers. These are used in two small helper functions called get byt e()

and put byt e() , which were introduced when the program was made into a benchmark.

Link-time allocation helps to remove this inefficiency and eliminates almost 60% of the

load instructions and nearly 50% of the store instructions in that benchmark.

Many of the benchmarks show that adding registers for global variables is much

more important than adding registers for local variables. For example, the compr ess

benchmark does not benefit at all at the -O1 optimization level with 64 or 256 registers.

However, setting aside 16 registers for globals vastly improves the performance. This is

true for go, m88ksi m, ar t , gzi p, and vpr , and to a lesser extent some of the other

benchmarks.

Adding registers for locals does impact performance by 5% or more for go,

m88ksi m, and equake. Sometimes variables are aliased for a small initial portion of

their overall lifetime and could be allocated permanently to a register afterwards. For

example, we noticed that in the compr ess benchmark, the global seedi integer could

be allocated to a register after it is initialized through a pointer. However, this yielded only

a marginal performance improvement, so we did not investigate this further.

Link-time allocation is much more effective than register promotion at improving

performance. This points out the importance of permanently allocating globals into regis-

ters. Promotion can achieve some of this benefit by removing loads and stores from loop

bodies, but it still shuttles data back and forth to memory at region boundaries. If the pro-

motion itself occurs within a function that is called from a loop, the promotion and demo-

42

tion are still within a loop. Link-time allocation avoids all such unnecessary data

movement.

3.5.2. Inlining

Figure 3.8 shows the experiment results when inlining is applied to the bench-

marks. The results suggest that with inlining, register pressure increases significantly.

This is particularly true for go and equake, as adding more registers results in perfor-

mance improvements. Other benchmarks like compr ess and ar t do not make use of

extra registers. Figure 3.9 and Figure 3.10 show the reductions in load and store operations

due to inlining.

Inlining increases register pressure in two ways. First, the local variables for the

caller and callee are combined and allocated in a single graph coloring phase. Both sets of

variables compete for the same set of registers. The function call overhead that takes care

of shuttling these two sets of variables in and out of registers has been eliminated. Second,

inlining also increases the scope of optimization. Because the optimizer has an increased

amount of program context, it can perform more transformations. As a general rule, trans-

Figure 3.8: Performance of inlining.

Cycles Relative to O1-32: Inlining

0.6

0.7

0.8

0.9

1

1.1

1.2

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

C
yc

le
s

R
el

at
iv

e
to

 O
1-

32

O1-64

O1-256

inline-32

inline-64

inline-256

43

formations increase register pressure by adding temporaries and extending value lifetimes.

As a result, inlining increases register pressure indirectly by opening up more opportuni-

ties for program transformation.

Dynam ic Loads Relative to O1-32

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

R
el

at
iv

e
D

yn
am

ic
 L

o
ad

s

O1-64

O1-256

inline-32

inline-64

inline-256

Figure 3.9: Loads eliminated by inlining.

Dynam ic Stores Relative to O1-32

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

R
el

at
iv

e
D

yn
am

ic
 S

to
re

s

O1-64

O1-256

inline-32

inline-64

inline-256

Figure 3.10: Stores eliminated due to inlining.

44

Without extra registers, gzi p perform worse when inlining is performed. This is

mainly due to register spilling. Inlining introduces too many simultaneously live variables

which must subsequently be spilled. Often this spill code is more expensive than the func-

tion call register save and restore because it occurs in multiple places (everywhere the

variable is referenced).

3.5.3. Combined Results

The graphs in Figure 3.11 show what happens when we combine the optimizations

of the last three sections: register promotion, link-time allocation, and inlining. The third

bar shown is what we call “best16” . This includes all the aforementioned optimizations.

The ‘16’ in the name indicates that we allowed 16 extra registers for local variables (for

promotion and inlining) and 16 extra registers for global link-time allocation, for a total of

32 extra registers. Similarly for best112, where a total of 224 extra registers are allowed,

half for local variables and half for link-time allocation. The number of cycles required to

execute the program is generally by 10% to 20% in almost every case.

In particular for the go benchmark, when best112 is applied, the execution time

and number of dynamic instructions has been reduced by 20% over the baseline -O1 opti-

mization level. The number of loads has been reduced by over 30% and the number of

stores by over 50%.

Each of the optimizations has increased register usage and takes advantage of extra

registers. For example, the extra 32 registers available in the best16 configuration demon-

strate significant performance improvements over -O1 optimization. In some cases, like

compr ess , go, m88ksi m, and vpr , the best112 configuration (a total of 224 extra reg-

isters) shows 3% to 7% performance improvement over the best16 configuration. This

configuration serves to illustrate the point that more than 32 registers are required to

achieve the best possible performance in our compilation environment. Ideally, an archi-

tecture should have at least 64 registers to allow for the maximum benefit for register pro-

motion, global variable allocation, and inlining. With more aggressive alias analysis,

optimizations, and scheduling, we are confident that the compiler could use even more

registers than reported here. Figure 3.12 and Figure 3.13 show the reductions in loads and

45

store in this configuration. It is interesting to note the compress benchmark, where over

60% of the load instructions are eliminated by the optimizations.

Figure 3.11: Performance of the “ best” configurations.

Cycles Relative to O1-32: Bes t Configuration

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

C
yc

le
s

R
el

at
iv

e
to

 O
1-

32

O1-64

O1-256

best16

best112

Dynam ic Loads Relative to O1-32

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

R
el

at
iv

e
D

yn
am

ic
 L

o
ad

s

O1-64
O1-256
best16
best112

Figure 3.12: Load instructions eliminated by best.

46

3.5.4. Data Cache Effects

The number of data cache accesses for the best configurations is shown in Figure

3.14. The graph shows the number of data accesses made to the cache. This is an impor-

tant metric because it shows the effectiveness of register allocation techniques in shield-

ing the memory hierarchy from traffic. The combination of optimizations produce

substantial reductions in cache accesses for go, ar t , gzi p, vpr , and to a lesser extent

the other benchmarks.

There are several potential benefits of reducing the number of cache accesses. For

example, fewer demand accesses to the cache by the processor might allow the memory

hierarchy to do more effective prefetching since it has more time to query the cache to see

if prefetch candidates already reside in the cache. Another important benefit is power sav-

ings.

In Table 3.5, we show the reductions in data cache hits and misses for the best112

configurations. The number of cache misses is not reduced substantially for any bench-

mark. On the other hand, the number of cache hits has been reduced in most cases, some-

Dynam ic Stores Relative to O1-32

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

R
el

at
iv

e
D

yn
am

ic
 S

to
re

s

O1-64
O1-256

best16
best112

Figure 3.13: Store instructions eliminated by best.

47

times as much as 30% to 60%. In effect, the compiler has moved items from the data

cache into the register file: those items that were already hits in the data cache are now hits

in the register file. This is a good optimization because the register file will likely be much

faster to access than the cache, in addition to having a much higher bandwidth because of

the larger number of ports typically available on a register file.

This is an important illustration of how it is not always most important to optimize

the primary “bottleneck” in the system. In the case of memory accesses, it is intuitive to

focus on reducing the cache miss latency or miss ratio because misses are expensive in

terms of cycles. Such is the focus of work on prefetching and smarter cache replacement

policies. Instead, our research optimizes the common case, cache hits, and effectively

reduces the cache hit time by eliminating the cache access altogether. Our data shows that

techniques which reduce cache miss latency or miss ratio are orthogonal to ours, that is,

they can be applied in addition to our optimizations to further improve performance. Pro-

cessors with larger caches which have two or more cycle access time would benefit even

more from optimizing the cache hit time this way. This is discussed in Chapter 6.

For example, if a load-use instruction pair executes in back-to-back cycles on a

conventional microarchitecture, changing the load into a register access can improve per-

Figure 3.14: Data cache accesses in O1 and best various configurations.

Data Cache Acces s es Relat ive to O1-32: Bes t Conf igurat ion

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

D
at

a
C

ac
h

e
A

cc
es

se
s

R
el

at
iv

e
to

 O
1-

32

O1-64
O1-256
best16
best112

48

formance by eliminating the load instruction (one cycle) and also allowing the consumer

instruction to start one cycle earlier, for a savings of two cycles. Compiler scheduling may

reduce this benefit by separating the load from its use. On the other hand, the situation

may be worse if the load has to wait for a free port on the data cache. Allocating the vari-

able to a register instead solves two problems at once: it reduces path length by elimina-

tion of load and store instructions, and it solves the bandwidth problem because the

register file will typically be highly ported.

3.5.5. Instruction Bandwidth and Cache Effects

The optimizations we have shown in this chapter have a significant impact on the

performance of the frontend of the processor. In this section we discuss some of these.

Figure 3.15 shows the dynamic instruction counts after optimization, again relative

to the O1-32 baseline. The reductions range from nothing up to 30%. Most of the bench-

marks reduce instruction count by a modest 5 to 10%. This is an indicator of the number of

Category Benchmark

Misses in
best112

Relative to
Baseline

Hits in
best112

Relative to
Baseline

SPECint95

compress 104% 38%

gcc 117% 91%

go 100% 57%

ijpeg 99% 91%

li 101% 83%

m88ksim 100% 81%

perl 100% 93%

vortex 105% 89%

SPECfp2000

ammp 100% 85%

art 100% 56%

equake 98% 87%

mesa 99% 99%

SPECint2000

bzip 100% 72%

gcc 121% 89%

gzip 101% 43%

mcf 100% 92%

parser 100% 72%

vortex 105% 89%

vpr 98% 72%

Table 3.5: Data cache misses of the best configurations relative to O1-32

49

instructions removed from the important sections of the binary. As a result, instruction

cache pressure is less, making the cache effectively bigger since it can hold more of the

program.

In Figure 3.16 we show how inlining and our “best” optimization impacts instruc-

tion cache performance. Instruction cache performance is not significantly impacted by

our optimizations in most cases. Inlining often results in a better cache hit rate than -O1

optimization. The exceptions are l i 95, m88ksi m, and vor t ex , where the instruction

cache miss rate increases by 1% or more. When the “best” optimizations are turned on, the

situation is remedied because the best configuration does not do inlining as aggressively

since some registers are reserved for link-time global allocation and thus are not available

for inlining. Alternative code layouts were not considered, although our experience indi-

cates this could improve performance by several percent.

Dynam ic Ins tructions Relative to O1-32

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

R
el

at
iv

e
D

yn
am

ic
 In

st
ru

ct
io

n

O1-64

O1-256
best16

best112

Figure 3.15: Dynamic instruction reduction due to best optimizations.

50

3.6. Theoretical Register Requirements

This subsection examines several measurements to determine what the most

appropriate number of registers would be for an architecture that processes general pur-

pose code.

3.6.1. Variable Count Arguments

The first measurement we show is a simple counting argument pointing out that

there are many candidates for register allocation. Additional intraprocedural optimiza-

tions, such as our -O2 configuration, generally increase the number of candidates for allo-

cation. Inlining in the -O3 column shows a significant reduction in the number of

candidates. This is because inlining eliminates parameter variables and allows propagation

optimizations. At the same time, inlining increases the number of long-lived variables that

are allocated to registers.

Figure 3.16: Instruction cache miss rates for the -O1-32 and best configurations.

Ins truction Cache Miss Rates for -O1 vs . bes t

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

M
is

s
R

at
e

O1-32

best16

best112

51

Table 3.7 shows the number and types of global variables in the benchmarks. The

fourth column in the table shows the percentage of global variables that are not considered

as candidates to be placed into a register. This percentage is computed by linking together

the benchmark at the MIRV IR level and processing the MIRV IR with a filter that deter-

mines whether the global variable’s address is ever taken. If it is, then we say the variable

cannot go into a register (even though it may be able to be enregistered for parts of its life-

time).

The integer benchmarks fall into two categories. For the majority of the bench-

marks, most global variables could be allocated for their entire lifetime. Two interesting

cases are go and vor t ex , where there is a high percentage of globals that are aliased. In

both benchmarks, most of the variables in question are passed by address to some function

which changes the global’s value. The number of call sites where this happens is usually

fairly small for any given variable. In vortex, a heavily used variable called Theory is

modified through a pointer in memory management code. It appears that this use through

the pointer is for initialization only (so register promotion could promote the global to a

register after initialization is over). The floating point benchmark equake shows similar

behavior.

Category Benchmark
-O1 Local
Variables

-O2 Local
Variables

-O3 Local
Variables

-O4 Local
Variables

SPECint95

compress 117 120 49 49

gcc 24842 25102 21318 21318

go 3435 3490 1948 1948

ijpeg 3321 3330 2251 2251

li 1703 1713 1506 1506

m88ksim 1859 1887 1298 1298

perl 4062 4125 3764 3764

vortex 13690 13778 7859 7860

SPECfp2000

ammp 2332 2364 1855 1855

art 154 254 174 174

equake 191 218 84 84

SPECint2000

gcc 27289 27579 23048 23048

gzip 690 714 398 398

mcf 218 218 76 76

parser 1924 2001 1296 1296

vortex 13690 13777 7281 7860

vpr 2244 2388 1639 1639

Table 3.6: Statistics on local variables under different optimizations levels.

52

Overall, there are a significant number of global variables in these benchmarks

which may benefit from register allocation. The global aggregates (shown in the fifth col-

umn of Table 3.7) are the number of arrays and structures found at the global scope. The

base addresses of these structures are candidates for register allocation as well.

Figure 3.17 shows two more counting arguments. Figure 3.17(a) shows an esti-

mate of the maximum register pressure in the “worst” function in each of the benchmarks.

Typically under 40 registers are required by such functions, but occasionally the number

climbs well above 50, particularly under the -O4 optimization level. A similar situation is

seen in Figure 3.17(b), where the maximum live at any function call site is shown. For

example, there are 40 simultaneously live values at the “worst” call site in the go bench-

mark under -O1 optimization.

3.6.2. Instruction Count Argument

The last section showed measurements of the “worst” functions in the benchmarks

but said nothing about the average register requirements. This section shows data on the

Category Benchmark
Global

Variables

Un-
allocatable

Globals

Global
Aggregates

SPECint95

compress 27 3.7% 14

gcc 1018 7.1% 298

go 80 15% 200

ijpeg 29 3.4% 35

li 79 0.0% 3

m88ksim 106 1.9% 8.7

perl 208 2.9% 42

vortex 515 41.7% 105

SPECfp2000

ammp 48 6.3% 4

art 28 7.1% 4

equake 34 35.3% 4

SPECint2000

gcc 1093 7.1% 340

gzip 99 2.0% 47

mcf 6 0.0% 3

parser 83 22.9% 92

vortex 515 41.7% 105

vpr 96 6.3% 10

Table 3.7: Statistics on global variables under -O1 optimization.

53

register requirements of the go benchmark over four different optimization levels in Fig-

ure 3.18.2 The X-axis of each graph is the number of registers in a register bin. The Y-axis

shows the percentage of dynamic instructions that execute in functions which required

2. We have not shown these graphs for every benchmark due to space considerations.

Figure 3.17: Other estimates of register pressure in the benchmarks.
Note the change in y-axis scale.

Max Register Pressure in Worst Function

0

20

40

60

80

100

120

140

160

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m

88
ks

im

pe
rl

 vo

rte
x

 a

rt0
0

 e
qu

ak
e0

0

 g

zip
00

 m

cf0
0

 v
or

te
x0

0

 v

pr
00

N
u

m
b

er
 o

f
L

iv
e

R
eg

is
te

rs O1-256 O2-256
O3-256 O4-256
RP-256 stat256
best112

Max l ive at call site

0

20

40

60

80

100

120

140

160

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m

88
ks

im

pe
rl

 vo

rte
x

 a

rt0
0

 e
qu

ak
e0

0

 g

zip
00

 m

cf0
0

 v
or

te
x0

0

 v

pr
00

N
u

m
b

er
 o

f
L

iv
e

R
eg

is
te

rs

O1-256 O2-256

O3-256 O4-256

RP-256 stat256

best112

(a)

(b)

54

that number of registers. For example, in Figure 3.18(a), 36% of the instructions come

from functions where 13-16 registers are desired by the function. This does not count spe-

cial registers such as the frame pointer, stack pointer, global pointer, zero, and assembler

and kernel reserved registers. We will assume that there are 8 such reserved registers for

the sake of argument. For these instructions, a register file size of 13+8=21 to 16+8=24 is

the right number.

These numbers are produced by annotating the each function with a maxlive

attribute which tells how many registers are simultaneously live in the function. This max-

live number comes directly from the live variable analysis phase of the backend’s register

allocator. Its final value is computed immediately before the assembly code is generated,

so it includes the effect of spilling code to reduce register pressure for a given register con-

figuration. This information is used along with a profile that tells how many instructions

were executed from each function. Note that the maxlive number is not how many colors

were required to color the graph, but instead is the maximum number of values that are

go -O1, 32 Total Registers

0

5

10

15

20

25

30

35

40

8 12 16 24 32 40 48 56 64 128 >128

Regis ter File Size Bin

P
er

ce
n

t
o

f
In

st
ru

ct
io

n
s

go -O1, 256 Total Registers

0

5

10

15

20

25

30

8 12 16 24 32 40 48 56 64 128 >128

Regis ter File Size Bin

P
er

ce
n

t
o

f
In

st
ru

ct
io

n
s

go Link-time Allocation 224, 256 Total Registers

0

5

10

15

20

25

30

8 12 16 24 32 40 48 56 64 128 >128

Regis ter File Size Bin

P
er

ce
n

t
o

f
In

st
ru

ct
io

n
s

go best.112, 256 Total Registers

0

2

4

6

8

10

12

14

16

18

20

8 12 16 24 32 40 48 56 64 128 >128

Regis ter File Size Bin

P
er

ce
n

t
o

f
In

st
ru

ct
io

n
s

Figure 3.18: Register requirements for go across several optimization levels.
The X axis is a register file size bin, where 8 represents 0-8 registers, 12 represents 9-12, 16 represents 13-

16, etc.

(a) (b)

(c) (d)

55

simultaneously live. It would take at least this many registers to color the graph without

any additional spilling code. Therefore, maxlive is a lower bound on the number of regis-

ters required for maximum performance.

The executable that was used to produce Figure 3.18(a) was compiled assuming 32

registers were available on the machine. Figure 3.18(b) shows that when this assumption

is changed, to 256 registers, the profile looks significantly different. In this case, 32 regis-

ters are required over 10% of the time and 40 registers another 10%. This points out that

when the compiler is limited to 32 registers, the register-usage profile appears to be very

conservative (because of the spilling code inserted during register allocation). Only when

the compiler is loosed from the restriction of a small register file can a true measurement

of register requirements be made.

Thus far, we have shown that with traditional optimizations such as CSE and

LICM, the MIRV compiler could easily and profitably use a machine with 40 or more reg-

isters.

Figure 3.18(c) shows what happens when link-time allocation is applied to go.

Even more registers are required–25% of the time, a register file size of 32-40 is appropri-

ate. Figure 3.18(d) shows what happens when all of the optimizations in this chapter are

turned on. A large shift to the right of the graph occurs, and many instructions are exe-

cuted in a context that requires 56 or more registers. From this data it is clear that current

compiler technology can utilize a large number of registers. At least 64 registers are

required for the benchmarks shown here.

3.6.3. Cross-Function Argument

The previous sections considered register allocation in the conventional sense,

where the allocator is limited to candidates within a single function. A running program,

however, typically has several functions “ in progress” on the call stack. Each of these has

some number of live values which should be summed to find out the best number of regis-

ters for the architecture. Since this is a hard number to compute, in this section we provide

a couple of estimates to show the utility of a cross-function allocation scheme.

The first is simply the call graph depth, shown in Figure 3.20. This graph shows

the maximum call depth reached by the benchmark. Most benchmarks only traverse 10 to

56

20 levels deep in the call graph. This supports the classic argument for register windows,

which is that windows will allow the machine to capture most of the dynamic call stack

without stack overflows and underflows, which necessitate memory operations to manage

the stack.

The graph in Figure 3.20(b) shows our estimate of the register requirement of each

of the benchmarks. This estimate is produced by applying the following formula to the

dynamic call graph:

(Eq. 2)

The formula is applied during a run of the benchmark where the call graph is anno-

tated with two pieces of information. At each call site, we have placed an integer for the

number of live variables at the call site minus the number of parameters. We call this num-

ber maxLiveAtCallSite(caller) and do not include parameters under the assumption that

CGmaxLive(callee) will include those. The other number is annotated into the function

itself and is the most number of live variables at any point of the caller function. We call

this maxLive(caller).

As an example of how this formula works, consider the following situation. Func-

tion A has maxLive(caller) = 11 and maxLiveAtCallSite(caller) = 3. If we call a function B

whose CGmaxLive is 6, then the simulator says that for this sequence of function calls,

max(3+6, 11) = 11 registers is plenty. If B’s CGmaxLive is 9, then the 12 registers is about

right.

The graph in Figure 3.20 shows this estimate across our benchmark. A very large

number of registers is suggested. When all optimizations are turned on, the “best” number

of registers is estimated to be about 100 or more for most benchmarks. Some require sev-

eral hundred registers. The outlying point is the l i benchmark. This is a recursive descent

program has a very complicated dynamic call graph for which it would be difficult to keep

all values in registers.

CGmaxLive caller() MAX CGmaxLive callee() maxLiveAtCallSite caller(),+
maxLive caller() 

 =

57

Maximum Call Depth

0

5

10

15

20

25

30

35

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m

88
ks

im

pe
rl

 vo

rte
x

 a

rt0
0

 e
qu

ak
e0

0

 g

zip
00

 m

cf0
0

 v
or

te
x0

0

 v

pr
00

D
ep

th

O1-256 O2-256
O3-256 O4-256
RP-256 stat256
best112

633

Figure 3.19: Maximum subroutine linkage depth reached in the benchmarks.

Figure 3.20: An estimate of register pressure based on the dynamic call graph.

Estimate of Registers Required

0

100

200

300

400

500

600

700

800

900

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m

88
ks

im

pe
rl

 vo

rte
x

 a

rt0
0

 e
qu

ak
e0

0

 g

zip
00

 m

cf0
0

 v
or

te
x0

0

 v

pr
00

N
u

m
b

er
 o

f
R

eg
is

te
rs

O1-256 O2-256
O3-256 O4-256

RP-256 stat256
best112

4100 - 4400

58

3.7. Register Windows Simulations

We modified the MIRV compiler and the SimpleScalar si m- out or der simula-

tor to model the register window configuration suggested in the previous section. The

compiler uses all registers as if they were callee-saved, eliminates all callee save opera-

tions in the function prologues and epilogues, and remove restore operations of the frame

pointer, stack pointer, and return address, since the hardware will restore those. The simu-

lator saves the register file contents at every function call and restores them when the

function returns. All registers are overlapped at the function call for speed of simulation3.

The only caveat with our results is that the simulation methodology assumes a well-struc-

tured call graph–the perl benchmark, for example, does not work on the simulator because

the call graph is not balanced4. No modeling is performed for window spilling so the

results are optimistic, but they do show an upper bound on the potential register require-

ments of the benchmarks.

The results are shown in Figure 3.21. There is an average 8% performance

improvement, with performance improvements ranging from -6% to 22%. This is signifi-

cant because it represents overhead instructions inserted by the compiler for the purpose

of managing subroutine linkage. Instruction count improves by similar percentages while

the number of memory references is more dramatically improved–up to 47%, with an

average of 21% reduction. These results are shown in Figure 3.21, Figure 3.22, and Figure

3.23. It is interesting to note that the biggest benchmarks, gcc and vor t ex being exam-

ples, are most positively impacted by the windowing. We had expected that the overall

performance improvements would be more weighty than the memory reference count

improvements, thinking that memory references are expensive operations. However, all

the memory operations removed by the windowing optimization are to the stack, which is

3. Typically register windowing schemes overlap a subset of the registers for the purposes of pass-
ing parameters to functions. We overlap all of them, which in itself presents an interesting con-
figuration where many registers could be used for parameter passing. This full overlap may also
be advantageous in the implementation to save adding the current window pointer to every reg-
ister specifier; we leave a more in-depth examination for future work.

4. This can be fixed, obviously, since such benchmarks work on real register-window machines.

59

usually in the cache. Once again, our optimizations have succeeded at eliminating cache

hits in favor of the faster register file.

The performance degradations are primarily due to code layout effects. We found

that for m88ksi m, for example, increasing the instruction cache to 64K got rid of the neg-

ative performance effect of register windows. Still, code layout can be a significant prob-

lem for the instruction cache–even if instructions are removed, the optimized binary could

suffer the misfortune of having more cache conflicts than the original.

Whether it is worthwhile to implement this technique, however, is not very clear

from this data alone. Figure 3.24 shows additional data that verifies the estimations made

in the previous section. Data from the gcc95 benchmark is shown. The number of regis-

ter windows concurrently alive are shown, weighted by execution cycles. The graph

shows that just over 20% of the execution cycles were spent in a function 8-levels deep on

the call graph. Another 20% were spent in functions 9 levels deep. Overall, 80% of the

execution time is spent within levels 6 to 12. Therefore, 7 register windows would be suf-

ficient to capture the majority of the execution time in this benchmark. That equates to 7 *

32 = 224 registers since we use full overlap. Of course, not all the functions are going to

Regis ter Window s Relative to Bas eline -O2: Cycles

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

D
yn

am
ic

 C
yc

le
s

R
el

at
iv

e
to

 B
as

el
in

e

Cycles Relative to Baseline
Average average = 92.3

Figure 3.21: Register windows performance compared to -O2.

60

need a full 32 registers, but different functions may exist at the same level in the call

graph. These will have different register requirements.

Regis ter Window s Relative to Bas eline -O2: Ins tructions

0.75

0.8

0.85

0.9

0.95

1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

D
yn

am
ic

 In
st

ru
ct

io
n

s
R

el
at

iv
e

to
 B

as
el

in
e

Instructions Relative to Baseline
Average

average = 90.4

Figure 3.22: Register window instruction count improvement over -O2.

Regis ter Window s Relative to Bas eline -O2: Mem ory References

0.4

0.5

0.6

0.7

0.8

0.9

1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

M
em

o
ry

 R
ef

er
en

ce
s

R
el

at
iv

e
to

 B
as

el
in

e

Memory References Relative to Baseline
Average

average = 78.9

Figure 3.23: Register window memory instruction count improvement.

61

The high-water mark of register windows concurrently used by the benchmarks is

shown in Figure 3.25. Most benchmarks require around 30 or fewer concurrently active

register windows, at their highest requirements. The gcc , l i , and par ser benchmarks

are exceptional cases.

We also simulated the window model in addition to all of the other optimizations

used in this chapter. The performance of this configuration, once again relative to an O1-

32 baseline to allowed it to be compared to Figure 3.11, is shown in Figure 3.26. Perfor-

mance improvements range from almost 15% to over 45%. The windowing improvements

are roughly additive with the other optimizations. This is intuitive since they target differ-

ent kinds of memory operations. The best112 jobs target global scalars through global

variable register allocation and conventional register promotion, where most of the benefit

is found. Inlining addresses some of the same overheads that register windows do, but

inlining is limited in application because of problems with code bloat. The instruction

count improves 6% to 30% while the memory references are reduced 11% to 63%, as

shown in Figure 3.27 and Figure 3.28.

gcc95 -O2 -regWindow s num w indow s w eighted by cycles

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
er

ce
n

t
T

o
ta

l C
yc

le
s

gcc95

Figure 3.24: The number of register windows concurrently active.

62

High Water Mark - Num ber of Regis ter Window s

0

10

20

30

40

50

60

70

80

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

N
u

m
b

er
 o

f
W

in
d

o
w

s

Number of Window s

Average (minus high and low)

634

average = 22.9

Figure 3.25: High-water mark of number of register windows concurrently active.

Bes t112+Window Relative to Bas eline O1-32: Cycles

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

D
yn

am
ic

 C
yc

le
s

R
el

at
iv

e
to

 B
as

el
in

e

Figure 3.26: Performance of best112+register windows relative to -O1.

63

Bes t112+Window Relative to Bas eline -O2: Ins tructions

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

D
yn

am
ic

 In
st

ru
ct

io
n

s
R

el
at

iv
e

to
 B

as
el

in
e

Figure 3.27: Instruction count improvements of best112+register windows.

Bes t112+Window Relative to Bas eline -O1: Mem ory References

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

M
em

o
ry

 R
ef

er
en

ce
s

R
el

at
iv

e
to

 B
as

el
in

e

Figure 3.28: Memory reference reductions of best112+register windows.

64

3.8. Related Work

3.8.1. Intra-Procedural Allocation

Mahlke et. al. examined the trade-off between architected register file size and

multiple instruction issue per cycle [Mahl92a]. They found that aggressive optimizations

such as loop unrolling and induction variable expansion are effective for machines with

large, moderate, and even small register files, but that for small register files, the benefits

are limited because of the excessive spill code introduced. Additional instruction issue

slots can ameliorate this by effectively hiding some of the spill code. This work noticed

little speedup or reduction in memory traffic for register files larger than about 24 allocat-

able registers (often fewer registers were required). The compiler used in the study was

not able to take advantage of more registers because of the conventional application

binary interface [SysV91] and lack of optimizations in the compiler such as those

described here.

Benitez and Davidson study the effect of register deprivation on compiler optimi-

zations [Beni93]. The technique proposed in that paper is to study the effect of a series of

probes where the compiler is deprived of more registers in each successive probe. This

allows the compiler writer to examine the effect of optimizations on register utilization.

The paper suggests that current technology cannot utilize a large number of registers.

The large body of research into optimizing spill code indicates the prevalence of

spill operations in modern programs and highlights the importance of having a sufficient

number of registers. For example, Cooper and Harvey propose the compiler-controlled

memory which combines hardware and software modifications to attempt to reduce the

cost of spill code [Coop98a]. The hardware mechanism proposed is a small compiler-con-

trolled memory (CCM) that is used as a secondary register file for spill code. The compiler

allocates spill locations in the CCM either by a post-pass allocator that runs after a stan-

dard graph-coloring allocator, or by an integrated allocator that runs with the spill code

insertion part of the Chaitin-Briggs register allocator. A number of routines in SPEC95,

SPEC89, and various numerical algorithms were found to require significant spill code,

but rarely were more than 250 additional storage locations required to house the spilled

65

variables. Potential performance improvements were on the order of 10-15% on a proces-

sor with a 2-cycle memory access time, but effects from larger traditional caches, write

buffers, victim caches, or prefetching were not modeled. These results show the potential

benefit of providing a large number of architected registers–not only simplifying the com-

pilation process, but also reducing spill code and memory traffic.

3.8.2. Inter-Procedural Allocation

Wall described a link-time approach that allocates local and global variables as

well as labels into registers [Wall86]. The linker can optionally do a global register alloca-

tion pass which builds the call graph of the program and groups functions based on

whether they can be simultaneously active or not. For functions that can never be simulta-

neously active, their local variables can be allocated to the same registers without needing

to save and restore them across call boundaries. Functions that can be simultaneously

active have their locals allocated to separate regions of the register file, while functions

that cannot be live at the same time can share registers. Global variables as well as con-

stants such as array base addresses take part in the link-time allocation as well. Once a glo-

bal is allocated to a register, it resides in that register for its entire lifetime. The most

frequently used variables are selected to be allocated into registers. This is done either

with static estimates or with profiling data. Once it is determined which variables will be

allocated to registers, the linker rewrites the object code under the direction of compiler-

provided annotations. Compared to the baseline—the original code produced by the com-

piler which has only the 8 temporary registers—the link-time technique improves execut-

able speed by 10 to 25% on a configuration with 52 registers. Link-time allocation

(without dataflow analysis or coloring at all) does better than traditional graph coloring

such as is done in a Briggs-Chaitin allocator [Chai81, Chai82, Brig92]. Graph coloring

can be added in Wall’s system in order to allow variables which do not conflict within a

procedure to share a register. This local coloring is especially important when there are

few registers in the machine but does not improve performance much with 52 processor

registers.

Our post-link allocation strategy is closely modeled after an earlier one described

by Wall. First, we compare our results against a more aggressive set of baseline compiler

66

optimizations than the previous work. Second, we only consider global variables because

we do not have the ability to modify any library code as in the previous study; local vari-

ables are allocated with traditional graph coloring techniques within the constraints of the

application binary interface. Third, we examine the benefits of global variable register

allocation over a wider range of machine configurations; in particular, the number of reg-

isters is a variable in this study but was fixed at 52 in the previous work. Fourth, we

choose a simpler frequency-based allocation scheme that does not build the program’s

control flow graph. Finally, our link-time allocation transforms the high and low-level IRs

of the MIRV compiler instead of working at a binary level.

The Sparc architecture’s register windows are a hybrid register/memory architec-

ture intended to optimize function calls [Tami83, Weav94]. Each subroutine gets a new

window of registers, with some overlap between adjacent register windows for the passing

of function arguments.

Because Wall’s link-time allocator splits the registers across active functions, it is a

software approximation of the behavior of register windows [Wall88]. Wall concludes that

using profile information to guide the link-time allocator always produces better perfor-

mance than register windows. Variable-sized windows are slightly better than fixed-size

windows, and it is more important to add a set of registers for global variables than adding

more registers for the window buffer. This points out the importance of allocating global

variables to registers.

Chow describes a similar interprocedural approach to register allocation where the

available functions are visited in depth-first order and allocation made from the bottom of

the call graph towards the top [Chow88]. He calls this the “depth first interprocedural reg-

ister allocator.” In the ideal case, if function A calls function B, then B will have been allo-

cated before A is visited. Then when A is being allocated, it can see the registers that are

in use by B and avoid using them. This allows the compiler to omit prologue and epilogue

code to manage callee save registers. In effect, this pushes the callee save spills upwards in

the call graph, eliminating them from the functions closer to the leaves. Like Wall’s alloca-

tor, this approximates the behavior of hardware register windows.

67

3.8.3. Register Promotion

Cooper and Lu examined promotion over loop regions. Their algorithm is most

similar to what is presented here [Coop98b], though our alias analysis is a form of MOD/

REF analysis which is somewhat simpler than used in any of the previous work. Sastry

and Ju examine promotion over arbitrary program intervals using an SSA representation

[Sast98]. Lo and Chow use a variant of partial redundancy elimination to remove unneces-

sary loads and stores over any program region [Lo98].

All of the previous work shows substantial reductions in the number of dynamic

load instructions executed and varying reduction in the number of stores eliminated. Typi-

cally 0-25% of loads are removed and up to 40% of stores are removed, depending on the

program. Explicit load/store instructions are needed for register promotion because the

global variables share registers which are local in scope. Cooper and Lu’s results indicate

that the main benefit of promotion comes from removing store operations. The other pre-

vious work shows that loads are improved more than stores. This disparity is primarily

because the baseline compiler optimizations are not reported in any detail in any of the

papers, which makes it difficult to perform a fair comparison. Two of the papers only

counted the improvement compared to the total number of scalar load and store instruc-

tions [Sast98, Lo98]. While this shows the improvement of one aspect of the memory bot-

tleneck, it does not show how effective promotion is at removing overall memory

operations. One of the papers did not consider the effect of spilling because it simulated

with an infinite symbolic register set before register allocation [Lo98]. Spill code is

inserted by the allocator if too much promotion occurs in a region. Each of these papers

reported on the improvement in dynamic load and store counts after their promotion algo-

rithm was applied. They did not report on results from a cycle simulator as we do here.

3.9. Conclusions

This work first demonstrated the lack of consensus regarding register set size in

research and commercial products. Research has been contradictory, ranging from state-

ments like “compiler technology cannot utilize a large register file,” to the other extreme

that register sets of 100 or more registers are necessary for best performance. For commer-

68

cial processors, register set sizes from 8 to 128 are seen in both the embedded and high

performance realms.

While this is the case, the majority of high-volume processors have 32 or fewer

registers. This can be attributed to a number of causes, primarily related to human pro-

gramming style and the variables that are considered as candidates for allocation.

We have demonstrated in this chapter that existing advanced compiler optimiza-

tions can easily make use of 64 or more registers in general purpose codes. A reasonably

aggressive optimizing compiler can make use of registers by allocating global variables,

promoting aliased variables (in regions where each is accessed through one name only), as

well as inlining, to improve performance 0% to 25%. Global variable allocation alone can

improve performance up to 20% in some cases, and is the most effective of any of the

optimizations at reducing execution time and memory operations. The combination of

optimizations reduced cache operations by 10% to 60%.

These performance improvements were possible even when the number of cache

misses did not decrease appreciably when optimizations were applied. This demonstrates

two additional important conclusions. First, the allocation techniques used here are effec-

tively moving data from the data cache into the register file. Second, these optimizations

eliminate cache accesses, effectively speeding up access to data that would otherwise

reside in the cache. Since cache hits are the common case, this is an important optimiza-

tion.

This chapter also demonstrated that we can use even more registers if the compiler

can allocate registers such that active functions share the register file. In this case, 100 to

200 registers are necessary to satisfy the register requirements of most benchmarks. We

did some additional experiments with register windows and found that the combination of

additional local and global registers (best112) with the optimizations presented here and

register windowing allowed significant execution-time reductions over the original base-

line binaries. Many benchmarks have 40% to 50% fewer memory references after all of

these optimizations. In compress, 63% of memory operations are eliminated. Many of the

benchmarks improve by 40% or more in cycle count.

The results are clear. A large register file is a necessary component for high perfor-

mance. It is just as important to have optimizations in the compiler to take advantage of

69

these registers, however. So it could be said that “aggressive compiler optimizations

require a large register set, but a large register set requires aggressive compiler optimiza-

tions. It is also important to consider values that live across function call sites. We also

found that cache misses are not the only component of performance that needs to be opti-

mized: cache hits, since they are the common case, must be optimized as well. Other tech-

niques that reduce cache miss penalty such as prefetching, data layout, and smarter cache

replacement policies, are orthogonal to the work here.

We note that there are other candidates for register allocation that we have not

explored in this work. Aliased data items cannot reside in registers for their entire lifetime

or in regions where they are aliased unless support is added to the hardware. We will

examine this in Chapter 5.

70

Chapter 4

Register Caching

4.1. Introduction

A large logical register file is important to allow effective compiler transforma-

tions or to provide a windowed space of registers to allow fast function calls. Unfortu-

nately, a large logical register file can be slow, particularly in the context of a wide-issue

processor which requires an even larger physical register file, and many read and write

ports. Previous work has suggested that a register cache can be used to address this prob-

lem. This chapter proposes a new register caching mechanism, which takes a number of

good features from previous approaches, whereby existing out-of-order processor hard-

ware can be used to implement a register cache for a large logical register file. It does so

by separating the logical register file from the physical register file and using a modified

form of register renaming to make the cache easy to implement. The physical register file

in this configuration contains fewer entries than the logical register file and is designed so

that the physical register file acts as a cache for the logical register file, which is the back-

ing store. The tag information in this caching technique is kept in the register alias table

and the physical register file. It is found that the caching mechanism improves IPC up to

20% over an un-cached large logical register file and has performance near to that of a log-

ical register file that is both large and fast.

4.2. Background and Motivation

The previous chapter showed that a large logical register file is a very important

aspect of an instruction set architecture because it allows significant opportunity for com-

piler optimizations. Such optimizations have been shown to eliminate memory operations

71

and speed program execution. Specifically, a logical register file of 64 or more entries is

desirable to house locals, optimization temporaries, and global variables [Post00b].

Recent commercial architectures have underscored the importance of a large logical regis-

ter file as well [IA6499]. More logical registers can also enhance ILP by eliminating mem-

ory cache operations, thus freeing the cache for more critical memory operations. The

elimination of memory instruction reduces instruction fetch and decode time. Other tech-

niques such as register windowing require a large logical register file in order to eliminate

spill/reload traffic [Patt81].

Unfortunately, any large register file with many read and write ports is not practi-

cally implementable at clock speeds which are marketable, even if the performance advan-

tage of the large file is compelling at slower clock speeds. There have been a number of

proposals to circumvent this problem for large register files: either by physically splitting

the register file, or by providing a cache of the most frequently used registers and having a

large backing store for the full logical set of registers [Gwen96, Yung95a, Yung95b,

Swen88]. The primary observation that these caching proposals rely on is that register val-

ues have temporal and spatial locality. This is the same principle that makes memory

caches work.

A slightly different observation drives this work. Locality in the rename register

reference stream in a typical out-of-order microprocessor is different than in the logical

register reference stream, because renaming turns the incoming instructions into a single-

assignment-like program. No register is written more than once; this means that a write

breaks the locality for a given architected name. Instead, the observation that we rely on

for this work is that most register values are produced and then consumed shortly thereaf-

ter. This was mentioned in Chapter 2: around 50% of values are used so quickly that they

can be obtained from a bypass path instead of from the register file. Of the values not

obtained from a bypass path, many of them are available within the instruction window,

i.e. within the speculative storage of the processor. Such values rarely even need to be

committed to the architected state, simply because they will never be used again. Such

commits are termed “useless” by previous work, which reports that this phenomenon

occurs for 90-95% of values [Loza95].

72

These facts suggested that we investigate how to implement a large logical register

file efficiently in the context of a superscalar processor–a problem that previous work does

not specifically address. The results of our investigation is the subject of this chapter. The

logical register file that we want to implement – 256 registers – is so large that it is actu-

ally larger than most rename storage in aggressive superscalar processors built today. The

rename storage is responsible for maintaining the storage of speculative values as well as

mappings that determine where the architected state of the processor can be found. This

immediately suggested that we view the implementation’s smaller rename storage as a

cache for the larger architected register file, which would act as a backing store. The point

of this design is to achieve the software performance of a large and fast architected register

file without having to pay the hardware cost of implementing it. The cache is meant to

reduce the performance hit of the large logical register file.

Previous work has suggested several alternative approaches to designing register

caches, but we will propose a new one in this chapter.

Before continuing with the explanation of our implementation, we must review

two other pieces of background information: register renaming and what we call register

architecture. Section 4.3 and Section 4.4 then describe the physical register cache mecha-

nism in more detail. Section 4.5 enumerates several of the advantages and disadvantages

of the proposal. Section 4.6 evaluates the proposed mechanism by comparing it to a lower

and upper performance bound which have no register caching. Section 4.7 compares our

work to previous work in the area of register caching, and Section 4.8 concludes.

4.2.1. Register Renaming

In out-of-order superscalar processors, register renaming decouples the logical

register file of the instruction set architecture from the implementation of the processor

chip. The instruction set may have 32 registers while the microarchitecture implements 80

“rename registers” in order to allow it to exploit instruction-level parallelism by simulta-

neous examination of a large window of instructions which have been transformed into a

single-assignment language to remove anti-dependencies and output dependencies. These

rename registers contain state which is speculative (because of speculated branches, loads,

etc.).

73

Register renaming is implemented in several different ways in commercial micro-

processors. These designs are surveyed in detail elsewhere [Sima00] but we describe them

briefly here.

One mechanism is called the merged register file, used in the MIPS R10000 and

Alpha 21264 processors [Moud93, Yeag96]. In this design, the architected state and

rename state are mingled in a single large register file which we will call the physical reg-

ister file. Both speculative and non-speculative state share the same storage structure in

this design. The register renaming and register release mechanisms must be designed so

that architected state is maintained in a precise way.

The second implementation of register renaming is the split register file. The archi-

tected state is kept separate from the speculative state; each have their own register file

and are updated appropriately. This approach is used in the PowerPC 6XX and PA 8000

processors.

The third approach is similar to second in that the architected state is separate from

the speculative state, but the speculative state is stored in the reorder buffer. This tech-

nique is used in the P6 (Pentium II and III) microarchitecture.

Though renaming decouples the rename storage from the logical view of the archi-

tecture, the merged file approach is constrained in that it must implement more rename

storage than there are logical registers. We denote this condition by saying that NPR >

NLR must hold. Here, NPR is the number of physical (rename) storage locations, and

NLR is the number of logical registers in the instruction set architecture1. This constraint

is most simply explained by noting that the rename storage must have enough registers to

contain all of the architected state plus some number of registers to support speculative

execution (the result of running ahead of the architected state using branch prediction,

etc.). Thus, the merged file approach does not take advantage of a complete decoupling of

the logical storage from the rename storage.

Another way to explain this problem follows. The merged file approach renames

each incoming instruction with a new physical register obtained from a free list. In order

to reclaim a physical register in such a design requires several conditions to be met: 1) the

value has been written to the physical register; 2) all instructions that require that value

1. We use the notation NPR and NLR throughout the remainder of this chapter.

74

have a copy of it; 3) the physical register has been unmapped, i.e. the value has been

superseded by later architected state. These conditions were enumerated in essentially the

same form in earlier work [Moud93] and forms the basis of the MIPS R10000 microarchi-

tecture [Yeag96].

One way to ensure these conditions are met is to allow a physical register P to be

freed and reclaimed when the logical register L that it maps has been written by a later

instruction which has also been committed to architected state. This condition guarantees

that there can be no future consumer instructions that use the old value of L. We call this

condition the free-at-remap-commit condition since the register can be freed when a later

mapping of it is committed.

The processor could release P earlier if it knew that there would be no future con-

sumer instructions which need the value. This would require perfect future knowledge of

the instructions coming into the processor. Furthermore, since precise interrupts are

required in most systems, it is generally required that the processor be able to stop execu-

tion between any two instructions, storing all of the architected state away so that later

when the program restarts, it can resume with the register values as before. Since inter-

rupts are not predictable at runtime, no processor can have this oracle knowledge, even for

a small window of the program’s execution.

The conditions enumerated above are the constraints placed on a merged-file

renaming technique which are necessary to enforce correct dataflow in the program’s exe-

cution. The particular implementation to address this constraint (free-at-remap-commit)

has a deadlock condition if the number of physical registers in the merged file approach is

less than or equal to the number of logical registers (NPR <= NLR). We call this the regis-

ter-release deadlock. Suppose a machine with 2 physical registers, 2 logical registers, and

a 3-instruction sequence which writes r1, then writes r2, and then writes r1. When the first

instruction is fetched and renamed, r1 is assigned p1. Similarly r2 is assigned p2. Now

when the third instruction is fetched, there are no physical registers remaining, so it waits

until one becomes available before it proceeds. Eventually one of the first two instructions

will be completed (e.g. the first one). At this point, however, we do not know if condition

(2) is satisfied because there could be future instructions that want to use the value of r1.

The machine cannot free p1 until it is assured of that condition. The only way this could

75

happen is if another instruction that writes r1 is fetched and renamed. But we already

noted that the fetch and rename stages are halted until a register is free. Thus the two por-

tions of the pipeline are waiting on each other and neither can proceed. The essential prob-

lem is that forward progress depends upon instructions that have not yet been seen by the

processor.

This difficulty constrains the logical file to be smaller than the physical file, a con-

dition contrary to our initial desire, and prompted us to consider a design which allows

more complete decoupling of the physical storage from the logical storage by splitting the

logical and physical value storage instead of merging them. The next subsection explains

another consideration that makes this conclusion attractive.

4.2.2. Register Architecture

By the term register architecture, we mean the number and configuration of regis-

ters need to support program execution. The register architecture has two facets – one

facet is the logical register architecture, i.e. the number and configuration of registers sup-

ported in the instruction set. The other facet is the physical register architecture, i.e. the

number and configuration of registers in the implementation.

The logical register file should be as large as desired by the software that runs on

the machine. We have shown earlier that compiler optimizations have a significant impact

on the logical register architecture, and that it should generally have more registers than

most architectures today.

The number of storage locations in the implementation, on the other hand, is

related to implementation technology, design complexity, and desired machine capacity,

factors which are decided long after the instruction set has been fixed. These factors are

mainly related to the physical capacity of the machine, including the instruction window

size and number of function units and their pipeline depths. The physical register file must

be matched to the characteristics of the design in order for the design to be balanced,

instead of being matched to the instruction set architecture.

These different requirements mean that a strict decoupling of their designs is

advantageous to allow the designer to maximize the performance of both the compiler and

hardware implementations.

76

We consider the split register file model of register renaming. This decision was

made based on the three factors just described: 1) the logical file is larger than the physical

register file and thus has a natural backing-store to cache relationship; 2) a merged

approach to register renaming cannot have more logical registers than physical registers

because of the register-release deadlock problem; 3) the design of the logical file should

be decoupled from the design of the physical storage to allow the designer the most free-

dom to optimize each individually. Other advantages of this selection will be presented

later in the chapter.

4.2.3. The Physical Register Cache

The new register caching technique that is introduced in this chapter allows a large

logical register file to be implemented at a realistic cost. It integrates a number of out-of-

order processor hardware elements and combines a number of features of previous designs

to arrive at a novel solution to the problem of building a large logical register file. The

generic model is shown in Figure 4.1. It consists of the physical register file (PRF), which

contains speculative results and some non-speculative results (this is the rename storage)

and a logical register file (LRF) which contains precise architected state at all times. The

PRF will have as many registers and ports as required in order to have a balanced execu-

tion engine; the LRF will have as many ports as can be sustained within the desired cycle

time. Note that though the LRF may be much larger, it’s access time may not be much

worse than the PRF because it will have fewer read and write ports. The other terminology

that we will use is described in Table 4.1.

Instruction values committed by the processor to architected state are committed

from the final stage in the pipeline. This is to avoid having to read the value out of the

physical register file at commit and is why there is no direct path in the diagram from the

PRF to the LRF. Alternatively, read ports could be added to the PRF to allow committed

values to be read from it and sent to the LRF.

By design, the PRF is smaller than the LRF to allow for a fast cycle time. The PRF

caches recently computed results, and maintains those values as long as possible. The

cache contains the values most recently defined by the processor. In this way, the archi-

77

tected file can be large and somewhat slower while the smaller physical file can have

many ports to supply operands to the function units quickly.

The logical registers are mapped to the physical registers through a third (larger)

set of “ registers” called the virtual register numbers (VRNs). There is no storage associ-

ated with these VRNs, which are used to avoid the register-release deadlock, to allow the

PRF to be directly indexed instead of associatively indexed, and to allow the PRF (cache)

to maintain the values after they are committed to the LRF.

Acronym/Term Meaning
LRF Logical (Architected) Register File
NLR Number of Logical (Architected) Registers
PRF Physical Register File (the cache)
NPR Number of Physical Registers
RAT Register Alias Table; maps logical registers to virtual registers
VRN Virtual Register Number
NVR Number of Virtual Registers
PRFV Physical Register Free Vector
Architected State Committed, in-order, non-speculative state of the processor, visi-

ble at the instruction set architecture interface.

Table 4.1: Summary of terminology

Fetch Decode Execute Write-
Back

Commit

Register
Renaming

Physical
Register
File

Logical
Register
File

Figure 4.1: The machine model considered in this chapter.

78

4.3. The Physical Register Cache Design

The innovation in this chapter is the combination of four mechanisms: separate

logical and physical register files, a physical register file that is smaller than the logical

file, renaming through a larger set of virtual registers, and a simple indexing scheme that

maps the virtual numbers to physical registers. The combination of these techniques are

used to achieve several goals: to provide a large logical register file that does not impact

the speed of the processor’s critical path, to avoid deadlock conditions in register assign-

ment that are problems in previous work, and to provide an efficient mapping from virtual

number to physical register.

4.3.1. Microarchitecture Components

The major components in the microarchitecture are as follows:

1. A large logical register file (LRF) which contains precise architected state at all

times. There is storage associated with logical registers: there are NLR entries

in the LRF. Values are written to the logical register file at the time an instruc-

tion commits to architected state.

2. A set of virtual register numbers (VRNs). There is no storage associated with

virtual registers: they are just numbers that track data dependences and the

location of data (physical or logical register file) [Gonz97]. There are NVR vir-

tual registers, where NVR > NLR. The virtual registers are assigned such that

the low bits of the identifier index directly into the physical register file and the

remaining high bits are called the “check tag.” The purpose of the check tag

will be explained later. A VRN is allocated and deallocated as in the merged

renaming approach, described in Section 4.2.1.

3. A physical register file (PRF) which contains speculative values eventually

destined for the logical register file. The PRF also has value storage: it has

NPR <= NLR entries. Values are written to the physical register file after an

instruction computes its result. A result register’s value is retained after its

producing instruction is committed to architected state, until a new value over-

writes it. The PRF is directly indexed, unlike in some previous work [Cruz00].

79

The physical register file also contains tag bits (from the virtual register num-

ber check tag) to verify that the requested value is present; otherwise the value

can be found in the logical register file because it was already committed and

overwritten by a later producer instruction.

4. A virtual number free list (VNFL) which contains the numbers of all virtual

registers that are currently available for use.

5. A physical register free vector (PRFV) of NPR entries where each bit repre-

sents whether the physical register is free to be allocated.

6. A rename table (RAT) of NLR entries each of which contains the virtual regis-

ter number for the corresponding logical register.

7. A busy bit table of NLR entries which contains a bit for each logical register

indicating whether it is presently being written by an instruction in the pipe-

line. If the bit is clear, then the value can be found in the logical register file. If

set, there is a producer instruction in the pipeline which will produce the value

at some future point.

8. A set of reservation stations. Each contains the following fields, assuming two

source operands for convenience of explanation: a) dest virtual register; b) src1

ready bit; c) src1 source virtual register; d) src1 logical register number; e) src2

fields as for src1.

4.3.2. Design Constraints

We have identified several constraints that must be met by the design.

1. NPR < NLR. This is the basic assumption of the cache design of the NPR.

2. NLR < NVR. This ensures no deadlock condition in renaming since the

rename register set is larger than the logical register set [Moud93].

3. Number of In-flight Instructions <= NPR. We limit the number of instructions

to no more than the number of physical registers. This ensures that each

instruction has a unique slot in the physical register file for its result. No two

uncommitted instructions can have the same physical index. In other words,

the number of instructions in flight cannot exceed the machine’s capacity.

80

4.4. Operation of the Physical Register Cache

This section describes the detailed operation of the caching mechanism we pro-

posed. For this study, we chose the parameters shown in Table 4.2.

When an instruction arrives at the dispatch stage, the source register operands are

renamed based on the contents of the RAT, as in conventional renaming. Both the virtual

register number from the RAT and the logical register identifier are carried with the

instruction into the reservation station. No values are read from any register file at this

time. In this way, values are stored centrally in either the logical or physical register file

and are not duplicated in the reservation station entries.

Each destination register in the instruction is assigned a virtual register number

from the free list, as in conventional register renaming. There is one difference: the physi-

cal register free vector is also queried. No virtual register number whose (six) physical

index bits are currently in use can be chosen for allocation. This additional constraint is

necessary to ensure that no two instructions share a physical index and is a necessary side-

effect of the simple mapping policy that is used to index the physical register file

(described later). This works without deadlock since the number of virtual registers is

larger than the number of logical registers. Once a physical register number meeting this

constraint is chosen, its free bit in the PRFV is cleared to indicate that this physical regis-

ter has been “pre-allocated” . A register that is pre-allocated is marked as being in use as a

destination register. Our scheme allows the value currently in that register to still be used

Parameter Value Comment
NLR 256 The instruction set architecture allows 8 bits for each reg-

ister specifier.
NPR 64 From the machine capacity.
NVR 512 Since NVR > NLR must be true (constraint 2 above) we

specify 9 bits of virtual register number. The low 6 bits of
this are used to index into the 64 physical registers. The
remaining 3 bits are used as the check tag.

Table 4.2: Physical register cache parameters used in this study.

81

by consumer instructions until the value is over-written. The relevant structures are over-

viewed in Figure 4.2.

Two bookkeeping structures are shown in the figure to allow the processor to

select an appropriate register. The physical register free vector knows about all the free

physical storage locations in the system. Similarly, the virtual register free list does the

same for virtual registers. An autonomous register selection circuit can examine this infor-

mation and determine which virtual-physical pairs are available for allocation, and can put

them onto a third list which the processor then pulls from in order to rename the destina-

tion of an incoming instruction. (This list is not shown in Figure 4.2, but is inside the reg-

ister selection logic box.) Essentially, the circuit is looking for a virtual register whose six

index bits describe a free physical register. In our system, there are 64 physical registers

and 512 virtual tags, so that for any physical register there are 8 possible virtual registers

that can meet this criterion. The register selection circuit tries to find pairings where both

are free. The register selection circuit has flexibility to choose the registers according to

any policy that it likes and can effect different caching policies “offline” . If there is no vir-

tual register that qualifies for renaming, the frontend of the processor stalls until one

becomes available.

The newly renamed instruction is then dispatched and waits in a reservation station

until its operands become ready. Readiness is determined when a producer instruction

completes and broadcasts its virtual register number to the reservation stations. Each sta-

Physical Register
Free Vector

Virtual Register
Free List

Logical Register
Number

Register
Selection
Logic

Register Alias Table
(RAT)

Virtual
Register
Number

9

Figure 4.2: The mechanism for renaming a
destination register.

82

tion compares its unready source VRN with the virtual register number broadcasted. If

there is a match, the source is marked ready.

At some point all the instruction’s operands are ready and it is scheduled (selected)

for execution. The low 6 bits of its source operand VRN are used to directly index into the

64-entry physical register file. This simple indexing scheme constrains the initial selection

of the VRN (in the renaming pipeline stage) but greatly simplifies the register access at

this point. No associative search is necessary.

The upper 3 bits of the VRN are used as the 3-bit check tag whose function is to

verify that the value currently in the physical register comes from the correct producer. If

the PRF entry has a matching 3-bit check tag, then the value in the physical register is

taken as the source operand. If the tag does not match, the value no longer resides in the

PRF (like a cache miss) and must be fetched from the LRF. This means that it was com-

mitted to architected state some time ago and was evicted from the physical register set by

some other instruction with the same low 6 bits in its virtual number. In the case where the

value is not available from the physical register file, an extra penalty is incurred during

which the backing store (logical register file) is accessed. Our indexing scheme does not

allocate back into the cache upon a miss because the value that would be allocated no

longer has a VRN (it was committed).2

When the instruction issues to a function unit, it picks up the necessary source

operands, some from the LRF and some from the PRF. The LRF access can be started in

parallel with the PRF access, if there are enough ports on the LRF to support this. This is

shown in Figure 4.3, though this approach would require as many ports on the LRF as on

the PRF. Alternatively, the LRF can be accessed the cycle after it is determined that the

PRF did not contain the value. This latter approach is used in our simulations. Since each

physical register could be accessed by multiple consumers in a single cycle, multiple ports

are required on the PRF, but this is no different than other register file designs. Special

scheduling logic, such as exists on the Alpha 21264 to handle remote register reads, is

necessary in our system to handle the timing when a cache miss occurs.

2. It is interesting to note that the no-reallocation policy makes our scheme look somewhat like a
generational garbage collection system for registers. The short-lived items are in the PRF; the
long-lived items are in the LRF and never move back to the short-lived structure.

83

Immediately upon completion of execution, the (speculative) data is written to the

physical register file. It is written to the index specified by the destination virtual register

number. The check tag at that location in the PRF is also updated with the 3-bit check tag

from the current instruction’s virtual register number. This completes the allocation of the

physical register for the current instruction. Any previous value that happened to be there

is now overwritten and its value must be accessed from the LRF. We ensure that we do not

overwrite a value which has not been committed yet because we require that no other in-

flight instruction share the same 6 bits in its virtual register number (by the way the tags

were selected). A write to the PRF always “write-allocates” its result this way and never

misses the cache because it is a first-time write of a speculative value. It cannot be written

to the LRF until it is proven to be on the correct execution path.

The instruction then broadcasts its VRN to each reservation station entry to indi-

cate that the value is ready so that other instructions can be readied for execution (as in

conventional systems). The physical register file is updated and the result is forwarded

immediately to any consumers that require it. The virtual register number allocation algo-

rithm ensures that the instruction retains its physical register at least until it commits to

architected state.

Physical Register File
(64 entries x 35 bits)

.

.

.

Tag Value

=?

01

(VRN)

.

.

.

Logical Register File
(256 entries x 32 bits)From

(LRN)

To Control Logic Register Value

9

6

3

8

Reservation Station

Figure 4.3: Mechanism to access a register
value from the cache or backing store.

84

Finally, the result of the instruction is carried down the pipeline into the reorder

buffer. If this were not done, then the PRF would need more read ports in order to read out

values at the time they are committed to the LRF.

When the instruction reaches the head of the instruction window and is able to

commit, its value is written to the LRF (architected state) and the instruction is officially

committed. The physical register is marked as free for use by later instructions. This is

done by resetting the bit in the physical register free vector. The value in the physical reg-

ister file, however, remains until it is absolutely necessary to overwrite it. This means that

later consumers can read from the physical register for some time until the physical regis-

ter is allocated to some other instruction. This eviction scheme is not simply “ least

recently defined” but is instead determined by when the next instruction that needs that

register completes execution.

Virtual register numbers are released in the same manner as rename registers are

released in a conventional, R10K style processor [Yeag96]. The virtual register number

for logical register R1, for example, can be released when another virtual register number

is assigned to R1 (at the next definition of R1) and that definition is committed. Virtual

register numbers have no associated storage, so we can specify as many as needed in order

to avoid stalling issue due to lack of them. No early release mechanism is considered.

Because the LRF maintains precise architected register state between each instruc-

tion in the program, recovery from exceptions and branch mispredictions is simple.

Instructions which are younger than the excepting instruction are cleared from the

machine. Older instructions are retained. The logical to virtual mappings are maintained

as in previous work [Yeag96]. No entries from the physical register file need to be

destroyed because any consumers that would have consumed bogus values have been

cleared from the machine, and the bogus values will just be overwritten at some future

point anyway3. This has the advantage that useful values are retained in the physical file

(even those that have already committed); i.e. the cache is not destroyed even for a

mispredicted branch. Were this not the case, then the LRF would have to supply all values

3. Any garbage values in the physical register file will be ignored by later instructions since they
will either find their (committed) values in the LRF or receive them from the result broadcast
mechanism.

85

initially after a branch misprediction; this would be slow because the LRF will not have

very many ports.

4.5. Physical Register Cache Advantages and Disadvantages

This design has many advantages, some of which are found in previous work but

integrated here into one system. These advantages all arise from the main features of the

design, namely the split LRF and PRF, the large set of virtual register numbers, and the

way virtual numbers are mapped to physical registers using a simple indexing scheme

(which pre-allocates physical registers). The advantages will be discussed in these catego-

ries.

4.5.1. Advantages Due to the Split LRF and PRF

The split design allows the LRF to be large while keeping the physical file small.

This is the key to the cache-like behavior of the PRF. At any point in time the LRF con-

tains precise architected state, making state maintenance easy, particular at points of mis-

speculation or other exceptional events. The logical register file needs fewer ports because

it only supplies values that have been committed to architected state and that do not still

reside in the cache. It need not provide values that are supplied from the bypass paths nor

those from the (smaller and faster) PRF.

The split design also extends naturally to a register windowed architecture where

there can be a large number of logical registers (hundreds) but where the PRF is desired to

be smaller to speed execution. This is feasible since only a subset of the logical registers

(one or two windows, say), are ever active at any one time.

4.5.2. Advantages Due to the Use of Virtual Register Numbers

The mapping of logical register to physical register through the virtual register

numbers has a number of inherent advantages. First, the approach avoids deadlock condi-

tions that would exist in a merged register logical/physical file where NLR >= NPR. The

“up-rename” from logical to virtual number has no deadlock problem. The subsequent

“down-rename” does not have a deadlock problem because the split physical and logical

86

register files allow physical registers to be freed as soon as their values are committed,

rather than waiting for future instructions to enter the machine.

The use of VRNs also mean that dependency tracking is separated from physical

value storage. Virtual numbers are used to track dependencies while a separate PRF con-

tains the values. This advantage was first proposed in previous work [Gonz97, Gonz98,

Monr99]. The PRF is sized according to the capacity of the machine, independent of the

size of the architected register file.

Virtual registers can be allocated in any order, and the order that is selected can

implement a caching policy by keeping certain values in the physical register file longer

after they commit than other values. This means that a trade-off can be made between

machine capacity and value caching. In other words, some physical registers can be tied

down to specific logical values so that reads can be satisfied out of the cache. This reduces

the number of physical registers available for renaming but the increased PRF hit rate may

more than outweigh this problem, given that mispredictions and other non-idealities effec-

tively reduce the exploitable window size anyway. Such a trade-off would obviously be

more applicable to a machine with a large number of physical registers, i.e. a machine that

can more easily afford such a reduction in physical registers.

4.5.3. Advantages Due to the Direct Virtual to Physical Mapping

The simple mapping scheme from virtual to physical register number also has a

number of advantages. Extra cycles are not required to access the physical register file.

Previous work has resorted to using a fully-associative physical register file, which we

believe is not feasible [Cruz00]. The only disadvantage of this approach is that the physi-

cal register selection mechanism in the renaming pipeline stage is somewhat complicated

since it needs to make sure that it assigns a virtual register whose physical register is free.

Thus it needs to make a lookup in both the virtual register free list and the physical register

free list.

Additionally, physical registers are pre-allocated as soon as the instruction enters

the machine to avoid complex mechanisms to steal registers or reserve registers when

machine capacity is overrun. These mechanisms were necessary in previous work to avoid

87

deadlock conditions when a physical register was required but not available [Gonz97,

Gonz98, Monr99].

Pre-allocation of physical registers is performed without overwriting the previous

value assigned to that physical register. Actual allocation is not performed until the

instruction completes and writes back to the physical register file. This provides the

opportunity for older values to hang around in the cache, satisfying consuming instruc-

tions faster than had the value been forced to reside exclusively in the LRF after its own

commit. The late allocation feature of our approach also reduces the pressure on the phys-

ical file.

Physical registers can be freed as soon as the value contained is committed to

architected state, unlike in other renaming configurations where a later write to the same

logical register is required in order to free the register (like in the free-at-remap-commit

mechanism). Releasing a physical register is decoupled from the number of consumer

instructions in the processor because a physical register can be freed and the consumer can

still access the value from the LRF. Previous techniques hang on to the physical registers

longer than this [Moud93, Gonz97] and thus could reduce the number of in-flight instruc-

tions because of lack of available registers.

Even though the physical registers can be freed early, the PRF can retain commit-

ted values until they are overwritten. This means that, for example, branch mispredictions

can be handled nicely because values produced before the mispredict could still be valid.

Otherwise, if the PRF contents were destroyed at a misprediction, the LRF would have to

provide all the register bandwidth by itself. This would be contrary to our desire to have

few ports on that large file or else would slow the machine’s misprediction recovery time.

4.5.4. Other Advantages

There are some advantages which are due to the particular design that we have

selected, but these are not inherent in this proposal. Because operands are fetched from the

physical and/or logical register files at instruction issue (when sent to a function unit), data

values need not be buffered in the reservation stations; the reservation stations are thus

smaller and require less wiring. Similarly, data values need not be forwarded to reserva-

88

tion stations but are either sent to the physical file or via forwarding bus to an instruction

that will consume it immediately.

4.5.5. Disadvantages

There are a number of features of the design which could be problematic. We list

them in this section.

1. The number of write ports on the LRF must match the commit bandwidth of

the machine. Conceptually, this is necessary because architected state must be

capable of keeping up with the rate of instruction graduation in order for the

machine to be of a balanced design. It does not need to keep up with function

unit production however, assuming that some instructions are wasted because

of mispredictions. One way to deal with this is to split the logical file into two

(or more) pieces and to direct writes to either piece based on bits in the register

specifier.

2. The RAT has as many entries as the (large) LRF. It must have enough read and

write ports to keep pace with instruction decode. Each entry is only 9 bits wide

and the structure is direct mapped, which somewhat simplifies the task of mak-

ing it fast. This cost is due to the requirement of a large LRF. For future work,

it may be profitable to examine ways of implementing the rename tables for a

large LRF.

3. Our scheme always writes the value to the physical register file upon comple-

tion instead of selectively caching it as in previous work [Cruz00]. Values can-

not be written to the backing store (LRF) until the instruction is committed,

and we do not consider any way to avoid caching values which are used on the

bypass network.

4. Before instruction execution can complete, the 3-bit physical register check tag

must be compared against the 3 upper bits in the source VRN specifier. If the

bits match, then the value requested is the one actually residing in the PRF and

execution can proceed uninterrupted. If there is not a match, then an extra

lookup must be made into the LRF to get the value, which was previously com-

mitted. This adds extra complexity to the supply of operands to instructions,

89

but the check can be made during instruction execution, and if a miss is indi-

cated, the instruction can be squashed and immediately reissued after the value

is fetched from the LRF. If the hit rate is high enough, the second lookup will

not have to occur frequently.

4.6. Experimental Evaluation

4.6.1. Experiment Setup

All the benchmarks used in this study were compiled with the MIRV C compiler.

We ran variants of the SPEC training inputs in order to keep simulation time reasonable. A

description of MIRV, our compilation methodology, and benchmark inputs is presented in

the technical report of [Post00a].

All simulations were done using the SimpleScalar 3.0/PISA simulation toolset

[Burg97]. We have modified the toolset (simulators, assembler, and disassembler) to sup-

port up to 256 registers. Registers 0-31 are used as defined in the MIPS System V ABI

[SysV91] in order to maintain compatibility with pre-compiled libraries. Registers 32-255

are used either as additional registers for global variables or additional registers for local

caller/callee save variables.

All simulations were run on a subset of the SPEC95 and SPEC2000 binaries com-

piled with inlining, register promotion, global variable register allocation, and other

aggressive optimizations for a machine with 256 registers, half set aside for locals and half

for globals. These extra optimizations are most effective in the kind of machine studied

here–namely one with a large number of logical registers.

We have implemented our register caching scheme on a variant of the si m- out -

or der simulator. The rename logic is duplicated for the integer and floating point files,

so each of the descriptions below applies for each. When an instruction uses both types of

registers, we return the maximum access latency. The register cache simulator is a stand-

alone module which is hooked in several places into the si m- out or der simulator. The

following are the descriptions of the main hooks.

At instruction dispatch, each output operand is renamed by finding the first VRN

on the free list whose corresponding PR is not marked in use. This is entered into the RAT

90

and the PR is marked as in use. At instruction issue, the simulator determines if there is a

miss in the physical register file (cache). It does this as follows: for each virtual input, it

looks up its PR and determines whether the virtual tags match. If they do, the number of

hits is incremented and no latency is added to the instruction. If there is a miss, the instruc-

tion is assessed another cycle to service the miss (we do not start the LRF access in the

same cycle as the PRF access). At instruction writeback, the physical register is written

along with its tag. This allocates the physical register, overwriting any old value. At

instruction commit, each logical register output is written to the LRF and the PR is imme-

diately freed. The previous VRN mapping for this LR is freed, if any.

Table 4.3 lists the register cache configurations used in our simulations. The

latency numbers in the tables are the additional delay (on top of whatever delay is simu-

lated in the si m- out or der simulator). All simulations use the register cache code with

different parameters to simulate the various configurations of interest. The cached simula-

tion is the one of interest in this work. It has a 256-entry LRF coupled with a 64-entry

PRF. The LRF has an additional 1 cycle penalty for accessing it. The PRF has no addi-

tional penalty. The other three configurations (Fast, Slow1, and Slow2) are provided for

comparison purposes. These are simulated with a 512-entry PRF so that the VRN to PR

mapping is direct, with no check bits, and an appropriate latency. In effect, each of these

three models always hits in the PRF and never needs to use the LRF. “Fast” is a model of a

256 logical register file machine which has no extra delay to access the registers. “Slow1”

and “Slow2” are similar but add 1 and 2 extra cycles, respectively, to the register access to

simulate the slower register file.

The remainder of the simulation parameters are common across all simulations.

The machine simulated is a 4-issue superscalar with 16KB caches; the parameters are used

from si m- out or der defaults except for two integer multipliers and 64 RUU entries.

The default parameters are described in our technical report [Post00a]. All of the simula-

tions presented in this work assume an infinite number of ports on each register file. This

is necessary in order to allow observations to be made about the number of ports that

would be desired in such a configuration.

91

4.6.2. Results

This section describes the results of simulating our configurations. Figure 4.4

shows the IPC for the 4 register configurations mentioned above. The cached configura-

tion approaches the performance of the fast configuration in most cases. The Fast configu-

ration averages about 12% faster than the Slow1 while the cached configuration is 11%

faster. Thus the caching strategy is able to recover most of the performance of the fastest

configuration while maintaining a small physical register file.

Figure 4.5 shows the hit rate of the integer-side physical register file cache. In

every case, the hit rate is 80% to 95%. Even the small cache is able to capture most of the

register activity. This is due to effects that have been reported previously, namely that val-

ues are very frequently consumed very shortly after they are produced. Our simulator does

not model value bypassing in detail, so the hit rate includes all values that would be

Simulation
Name

NLR
LR

Latency
NVR NPR PR Latency

Fast 256 0 512 512 0
Cached 256 1 512 64 0
Slow1 256 0 512 512 1
Slow2 256 0 512 512 2

Table 4.3: Register cache simulation configurations

IPC of Var ious Caching Schem es

0.00

0.50

1.00

1.50

2.00

2.50

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

IP
C

256_Slow 2

256_Slow 1

256_Cached

256_Fast

Figure 4.4: IPC of the four register configurations studied.

92

bypassed or provided by the physical register file. In any case, these are register references

that do not have to access the large LRF, so we deem them to be “hits.” Even if 50 out of

100 values are provided by bypasses, 30 to 45 of the remaining 50 are provided by our

cache–which is still a 60 to 90% hit rate. Similar data for 4 of the SPEC2000 floating point

benchmarks are shown in Figure 4.6. The floating point hit rate is a bit higher, 85% to

95%.

Another important metric to examine is the average read and write bandwidth for

the logical and physical register files. Figure 4.7 and Figure 4.8 show this data for the

SPEC95 and SPEC2000 benchmarks, respectively. Each bandwidth number is an average

which is computed by dividing the number of reads or writes to the particular register file

by the number of cycles in the simulation run. This does not show peak port requirements.

Each benchmark has 4 bars, corresponding to the 4 configurations simulated

(Slow2, Slow1, Cached, and Fast). The black and white portions of the bars represent

average read and write ports needed to supply the bandwidth required from the PRF.

Notice that since these configurations model a physical register file large enough to house

Integer Phys ical Regis ter File Hit Rate

0.40

0.50

0.60

0.70

0.80

0.90

1.00

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

H
it

 R
at

e

Figure 4.5: Hit rate of the integer physical register file (cache).

93

the architected registers and speculative state there are no reads or writes to a LRF. The

PRF in these cases is 512 entries.

The third bar, for the Cached configuration, has two additional bars stacked on the

graph: the gray and hashed bars represent the bandwidth requirements for the LRF. The

key thing to note about the third bar is that the black and white port requirements are for a

64 entry physical register file–the other bars show the port requirements for a monolithic,

512-entry file. For most of the benchmarks, the caching technique retains about the same

port requirements for the 64 entry PRF as for the larger monolithic file (just slightly less),

indicating that the cache is supplying as many operands as the original file but with a frac-

tion of the size. Thus the effect is that the cache is able to supply the needed operands with

many fewer ports on a smaller register file.

The cached configurations show in dark gray the average bandwidth requirement

of the logical register file for read accesses–a very small percentage, indicating that 1 or 2

Float Phys ical Regis ter File Hit Rate

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ammp00 art00 equake00 mesa00

H
it

 R
at

e

Figure 4.6: Hit rate of the floating point physical register file.

94

read ports to the LRF would be sufficient to sustain the performance levels in these bench-

marks.

The data in those figures also show that the physical register file read bandwidth

averages two to three ports per cycle and write bandwidth up to two ports per cycle. A

physical register file of 64 entries with that number of ports should be quite easy to build

with that few ports.

The logical register file write bandwidth, shown in the hashed portions of the bars,

averages around one or two per cycle. The specific values are always less than the IPC of

the benchmark, since some instructions like branches and stores do not write a value to the

register file. The logical register file, as was previously noted, must have enough write

ports to be able to keep up with the commit bandwidth of the machine. Since the IPC for

these benchmarks is low, it should not present a difficulty to design a 256-entry LRF with

two write ports.

Average bandwidth data is also shown in Figure 4.9 for a subset of the floating

point benchmarks. The mesa benchmark is not shown because its floating point register

utilization is very low compared to the other benchmarks.

0

1

2

3

4

5

6

7

8

co
m

pr
es

s9
5-

25
6_

S
lo

w
2

co
m

pr
es

s9
5-

25
6_

S
lo

w
1

co
m

pr
es

s9
5-

25
6_

C
ac

he
d

co
m

pr
es

s9
5-

25
6_

F
as

t

gc
c9

5-
25

6_
S

lo
w

2
gc

c9
5-

25
6_

S
lo

w
1

gc
c9

5-
25

6_
C

ac
he

d
gc

c9
5-

25
6_

F
as

t

go
-2

56
_S

lo
w

2
go

-2
56

_S
lo

w
1

go
-2

56
_C

ac
he

d
go

-2
56

_F
as

t

ijp
eg

-2
56

_S
lo

w
2

ijp
eg

-2
56

_S
lo

w
1

ijp
eg

-2
56

_C
ac

he
d

ijp
eg

-2
56

_F
as

t

li9
5-

25
6_

S
lo

w
2

li9
5-

25
6_

S
lo

w
1

li9
5-

25
6_

C
ac

he
d

li9
5-

25
6_

F
as

t

m
88

ks
im

-2
56

_S
lo

w
2

m
88

ks
im

-2
56

_S
lo

w
1

m
88

ks
im

-2
56

_C
ac

he
d

m
88

ks
im

-2
56

_F
as

t

pe
rl-

25
6_

S
lo

w
2

pe
rl-

25
6_

S
lo

w
1

pe
rl-

25
6_

C
ac

he
d

pe
rl-

25
6_

F
as

t

vo
rt

ex
-2

56
_S

lo
w

2
vo

rt
ex

-2
56

_S
lo

w
1

vo
rt

ex
-2

56
_C

ac
he

d
vo

rt
ex

-2
56

_F
as

t

ILWBW
ILRBW
IPWBW
IPRBW

Figure 4.7: Average bandwidths SPECint95.

95

The register cache allows values to hang around until they are overwritten by some

later instruction; while the later instruction has pre-allocated the register, the old value

remains in it. This is advantageous because the physical register is occupied with useful

data for a longer period of time than if the value were “erased” as soon as it was commit-

ted to the LRF. All of the simulations presented so far use this policy, which we call

“delayed allocation.” We simulated the go benchmark with and without this policy to

0

1

2

3

4

5

6

7

8

am
m

p0
0-

25
6_

S
lo

w
2

am
m

p0
0-

25
6_

S
lo

w
1

am
m

p0
0-

25
6_

C
ac

he
d

am
m

p0
0-

25
6_

F
as

t

ar
t0

0-
25

6_
S

lo
w

2
ar

t0
0-

25
6_

S
lo

w
1

ar
t0

0-
25

6_
C

ac
he

d
ar

t0
0-

25
6_

F
as

t

eq
ua

ke
00

-2
56

_S
lo

w
2

eq
ua

ke
00

-2
56

_S
lo

w
1

eq
ua

ke
00

-2
56

_C
ac

he
d

eq
ua

ke
00

-2
56

_F
as

t

m
es

a0
0-

25
6_

S
lo

w
2

m
es

a0
0-

25
6_

S
lo

w
1

m
es

a0
0-

25
6_

C
ac

he
d

m
es

a0
0-

25
6_

F
as

t

bz
ip

20
0-

25
6_

S
lo

w
2

bz
ip

20
0-

25
6_

S
lo

w
1

bz
ip

20
0-

25
6_

C
ac

he
d

bz
ip

20
0-

25
6_

F
as

t

gc
c0

0-
25

6_
S

lo
w

2
gc

c0
0-

25
6_

S
lo

w
1

gc
c0

0-
25

6_
C

ac
he

d
gc

c0
0-

25
6_

F
as

t

gz
ip

00
-2

56
_S

lo
w

2
gz

ip
00

-2
56

_S
lo

w
1

gz
ip

00
-2

56
_C

ac
he

d
gz

ip
00

-2
56

_F
as

t

m
cf

00
-2

56
_S

lo
w

2
m

cf
00

-2
56

_S
lo

w
1

m
cf

00
-2

56
_C

ac
he

d
m

cf
00

-2
56

_F
as

t

pa
rs

er
00

-2
56

_S
lo

w
2

pa
rs

er
00

-2
56

_S
lo

w
1

pa
rs

er
00

-2
56

_C
ac

he
d

pa
rs

er
00

-2
56

_F
as

t

vo
rt

ex
00

-2
56

_S
lo

w
2

vo
rt

ex
00

-2
56

_S
lo

w
1

vo
rt

ex
00

-2
56

_C
ac

he
d

vo
rt

ex
00

-2
56

_F
as

t

vp
r0

0-
25

6_
S

lo
w

2
vp

r0
0-

25
6_

S
lo

w
1

vp
r0

0-
25

6_
C

ac
he

d
vp

r0
0-

25
6_

F
as

t

ILWBW

ILRBW

IPWBW

IPRBW

Figure 4.8: Average bandwidths for SPEC2000.

0

0.5

1

1.5

2

am
m

p0
0-

25
6_

S
lo

w
2

am
m

p0
0-

25
6_

S
lo

w
1

am
m

p0
0-

25
6_

C
ac

he
d

am
m

p0
0-

25
6_

F
as

t

ar
t0

0-
25

6_
S

lo
w

2
ar

t0
0-

25
6_

S
lo

w
1

ar
t0

0-
25

6_
C

ac
he

d
ar

t0
0-

25
6_

F
as

t

eq
ua

ke
00

-
25

6_
S

lo
w

2
eq

ua
ke

00
-

25
6_

S
lo

w
1

eq
ua

ke
00

-
25

6_
C

ac
he

d
eq

ua
ke

00
-

25
6_

F
as

t

FLWBW

FLRBW

FPWBW

FPRBW

Figure 4.9: Average bandwidths for floating point register files.

96

model what would happen if registers were allocated in a manner similar to current super-

scalar processors. We found that when the delayed allocation was turned off, the hit rate of

the integer PRF decreased by about 2.6%. There was also a slight decrease in IPC. This

shows the delayed allocation policy is making a difference though it is very slight. The

primary reason for this is that most values are consumed quickly and the extra time the

value hangs around in the cache is not very profitable. However, it is easier to implement

the delayed allocation policy, so the slight performance increase is worthwhile.

This modification extends the physical register busy time on the front end (before

execution) because it makes the register busy until the value is produced, even though no

useful value resides in that register. Turning off delayed allocation has increased the use-

less occupation time of the physical register. On the back end (after commit), our scheme

releases the register as soon as the commit is completed. We cannot extend the register

busy time until the commit of the next value writing the particular architected register

because we would run out of physical registers (that is, as we said before, we cannot use a

merged renaming approach like the R10000).

4.6.3. Results with Perfect Prediction, Caching, and TLBs

The absolute performance of the configurations in the previous section are some-

what attenuated by the heavy penalty of branch prediction and cache misses. This section

removes those constraints by simulating all the configurations with perfect caches, perfect

branch prediction, and perfect TLBs (denoted by the “perf” suffix on the configuration

names in the following graphs). Our goal is to determine what happens to the caching

scheme as improvements are made in other areas of the system. The figures in this section

show the results.

Figure 4.10 shows the IPC of the four perfect configurations. Immediately it can

be seen that the IPCs have increased from the 1-1.5 range up to the 2-3 range. The perfor-

mance of go, for example, has tripled. More interesting than the absolute performance

increases produced by the more ideal system is the trend in performance from the Slow2

to Fast configurations of the register cache. Since a number of the performance-attenuat-

ing features have been eliminated from the microarchitecture, the gap between Slow2 and

Fast has increased. For example, whereas in the non-perfect simulations Fast was 44%

97

faster than Slow2, the perfect Fast configuration is 76% faster than Slow2. This points out

the (somewhat obvious) conclusion that as the other bottlenecks are removed from the

system, the register configuration makes a significant difference.

Figure 4.11 and Figure 4.12 show the hit rate of the integer and floating point

physical register files for relevant benchmarks. These numbers are essentially unchanged

from the non-perfect simulations, showing that the mechanism is robust under different

configurations. The only significant difference is found in the ar t benchmark, where it

attains a 47% hit rate as opposed to a 60% hit rate in the imperfect configuration.

There are also corresponding increases in the average read and write port band-

widths required. Figure 4.13 and Figure 4.14 show this for the integer register files; the

port requirements on the physical file have increased to 4 read ports and 3 write ports. This

is an increase of at least one port per cycle for reads and writes. The LRF port require-

ments on the integer side are still quite modest–generally less than 3 write ports and a sin-

gle read port are required. The three floating point benchmarks, shown in Figure 4.15,

require 2 to 4 read ports in the perfect configuration whereas the non-perfect configuration

only required 1 read port. The PRF requires about 1 read port, as before, and the LRF

requires one of each type of port also.

IPC of Var ious Caching Schem es - Per f

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

IP
C

256_Slow 2perf

256_Slow 1perf

256_Cachedperf

256_Fastperf

Figure 4.10: IPC of the four perfect register configurations studied

98

Integer Phys ical Regis ter File Hit Rate - Per f

0.40

0.50

0.60

0.70

0.80

0.90

1.00

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

H
it

 R
at

e

Figure 4.11: Hit rate of the integer physical register file (cache), perf configuration.

Float Phys ical Regis ter File Hit Rate - Per f

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ammp00 art00 equake00 mesa00

H
it

 R
at

e

Figure 4.12: The hit rate of the float physical register file, perfect configuration.

99

0

1

2

3

4
5

6

7

8

9
10

co
m

pr
es

s9
5-

25
6_

S
lo

w
2

co
m

pr
es

s9
5-

25
6_

S
lo

w
1

co
m

pr
es

s9
5-

25
6_

C
ac

he
d

co
m

pr
es

s9
5-

25
6_

F
as

t

gc
c9

5-
25

6_
S

lo
w

2
gc

c9
5-

25
6_

S
lo

w
1

gc
c9

5-
25

6_
C

ac
he

d
gc

c9
5-

25
6_

F
as

t

go
-2

56
_S

lo
w

2
go

-2
56

_S
lo

w
1

go
-2

56
_C

ac
he

d
go

-2
56

_F
as

t

ijp
eg

-2
56

_S
lo

w
2

ijp
eg

-2
56

_S
lo

w
1

ijp
eg

-2
56

_C
ac

he
d

ijp
eg

-2
56

_F
as

t

li9
5-

25
6_

S
lo

w
2

li9
5-

25
6_

S
lo

w
1

li9
5-

25
6_

C
ac

he
d

li9
5-

25
6_

F
as

t

m
88

ks
im

-2
56

_S
lo

w
2

m
88

ks
im

-2
56

_S
lo

w
1

m
88

ks
im

-2
56

_C
ac

he
d

m
88

ks
im

-2
56

_F
as

t

pe
rl-

25
6_

S
lo

w
2

pe
rl-

25
6_

S
lo

w
1

pe
rl-

25
6_

C
ac

he
d

pe
rl-

25
6_

F
as

t

vo
rt

ex
-2

56
_S

lo
w

2
vo

rt
ex

-2
56

_S
lo

w
1

vo
rt

ex
-2

56
_C

ac
he

d
vo

rt
ex

-2
56

_F
as

t

ILWBW
ILRBW

IPWBW
IPRBW

Figure 4.13: Average bandwidths SPECint95, perfect configuration.

0

1

2

3

4

5

6

7

8

9

10

am
m

p0
0-

25
6_

S
lo

w
2

am
m

p0
0-

25
6_

S
lo

w
1

am
m

p0
0-

25
6_

C
ac

he
d

am
m

p0
0-

25
6_

F
as

t

ar
t0

0-
25

6_
S

lo
w

2
ar

t0
0-

25
6_

S
lo

w
1

ar
t0

0-
25

6_
C

ac
he

d
ar

t0
0-

25
6_

F
as

t

eq
ua

ke
00

-2
56

_S
lo

w
2

eq
ua

ke
00

-2
56

_S
lo

w
1

eq
ua

ke
00

-2
56

_C
ac

he
d

eq
ua

ke
00

-2
56

_F
as

t

m
es

a0
0-

25
6_

S
lo

w
2

m
es

a0
0-

25
6_

S
lo

w
1

m
es

a0
0-

25
6_

C
ac

he
d

m
es

a0
0-

25
6_

F
as

t

bz
ip

20
0-

25
6_

S
lo

w
2

bz
ip

20
0-

25
6_

S
lo

w
1

bz
ip

20
0-

25
6_

C
ac

he
d

bz
ip

20
0-

25
6_

F
as

t

gc
c0

0-
25

6_
S

lo
w

2
gc

c0
0-

25
6_

S
lo

w
1

gc
c0

0-
25

6_
C

ac
he

d
gc

c0
0-

25
6_

F
as

t

gz
ip

00
-2

56
_S

lo
w

2
gz

ip
00

-2
56

_S
lo

w
1

gz
ip

00
-2

56
_C

ac
he

d
gz

ip
00

-2
56

_F
as

t

m
cf

00
-2

56
_S

lo
w

2
m

cf
00

-2
56

_S
lo

w
1

m
cf

00
-2

56
_C

ac
he

d
m

cf
00

-2
56

_F
as

t

pa
rs

er
00

-2
56

_S
lo

w
2

pa
rs

er
00

-2
56

_S
lo

w
1

pa
rs

er
00

-2
56

_C
ac

he
d

pa
rs

er
00

-2
56

_F
as

t

vo
rt

ex
00

-2
56

_S
lo

w
2

vo
rt

ex
00

-2
56

_S
lo

w
1

vo
rt

ex
00

-2
56

_C
ac

he
d

vo
rt

ex
00

-2
56

_F
as

t

vp
r0

0-
25

6_
S

lo
w

2
vp

r0
0-

25
6_

S
lo

w
1

vp
r0

0-
25

6_
C

ac
he

d
vp

r0
0-

25
6_

F
as

t

ILWBW

ILRBW

IPWBW

IPRBW

Figure 4.14: Average bandwidths for SPEC2000, perfect configuration.

100

4.6.4. Results of Varying Cache Size

We next discuss what happens when the cache size is altered. In our design, the

PRF capacity is intimately related to the other parameters in the machine, such that chang-

ing it requires changing a number of other parameters as well. The cache size should be

determined by the desired machine capacity and performance. For this reason, and

because of the large number of simulations that would be required to examine a variety of

cache sizes for all of our benchmarks, we have limited the discussion to the go bench-

mark. For each simulation, we changed the size of the cache (for the cached configura-

tions) and reduced the size of the instruction window (for all the configurations) to match

the capacity of the cache.

Figure 4.16 shows the IPC for the four configurations explained earlier, each simu-

lated with five cache sizes: 8, 16, 32, 64, and 128 entries, and correspondingly-sized

instruction windows. Some clear trends can be observed from this data. Generally speak-

ing, the Fast configurations are always better than the Cached configurations which are in

turn better than the Slow1, etc. However, there are a couple of exceptions. The cached8

configuration is slightly slower than the slow1-128, and the same as the slow1-64 config-

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

am
m

p0
0-

25
6_

S
lo

w
2

am
m

p0
0-

25
6_

S
lo

w
1

am
m

p0
0-

25
6_

C
ac

he
d

am
m

p0
0-

25
6_

F
as

t

ar
t0

0-
25

6_
S

lo
w

2
ar

t0
0-

25
6_

S
lo

w
1

ar
t0

0-
25

6_
C

ac
he

d
ar

t0
0-

25
6_

F
as

t

eq
ua

ke
00

-
25

6_
S

lo
w

2
eq

ua
ke

00
-

25
6_

S
lo

w
1

eq
ua

ke
00

-
25

6_
C

ac
he

d
eq

ua
ke

00
-

25
6_

F
as

t

FLWBW

FLRBW

FPWBW

FPRBW

Figure 4.15: Average bandwidths for float register files, perfect configuration

101

uration. This shows that more slow registers and a larger instruction window is better than

too few. Similarly, the fast8 configuration is slower than all cached configurations except

cached8. Fast16 is much better. The indication in both of these exceptional cases is that an

8-register cache and window size is simply insufficient to best performance on go. Of

course, this is no surprise, but serves to make the point that changing the PRF size has

drastic effects on the performance of the benchmarks.

Figure 4.17 shows the average register file bandwidths in each case, and the PRF

hit rate is shown in Figure 4.18. The hit rate trends upward as the cache increases in size,

from 65% up to 85%.

From the perspective of experimental design, this data does not tell us much

because too many parameters in the machine are changed from one to the other, it is diffi-

cult to determine the effect that each has on overall performance. The tight integration of

our caching model with the rest of the superscalar hardware makes it impossible to untan-

gle these different parameters.

Figure 4.16: IPC for go for various cache configurations.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

sl
ow

2-
8

sl
ow

2-
16

sl
ow

2-
32

sl
ow

2-
64

sl
ow

2-
12

8

sl
ow

1-
8

sl
ow

1-
16

sl
ow

1-
32

sl
ow

1-
64

sl
ow

1-
12

8

ca
ch

ed
8

ca
ch

ed
16

ca
ch

ed
32

ca
ch

ed
64

ca
ch

ed
12

8

fa
st

8

fa
st

16

fa
st

32

fa
st

64

fa
st

12
8

IP
C

102

0

0.5

1

1.5

2

2.5

3

go
-s

lo
w

2-
8

go
-s

lo
w

2-
16

go
-s

lo
w

2-
32

go
-s

lo
w

2-
64

go
-s

lo
w

2-
12

8

go
-s

lo
w

1-
8

go
-s

lo
w

1-
16

go
-s

lo
w

1-
32

go
-s

lo
w

1-
64

go
-s

lo
w

1-
12

8

go
-c

ac
he

d8

go
-c

ac
he

d1
6

go
-c

ac
he

d3
2

go
-c

ac
he

d6
4

go
-c

ac
he

d1
28

go
-f

as
t8

go
-f

as
t1

6

go
-f

as
t3

2

go
-f

as
t6

4

go
-f

as
t1

28

ILWBW

ILRBW

IPWBW

IPRBW

Figure 4.17: Average bandwidths for integer register files in go.

Integer Phys ical Regis ter File Hit Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ca
ch

ed
8

ca
ch

ed
16

ca
ch

ed
32

ca
ch

ed
64

ca
ch

ed
12

8

H
it

 R
at

e

Figure 4.18: Hit rate of the various cache configurations.

103

4.6.5. Results of Varying Available Register Ports

The results above are only averages over the entire benchmark run and they

assume an infinite number of ports to both register files. In this section we demonstrate

what happens with several different configurations of ports on the register files.

For these simulations, the number of read and write port on each register file are

used to restrict the flexibility of several portions of the pipeline model. The read ports of

both the LRF and PRF guide the instruction scheduler so that it does not issue more

instructions in a cycle than there are register ports to supply operands. The scheduler is

optimistic in that it examines all ready instructions and starts selecting them for execution

as long as the number of read ports from the appropriate register file is not exceeded. It

continues through all ready instructions, perhaps skipping some that cannot be issued due

to high port utilization, until it issues as many as it can, up to the issue width limit. The

LRF write ports are used in the commit stage of the pipeline, where if an instruction can-

not commit because of lack of LRF write ports, commit is stopped and the remainder of

the retiring instructions must be committed the next cycle (or later). The PRF write ports

are used in the writeback stage of the pipeline to write results from the function units. Our

simulator assumes that the PRF must be able to sustain the writeback bandwidth of as

many instructions that can complete per cycle. Therefore we do not restrict the PRF write

ports4.

There are minimum port requirements on each of the register files. These are

shown in Table 4.4. Both the PRF and LRF must have at least three read ports each, since

our simulator will only read the sources for an instruction in a single given cycle, and there

are some instructions with three source operands5. This could be solved by taking several

cycles to read the operands, but we deemed it not necessary to simulate fewer than 3 read

ports since most PRF designs should have at least that many. Similarly, the simulator

requires at least 2 write ports on each register file since some instructions have two desti-

4. Though this is obviously an important issue in real machine design, we defer it for a more
detailed simulation environment

5. Fewer ports causes the simulator to lock up because once it reaches an instruction with more
operands than ports, it cannot make further forward progress.

104

nation registers. As mentioned above, we did not model limited write ports on the PRF,

but we did on the LRF.

The results of several simulations are shown in Figure 4.19. The cached64 config-

uration is the same as the “cached” configuration earlier in this chapter. The next configu-

rations are specified by the number of register file ports, in the same order as specified in

Table 4.4, so that p8-100-6-4 means that the configuration has 8 PR read ports, 100 PR

write ports (to model an infinite number of ports), 6 LR read ports, and 4 LR write ports.

The next configuration halves the number of each type of port to the LRF, and the follow-

ing configurations successively reduce the PR read ports from 8 to 3.

From the graph, it is evident that limiting the cache configuration from infinite

ports to 8 PRF read ports and 6 LRF read ports and 4 LRF write ports does not affect the

PRF Read
Ports

PRF Write
Ports

LRF Read
Ports

LRF Write
Ports

3 NA 3 2

Table 4.4: Minimum ports requirements on the PRF and LRF.

Effect of Regis ter File Por ts on IPC for go

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

ca
ch

ed
64

p8
-1

00
-6

-4

p8
-1

00
-3

-2

p7
-1

00
-3

-2

p6
-1

00
-3

-2

p5
-1

00
-3

-2

p4
-1

00
-3

-2

p3
-1

00
-3

-2

IP
C

Figure 4.19: IPC of several limited port configurations on go.

105

performance of the processor on the go benchmark at all. There is a slight degradation

when the number of LRF read and write ports are halved, but this is not severe because go

has such a low IPC anyway. When the number of read ports on the PRF is cut successively

from 8 to 3, the performance drops by 5%. The performance is not affected until the num-

ber of read ports is reduced beyond 5. Thus, for the go benchmark, 5 read ports is suffi-

cient to obtain nearly full performance from the PRF. Of course, this is due to the fact that

go’s performance is so low in the first place (less than 1 IPC).

Figure 4.20 and Figure 4.21 show the results for all of the benchmarks studied in

this chapter. There is usually not much performance degradation going from infinite ports

to the minimum number of ports on the LRF; however reducing the number of ports on the

PRF to the minimum does affect performance. From the infinite port configuration to the

most limited, performance is reduced 2% up to 24%. The i j peg and bzi p benchmarks

perform the worst with the limited port configuration. This is not surprising since those

two benchmarks have the highest average port requirements (see Figure 4.7 and Figure

4.8). The ar t benchmark produces the only unexpected result. This has been a difficult

benchmark through all of the studies because it has such terrible overall performance. This

is due to the very high data cache miss rates–the L1 data cache misses 42% of the time; the

unified L2 cache misses 48% of the time. These misses cause major backups in the

instruction window, so that it is full over 90% of the time. The most limited cache config-

uration slightly changes the order that instructions are run from the earlier configurations

and thus it is not surprising that there is a small perturbation in the performance; in this

case it is in the upward direction. The IPC is low enough that the PRF is easily able to sus-

tain the average requirements (1/2 an instruction per cycle can easily be accommodated by

3 read ports on the PRF).

This data demonstrates that our technique is not hampered by a limited number of

ports on the LRF. Primarily this is because data values are produced and then consumed

shortly thereafter so that the cache or bypassing logic can supply the values. Furthermore,

the out-of-order engine can tolerate the extra cycle incurred by a PRF miss. The PRF port

limited studies show that performance does not really begin to degrade until the number of

read ports is reduced to 5 or 4.

106

Effect of Regis ter File Por ts on IPC

0

0.5

1

1.5

2

2.5

compress95 gcc95 go ijpeg li95 m88ksim perl vortex

IP
C

cached64 p8-100-6-4

p8-100-3-2 p7-100-3-2

p6-100-3-2 p5-100-3-2

p4-100-3-2 p3-100-3-2

Figure 4.20: The IPC of limited port configurations for SPECint95.

Figure 4.21: The IPC of limited port configurations for SPEC2000.

Effect of Regis ter File Por ts on IPC

0

0.5

1

1.5

2

2.5

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

IP
C

cached64 p8-100-6-4

p8-100-3-2 p7-100-3-2

p6-100-3-2 p5-100-3-2

p4-100-3-2 p3-100-3-2

107

4.7. Comparison to Previous Work

The register cache is a hardware controlled mechanism for making using of tempo-

ral locality of register reference [Yung95a, Yung95b]. The register file is organized as a

hierarchy with the operands supplied from the uppermost (smallest and fastest) level. The

lower levels constitute backing storage for the full set of registers, not all of which will

simultaneously fit into the small upper level. Motion between files is performed by the

hardware based on recent usage patterns.

This strategy is used in a recent proposal, called the “multiple-banked register

file,” where a mutli-level caching structure with special caching and prefetching policies

is used to implement a large number of physical registers [Cruz00]. This work attempts to

cache the physical registers of a dynamically renamed microprocessor in the context of a

merged-file renaming mechanism, despite the seeming lack of locality in the physical reg-

ister reference stream (because of the “ random” selection of physical registers from the

free list).

One disadvantage with the multiple-banked work and the present work is that the

register file backing store (the logical file in our case, the large physical file in the previ-

ous work) must have as many write ports as the cache. In that work, all values produced

by the function units are written to the physical register backing store; some of them are

written to the cache as well based on caching policies. There is no dirty-writeback path

from the cache to the backing store, so all values produced by the function units must be

written to the backing store during instruction writeback. In our work, only committed

values need to be written to the logical register file. This will require somewhat less band-

width than the previous approach since the number of instructions committed is less than

the number written back.

Another disadvantage of the multiple-banked research is that the physical register

file, though small at 16 entries, requires a fully associative lookup on all ports. Our work

eliminates this inefficiency by using a clever virtual-to-physical register indexing scheme

to allow the physical file to be direct mapped.

Hierarchical register files have also been proposed to allow efficient implementa-

tion of large logical register sets. The register file is separated into several regions, each in

108

turn containing more registers and having slower access time than the previous region

[Swen88]. Placement of data is performed by the compiler with respect to frequency of

access, and motion between files is explicitly coded by the compiler.

The problem of large register files has been addressed in commercial machines

such as the Alpha 21264, which split its physical register file into two copies, with a 1-

cycle delay for updates from one copy to another [Gwen96].

Other work attempts to reduce the number of physical registers required for a

given instruction window size so that caching techniques will not be necessary. One exam-

ple is the virtual-physical register research which makes use of the observation that physi-

cal register lifetimes do not begin until instruction completion, so that storage need not be

allocated until late in the pipeline [Gonz97, Gonz98, Monr99]. In order to keep track of

dependences, an intermediate level of register renaming, from logical registers to virtual-

physical registers, is employed. The virtual-physical registers do not have associated stor-

age so the number of them does not greatly affect the size or speed of the processor. These

virtual-physical registers are renamed once again to final physical registers at instruction

completion time. The delayed allocation of physical registers introduces a potential dead-

lock where there may not be a physical register available by the time an instruction com-

mits, since the machine allows more instructions in flight than there are physical storage

locations for them. This is corrected by reserving a number of physical registers for the

oldest instructions and sending younger instructions back for later re-execution if they try

to use one of the reserved registers. The technique was later changed to handle this dead-

lock better by implementing a physical register stealing approach [Monr99].

Our approach avoids this deadlock by separating the logical register file from the

physical register file.

One advantage of the virtual-physical approach is that dependency checking is

decoupled from value storage, thus allowing value storage to be tied up for a shorter

length of time than in a standard superscalar. This is used to allow more in-flight instruc-

tions or to reduce the size of the physical register file while retaining the same perfor-

mance. This allows late allocation of physical registers but early deallocation was not

considered.

109

Our work is like the virtual-physical register approach in that we actually allocate

the physical register at instruction writeback, though pre-allocation happens earlier. This

proposal also frees the physical register as soon as the instruction commits, which is the

earliest that any technique can do so. No merged file mechanism can do this because the

value storage must be retained until it is certain that the value will never be needed again.

Once the physical register is freed and the value is placed in the logical file, any future

consumers can access it from there. Even though the register is freed, the value can sit in

the physical register until some other writer destroys it. The check tag ensures that no later

operations get a wrong value. This allows the value to sit in the cache for some time after

commit. Some previous work has considered earlier deallocation of physical registers by

using dead value information which exploits the fact that the last use of a register can be

used for a deallocation marker instead of waiting for the next redefinition [Mart97, Lo99].

Figure 4.22 shows these differences in pictorial form. The clear bar represents

regions where the physical register is allocated but does not contain a valid value. The

black bar shows where the physical register is allocated and must contain valid data (until

a new value is committed to architected state). The checked bar shows the region where

the physical register is pre-allocated but does not contain data for the present instruction; it

may contain valid data from an older instruction. Finally the shaded arrow represents the

region where the physical register is free to be allocated to another instruction, yet it con-

tains valid data from the previous producer instruction, which consumers are free to use.

Therefore, the deallocate region overlaps the pre-allocate region for a later instruction that

will use the same physical storage location.

Our work differs from previous research in that it proposes to use the physical reg-

ister file itself as a cache for a large logical file using a new register-renaming technique.

Previous work is mainly concerned with implementation of large physical register files

whereas we are mainly interested in implementing a large logical register file.

The rename storage in previous superscalar designs could be considered as a cache

for the logical register file. However, if the rename storage is larger than the architected

storage, as it is in many modern superscalar processors, the “cache” is bigger than the

110

backing store. In any case, our system is designed specifically to cache a large set of regis-

ters provided in the ISA to the compiler.

4.8. Conclusions

We have presented an implementation of a large and fast logical register file by

integrating register renaming with a physical register file smaller than the logical one. This

physical register file serves as a cache for the logical register file as well as storage for in-

flight instructions. The renaming scheme is unique in several ways. First, the physical reg-

ister file is smaller than the logical file. Second, the renaming scheme renames the logical

registers to physical registers through an intermediate set of virtual registers. Third, the

mapping function is constrained in such a way as to ensure that the physical register file is

direct-mapped. This technique avoids the register-release deadlock problem and also

deadlock problems of earlier virtual tagging schemes which had to reserve or steal regis-

ters to ensure that the program makes forward progress. The caching mechanism provides

an improvement of up to 20% in IPC over an un-cached large logical register file with

conventional register renaming. The hit rate of the physical register file on most bench-

marks was 80% or better.

(a) Conventional Superscalar

(b) Virtual-Physical Registers

(c) Physical Register Cache

F CWBED

F CWBED

F CWBED

Figure 4.22: The lifetimes of physical
registers in various schemes

Allocated, invalid data
Allocated, valid data
Pre-allocated
Deallocated, valid data

111

The caching mechanism proposed here can be extended in a number of directions.

First, the proposal is amenable to modifications to effect caching policies on the physical

registers through careful allocation of virtual registers. Second, the caching mechanism is

a natural fit to be integrated with register windows for a SPARC-like architecture. Another

way our approach could be used is to build an inexpensive superscalar implementation of

a conventional (32-register) logical file with an even smaller number of physical registers,

say 16, while using a direct-indexed physical file instead of the associative ROB lookups

used in earlier designs.

Finally, this approach could be useful on simultaneous multi-threaded processors

which require very large logical register files to house the contents of the multiple thread

contexts that are simultaneously live in the machine. Previous research has used a merged

register renaming scheme [Lo99], which means that the physical register file (which con-

tains both architected and speculative state) must be extremely large. For example, for 4

threads at 32 registers each, the PRF would need to be larger than 128, and in particular it

would be 128 plus the maximum number of in-flight instructions. Our technique could be

used to implement a much smaller physical register file.

112

Chapter 5

Store-Load Address Table and Speculative Register Promotion

5.1. Introduction

Register promotion is an optimization that allocates a value to a register for a

region of its lifetime where it is provably not aliased. Conventional compiler analysis can-

not always prove that a value is free of aliases, and thus promotion cannot always be

applied. This chapter proposes a new hardware structure, the store-load address table

(SLAT), which watches both load and store instructions to see if they conflict with entries

loaded into the SLAT by explicit software mapping instructions. One use of the SLAT is to

allow values to be promoted to registers when they cannot be proven to be promotable by

conventional compiler analysis. We call this new optimization speculative register promo-

tion. Using this technique, a value can be promoted to a register and aliased loads and

stores to that value’s home memory location are caught and the proper fixup is performed.

This chapter will: a) describe the SLAT hardware and software; b) demonstrate that con-

ventional register promotion is often inhibited by static compiler analysis; c) describe the

speculative register promotion optimization; and d) quantify the performance increases

possible when a SLAT is used. Our results show that for certain benchmarks, up to 35% of

loads and 15% of stores can potentially be eliminated by using the SLAT.

5.2. Background and Motivation

Register allocation is an important compiler optimization for high-performance

computing. Access to data stored in machine registers avoids using the memory sub-

system, which is generally much slower than the processor. Register promotion allows

scalar values to be allocated to registers for regions of their lifetime where the compiler

113

can prove that there are no aliases for the value [Coop97, Sast98, Lo98]. The value is pro-

moted to a register for that region by a load instruction at the top of the region. When the

region is finished, the value is demoted back to memory. The region can be either a loop or

a function body in this work, though promotion can be performed on any program region.

The benefit is that the value is loaded once at the start of the region and stored once at the

end, and all other accesses to it during the region are from a register allocated to the value

by the compiler.

Unfortunately, imprecise aliasing information and separate compilation conspire to

limit the types and amount of data that can be safely allocated to registers. To allow a

relaxation of the compiler’s conservative nature, we introduce the store-load address table

(SLAT) and investigate its use in enabling more effective register allocation. We also intro-

duce a new compiler transformation called speculative register promotion, which makes

use of the SLAT, and evaluate the performance gains it can provide.

The SLAT and speculative register promotion introduce several new opportunities

for register allocation. Figure 5.1 shows the combinations that we consider in this chapter.

Figure 5.1(a) is conventional register allocation as done by most compilers. Figure 5.1(b)

shows the result of register promotion, which requires more sophisticated compiler alias

analysis. (Throughout the chapter we use the term alias somewhat loosely to include all

possible references to data though mechanisms other than its primary name, including

ambiguous pointers and side-effects.) Figure 5.1(c) requires further compiler support

because in order to prove that the global can be allocated to a register for its entire lifetime

requires that the whole program be analyzed at once. This allows the compiler to make the

determination that the variable gl obal is only ever used through its name, and never

through a pointer. Previous work has examined this optimization [Post00b, Wall86].

Figure 5.1(d) shows another example using default register allocation. This time

the loop contains a function call, which means that conventional promotion (with separate

compilation of functions) cannot be sure that f oo() does not access the gl obal vari-

able. Thus gl obal cannot be promoted to a register. Figure 5.1(e) shows how the SLAT

allows promotion to occur anyway. The compiler promotes gl obal as in normal register

promotion but uses special opcodes to inform the hardware that the promotion is specula-

tive. Finally, link-time global allocation can be done even under separate compilation

114

when the SLAT is used to protect the gl obal variable. In this case, the mapping opera-

tion occurs at the start of the program–say at the top of mai n() –and is not shown in the

figure. Table 5.1 gives a summary of these allocation strategies.

The remainder of this chapter is organized as follows. Section 5.3 describes the

logical organization of the SLAT. Section 5.4 introduces the speculative register promo-

tion transformation. In Section 5.5 we describe our experimental setup, while our experi-

mental results are analyzed in Section 5.6. Section 5.7 describes previous work in the

areas of memory disambiguation and register allocation. Finally, we discuss our conclu-

sions and directions for future work in Section 5.8.

5.3. The Store-Load Address Table (SLAT)

The store-load address table (SLAT) is a hardware structure that allows the com-

piler to relax some of the conservative assumptions made due to imprecise analysis of

memory communication. Logically, the SLAT is a table where each entry contains a logi-

Figure 5.1: The results of using different register allocation strategies.
(a) The original source code, in a combination of C and assembler notation. It uses the default strategy for
allocation, which does not allocate the global to a register. (b) Register promotion moves the load and store
outside of the loop. (c) After application of link-time global variable allocation, each occurrence of global is

replaced with r32 and unnecessary copies are removed. (d) Another snippet of source code, which includes a
function call, rendering the global not promotable by conventional means. (e) The SLAT allows the promotion

to occur in spite of the function call. (f) Link-time global variable allocation can also be performed with help
from the SLAT even when separate compilation is used.

whi l e () {
 l d r 5, gl obal
 add r 5, r 5, 1
 st gl obal , r 5
}

whi l e () {
 add r 32,
r 32, 1

l d r 5, gl obal
whi l e () {
 add r 5, r 5, 1
}

(b) Register promotion (c) Link-time global (a) Original source

whi l e () {
 l d r 5, gl obal
 add r 5, r 5, 1
 st gl obal , r 5
 f oo() ;

(d) Original source

map r 5, gl obal
whi l e () {
 add r 5, r 5, 1
 f oo() ;
}

(e) SLAT-based promotion

whi l e () {
 add r 32, r 32,
1
 f oo() ;
}

(f) SLAT-based link-time
 global allocation

 allocation

115

cal register number, memory address and some information flags for bookkeeping. Specu-

lative register promotion uses the SLAT to associate a memory address with a register. All

references to this address will be forwarded to the register file as long as the address is

mapped in the SLAT. Thus, the SLAT is indexed associatively by address.

Special machine instructions are used by the compiler to manage the SLAT. To ini-

tialize a speculative promotion, a special map instruction is used. This instruction includes

a memory address and a register number. A SLAT entry is created, indicating that the data

at the given memory address resides in the given register. A load from memory is also exe-

cuted to place the desired data in the register. Likewise, an unmap instruction removes an

association from the SLAT, sending the data in the register to the memory. The map and

unmap operations are essentially just special load and store operations.

After a map instruction has associated a memory address with a register, every

subsequent memory operation examines the SLAT, comparing its address operand with

those in the SLAT. When a match (conflict) is detected in the SLAT, the memory operation

is redirected to the register file. A load retrieves its value from the SLAT-mapped register

instead of from memory; a store uses the mapped register as its destination instead of

Allocation Strategy What is Allocated
Region in

Register File
Is Whole-Program
Information Used?

(a, d) Default Unaliased local scalars includ-
ing compiler temporaries.

Local No.

(b) Register Promotion Aliased local scalars or global
scalars aliased or not. In either
case, they are promoted for
regions where they are prov-
ably unaliased.

Local Can be used to enhance alias
analysis so that extra candi-
dates can be proven safe to pro-
mote.

(c) Link-time global allo-
cation

Unaliased global scalars. Global Required.

(e) SLAT-based promotion Aliased local scalars or global
scalars. SLAT allows allocation
even in aliased regions.

Mappable Can be used to reduce number
of SLAT promotions necessary.

(f) SLAT-based link-time
global allocation

Aliased and unaliased global
scalars.

Mappable Can be used to reduce number
of SLAT promotions necessary.

Table 5.1: Various strategies for allocating registers
In our usage, “aliased” means that the variable’s address has been taken somewhere in the program or it

could be referenced through a function-call side effect. The register file regions are conceptual divisions of the
registers into groups based on their function. The “local” region of the register file is the region used for local
variables in the function. The global region contains global variables for their entire lifetime. The mappable
region contains mapped (speculatively promoted variables). In our experiments, the local and mappable

regions are the same. The letters in column 1 correspond to the labels in Figure 5.1.

116

memory. An unmap instruction at the bottom of the promotion region handles storing the

updated register out to memory.

Since the SLAT allows register allocation of potentially aliased variables (includ-

ing globals that may be used by callee functions) whose scopes may exceed that of a sin-

gle function, special handling is necessary to close the “gap” between function-scoped

machine registers and registers containing mapped data. One example of this problem

occurs at function call boundaries. On entry to the callee, all callee-save registers used by

the function are first spilled to the stack to preserve existing values for the caller. These

registers are restored upon function exit. If one of these callee-save registers is mapped in

by the SLAT, the spill instruction must be dynamically modified to store the data to the

“home” memory location of the data (the global storage or stack location for an aliased

local variable). This home address is available in the SLAT entry for the register being

spilled. A reload operation likewise must be modified to load from the home location.

These operations require two new memory instructions: spi l l and r el oad. These are

store and load instructions with special opcodes to indicate their function (saving and

restoring of callee-save registers). These instructions must examine the SLAT to see if the

referenced register is mapped. Thus the SLAT is also indexed directly by register number.

We classify such registers as callee-update, analogous to callee-save, because their values

are automatically updated by any memory accesses in the callee function.

Because the r el oad instruction must have access to the home memory address

for the data, the processor must keep every SLAT entry that is created until an unmap

deallocates it. Moreover, an address can be mapped to multiple registers or a single regis-

ter can be re-mapped to a new address. These cases are simplified by the fact that only one

mapping is active for a particular function. The compiler can guarantee that no address or

register is mapped twice in the same region. It can do this because it only speculatively

promotes directly-named scalar variables.

There are several strategies for dealing with these situations. One possibility is to

have a large SLAT with a hardware-controlled overflow spill mechanism, similar to that

used in the C-machine stack cache [Ditz82]. Another possibility is to require compiler

management of the SLAT. Instructions to save and restore SLAT entries can be generated

in the same way instructions to save and restore callee-save registers are generated. Our

117

simulations assume an infinite-sized SLAT so that we may evaluate its performance

potential.

In addition to callee-save spills and reloads, spill and reload operations are neces-

sary to deal with excessive register pressure within a function. Speculative register promo-

tion can increase the amount of this spilling. Since the spilling effectively negates the

benefit of register promotion the compiler may simply reverse the promotion if spilling

occurs. Memory access size and overlap must also be considered in the SLAT; the com-

piler can restrict promotions to ease this problem.

5.4. Speculative Register Promotion Using the SLAT

This section outlines how the SLAT can be used to allow speculative register pro-

motion. Preliminary exploration into the limitations on static register promotion indicated

that a significant number of memory operations cannot be promoted due to ambiguous or

unseen memory accesses through function calls. This will be quantified later in the chap-

ter. To address this problem, we consider a new optimization called speculative register

promotion which uses the SLAT to allow promotions in these situations. It does this by

providing a fallback mechanism in the case that the promotion was too aggressive, i.e. that

there was a conflict where the promoted value was not synchronized with its value in

memory. When this occurs, the hardware can provide the current value.

As we saw in Section 5.3, the SLAT is tailored to solve this problem because the

hardware compares each load and store address against those stored in the SLAT. Once a

value is promoted to a register with a map instruction, it can be used or defined several

times before a conflicting memory load appears. Since the value in memory could be out

of date with respect to the value promoted to the register, both load and store operations

have to be examined to see if they are attempting to access the value that was promoted to

a register.

The register promoter in our C compiler, MIRV, can promote global scalar vari-

ables, aliased local scalar variables, large constants, indirect pointer references (we call

these dereferences), and direct and indirect structure references. It can do so over loops or

whole functions. The algorithm is described in detail elsewhere [Post00b]. Speculative

118

register promotion was a simple augmentation to the existing promoter. Any directly-

named value (global or local) which is not promoted because of aliases can be promoted

speculatively (based on simple selection heuristics). This is accomplished by emitting a

promoting load (map) and demoting store (unmap) at the boundaries of the region, with

additional information indicating these are speculative promotion operations. The backend

of the compiler passes this through via annotation bits in the instruction encoding and the

simulator treats the map/unmap operation as described in Table 5.2. Since global and

aliased data can reside in registers, the compiler was also restricted from certain kinds of

code motion around those accesses.

5.5. Experimental Setup

All the benchmarks used in this study were compiled with the MIRV C compiler.

The compiler takes a list of optimizations to run on the code as well as the number of reg-

isters that are available on the architecture. We ran variants of the SPEC training inputs in

order to keep simulation time reasonable. Our baseline timing simulator is the default

si m- out or der configuration. A description of MIRV, our compilation methodology,

and benchmark inputs is presented in the technical report of [Post00a].

All simulations were done using the SimpleScalar 3.0/PISA simulation toolset

[Burg97]. We have modified the toolset (simulators, assembler, and disassembler) to sup-

port up to 256 registers. Registers 0-31 are used as defined in the MIPS System V ABI

[SysV91] in order to maintain compatibility with pre-compiled libraries. Registers 32-255

are used either as additional registers for global variables or additional registers for local

caller/callee save variables.

A modified version of sim-profile was used to simulate the behavior of a program

compiled to use the SLAT. The simulator implements an infinite-sized SLAT with ideal

replacement. Table 5.2 shows the actions that are taken at various instructions in the pro-

gram. While the simulator is idealized and is not particular to an implementation, it allows

us to see the potential benefits of the SLAT. Later work will address specific implementa-

tion issues.

119

5.6. Experimental Evaluation

This section presents our experimental results. Section 5.6.1 discusses the perfor-

mance improvements possible with conventional register promotion and shows how it is

limited in its applicability. Section 5.6.2 shows the performance improvement that can be

obtained when values can be promoted speculatively.

5.6.1. Register Promotion

Previous work showed the performance of basic register promotion in the MIRV

compiler [Post00b]. That work found that register promotion improves performance from

5% to 15% on some benchmarks. Other benchmarks perform worse with register promo-

tion. This is due to extra register pressure caused by the promotion, which introduces spill-

ing code.

The somewhat lackluster results for many benchmarks led us to evaluate the rea-

sons why promotion is not performing well. The graph in Figure 5.2 shows statistics kept

Instruction Action
map reg, addr Add an entry to the SLAT. If there is a pre-existing mapping for the address

in the SLAT, the data is forwarded from the previous register to the register
currently being mapped. Otherwise, the data is loaded from memory.

unmap reg, addr Remove an entry from the SLAT. If there is a previously mapped but
unspilled entry, store the data from reg to the previously mapped register.

spill If the register contains a value that was placed there by a previous map
instruction, spill the value to the mapped address (home location) instead of
the address specified to the stack spill location.

reload If the previous SLAT on the SLAT stack has a mapping for this register,
reload the value from its mapped address. Otherwise, reload from the speci-
fied location on the stack.

load If any entry in the SLAT stack maps the load address, and has not been
spilled, then copy from the mapped register to the load’s destination register.
Increment slatLoadConflicts.

store If any entry in the SLAT stack maps the store address, and has not been
spilled, then copy from the store source register to the register indicated in
the SLAT entry. This implements the “callee update” register convention (a
modification of “callee save” . Increment slatStoreConflicts.

call Push a new SLAT onto the SLAT stack.

return Pop current SLAT from SLAT stack.

Table 5.2: Actions that take place at various points in the SLAT simulator.

120

by the compiler which demonstrate that promotion is often limited by aliasing and side-

effects. The figure shows each benchmark (along the X axis) in four different configura-

tions. The first configuration is -O2 with separate compilation of the program’s files. The

compiler produces the least detailed alias information in this case. The second configura-

tion is similar except that a simple interprocedural side-effect analysis is used to improve

the precision of alias analysis at function call sites. This increases the precision of the alias

analysis and allows the compiler to determine that more values are safe to promote. For

these two bars, the percentages indicate the number of static references that fall into each

category.

The third and fourth bars are similar to the first and second except that they esti-

mate the effect of the un-promoted values by weighting each value by the number of load

and store executions that would have been saved in a training run of the benchmark if the

value had been promoted. Thus the percentages on the Y-axis change meaning for the third

and fourth bar, because they indicate the estimated percentage of dynamic references that

fall into each category.

The bars are divided into portions showing the reason that a promotion could not

occur. The legend of the graphs are explained in Table 5.3. The last two categories–local

and global side effects–are of interest in this chapter because the SLAT can aid the com-

piler in promoting those references to registers.

For example, for the compress95-sep bar, about 25% of static references were pro-

moted. About 15% of values were not promotable because of local side effects, and about

60% of values were not promoted because of a global side effect. Local and global side

effects are due to function call sites within the promotion region.

Overall, it is evident that of all promotion candidates, only 20% to 30% of poten-

tial promotions are actually performed. Some outliers, such as l i have almost no promot-

able values, and some have a large portion of candidates that are promotable. More

advanced alias analysis (shown in the second bar of each group) increases the number of

promotion successes by 20% in many cases. Still, 20% to 50% of promotion candidates

are not promotable using the side-effect analysis.

121

For the non-promotable candidates, the primary reason is side effects due to func-

tion calls (both local and global side effects). This implies that any mechanism that allows

promotion in such regions will have to handle call sites very well.

The dynamic estimates in the third and fourth bars of the graphs in Figure 5.2 show

slightly different results because the frequency count of loop bodies is taken into consider-

ation when weighting the effect of a successful or missed promotion. The results are very

benchmark dependent, sometimes showing that the static estimate was good, as is the case

Figure 5.2: Why scalar candidates could not be promoted.
The bars shows the breakdown of reasons that promotion could not occur. All compilations use -O2

optimization. The first bar is separate compilation of modules with no interprocedural alias analysis. The
second bar has interprocedural side-effect analysis information annotated at each function call site for

improved alias analysis precision. This increased information in turn increases the number of candidates that
are provably safe to promote. The percentages shown for these first two bars are percentages of scalar

promotion candidates. The third and fourth bars are analogous except that they estimate loss in performance
by weighting the counts by dynamic frequency of access to the candidate variables. The legend is explained
in Table 5.3. These numbers are based on compile-time estimates and unlike later figures are only indicative

of trends.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

co
m

pr
es

s9
5-

O
2-

se
p

co
m

pr
es

s9
5-

O
2-

ln
k

co
m

pr
es

s9
5-

O
2-

dy
ns

ep

co
m

pr
es

s9
5-

O
2-

dy
nl

nk

go
-O

2-
se

p

go
-O

2-
ln

k

go
-O

2-
dy

ns
ep

go
-O

2-
dy

nl
nk

ijp
eg

-O
2-

se
p

ijp
eg

-O
2-

ln
k

ijp
eg

-O
2-

dy
ns

ep

ijp
eg

-O
2-

dy
nl

nk

li9
5-

O
2-

se
p

li9
5-

O
2-

ln
k

li9
5-

O
2-

dy
ns

ep

li9
5-

O
2-

dy
nl

nk

m
88

ks
im

-O
2-

se
p

m
88

ks
im

-O
2-

ln
k

m
88

ks
im

-O
2-

dy
ns

ep

m
88

ks
im

-O
2-

dy
nl

nk

pe
rl-

O
2-

se
p

pe
rl-

O
2-

ln
k

pe
rl-

O
2-

dy
ns

ep

pe
rl-

O
2-

dy
nl

nk

vo
rt

ex
-O

2-
se

p

vo
rt

ex
-O

2-
ln

k

vo
rt

ex
-O

2-
dy

ns
ep

vo
rt

ex
-O

2-
dy

nl
nk

PromoteSuccessful PromoteAliasAmbiguous
PromoteAliasAnon PromoteAliasArray
PromoteLocalSideEffect PromoteGlobalSideEffect

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

am
m

p0
0-

O
2-

se
p

am
m

p0
0-

O
2-

ln
k

am
m

p0
0-

O
2-

dy
ns

ep
am

m
p0

0-
O

2-
dy

nl
nk

ar
t0

0-
O

2-
se

p
ar

t0
0-

O
2-

ln
k

ar
t0

0-
O

2-
dy

ns
ep

ar
t0

0-
O

2-
dy

nl
nk

eq
ua

ke
00

-O
2-

se
p

eq
ua

ke
00

-O
2-

ln
k

eq
ua

ke
00

-O
2-

dy
ns

ep
eq

ua
ke

00
-O

2-
dy

nl
nk

m
es

a0
0-

O
2-

se
p

m
es

a0
0-

O
2-

ln
k

m
es

a0
0-

O
2-

dy
ns

ep
m

es
a0

0-
O

2-
dy

nl
nk

bz
ip

20
0-

O
2-

se
p

bz
ip

20
0-

O
2-

ln
k

bz
ip

20
0-

O
2-

dy
ns

ep
bz

ip
20

0-
O

2-
dy

nl
nk

gc
c0

0-
O

2-
se

p
gc

c0
0-

O
2-

ln
k

gc
c0

0-
O

2-
dy

ns
ep

gc
c0

0-
O

2-
dy

nl
nk

gz
ip

00
-O

2-
se

p
gz

ip
00

-O
2-

ln
k

gz
ip

00
-O

2-
dy

ns
ep

gz
ip

00
-O

2-
dy

nl
nk

m
cf

00
-O

2-
se

p
m

cf
00

-O
2-

ln
k

m
cf

00
-O

2-
dy

ns
ep

m
cf

00
-O

2-
dy

nl
nk

pa
rs

er
00

-O
2-

se
p

pa
rs

er
00

-O
2-

ln
k

pa
rs

er
00

-O
2-

dy
ns

ep
pa

rs
er

00
-O

2-
dy

nl
nk

vo
rt

ex
00

-O
2-

se
p

vo
rt

ex
00

-O
2-

ln
k

vo
rt

ex
00

-O
2-

dy
ns

ep
vo

rt
ex

00
-O

2-
dy

nl
nk

vp
r0

0-
O

2-
se

p
vp

r0
0-

O
2-

ln
k

vp
r0

0-
O

2-
dy

ns
ep

vp
r0

0-
O

2-
dy

nl
nk

122

with vor t ex and ar t . In many cases the dynamic estimate shows that the missed pro-

motion opportunities were not significant factors in performance.

There are a significant number of promotion opportunities that are missed because

of poor alias analysis. This observation led us to develop speculative register promotion,

which is evaluated below.

5.6.2. Speculative Register Promotion using the SLAT

The main shortcoming of register promotion is the number of cases where promo-

tion cannot happen because of aliasing. In this section, we evaluate the performance bene-

fits possible from allowing more promotion via the SLAT.

Loop and Function Promotion
Table 5.4 shows the improvements possible with the SLAT. The first two numeric

columns show improvement possible on top of MIRV at -O2 optimization, which includes

only loop-level promotion. The numbers were collected by modifying the register pro-

moter in MIRV to annotate the candidates that could not be promoted. Each such candi-

Legend Entry Explanation
Successful The transformation was not restricted.

AliasAmbiguous A possible manipulation of some data through a pointer prevented the trans-
formation. In other words, there is a pointer that might point to something the
restricts the transformation, but the compiler does not know for sure.

AliasAnon A manipulation of code involving dynamically allocated memory was
restricted by some other possible manipulation of dynamic memory.

AliasArray A transformation involving an array was restricted by some other use of the
array. Because MIRV does not track individual array elements, any reference
to an array element is considered to reference the entire array.

GlobalSideEffect A manipulation of code involving a global variable was prevented by a func-
tion call. Usually this is because a function is assumed to define and use all
global variables when it is called. If, however, the compiler is performing
whole-program analysis, this means that the called function references the
global variable somewhere in its body, or in the body of some function fur-
ther down the call chain.

LocalSideEffect A possible manipulation of some data through a pointer passed to a function
prevented the transformation. In other words, a pointer argument to the call
might point to a local variable. The compiler must assume that variable is
both used and defined by the call, preventing transformations across the call
site.

Table 5.3: An explanation of the legend in Figure 5.2

123

date variable reference (load or store) was annotated and each occurrence was counted

during the simulation. The numbers in the table are the percentage of all load and store

instructions that were thus annotated, meaning that if we had “perfect” register promotion,

all of these loads and stores would have been transformed by the compiler into register

references. Note that these percentages are different than shown in Figure 5.2 because

those percentages are only of promotion candidates, not all load and store operations. One

other caveat with regard to these numbers is that they are overly conservative because they

count store operations that may not be necessary because the promoted variable is not

actually defined in the promotion region. Therefore, several of the “ improvements” in

store instruction counts are actually negative, indicating that more stores were counted

after the optimization than before. The actual performance will be better than these num-

bers show.

Even with those caveats, the compr ess , ar t , gzi p, par ser , and vpr bench-

marks all exhibit significant potential for improvement for both load and store instruc-

tions–with 10% to 20% reductions possible in several cases. This substantiates our earlier

conclusion that conventional promotion is unable to take advantage of many opportuni-

ties. The other results are not very significant, which is not a surprise since this optimiza-

tion is very dependent on the benchmark.

The third and fourth numeric columns show what happens when loops and func-

tions are considered as regions. If a variable can be promoted in a loop, it is done first.

Then, if the variable is still profitably promotable over the whole function body, this trans-

formation is made. The result is that function-promoted variables are loaded once at the

top of the function and stored once before the function exits, and all other references are to

a register instead of to memory. Function-level promotion increases the number of candi-

date loads and stores for the promoter to examine and we see a corresponding increase in

the number of loads and stores that could have been eliminated with speculative promo-

tion, but that were not removed because of aliasing problems. In this case, what has hap-

pened is that the pool of promotion candidates has been enlarged by examining the whole

function body, but very few of those additional candidates are actually promoted. We veri-

fied this by comparing the overall performance of function-level promotion with the base -

124

O2 configuration. There was not any significant difference (less than 1% for all bench-

marks). This indicates that while function-level promotion found more candidates it

wanted to promote, it could not promote most of them due to aliasing concerns. The SLAT

is effective in allowing these promotions to occur.

Figure 5.3 shows what happens to promotion obstacles once speculative promotion

is applied. For example, in the compr ess benchmark, the fifth bar in the figure shows

that the SLAT is able to achieve just about 100% of promotions that were considered as

candidates by the other experiments. It is successful at allowing promotion to happen in

many more cases. Increases in promoted candidates are seen in many of the benchmarks

even though separate compilation is used to produce the data for the fifth bar.

mirvcc -O2
mirvcc -O2 with function level

promotion

Category Benchmark
Reduction in

Loads %
Reduction in

Stores %
Reduction in

Loads %
Reduction in

Stores %

SPECint95

compress 18.9 12.8 36.6 14.2

gcc 1.3 -2.7 1.6 -5.5

go 1.3 -1.8 1.9 -5.2

ijpeg 0.3 -0.4 0.3 -0.4

li 6.5 2.2 8.1 2.6

m88ksim 0.8 0.0 3.8 -0.2

perl 0.0 0.0 1.5 -0.1

vortex -1.7 -3.1 -1.1 -5.8

SPECfp2000

ammp 4.6 -0.1 4.7 -0.1

art 13.6 12.2 13.6 12.2

equake 4.6 -0.1 4.7 -0.1

mesa 0.5 0.0 0.5 0.0

SPECint2000

bzip 5.3 -0.4 7.3 -1.4

gcc 2.0 -2.5 2.3 -5.0

gzip 24.2 12.2 31.4 18.1

mcf 6.8 1.2 6.9 1.2

parser 14.0 -0.5 16.9 0.5

vortex -1.7 -3.1 -1.1 -5.8

vpr 7.8 -4.4 13.2 -6.3

Table 5.4: Reductions in dynamic loads and stores possible with the SLAT.
The baseline in columns 3 and 4 is compiled with loop-level register promotion The baseline in columns 5 and

6 is compiled with loop- and then with function-level promotion. The percentages give the number of loads
and stores that could be removed if the promotion could take advantage of the SLAT, i.e. missed promotion

opportunities are regained.

125

Whole-Program Global Variable Promotion
Previous work demonstrates that link-time allocation of global variables to regis-

ters is an important performance optimization [Wall96, Post00b]. The previous work has

only considered “un-aliased” global variables, i.e. those whose addresses are not taken

anywhere in the program. The SLAT could further improve the performance of link-time

global variable allocation by allowing global variables whose addresses are taken to reside

in registers for their entire lifetime. If an enregistered global variable is accessed through a

pointer, the SLAT will correctly redirect the memory operation to the register file.

Experiments showed that most benchmarks are not generally improved by such a

scheme. This result indicates that most global variables (or at least the important ones) do

not have their address taken. This is intuitive, since the global variables are directly acces-

sible and thus need not be used through a level of indirection. This is still promising for

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

co
m

pr
es

s9
5-

O
2-

se
p

co
m

pr
es

s9
5-

O
2-

ln
k

co
m

pr
es

s9
5-

O
2-

dy
ns

ep

co
m

pr
es

s9
5-

O
2-

dy
nl

nk

co
m

pr
es

s9
5-

O
2-

dy
ns

ep
S

LA
T

gc
c9

5-
O

2-
se

p

gc
c9

5-
O

2-
ln

k

gc
c9

5-
O

2-
dy

ns
ep

gc
c9

5-
O

2-
dy

nl
nk

gc
c9

5-
O

2-
dy

ns
ep

S
LA

T

go
-O

2-
se

p

go
-O

2-
ln

k

go
-O

2-
dy

ns
ep

go
-O

2-
dy

nl
nk

go
-O

2-
dy

ns
ep

S
LA

T

ijp
eg

-O
2-

se
p

ijp
eg

-O
2-

ln
k

ijp
eg

-O
2-

dy
ns

ep

ijp
eg

-O
2-

dy
nl

nk

ijp
eg

-O
2-

dy
ns

ep
S

LA
T

li9
5-

O
2-

se
p

li9
5-

O
2-

ln
k

li9
5-

O
2-

dy
ns

ep

li9
5-

O
2-

dy
nl

nk

li9
5-

O
2-

dy
ns

ep
S

LA
T

m
88

ks
im

-O
2-

se
p

m
88

ks
im

-O
2-

ln
k

m
88

ks
im

-O
2-

dy
ns

ep

m
88

ks
im

-O
2-

dy
nl

nk

m
88

ks
im

-O
2-

dy
ns

ep
S

LA
T

pe
rl-

O
2-

se
p

pe
rl-

O
2-

ln
k

pe
rl-

O
2-

dy
ns

ep

pe
rl-

O
2-

dy
nl

nk

pe
rl-

O
2-

dy
ns

ep
S

LA
T

vo
rt

ex
-O

2-
se

p

vo
rt

ex
-O

2-
ln

k

vo
rt

ex
-O

2-
dy

ns
ep

vo
rt

ex
-O

2-
dy

nl
nk

vo
rt

ex
-O

2-
dy

ns
ep

S
LA

T

PromoteSuccessful PromoteAliasAmbiguous
PromoteAliasAnon PromoteAliasArray
PromoteLocalSideEffect PromoteGlobalSideEffect

0%

20%

40%

60%

80%

100%

am
m

p0
0-

O
2-

se
p

am
m

p0
0-

O
2-

ln
k

am
m

p0
0-

O
2-

dy
ns

ep
am

m
p0

0-
O

2-
dy

nl
nk

am
m

p0
0-

O
2-

dy
ns

ep
S

LA
T

ar
t0

0-
O

2-
se

p
ar

t0
0-

O
2-

ln
k

ar
t0

0-
O

2-
dy

ns
ep

ar
t0

0-
O

2-
dy

nl
nk

ar
t0

0-
O

2-
dy

ns
ep

S
LA

T

eq
ua

ke
00

-O
2-

se
p

eq
ua

ke
00

-O
2-

ln
k

eq
ua

ke
00

-O
2-

dy
ns

ep
eq

ua
ke

00
-O

2-
dy

nl
nk

eq
ua

ke
00

-O
2-

dy
ns

ep
S

LA
T

m
es

a0
0-

O
2-

se
p

m
es

a0
0-

O
2-

ln
k

m
es

a0
0-

O
2-

dy
ns

ep
m

es
a0

0-
O

2-
dy

nl
nk

m
es

a0
0-

O
2-

dy
ns

ep
S

LA
T

bz
ip

20
0-

O
2-

se
p

bz
ip

20
0-

O
2-

ln
k

bz
ip

20
0-

O
2-

dy
ns

ep
bz

ip
20

0-
O

2-
dy

nl
nk

bz
ip

20
0-

O
2-

dy
ns

ep
S

LA
T

gc
c0

0-
O

2-
se

p
gc

c0
0-

O
2-

ln
k

gc
c0

0-
O

2-
dy

ns
ep

gc
c0

0-
O

2-
dy

nl
nk

gc
c0

0-
O

2-
dy

ns
ep

S
LA

T

gz
ip

00
-O

2-
se

p
gz

ip
00

-O
2-

ln
k

gz
ip

00
-O

2-
dy

ns
ep

gz
ip

00
-O

2-
dy

nl
nk

gz
ip

00
-O

2-
dy

ns
ep

S
LA

T

m
cf

00
-O

2-
se

p
m

cf
00

-O
2-

ln
k

m
cf

00
-O

2-
dy

ns
ep

m
cf

00
-O

2-
dy

nl
nk

m
cf

00
-O

2-
dy

ns
ep

S
LA

T

pa
rs

er
00

-O
2-

se
p

pa
rs

er
00

-O
2-

ln
k

pa
rs

er
00

-O
2-

dy
ns

ep
pa

rs
er

00
-O

2-
dy

nl
nk

pa
rs

er
00

-O
2-

dy
ns

ep
S

LA
T

vo
rt

ex
00

-O
2-

se
p

vo
rt

ex
00

-O
2-

ln
k

vo
rt

ex
00

-O
2-

dy
ns

ep
vo

rt
ex

00
-O

2-
dy

nl
nk

vo
rt

ex
00

-O
2-

dy
ns

ep
S

LA
T

vp
r0

0-
O

2-
se

p
vp

r0
0-

O
2-

ln
k

vp
r0

0-
O

2-
dy

ns
ep

vp
r0

0-
O

2-
dy

nl
nk

vp
r0

0-
O

2-
dy

ns
ep

S
LA

T

Figure 5.3: Why candidates could not be promoted with speculative promotion.
These graphs are the same as in Figure 5.2, but add one more bar to each benchmark which shows the how

speculative promotion addresses the obstacles that were present in the benchmarks.

126

the SLAT, however, in a separate compilation environment. In such an environment, the

compiler cannot determine which globals are aliased and which are not because modules

are not visible as in our link-time, whole-program allocation scheme. Therefore, the SLAT

can allow us to approach the good performance of link-time global variable allocation (as

in [Post00b]) without needing to compile the whole program as a single unit.

SLAT Conflicts
We also ran experiments that quantify the frequency of conflicts in SLAT alloca-

tion and deallocation. There were five categories of conflicts that we examined:

1. The value required by a load instruction was previously mapped into the SLAT.

For the most part, this happened much less than 0.5% of load instructions.

There were three exceptions: compr ess (5.4%), gzi p (3.8%), and par ser

(2.2%). This is not surprising since these benchmarks were impacted a lot by

the SLAT in terms of loads and stores that were removable.

2. The destination of a store instruction was previously mapped by the SLAT.

Except for gzi p and par ser again, this situation always occurred for less

than 0.2% of stores.

3. A map instruction found that its address was already mapped, whether the pre-

vious mapped register was spilled or not. This occurred for 0.6% or less of

map operations in most benchmarks. The exceptional cases were: compr ess

(20%), go (14%), vor t ex (8%), bzi p (7%), gcc00 (15%), par ser

(14%), and vpr (11%).

4. A map instruction found that its address was already mapped and not spilled.

gcc95 was the only benchmark with a significant percentage of such map

instructions (6%).

5. An unmap instruction found that its address was previously mapped. This is

just the reverse of the previous case since the unmap is the counterpart of a

previous map operation, so the percentages are essentially the same for all

benchmarks.

127

SLAT Size Considerations
The next question we examine is how many entries the SLAT needs to achieve the

performance improvements above. The simulator keeps track of the current number of

SLAT entries in use and also tracks the high water mark of this number, which indicates

the most SLAT entries that would ever be in use concurrently. The high water mark results

are presented in Table 5.5. Except for l i and vor t ex , none of the benchmarks require

more than 34 SLAT entries to speculatively promote all aliased variables. These two

benchmarks are exceptional because of their deep function call chains (l i is a recursive

descent program). Most benchmarks require less than 20 entries. This indicates that the

SLAT should be effective while still very small in size. This is important since the SLAT

must be fully associative. As described in the caption of the table, the third column is for

loop-based register promotion, while the fourth column adds function-level promotion to

the normal loop based promotion. Function-level promotion produces more candidates in

the function bodies and, as we found earlier, not many of those are promotable because of

alias problems. Thus the number of SLAT entries required to accommodate function level

promotion is higher than for loop-level promotion–by a large margin in some benchmarks.

These numbers double-count any overlap that occurs because a variable gets allo-

cated to the SLAT more than once. This can happen for global variables promoted in two

different functions which are active at the same time on the procedure call stack. Overlap

can also happen if a variable is promoted over a loop region and then the function pro-

moter decides to promote it over the whole function body. If we corrected for this effect,

the values in the graph would be even lower, meaning that an even smaller SLAT will pro-

vide the benefits we seek from speculative register promotion.

At this point it may be questioned why the SLAT would ever need more entries

than there are architected registers. This is a valid question because at most only one

aliased variable can be allocated to a given register at any given time, so the most active

SLAT entries would be equal to the number of registers. However, at any given time, there

are more values alive than there are registers because there are multiple functions “alive”

on the procedure linkage stack. Each function could have promoted several values. While

these values are not in the registers (they have been spilled out by the calling convention)

128

they are nonetheless active in the sense that they will be coming back into registers when

the procedure stack unwinds as functions are completed.

Even though we have shown that the SLAT can be very small, so far we have only

shown this empirically for a selection of benchmark programs and have not proven that

we can bound the usage of the SLAT to some finite number known at compile time. There

are two ways to address this problem. First, the compiler can determine an upper bound on

how deep the call graph will get and can it can limit speculative promotion accordingly. A

second way to enforce the SLAT size constraint is to manage the SLAT with a callee/caller

save convention at call sites. This could include a compiler mechanism to remap the SLAT

entries after a function call which bumps them out of the SLAT (which places the manage-

ment burden on the caller function) or a bookkeeping mechanism to unmap and remap any

conflicting entries (which places the burden of management on the callee function.

SLAT Entries
Actually Required

Category Benchmark -O2
-O2 with
function

promotion

SPECint95

compress 7 9

gcc 34

go 18 22

ijpeg 23 44

li 16 335

m88ksim 11 15

perl 10 11

vortex 34 109

SPECfp2000

ammp 2 31

art 11 14

equake 16 20

mesa 4 20

SPECint2000

bzip 23 21

gcc 34

gzip 11 12

mcf 5 9

parser 26 48

vortex 34 109

vpr 10 17

Table 5.5: Summary of SLAT utilization.
 The third and fourth columns show the maximum number of SLAT entries ever used concurrently in the

benchmark, not accounting for duplicates. The third column (mirvcc -O2) is for register promotion over loop
bodies. The fourth column adds promotion over whole function bodies.

129

A more detailed measure of the size requirements for the SLAT is shown in Figure

5.4. The x-axis represents the number of SLAT entries and the y-axis represents the per-

centage of instructions which execute under the condition of a certain SLAT size. For

example, for gcc95, only 4 entries are required to satisfy 50% of the “execution time,” as

counted by the number of dynamic instructions executed. About 15 entries satisfy the

benchmarks for 90% or more of their dynamic instructions.

The i j peg benchmark is an exception, where 21 entries are required before the

program even can begin. This points out an interesting phenomenon. In i j peg, there are

a number of global flags and pointers which are initialized in the par se_ar gs() func-

tion. These are initialized in a section of code that loops through the command-line argu-

ments. Thus the speculative promotion algorithm promotes these variables over the loop

body. Also inside the loop body are the function calls which actually perform the primary

work of the benchmark; thus the 21 SLAT entries are required for speculative promotion

of the global variables at the start of the program, and these are retained in the SLAT for

the entire program. References to them are redirected to and from the registers into which

they were speculatively promoted. Since the (speculative) promotion happened at the

beginning of the program, this is almost like link-time global variable allocation. While

the later references to these globals are specified with load and store instructions instead

of register specifiers, the operations themselves are redirected to the register file dynami-

cally. In this case, a combination of hardware (SLAT) and software (speculative promo-

tion) were used to achieve much the same effect as the link-time global variable allocation

optimization, though in this case with separate program compilation. Another use of the

SLAT based on this principle will be discussed in Chapter 6.

What we have found is that the SLAT optimization, though effective on some

benchmarks, is somewhat more complex to implement than the link-time global-variable

allocation algorithm. It also does not have quite the potential of that mechanism either. In

essence, whole-program analysis has made a harder problem (speculative promotion) into

an easier one (regular promotion) because of the increased visibility of the source.

130

5.7. Background and Related Work

This section reports on a number of proposals that combine software and hardware

approaches to disambiguation, allocation, and scheduling.

Several previous proposals have discussed methods to allow register allocation for

aliased variables. CRegs solves the aliasing problem by associating address tags with each

register [Diet88, Nowa92, Dahl94]. These tags are checked against loads and stores to

keep the registers and memory consistent. On a store, an associative lookup must update

all copies of the data in the CReg array. Variable forwarding was proposed as an improve-

ment to CRegs [Heggy90]. This technique allows the elimination of compiler alias analy-

sis, simplifying the software side of the problem but complicating the hardware because a

value can be mapped to any registers in the register file. Chiueh proposed an improvement

on both CRegs and variable forwarding [Chiu91]. Aliased data items are kept in the mem-

ory hierarchy (data cache) and accessed indirectly through registers. The registers contain

the address of the value and the compiler specifies a bit on each operand in the instruction

to direct the hardware to use that register indirectly. This technique was independently dis-

covered by the present author [Post99].

SLAT Size Profile

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SLAT Size

P
er

ce
n

ta
g

e
o

f
In

st
ru

ct
io

n
s

C
o

ve
re

d

compress95
gcc95
go
ijpeg
li95
m88ksim
perl
vortex
ammp00
art00
equake00
mesa00
bzip200
gcc00
gzip00
mcf00
parser00
vortex00
vpr00

Figure 5.4: Coverage of dynamic instructions over various SLAT sizes.

131

The weakness of CRegs is that writes must associatively update several registers.

The SLAT does not require this associative write-update to the register file because the

compiler guarantees that only one copy of the data is mapped to a register within a func-

tion. This vastly simplifies register access compared to CRegs.

Nicolau proposed a purely software disambiguation technique where a load could

be scheduled ahead of potentially dependent stores [Nico89]. This technique is called

runtime disambiguation because the hardware checks conditions at runtime to determine if

a conflict has occurred.

The Memory Conflict Buffer (MCB) is designed as an extension of Nicolau’s runt-

ime disambiguation. It allows the compiler to avoid emitting explicit (software) checks of

address operands [Gall94, Kiyo]. Instead, addresses that need to be protected are commu-

nicated to the hardware by special load operations and then special check operations ask

the hardware whether a conflict has occurred for the given address. Hardware does the

address comparisons instead of software. Like for runtime disambiguation, the goal is to

perform code scheduling in the presence of ambiguous memory operations.

The SLAT is different from the MCB in that it must retain information across func-

tion calls to be effective–as was shown, this is important because many aliases are due to

assumed side effects of function calls, so that SLAT must handle function calls elegantly.

The information stored in the MCB is not valid across function calls [Gall94].

The IA64 architecture provides hardware support for compiler-directed data spec-

ulation through use of an Advanced Load Address Table (ALAT) [IA6499]. It allows

static scheduling of loads and dependent instructions above potentially aliased stores. The

compiler is responsible for emitting check and fixup code for the (hopefully rare) event

that a conflict occurs.

The SLAT is different than the ALAT in a number of respects. The most notable

difference is that the hardware must compare not only store addresses to all SLAT entries

(as with the ALAT), but in addition it must compare all load addresses as well. This is

because the most current value for the memory location could be housed in a register and

any loads that access that memory location need to receive the current value. The ALAT

cannot provide this functionality because the hardware only checks the addresses of store

instructions with the entries in the ALAT.

132

Another difference is that the SLAT must retain all the information ever entered

into it whereas ALAT entries can be replaced because of overflow, conflicts, or context

switches. This is because the ALAT requires an explicit check instruction to determine if

the fixup code needs to be run. If an entry is missing from the ALAT, the check instruction

runs the fixup code. Thus the ALAT is “safe” even when it loses information. On the other

hand, if the SLAT “ loses” an entry, load and store instructions could be executed without

detection of conflicts, which would produce incorrect program output.

Another difference between the SLAT and ALAT is that SLAT fixup is not initi-

ated at the point of transformation but at the point where the conflict occurs. For the

ALAT, fixup is always initiated at the point of the original load (which has been converted

to a check load). For the SLAT, since the correct data is in a register, the hardware can for-

ward the data for a load from the register or for a store to the register.

Transmeta Corporation recently introduced a line of processors that is designed to

run unmodified x86 programs using dynamic binary translation [Klai00, Wing]. Capabil-

ity similar to the ALAT is provided by special hardware and instructions to allow load and

store reordering. Two instructions are necessary for this: l oad- and- pr ot ect (l dp)

and st or e- under - al i as- mask (st am) . The l dp instruction “protects” a mem-

ory region. The st am instruction then checks if it would store to a previously protected

region. If it would, it traps so that fixup can be performed. The main purpose of this sys-

tem is to allow Transmeta’s code morphing software to allocate stack variables to host reg-

isters.

The SLAT differs from this approach in that it is designed for a static compilation

environment, hardware corrects conflicts instead of taking an exception, and memory does

not necessarily need to be kept up to date since the latest value is in the register.

5.8. Conclusions

This chapter has described the design of the store-load address table, its use in a

new optimization we call speculative register promotion, and the reductions in load and

store operations possible when using this optimization. We began by showing that register

promotion was often limited by compiler alias analysis. The number of loads and stores

133

can be significantly reduced for several of the benchmarks with the addition of a SLAT

and speculative register promotion–up to 35% reduction in loads and 15% reduction in

stores. Applying the SLAT to link-time global variable allocation does not produce much

benefit for most benchmarks. It is more important in this case to note that the SLAT effec-

tively allows link-time allocation even in the face of separate compilation, so that the

SLAT can achieve most or all of the benefit of link-time allocation while doing so in a sep-

arate compilation environment. Finally, we showed that the SLAT can be modestly sized

and achieve the benefits reported here.

There are several important avenues of future work. Other uses of the SLAT

should be examined. Future work should also investigate other ways that the hardware can

help the compiler do aggressive, potentially unsafe operations.

134

Chapter 6

Effect of Compiler Optimizations on Hardware Requirements

6.1. Introduction

The techniques from Chapters 3, 4, and 5 have promised significant speedups in

the execution of the codes examined in this dissertation. The present chapter continues

these studies by examining the trade-off between hardware and software implementations

of the proposals of the previous chapters. The chapter studies some of the effects of the

optimizations we proposed in Chapter 3 on cache performance. It also examines the opti-

mizations in light of cache performance and issue width to determine how much addi-

tional microprocessor hardware it takes to achieve performance equivalent to that pro-

duced by the optimizations. We do this using two metrics, the issue-width-equivalent

(IWE) and the cache-latency-equivalent (CLE). These metrics emphasize the relative

value of adding processor hardware versus adding compiler optimizations. In general

these metrics intend to address the issue of compiler complexity versus hardware com-

plexity, but this work will not fully examine that trade-off.

In addition, this chapter examines some characteristics of memory operations, par-

ticularly comparing them before and after the optimizations presented in Chapter 3. What

are characteristics of most common accesses and misses? How often are memory loca-

tions reused? How do accesses and misses correlate with data address and load/store pro-

gram counter? What is left to be done after these optimizations? The answers to these

questions serve as a basis for suggesting other optimizations and extensions to the work in

the previous chapters.

The result of this study is a rough characterization of memory operations into sev-

eral classes:

135

1. Those which can be transformed to register operations. These were considered

in the previous chapters.

2. Those which are highly reused and are thus good candidates for further penal-

ization.

3. Those which are “problematic.” Such operations are classified this way

because they come from often-used source code which has complicated mem-

ory address calculations. Examples of such code, which either accesses the

memory frequently or misses the cache frequently, are shown at the end of the

chapter.

6.2. Effect of Compiler Optimization on Cache Performance

This chapter first looks at the effect of aggressive optimizations on data cache per-

formance. The L1 data cache miss rate is typically quite low for the SPEC applications

used in this study, as shown in Figure 6.1. This is to be expected with the small data sets

that were used in these experiments. However, an interesting trend is observed in the miss

rate. The aggressively optimized binaries (best112) always have a worse miss rate than the

O2-baseline binaries. While this is misleading, because the optimized binaries perform

better than the baseline ones, it is expected for two reasons. First, the optimizations

remove memory accesses, thus reducing the denominator of the misses/accesses equation.

Second, the accesses that are removed are primarily cache hits (see Chapter 3). Therefore,

the numerator of the cache miss rate equation stays the same. The number of misses has

not increased, but the miss rate has increased.

Another metric commonly used to characterize cache misses is misses-per-thou-

sand-instructions (MPI). This is shown in Figure 6.2. Except for ar t , none of the bench-

marks have more than 20 MPI. Again, the heavily optimized binaries show a slight

increase in MPI. This is because the path-length of the program, i.e. the number of

dynamic instructions, has been reduced.

For an 8KB data cache, the graphs are similarly shaped, but shifted up by 2-5%

miss rate and 5-10 MPI.

136

16KB L1 Data Cache Miss Rate

0%

5%

10%

15%

20%

25%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

M
is

s
R

at
e

O2-32

best112

Figure 6.1: L1 data cache miss rates before and after optimization.

16KB L1 Data Cache Misses Per 1000 Instructions

0

20

40

60

80

100

120

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

M
is

se
s

P
er

 1
00

0
In

sn
s

O2-32

best112

Figure 6.2: Misses per 1000 instructions before and after optimization.

137

6.3. Hardware-Compiler Trade-offs for the Cache

The cache configuration of modern microprocessors varies widely as designers

have made different trade-offs. A chart of several cache hierarchy configurations found in

modern processors is shown in Table 6.1. Many processors have caches whose access

latency is 2 or 3 cycles. All the simulations performed in this dissertation so far have

assumed a single-cycle of cache latency. This puts our optimizations in the least favorable

light because the cache is very fast, so our optimizations have less opportunity to improve

the performance. In this section, we show what happens to the optimizations of Chapter 3

when the cache latency is increased to 2 or more cycles.

Figure 6.3 shows the performance of the best112-optimized benchmarks as L1 data

cache latency is varied (all designs modeled are fully pipelined, so the throughput is 1).

The baseline, to which each benchmark is normalized, is always at a performance level of

1. The first bar, b112-8-1, is for the best112-optimized binaries with an 8KB L1 data cache

and 1 cycle access time. Ignoring the effect of the larger register file on cycle time, this

configuration shows a performance improvement of slightly negative to over 30%

depending on the benchmark.

Processor/
Microarchitecture

L1 Data
Cache Size

Through-
put Latency

P6 [Gwen95] 8K 1 3
SB-1 [Gwen98] 32K 1 1
21164 [Gwen94a] 8K 1 1
21264 [Gwen96] 64K 1 2
Transmeta 5400
[Half00b]

64K 1 2

PIII [MDR99b,
Carm00]

16K 1 3

P4 [Carm00] 8K 1 2
PA8000 [Gwen94b] 1MB 1 2
K7 [Deif98] 64K 1 3

Table 6.1: Cache configurations of some modern processors.

138

As the cache latency is increased to 2 and then to 3 cycles, this performance bene-

fit is reduced, but for most of those cases a 3-cycle L1 latency still does not overcome the

benefits due to the optimizations. In fact, we also tried the b112-none configuration, which

has no L1 data cache. The unified L2 cache is the only data cache in this model and has a

6-cycle hit time. Many of those configurations with optimized binaries still perform better

than the baseline. This shows that the cache-latency-equivalent (CLE) for many of the

benchmarks is more than 6 cycles. That is, our optimizations can be used instead of a fast

L1 data cache and still achieve comparable performance.

This result suggests a trade-off between compiler optimization and hardware.

More optimization can be used to overcome slow cache. In the extreme, the data shows

that no L1 data cache is necessary at all.

These results are somewhat surprising, but there are a couple of reasons for them.

First, many loads are latency tolerant and as long as they are satisfied within the second-

level cache hit time, performance will not be degraded much [Srin98]. Second, other non-

ideal effects in the processor attenuate the effects of cache latency. For example, imperfect

branch prediction effectively shrinks the size of the instruction window because of fre-

quent processor restarts. This reduces the pressure on the cache to provide results immedi-

Bes t112 With Different Cache Configs Relative to O132-8-1

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

C
yc

le
s

R
el

at
iv

e
to

 O
13

2-
8-

1

b112-8-1 b112-8-2

b112-8-3 b112-none

Figure 6.3: The effect of cache latency on performance.

139

ately. These results are also biased towards the SPEC application suite that we have

considered in this work, primarily because there are not major problems with cache misses

in these benchmarks.

6.4. Hardware-Compiler Trade-offs for Issue Width

Figure 6.4 shows the performance of the best-optimized benchmarks as issue

width varies from 2 to 4 instructions per cycle. The 4-issue processor averages a 10%

improvement when running a heavily optimized (best112) binary. Ignoring any increased

cycle time due to the larger register file, this is the improvement due to compiler optimiza-

tion. If the processor is restricted to issue 3 instructions per cycle, then it averages about

2% improvement over the original 4-issue baseline. When issue is restricted to 2 per cycle,

performance averages 18% worse than the 4-issue baseline, though several benchmarks

still perform better than the baseline.

This shows the trade-off between compiler optimization and hardware complexity,

similar to the last section. According to the above data, the optimizations are worth

between 1 and 2 issue widths. We call this the Issue Width Equivalent (IWE) metric for

Figure 6.4: The effect of issue width on performance.

Bes t112 Relative to Bas eline -O1: Cycles

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

m
cf0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

D
yn

am
ic

 C
yc

le
s

R
el

at
iv

e
to

 B
as

el
in

e

best112-4 best112-3 best112-2

 4-issue average = 90.7 3-issue average = 99.6 2-issue average = 120.1

140

the optimizations. For go, then, the IWE is higher than 2 because it still performs better

with optimizations on a 2-issue configuration than without optimizations on a 4-issue con-

figuration. For bzi p, taking away one issue width causes performance worse than the

baseline. So the IWE of the optimizations for this benchmark is less than 1.

It is instructive to note that most benchmarks suffer greatly when reduced to a 2-

issue processor, even with the aggressive best112 optimizations. There is simply not

enough execution bandwidth to satisfy the needs of the program.

More formally, the IWE metric can be defined as follows. It is based on the follow-

ing equation:

executionCycles(base, 4-issue) = executionCycles(optimization, n-issue).

The baseline binary and machine configuration is represented on the left-hand side

of the equation, the optimized binary and smaller machine configuration on the right-hand

side. The variable n is the issue width of this smaller configuration. To determine the IWE,

n is decreased until the equation above becomes true, i.e. that the performance of the opti-

mized binary becomes the same as the performance for the original configuration. At this

stage, the following equation determines the issue-width equivalent: IWE = trunc(4 - n).

For m88ksim, n is almost 2. So, IWEbest112 = trunc(4-2) = 2. The optimizations are worth

about 2-issue widths (2 pipelines).

The exact IWE would be fractional, but it does not make sense in reality to make a

3.5 issue processor. So we simply cap the IWE at the largest integer less than 4-n.

6.5. Characterization of Memory Operations

This section reports on a number of characteristics of the memory operations both

before and after optimizations. The goal is to gain some understanding of program behav-

ior with respect to memory operations and to suggest possible optimizations that can take

advantage of the observed characteristics.

6.5.1. Experimental Setup

The experiments in this section were performed on a modified version of the Sim-

pleScalar si m- cache simulator. A number of new statistics were added to the simulator

141

to study different characteristics of the memory operations. For every address touched, the

simulator keeps a record of how many stores, loads, misses were to that address. It also

keeps track of access size to see if addresses are used by more that one size of load or store

operation. It produces distributions of the top 30 addresses by sorted by frequency of

access and by frequency of L1 data cache misses. It also prints out what addresses are only

accessed once, the number of unique addresses touched, the average address reuse, the

locations that are never stored or loaded, and the amount of data touched by the program.

6.5.2. From the Viewpoint of the Memory System

The first measure that we examine in this section is the memory footprint of the

benchmarks that we are using in this dissertation. The raw numbers, in kilobytes, are

shown in Table 6.2. They were computed by keeping track of every 32-bit word in the data

memory space. Writes to bytes within that word are simply counted as accesses to the

word. The footprint is simply the number of words touched by the program multiplied by

4 bytes per word. The benchmark data sets vary on the small end from 220KB for l i and

345KB for go up to over 20MB for bzi p200. An earlier section showed how the 16KB

cache handled these data sets–very well considering the large size of some of them. Evi-

dently the working set at any one time is quite small for most of these benchmarks. Go is

interesting in that it is often considered one of the more realistic of the SPEC benchmarks.

It has a very small memory footprint, which would indicate that it does not stress the

memory system very much. This is not always the case, however, because in spite of a

small data footprint, the ar t benchmark has a very high proportion of L1 data cache

misses.

Figure 6.5 shows the percentage of memory accesses that are attributable to the top

30 heavily accessed addresses. For example, for the compress benchmark compiled with

O2 for a 32-register machine (O2-32), the 30 most frequently touched memory addresses

account for about 75% of the memory accesses. This simply means that if those 30

addresses were kept in a cache, 75% of all memory accesses would be serviced from that

cache. This phenomenon is called address reuse. Our experiments are counting address

reuse for every load and store operation without regard for where the data is located in the

142

memory hierarchy at the time it is loaded or stored–whether in a load/store queue, L1 data

cache, L2 data cache, or main memory.

For some benchmarks (compr ess , m88ksi m, mesa, and gzi p in particular),

40% or more of the memory accesses occur to 30 or fewer addresses. For most of the other

benchmarks, less than 20% are from those addresses. These 30 addresses are responsible

for almost none of the misses in the programs, which is not surprising since they are

heavily used.

This data points to the possibility of using a specialized cache for these heavily-

used addresses. The addresses could be allocated to registers and protected by the SLAT,

where this structure is used differently than proposed in Chapter 5. We did some simple

experiments along this line but found it difficult to determine, at runtime, which addresses

to put into the special cache structure or SLAT. With profiling, some of the addresses

turned out to be in data structures whose addresses are available at compile time. Many of

the addresses, however, are from dynamic memory allocation and their particular values

Benchmark Footprint (KB)
compress95 597

gcc95 678
go 345

ijpeg 1,123
li95 220

m88ksim 5,173
perl 1,138

vortex 8,184
ammp00 222

art00 1,334
equake00 6,117

mesa00 14,875
bzip200 20,338

gcc00 1,177
gzip00 2,520

parser00 7,726
vortex00 8,133

vpr00 1,459

Table 6.2: The memory footprint of selected SPEC benchmarks.

143

cannot be determined at compile time. This would be similar to placing heavily missing

cache lines into a special cache; here we are suggesting the possibility of putting heavily

used addresses into a cache, without regard for their temporal or spatial locality.

The other trend is interesting to note is that heavy optimization (best112) almost

always causes the address reuse to decrease. For compr ess , this is a significant effect

because a number of key global variables are allocated to registers and all the accesses to

them are eliminated from the memory hierarchy. The memory operations which remain

are primarily to the input and output buffers that are very heavily used in compr ess .

For the other benchmarks, the effect is not so significant, yet the trend indicates

that the optimizations are removing heavily reused addresses from clogging the memory

hierarchy and effectively caching them in the register file. Another way to see this is that

the optimizations are allocating some data to registers such that the remainder of the

accesses are, on average, more spread out over the address working set.

Address reuse can be shown another way, as in Figure 6.6. The graph shows 4

bars, two for O2-32 and two for best112. All the values for address reuse are computed

based on 32-bit words; the value of each bar is computed by the number of data accesses

Top 30 Accessed Addresses Account for What Percentage of Accesses?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

P
er

ce
n

ta
g

e
O2-32

best112

Figure 6.5: Memory accesses due to the top 30 frequently used addresses.

144

made divided by the number of unique words touched during the program execution (the

footprint). The result is staggering in a number of cases–for go, l i , ar t , gzi p,

par ser , and vpr , the reuse averages 600 to 1800 uses per address over the benchmark

run. Such high reuse is why caching works so well.

The first bar shows the reuse for an O2-32 binary and the second when optimiza-

tions are applied. The next two bars are similar but eliminate the addresses which are only

used one time. This removes some skew to the average which is present, particularly in

those benchmarks which have a high percentage of addresses that are only touched one.

For example, the go benchmark exhibits over twice the average reuse when such

addresses are removed from the metric. The reason for this will be examined later.

From the graph, it is apparent that the optimizations always reduce address reuse,

sometimes quite significantly, by moving heavily reused items from the memory hierarchy

to the register file (where we do not count reuse). This reduction in address reuse indicates

a general trend in computational redundancy: compiler optimizations tend to reduce pro-

gram redundancy. This has implications for address and value prediction because as more

aggressive optimizations are used and discovered, program redundancy is reduced and

therefore those techniques will have diminishing applicability in the future.

This data also indicates an interesting trend that memory addresses fall into one of

two rough categories–either the address is heavily reused or it is used once at that is it.

One more metric we examined with regard to data addresses is the percentage of

misses due to the top 30 missed addresses. This data is shown in Figure 6.7. As far as data

addresses are concerned, the top 30 missing addresses are not generally responsible for

more than 5% of the misses in the program, though for vor t ex these addresses are

responsible for 25% of the misses. This indicates a possibility for optimization in vortex

by caching the most missed data addresses in a special cache (the “miss cache”), or lock-

ing them in the primary data cache, so that they do not miss anymore. Unfortunately, these

addresses generally account for 1% or less of the total memory accesses in the program.

The par ser benchmark is the exception, where about 4% of the accesses are represented

in the top 30 missed addresses. Optimization does not significantly change the situation.

145

Figure 6.8 shows another property of the memory access in the SPEC benchmarks.

For several of the benchmarks (go, vor t ex , and mesa in particular), a significant per-

Average Address Reuse

0

200

400

600

800

1000

1200

1400

1600

1800

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

A
ve

ra
g

e
U

se
s

P
er

 A
d

d
re

ss

O2-32

best112

O2-32 w ithout one-ref-addrs

best112 w ithout one-ref-addrs

Figure 6.6: Address reuse.

Top 30 Missed Addresses Account for What Percentage of Misses?

0%

5%

10%

15%

20%

25%

30%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

P
er

ce
n

ta
g

e

O2-32

best112

Figure 6.7: Misses due to the top 30 frequently missed addresses.

146

centage of memory locations are only touched one time. This was a strange phenomenon

which we spent some time examining to determine its cause.

For the go benchmark, the cause was a number of over-initialized arrays. The

arrays were extended beyond what was ever used in our benchmark run; the unused values

were initialized once at the start of the program. Thus, 60% of the data footprint of go is

only touched once, and that with store instructions at the start of the program. Relating this

to the data footprint information in Table 6.2, we see that only 40% * 345KB, or 138KB of

data is actually important to the program’s execution. This small working set explains why

the cache performance of go is so good.

For mesa, a similar problem exists with a number of memset () calls which set

memory which is never then used. The image used in our test run of mesa contained only

blue pixels (no red or green) and so the program’s behavior is a little skewed. Vor t ex is

similar.

The remainder of the benchmarks usually do not exhibit this phenomenon for more

than 10% of their address space.

Percentage of Unique Addresses Accessed One Time

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

O2-32

best112

Figure 6.8: Fraction of address space referenced only one time.

147

Special care was necessary in the simulator to count the number of such once-ref-

erenced addresses in the presence of accesses to bytes, half-words, words, and double-

words. For example, if a memory region is initialized with memset () , which treats

memory as an array of integers, and then the region were read as an array of chars, 3 out of

the 4 addresses (the last three bytes of the word) are initialized under the guise of a larger

data type. Our simulator examines addresses exclusively at the 32-bit word granularity,

and treats byte reads and writes and other odd-size accesses accordingly.

Figure 6.9 shows the fraction of the data memory footprint which was never stored

or never loaded from. The fraction of never-stored locations is generally very small. These

are due to static arrays, for example, that are initialized at program load time and never

stored again. However, the percentage of locations that are never loaded is quite high. This

indicates either memory locations that were initialized and never used (like in the go

benchmark as described above), or program results which are generated but never again

examined by the program. This is the case for vor t ex which sets up a database and then

queries portions of it. The effect is doubled for m88ksi m, which loads a binary and exe-

cutes a portion of it, and the binary itself writes some locations but never reads them. The

compr ess benchmark compresses a text buffer A into buffer B, un-compresses B into C,

and then compares C to A. However, it only compares the first and last characters of C to

A, so it does not load any values from the middle of C. Such addresses should not be kept

in the cache, suggesting that a special store instruction could be used which bypasses the

L1 data cache and stores to a more distant level in the memory hierarchy. Of course, this

behavior is mainly due to the artificial “benchmark-nature” of this program.

Combining this data with that in Figure 6.8, we see that even though a large frac-

tion of memory in some benchmarks, such as ammp, are never loaded, only about 5% of

the memory space is touched a single time. This means that many locations are never

loaded but are stored multiple times. Otherwise many locations were never loaded and

only stored once, there would be more than 5% of the address space touched only once.

Another problem that we discovered was that the SimpleScalar simulator, when it

encounters a r ead() system call, executes the system call in a single simulation step,

without actually running any code for it. So, r ead() reads into memory a large chunk of

148

data without using any store instructions to touch the modified addresses. From our simu-

lator’s point of view, later loads from those locations will look as if they are coming from

un-initialized (never stored memory).

6.5.3. From the Viewpoint of the Instruction Stream

Figure 6.10 shows the percentage of accesses that come from the top 30 heavily

used load and store instructions. Typically, at least 20% of accesses are concentrated in

this small number of load and store instructions. For compr ess , m88ksi m, ar t , gzi p,

and vpr , these numbers vary from 50% to 70%. When heavy optimizations are turned on,

the most frequently used memory instructions account for an even higher percentage of

memory accesses. Those variables which have been allocated to registers by the optimiza-

tions are primarily scalars which tend to be accessed in a wider variety of locations in the

program than array elements, for example, which tend to be accessed by fewer memory

instructions which are executed heavily in loops. The result is that, with optimization, the

memory accesses become more clustered on a smaller set of program load and store

instructions.

Percentage of Unique Addresses Stored or Loaded Zero Times

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

Stored 0 Times O2-32

Stored 0 Times best112

Loaded 0 Times O2-32

Loaded 0 Times best112

Figure 6.9: Fraction of address space never loaded or never stored.

149

Unlike the heavily used data addresses, which tend not ever to miss in the cache,

the heavily accessed PCs tend to account for quite a high percentage of cache misses,

often 40% or more. This data is shown in Figure 6.11. The load and store operations

responsible for these accesses should be the primary targets for optimizations such as reg-

ister allocation, register pre-loading, etc.

Figure 6.12 shows the correlation between program counter and misses. The top

30 program counters which incur L1 data cache misses are shown in the figure; the metric

is the total percentage of misses for which they are responsible. This is the most highly

correlated data that we have seen thus far–the top 30 missing program counters are often

responsible for 70% or more of the misses. Optimization has little effect on this, because

the optimizations we apply generally move cached items into the register file.

The primary reason for this highly correlated behavior is that load and store opera-

tions to arrays and linked structures such as trees, which occur in loops, are responsible for

the majority of cache misses. Thus a small number of load and store instructions is found

to be responsible for a large number of the misses.

Top 30 Accessed PCs Account for What Percentage of Accesses?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

P
er

ce
n

ta
g

e
O2-32

best112

Figure 6.10: Memory accesses due to the top 30 frequently executed PCs.

150

Top 30 Accessed PCs Account for What Percentage of Misses?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

P
er

ce
n

ta
g

e
O2-32

best112

Figure 6.11: Misses due to the most frequently used memory instructions.

Top 30 Missed PCs Account for What Percentage of Misses?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

P
er

ce
n

ta
g

e

O2-32

best112

Figure 6.12: Misses due to the top 30 frequently missing memory instructions.

151

The top 30 program counters responsible for misses are also responsible for a size-

able fraction of total cache accesses, as shown in Figure 6.13, sometimes as much as 40%.

This data clearly suggests the following statement is true: if a load operation has

missed, it will likely miss again. If has missed a lot in the past, it will likely miss a lot in

the future. This shows the importance of finding the program locations of the load and

store instructions responsible for misses. The top few (30 in this case) are responsible for

the vast majority of misses. This data immediately suggests the benefit of caching and

prefetching algorithms which are based on PC and try to discover the instructions which

suffer the most misses, and concentrate their effort on those portions of the program. If the

top 30 missing program counters could be determined at runtime, the machine could

watch for modifications to the base and index registers of those memory operations; such

changes could trigger a prefetch.

In the first column of Table 6.3, the list of the top 30 utilized memory addresses

and the top 30 missing addresses are compared and the number of common entries is

shown. It is not often that a commonly-used address also commonly misses the L1 data

cache. The second column is similar but compares the list of PCs that are responsible for

the most memory accesses and the list of PCs that are responsible for the most misses. It is

Top 30 Missed PCs Account for What Percentage of Accesses?

0%

10%

20%

30%

40%

50%

60%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

P
er

ce
n

ta
g

e
O2-32

best112

Figure 6.13: Accesses due to the most frequently missed program counters.

152

evident that PCs more commonly are used a lot and miss a lot. This is because a given pro-

gram counter is often used to perform memory operations to many different addresses.

Both columns are for the best112 configuration.

6.5.4. Correlation of Data Address and PC with Access and Misses

Figure 6.14 summarizes some of the data shown in the previous two sections, in

this case for the best112 optimized benchmarks. The first column is taken from the

best112 column in Figure 6.5; the second column is taken from Figure 6.7; the third from

Figure 6.10; and the fourth from Figure 6.12. The graph encodes in a more compact way

the correlation between the following pairs: data address and access; data address and

miss; program counter and access; and program counter and miss.

The data address is not very correlated at all with miss activity. However, the data

address does tell us more about the access patterns of the program, as heavily accessed

data addresses are responsible for a significant portion of accesses.

The program counter is generally more highly correlated to both accesses and

misses than the data address. Knowing the top few commonly missing program counters

covers a huge portion of the miss activity of the program.

These graphs give a clear indication that the characteristics of the load or store

instruction themselves are more important than the characteristics of the data address

being accessed. Cache misses, for example, are spread about the address space but are

concentrated with respect to the program counter. The program location of these memory

instructions and their form give much more context as to what might happen than the

address which they access. Actually, the instruction and its location tell us something

about the data that is accessed.

Once the subset of program locations that are critical to memory access and miss

activity is known, then optimizations can be focused on those location. Unfortunately, the

difficulty at that point is making a determination of what data address is accessed. This is

the trouble with prefetching, for example. We can determine, with the data above, which

subset of the load instructions require prefetching. However, it is difficult to determine the

address to prefetch because each such missing program counter is responsible for touching

a large number of addresses. This is proven in the correlation statistics and also by our

153

experience with programs–the load instructions that tend to miss are those that walk arrays

or dynamically linked structures such as lists and trees.

The correlation of data address and program counter and program counter is fur-

ther illustrated in Table 6.3. This table shows, in the first column, the number of data

addresses which both are frequently accessed and frequently missed. This is found simply

by finding the common entries in the top 30 addresses that cause misses and the top 30

addresses that are responsible for memory activity. In most cases, very few addresses are

found on both lists.

On the other hand, a number of benchmarks have a significant number of program

counters which are responsible for both many accesses and many misses. This is shown in

the second column.

6.5.5. Source Code Examples

While the data above is interesting from an abstract standpoint, it leaves something

to be desired as far as specifying exactly what is happening. For this reason, I have

selected a number of benchmarks and examined them in more detail to determine where

Correlation of Address/PC with Access/Miss for best112

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

co
m

pr
es

s9
5

gc
c9

5 go
ijp

eg li9
5

m
88

ks
im pe

rl

vo
rte

x

am
m

p0
0

ar
t0

0

eq
ua

ke
00

m
es

a0
0

bz
ip2

00

gc
c0

0

gz
ip0

0

pa
rs

er
00

vo
rte

x0
0

vp
r0

0

P
er

ce
n

ta
g

e
o

f
B

 d
u

e
to

 T
o

p
 3

0
A Addr-Acc

Addr-Miss

PC-Acc

PC-Miss

A B

Figure 6.14: Correlation of data address and PC to access and misses.

154

the memory accesses and misses are occurring. It is important to do this from the perspec-

tive of the source code so that we can learn something about basic program characteristics

that lead to the memory behavior that we have observed in the previous sections.

For the ar t benchmark, all the memory activity comes from the function

t r ai n_mat ch in scanner . c . The important snippet is shown in Figure 6.15. The

code consists of three double-precision floating point loads followed by some arithmetic

and a store. The first two floating point loads are responsible for the most misses in the

benchmark, and overall those two plus the other floating point load and store are responsi-

ble for the most accesses. The latter two can be removed with register promotion because

the address is invariant in the innermost loop body.

The m88ksi m benchmark shows somewhat different behavior. The most accessed

memory locations come from pointer-based loads and stores in the al i gnd() function in

Benchmark Data
Addresses PCs

compress95 0 13
gcc95 7 11

go 2 9
ijpeg 0 14
li95 0 5

m88ksim 0 6
perl 0 3

vortex 0 6
ammp 0 4

art 0 15
equake 4 1

mesa 0 0
bzip 0 2

gcc00 10 15
gzip 0 11
mcf 0 0

parser 4 6
vortex00 0 6

vpr 2 7

Table 6.3: Data addresses and instructions which both access and miss often.

155

al i gnd. c . The pointers are passed into the function and the contents of memory at those

locations is modified. These data items are impossible to allocate to registers. A similar

instruction sequence from line 33-34 of that source code behaves similarly.

Nevertheless, these operations do not account for a large percentage of the cache

misses. Instead, pointer chasing and hash table lookups generate the most misses, as

shown in Figure 6.17. Here, the array lookup in hasht ab is randomized because of the

hashing function; once the value for pt r is established, some dynamically linked struc-

ture is traversed. Both of these situation are difficult to handle because the address is com-

puted immediately before the load is performed; in the one case, because of a hashing

calculation; in the other, because one load depends on the previous load in a tight loop.

397: whi l e (! mat ched)
398: {
399: f 1r es = 0;
400: f or (j =0; j <9 && ! f 1r es ; j ++)
401: {
.
470: / * Comput e F2 - y val ues * /
471: f or (t j =spot ; t j <numf 2s; t j ++)
472: {
473: Y[t j] . y = 0;
474: i f (! Y[t j] . r eset)
475: f or (t i =0; t i <numf 1s; t i ++)
476: Y[t j] . y += f 1_l ayer [t i] . P * bus[t i] [t j] ;
477: }
.

$L282: # Assembl y code f or l oop ar ound l i ne 476 i n C sour ce
l w $3, ($13)
l.d $f4,40($14) # accessed and missed a lot
l.d $f2,($11+$3) # accessed and missed a lot
l.d $f0,0($6) # accessed a lot
mul . d $f 2, $f 4, $f 2
add. d $f 0, $f 0, $f 2
s.d $f0,0($6) # accessed a lot
addu $13, $13, 4
addu $14, $14, 64
bl t u $14, $10, $L282

Figure 6.15: Code in art that is responsible for accesses and misses.

156

Neither of these can be handled easily by the compiler as far as register allocation or even

instruction scheduling.

41: f or (* s = 0 ; expdi f f > 0 ; expdi f f - -) {
42: * s | = * amant l o & 1;
43: * amant l o >>= 1;
44: * amant l o | = * amant hi <<31;
45: * amant hi >>= 1;
46: }

Assembl y code f or l i ne 43- 44 of C sour ce
sw $3,($6) # accessed a lot
lw $2,($5) # accessed a lot
sl l $2, $2, 31
or $2, $3, $2
sw $2,($6) # accessed a lot

Figure 6.16: Code in m88ksim that is responsible for memory activity.

43: pt r = hasht ab[key % HASHVAL] ;
44:
45: whi l e (pt r ! = NULL && pt r - >opcode ! = key)
46: pt r = pt r - >next ;

Assembl y code f or l i nes 43- 46 of C sour ce
l i $2, 79
r emu $2, $4, $2
sl l $3, $2, 2
l a $2, hasht ab
lw $2,($2+$3) # missed a lot
beq $2, $0, $L9

$L10:
l w $3, 0($2)
beq $3, $4, $L9

$L11:
l w $2, 40($2)
beq $2, $0, $L9

$L13:
lw $3,0($2) # missed a lot
bne $3, $4, $L11

Figure 6.17: Code in m88ksim that is responsible for misses.

157

The major contributors to memory activity in the compress benchmark are the

get byt e and put byt e functions. These are shown in Figure 6.18. The assembly code

is omitted since it is simple load and store operations of the I nBuf f and Out Buf f point-

ers as well as load and store operations of the character c . The loads of the pointers them-

selves are a significant source of accesses; these can be removed by allocating them to

registers using global variable register allocation (as in Chapter 4 and our best112 optimi-

zations). The array stores of the characters c cannot be eliminated.

The most misses in the compress are due to the code shown in Figure 6.19. It is

another hash table lookup based on a complicated computed address; the load is shown in

boldface type. There is not much the compiler can do here either. The array is ht ab, an

array of 69001 32-bit integers. This will not fit into a 256KB cache.

The final benchmark that we will present here is go. The primary contributor of

memory accesses is the mr gl i st function in g2l i st . c . In go, linked list are imple-

mented in the l i nks[] and l i s t [] arrays. This is shown in Figure 6.20. In this case,

three load instructions are most responsible for memory accesses. The C source responsi-

ble for the loads is shown in boldface type in the figure.

The code in go that is responsible for the most misses is also related to list man-

agement. In g2l i st . c in the addl i st () function, there is a pointer load that is imme-

1130: get byt e()
1131: {
1132: i f (I nCnt > 0) {
1133: I nCnt - - ;
1134: return((unsigned int)*InBuff++);
1135: } el se {
1136: r et ur n(- 1) ;
1137: }
1138: }
1139:
1140: put byt e(c)
1141: char c;
1142: {
1143: *OutBuff++ = c;
1144: }

Figure 6.18: Code in compress that is responsible for memory activity.

158

diately used as the source of a load out of the l i s t [] array. This is shown in Figure 6.21

Again, this cannot be optimized away by the compiler. These are the top two loads respon-

sible for cache misses. Similar constructs show up in several places in the list management

code.

Table 6.4 shows, for O1 optimization, the functions in SPEC95 which are respon-

sible for cache misses. The second column shows the function that accounts for the most

1174: f code = (l ong) (((l ong) c << maxbi t s) + ent) ;
1175: i = ((c << hshi f t) ^ ent) ; / * xor hashi ng * /
1176:
1177: i f (ht abof (i) == f code) {

Assembl y code f or C sour ce
l w/ 7: 0(20) $2, i n_count
addu $2, $2, 1
sw/ 7: 0(19) $2, i n_count
l w/ 7: 0(20) $2, maxbi t s
sl l $3, $19, $2
sl l $2, $19, $22
xor $18, $2, $21
sl l $2, $18, 2
l a $4, ht ab
addu $20, $4, $2
addu $17, $3, $21
lw/7:0(28) $2,($20) # missed a lot
bne $2, $17, $L68

Figure 6.19: Code in compress that is responsible for cache misses.

 96: pt r 2 = * l i s t 2;
 97:
 98: whi l e(pt r 1 ! = EOL) {
 99:
100: / * guar ant eed t hat l i s t [pt r 1] > l i s t [pt r 2] * /
101:
102: if(links[ptr2] == EOL){ /* end case */
103: l i nks[pt r 2] = f r eel i st ;
. . . .
115: temp2 = list[links[ptr2]];

Figure 6.20: Code in go that is responsible for memory accesses.

159

L1 data cache misses and the third column shows the percentage of misses that is. The

simulations are with a 16KB cache. The data shown are essentially the same for both the

Mirv and gcc compilers; they are always within 1-2% of each other and the same function

is always responsible for the most misses in both cases. Most of the benchmarks, like

compr ess , i j peg, l i 95, m88ksi m, and vor t ex are have heavy weight on the top-

most function. Interestingly, in those cases the other misses tend to be clustered in the next

few functions. In those cases like gcc , the misses are well-distributed among a number of

functions. In any case, the top functions should be the target of compiler and hardware

optimizations.

Figure 6.21: Code in go that is responsible for cache misses.

160: i nt addl i st (i nt val ue, i nt * head) {
161: r egi st er i nt pt r , opt r ;
162:
163: if(list[*head] > value) { /* add to front of list */

Assembl y code f or C sour ce
l a $7, l i st
l w $10, ($5)
sl l $2, $10, 2
addu $2, $7, $2
l w $2, ($2)
bl e $2, $4, $L96

Benchmark Function that Misses L1 D
cache the most Percent Misses

compr ess get byt e 45%

gcc bzer o 7%

go f i ndshapes 10%

i j peg r gb_ycc_conver t 24%

l i 95 sweep 27%

m88ksi m memset 47%

per l _wor dcopy_f wd_al i gned 18%

vor t ex Chunk_Val i dat e 26%

Table 6.4: The worst missing functions in SPECint95.

160

Several conclusions can be drawn from this analysis. First, very complicated mem-

ory instructions are typically responsible for accesses and misses. Second, memory

accesses and misses often occur in bunches. Short snippets of source code often contain

two or more memory operations which are responsible for a lot of accesses or misses. This

makes it difficult to optimize these cases, especially sine they are often dependent on each

other.

6.6. Conclusions

This chapter has shown how optimizations affect the cache performance of the

benchmarks studied. Two new metrics were introduced to characterize the optimizations

relative to the hardware reductions that they could sustain and still achieve similar perfor-

mance levels compared to normally-optimized binaries on the original hardware.

The chapter then examined a number of metrics in order to determine the charac-

teristics of memory operations in the benchmarks. We determined that the optimizations

were effectively caching heavily-used values into the register file. The optimizations are

localizing accesses and misses to fewer program counters, but those memory operations

are generally in loops and address a wide range of memory locations so that they would be

difficult to optimize. This tends to manifest those memory operations that are tough to

handle, simply because they could not be easily optimized. In other words, compiler opti-

mization is handling those items which are somewhat easy for the hardware to cache. This

is good because putting them into registers makes it that much faster for the common case.

On the other hand, this leaves a more difficult job for the hardware because it filters many

of the “easy-to-cache” memory operations and leaves the remaining operations.

There are a number of ways in which this work could be extended. We have intro-

duced the IWE and CLE metrics for characterizing the value of compiler optimization rel-

ative to hardware complexity. There are many other hardware structures that could be

studied in like manner. Since the optimizations remove instructions, particularly loads and

stores, the window size, the load-store queue size, the number of L1 data cache ports, the

number of function units, etc. are all candidates for reduction in the presence of compiler

optimization. The optimizations also eliminate memory operations, suggesting that a

161

trade-off might be made in the size of the caches in addition to the latencies of them. This

is a generally understood principle of trading off hardware complexity at the expense of

compiler complexity, though it is difficult to study in most research environments because

binary compatibility is of utmost concern, so the compiler is not modified. Our research

has both the compiler and architecture at its disposal. We will discuss the compiler we

used for this research in the next chapter.

162

Chapter 7

Design and Engineering of the MIRV C Compiler

7.1. Introduction

The MIRV Compiler [MIRV] is an experimental C language compiler. This chap-

ter discusses the compiler and related tools which have been developed in order to support

the research presented in this dissertation.

The MIRV compiler is based on a high-level prefix intermediate representation

(IR), called the MIRV language, or just MIRV for short1. This IR allows very high-level

transformations to the program code, essentially at source code level. This form is similar

to that used in SUIF [Hall96]. When printed, the MIRV tree is emitted in a prefix linear

form, where the context of the prefix operators allows efficient code generation in a single

pass or more sophisticated code generation with register allocation and optimizations. The

compiler currently compiles the SPEC95 integer benchmarks, most SPEC2000 bench-

marks, and many other benchmarks and regression tests.

MIRV was designed as a research platform to support research into both high-per-

formance and embedded computing. In addition to the studies on registers and memory

optimizations presented in this dissertation, it has been used in hardware-assisted compiler

optimizations and in code compression studies. MIRV was also designed so that optimiza-

tion filters would be easy to code and isolated from the rest of the system as much as pos-

sible. MIRV was also designed to be extensible through intermediate representation

annotation fields. These fields can be used to pass information from the frontend to the

backend or the simulator. Examples of such information include annotations for statistics

gathering and operation modifiers to cause the backend to use different opcodes. These

1. Note that the term “MIRV” is overloaded: it refers to the compiler or the IR, depending on the
context.

163

same annotations are used internally in the compiler to pass information between optimi-

zation phases. MIRV was also designed in a decoupled way that would allow easy retar-

geting of the backend. The compiler has already been targeted to three architectures: Intel

IA32, SimpleScalar/PISA, and ARM9.

The remainder of this chapter is devoted to presenting an overview of the compiler,

with particular emphasis on portions used extensively in this dissertation.

7.2. History and Development Team

Originally, MIRV was conceived by Kris Flautner with ideas from Peter Bird in

Peter’s undergraduate compiler course. Kris shortly took to other research interests and

David Greene and I continued the project. The intermediate language of MIRV was

designed to be high-level and intended to be suitable for online code distribution in a just-

in-time or dynamic compilation environment (similar to JAVA which later became popu-

lar). This desire necessitated that the MIRV IR could be quickly compiled to native

instructions. This was one reason for the prefix intermediate form, which provides suffi-

cient context that code can be generated using a YACC parser in one and a half passes.

Unfortunately, MIRV lacked security features to protect intellectual property; it also

lacked a bytecode encoding. These things relegated the compiler to a more traditional role

in optimization and profiling. We used it as the basis for this and other research.

MIRV was developed with a philosophy that a small design team is best to foster

communication and quickly fix bugs. For its first three years, from 1997 to 2000, the

MIRV compiler development team was never above four people. For the majority of that

time, only two developers were seriously working on the compiler. At the writing of this

dissertation, there are only two developers, though many students in University of Michi-

gan compiler courses have been using the tool for their class exercises.

7.3. Overall Compilation flow

Figure 7.1 shows the compilation flow of the MIRV compiler. The ovals represent

files and the arrows are the compiler steps to transform the source into an executable.

164

Table 7.1 shows the order of application of both the MIRV frontend and backend filters.

The steps are described in each of the following subsections.

7.4. MIRV Frontend

The MIRV compiler currently has one frontend which translates ANSI C into

MIRV IR. C source is parsed by the Edison Design Group C/C++ frontend [EDG] first.

After being read in by the EDG portion of the tool, the program is stored in memory in

EDG’s proprietary tree form. The EDG representation is slightly lower than the MIRV

representation, particularly with respect to labels and got o statements. An IR to IR trans-

Sources

MIRV code

Object code

Assembly

Object Code

MIRV code

Assembly

MIRV Linker

Front End

Back End

Assembler

Executable

Whole-program

Linker

Optimization

MIRV Simulation

Profile
Instrument

Executable

Lowly IR Lowly IR

Back End

Per-function
Optimization

Per-function
Optimization

Back Annotation

SimpleScalar
 IA32

 ARM

Figure 7.1: A diagram showing the overall flow of compilation in MIRV

165

lation step is performed to change the EDG IR into MIRV IR. This MIRV can be written

to a file or operated on in memory by the optimization filters.

Frontend Backend
Optimize

Level Filter Applied Optimize
Level Filter Applied

-O2 -fscalReplAggr -O1 -fpeephole0

-O3 -fcallGraph -O1 -fpeephole1

-O3 -finline -O1 -fblockClean

-O3 -ffunctCleaner -O1 -fcse

-O2 -floopUnroll -O1 -fcopy_propagation

-O1 -farrayToPointer -O1 -fconstant_propagation

-O1 -floopInversion -O1 -fdead_code_elimination

-O1 -fconstantFold -O1 -fpeephole0

-O1 -fpropagation -O1 -fpeephole1

-O1 -freassociation -O1 -fcse

-O1 -fconstantFold -O1 -fcopy_propagation

-O1 -farithSimplify -O1 -fconstant_propagation

-O2 -fregPromote -O1 -fdead_code_elimination

-O1 -fdeadCode -O1 -fpeephole0

-O1 -floopInduction -O1 -fpeephole1

-O1 -fLICodeMotion -O1 -flist_scheduler

-O1 -fCSE -O0 -freg_alloc

-O1 -fpropagation -O1 -flist_scheduler_aggressive

-O1 -fCSE -O1 -fpeephole0

-O1 -farithSimplify -O1 -fpeephole1

-O1 -fconstantFold -O1 -fcselocal

-O1 -fpropagation -O1 -fcopy_propagation

-O4 -fLICodeMotion -O1 -fdead_code_elimination

-O1 -farithSimplify -O1 -fpeephole1

-O1 -fconstantFold -O1 -fblockClean

-O1 -fstrengthReduction -O1 -fleafopt

-O2 -fscalReplAggr

-O1 -farithSimplify

-O1 -fdeadCode

-O1 -fcleaner

Table 7.1: Order of optimization filter application in MIRV.
Since the system is based on MIRV-to-MIRV filters, filters can easily be run more than once, as the table

shows. The frontend filters operate on the MIRV high-level IR while the backend filters operate on a quad-
type low-level IR

166

7.5. The MIRV High Level Intermediate Language

The MIRV IR’s operators are summarized in Table 7.2. This section will describe

the syntax of these operators through a sequence of examples.

7.5.1. Basic Symbol Information: Unids

Symbols in MIRV are uniquely identified with what is called a unid. A unid is sim-

ply a “unique identifier” . In the present MIRV implementation, this consists of a string. It

could be a number (in fact, it formerly was) or any unique identifier. The unid manager

maintains the mappings from string to unid and ensures that no unid is used twice. Unids

are used everywhere in MIRV: for types symbols, global and local variables, functions,

packages, modules, labels, and goto statements. MIRV has a single-level namespace

which is implemented in two symbol tables for efficiency: one for the global scope, and

one for the function scope. It is the responsibility of the language frontend to flatten the

source namespace into this form.

Operator Class Operator
Arithmetic add, div, mod, mul, neg, pow, sub, sqrt
Bitwise and, cpl (complement), or, rol, ror, shl, shr, xor
Boolean cand, cor, eq, le, lt, ne, not, ge, gt
Casting cast
Control flow destAfter, destBefore, funcCall, gotoDest, if, ifElse,

return
Looping doWhile, while
Assignment assign
Object reference cref - specifies a constant value

vref - specifies a variable object
deref - specifies a reference through pointer
aref, airef - array access through direct object or pointer
vfref vfiref - field access through direct object or pointer

Object size sizeOf
Symbol Table tsdecl, tcdecl, tfdecl, tudecl, cdecl, fdecl, vdecl

Table 7.2: The MIRV high-level IR operators.

167

7.5.2. Packaging Constructs

Every MIRV file begins with a package and module declaration. Examples are

shown in Figure 7.2. The package declaration is essentially superfluous at the present, but

was intended to contain version information on the code so that (in a just-in-time compila-

tion environment) the compiler could select the appropriate version of a package. The

package has two versions and a textual name.

The module declaration is essentially similar to a C source file. It contains the glo-

bal scope of the file and all the types, variables, and functions in the source file. It is desig-

nated with a unid, in our case, always __mi r v_pack. m1.

7.5.3. Simple Type Declarations

Every MIRV file contains the complete symbol table needed to process the file.

There are no built-in or “understood” types. A few examples of the symbol table syntax in

MIRV are shown in Figure 7.3. Each simple type declaration begins with a t sdecl

(type-simple-declaration) keyword. In the first case, a 32-bit signed integer type is being

defined. The unid sint32 is the unique handle for this type. By convention, simple integral

types are named similarly to this one: the first letter is s or u, for signed or unsigned, then

i nt , then the size, in bits, of the type. After the unid, the declaration explicitly describes

the type with the text i nt eger si gned 32. The second declaration shown in the fig-

ure is of a C char * . It is called si nt 8p, for a pointer to a signed integer of size 8. The

at t r i but e blocks before each declaration simply specify a textual name for the type.

This is not strictly necessary in MIRV either but was useful previously when unids were

package ver si on 0 0 1 uni d __mi r v_pack ver si on 0 0 0 {
 name " add. mr v"
}

modul e uni d __mi r v_pack. m1 {
 . . .

Figure 7.2: Example package and module declarations.

168

not encoded in a such a readable form. Attributes will be discussed more fully in Section

7.5.13.

Unids can have any name in MIRV as long as they are consistent. We chose the

name “si nt 32,” for example, so the MIRV code is easy to read.

7.5.4. Complex Type Declarations

Three examples of complex type declarations are shown in Figure 7.4. The first is

a structure called Z which has two fields, x and y. The structure is declared with a

t cdecl keyword (type-complex-declaration). It has a unid st r uct _Z, and then two

field specifiers t f i el d. The fields are given unids, Z. x and Z. y, and their types are

specified by the unid si nt 32.

The second type declaration is of a union called u. It is declared with the t udecl

keyword (type-union-declaration). It also has two fields, c and i . The second field, i, is a

si nt 32 as in the previous example. The first field is of type si nt 8_4_, which is a

char [4] in C jargon.

The third example declares a function type. In this case, it is the declaration for the

type signature of the pr i nt f function, which takes a char * , a variable argument list,

and returns an integer. The name attribute shows this, with the si nt 32 return value

shown first, then an open parenthesis, then the si nt 8* (equivalent to sint8p, described

 at t r i but e {
 name " si nt 32"
 }
 t sdecl uni d s i nt 32
 i nt eger s i gned 32

 at t r i but e {
 name " s i nt 8p"
 }
 t sdecl uni d s i nt 8p
 poi nt er uni d s i nt 8 # s i nt 8p

Figure 7.3: Example simple type declarations.

169

above), and then a “ . . . ” to indicate the variable argument list. The declaration begins

with a t f decl keyword (type-function-declaration). It is followed by a unid for the type

which is similar in format to the name attribute, except that instead of “ . . . ” , the keyword

val is used. This is done because periods are not allowed inside the name of a unid except

for field specifiers in structures and unions, but “ . . . ” is easier to read in the name

attribute. The declaration then explicitly indicates that the return type (r et Val Type) is a

si nt 32, the first argument type (ar gType) is an si nt 8p, and the remainder of the

arguments come in a var Ar gLi st .

7.5.5. Function Declarations

Function declarations for functions always appear in MIRV before the function’s

definition. The definition of the function contains its body while the declaration is just a

 at t r i but e {
 name " st r uct _Z"
 }
 t cdecl uni d st r uct _Z { # st r uct _Z
 t f i el d uni d Z. x uni d s i nt 32 # s i nt 32 Z. x
 t f i el d uni d Z. y uni d s i nt 32 # s i nt 32 Z. y
 }

 at t r i but e {
 name " uni on_u"
 }
 t udecl uni d uni on_u { # uni on_u
 t f i el d uni d u. c uni d s i nt 8_4_ # s i nt 8_4_ u. c
 t f i el d uni d u. i uni d s i nt 32 # s i nt 32 u. i
 }

 at t r i but e {
 name " si nt 32(si nt 8* , . . .) "
 }
 t f decl uni d s i nt 32_si nt 8p__val _ {
 r et Val Type uni d s i nt 32
 ar gType uni d s i nt 8p
 var Ar gLi st
 }

Figure 7.4: Example complex type declarations.

170

forward indication of the function so that function call statements can use it without the

body having yet been seen. Two example function declarations are shown in Figure 7.5.

The first declares the printf function with the type si nt 32_si nt 8p__val _ that was

described in the last section. The function is declared with the f decl (function-declara-

tion) keyword. The following i mpor t keyword declares that the function is from another

module and will not be defined in the present module. The unid for this function is simply

the name of the function, pr i nt f , and the type is given last.

The second example is a declaration of the function mai n. In this case, mai n is

declared expor t because it is going to be defined in the present module and is available

for other modules to i mpor t .

The final example illustrates the other scoping keyword in MIRV. This declaration

is of the static function called f oo (st at i c i nt f oo(i nt) in C parlance). The

i nt er nal keyword in the declaration indicates that the function is going to be defined in

the present module but should not be made available for other modules to i mpor t .

7.5.6. Constant Declarations

Constant declarations are very similar to the declarations which we have already

seen. The cdecl keyword is used to introduce the declaration. The unid for the constant

symbol appears next. In the first example of Figure 7.6, the unid is si nt 32_8, which is

the conventional name for a 32-bit signed integer with the value 8. The type unid

(si nt 32) is given next, and finally the integer value.

The second example declares a constant string “Hel l o, Wor l d! \ n” . The unid

in this case, since it is an compiler-generated string constant is given the unid mod-

f decl i mpor t uni d pr i nt f uni d s i nt 32_si nt 8p__val _

at t r i but e {
 name " mai n"
}
f decl expor t uni d mai n uni d s i nt 32_si nt 32__si nt 8pp__si nt 8pp_

f decl i nt er nal uni d f oo uni d s i nt 32_si nt 32

Figure 7.5: Example function declarations.

171

ul e. m1. 25. The type of this constant is si nt 8_15_, which is a char [15] . The

string has 14 characters plus one for the trailing NULL byte. Finally, the value of the con-

stant is given. The newline and NULL byte are encoded explicitly in the MIRV.

7.5.7. Function Definitions

An example functions is shown in Figure 7.7. It is simply specified with a f def

(function-definition) keyword and the function’s unid (as previously defined). The body of

the function (“ . . . ”) is a list of MIRV statements (see Section 7.5.9). The function ends

with a r et ur n statement.

7.5.8. Global and Local Variable Declarations

Several examples of variable declarations are shown in Figure 7.8. The first exam-

ple is a variable declaration (vdecl) of a global variable called j. The variable is declared

expor t , meaning it is externally visible, and is of type si nt 32. It has an initializer

given by the i ni t keyword whose value is 8. The constant is referred to by a cr ef key-

word. This is the same constant as declared in Figure 7.6.

cdecl uni d s i nt 32_8 uni d s i nt 32 8

cdecl uni d modul e. m1. 25 uni d s i nt 8_15_ " Hel l o, Wor l d! \ n\ 0"

Figure 7.6: Example constant declarations.

f def uni d mai n {
 . . .
 r et ur n
}

Figure 7.7: Example function definition.

172

The second example, inside of the definition of function main, is a r et Decl . This

declaration declares a variable whose unid is mai n. __r et ur n_val ue of type

si nt 32. This is a special variable where the function return value is assigned; the back-

end allocates this variable to the appropriate machine location (memory or register)

according to the application binary interface. Argument variables are declared similarly,

but with the ar gDecl keyword.

Finally, functions can declare local variables with the vdecl keyword, as

described above. In this case, a variable called k is declared, but there is no initializer for

this variable. The unid of local variables (in this case mai n. _6_7_k) is made up of sev-

eral components. The first is the function name. The last is the variable name. The middle

numbers indicate the row and column number of the C source file where the variable is

declared. This information is useful for debugging.

at t r i but e {
 name " j "
 r egi st er f al se
 used t r ue
}
vdecl expor t uni d j uni d s i nt 32 {
 i ni t { cr ef uni d s i nt 32_8 }
}

f def uni d mai n {
{
 r et Decl uni d mai n. __r et ur n_val ue uni d si nt 32

 ar gDecl uni d mai n. __par amet er _1_ uni d si nt 32

 vdecl i nt er nal uni d mai n. _6_7_k uni d s i nt 32 { }

Figure 7.8: Example global and local variable declarations.

173

7.5.9. Statements

Two simple statements are shown in Figure 7.9. The first example in that figure

shows how the C code i = i + 1 is implemented. The variable i is referenced by the

vr ef keyword twice in that statement. The + operator indicates the addition. (This opera-

tor can also be specified textually as add.) Finally, the constant 1 is indicated by the cr ef

keyword.

The second example shows how a function call is specified in MIRV. The f cal l

keyword is followed by the unid of the function which is being called. A brace-delimited

block of arguments is then specified. In this case, a call is being made to pr i nt f (" i

shoul d be %d, i t i s %d\ n" , k, i) . The first parameter is the address of

(addr of) the constant string. The second and third parameters are simple vr ef s of k

and i .

Notice that function calls cannot be nested and must be the immediate RHS of an

assignment or a call statement. This restriction serves to isolate the variety of locations

where side-effects are an issue, and simplifies processing of function calls in the later opti-

mization and code generation steps.

assi gn
 vr ef uni d mai n. _7_7_i
 +
 vr ef uni d mai n. _7_7_i
 cr ef uni d s i nt 32_1

f cal l uni d pr i nt f
 {
 addr Of
 uni d s i nt 8p
 cr ef uni d p. m1. 1 # i shoul d be %d, i t i s

%d\ n\ 0
 vr ef uni d mai n. _6_7_k
 vr ef uni d mai n. _7_7_i

Figure 7.9: Example statements.

174

Because of the large variety of operators in MIRV, we will not shown an example

for each. The full set of operators is shown in Table 7.2 and examples are available online

[MIRV].

7.5.10. Looping Constructs

MIRV has two primary looping constructs: whi l e and doWhi l e. The example in

Figure 7.10 shows a whi l e loop. The loop is controlled by an less-than expression which

compares variables k and i . The body of the loop is a list of statements (specified as

“ . . . ” in the example.)

7.5.11. Simple Control Constructs

Figure 7.11 shows examples of MIRV’s simple control structures. The first is an

i f El se, which is specified in a manner similar to C. One difference is that the condition

expression controlling entrance into the if body must not have side effects. In general,

MIRV expressions cannot have side-effects: assignments that are implicit in C (such as

pre- and post-increment) are specified explicitly in MIRV. An i f statement (without an

else) is specified with the i f keyword. The i f and el se bodies are themselves lists of

statements (specified in this example by “ . . . ”).

The second example shows a swi t ch statement. The variable X is the switch con-

trol. The swi t ch syntax then requires a low and high numeric specifier indicating the

range of the case statement. The keyword def aul t is supplied to indicate early in the

switch statement that any un-referenced labels should reference the default case. This

 whi l e
 < # LOOP EXI T

CONDI TI ON
 vr ef uni d mai n. _7_7_i
 vr ef uni d mai n. _6_7_k
 {
 . . . # LOOP BODY

Figure 7.10: Example looping constructs.

175

design is one demonstration of the utility of the prefix nature of the MIRV language. The

key information is specified at the top of the construct so that appropriate context (such as

a label vector in this case) can be set up before the remainder of the swi t ch statement is

parsed. The remainder of the swi t ch code is devoted to the specification of the cases.

Each case is specified by the case keyword and can have multiple cases per keyword.

Each case has an associated block of statements with it.

7.5.12. Complex Control Structures

MIRV has support for complex control structures as well. Arbitrary C got o state-

ments are supported as well as the br eak and cont i nue statements. Figure 7.12 shows

how MIRV implements the C cont i nue statement. Assume that the whole body of code

shown in the figure is contained in a whi l e loop. The while loop contains a single state-

ment, called a dest Af t er . The dest Af t er specifies a label, mai n. 0 in this case,

i f El se
 ==
 vr ef uni d mai n. _7_7_i
 cr ef uni d s i nt 32_2
 {
 . . . # I F BODY
 }
 {
 . . . # ELSE BODY
 }

swi t ch
 vr ef uni d mai n. _1553_7_X
 1 4 def aul t { # MI N MAX (DEFAULT) ?
 case { 1 }
 { . . . }

 case { 2 3 4 }
 { . . . }

 case def aul t
 { . . . }

}

Figure 7.11: Example simple control constructs.

176

which later code uses to refer to this dest Af t er statement. The dest Af t er contains a

block of arbitrary MIRV code. Inside that block, there is a got oDest statement with a

label unid. The semantics of the got oDest are simple: jump to the point after the speci-

fied dest Af t er statement. Thus, control flow is redirected to the assi gn statement.

The dest Af t er (and corresponding dest Bef or e) is a structured way to spec-

ify complex control flow. Because MIRV is designed primarily as a structured high-level

intermediate form, it is convenient to be able to specify as much control flow as possible

in a structured way. MIRV has a filter to convert C got o statements to structured control

flow whenever possible.

7.5.13. Attributes

Attributes are used to extend the MIRV language without changing the basic gram-

mar. An attribute can be an int, bool, double, string, or an internal user-declared class. All

the attributes that MIRV currently supports are detailed in Table 7.3.

There are several other attributes, not documented here, which are for internal use

only.

dest Af t er uni d mai n. 0
{
 . . .
 i f
 ==
 vr ef uni d mai n. _7_7_i
 cr ef uni d s i nt 32_2
 {
 got oDest uni d mai n. 0 # I MPLEMENT CONTI NUE
 }
 . . .
}
assi gn
 vr ef uni d mai n. _7_7_i
 +
 vr ef uni d mai n. _7_7_i
 cr ef uni d s i nt 32_1

Figure 7.12: Example complex control structures.

177

Type Name Description
String Name A textual name for a symbol.
Integer Line The source line number of a statement.

InvokeCount The number of times a function was invoked.
switch_GCD Marker for an optimized switch statement.
switch_shift Marker for an optimized switch statement.
FrequencyCount A static estimate of how often a variable is used.
BlkNum A unique identifier for a MIRV block.
BlkCnt The dynamic number of times that a block was

executed.
DynFreqCnt A dynamic count of how often a variable is used.
MaxLive How many variables are alive at one time in a

function.
StartAddress Starting address of function in executable repre-

sentation; used by profiling to account for time
spent in functions.

EndAddress Ending address of a function.
Boolean Register Whether a variable can be enregistered.

Used Whether a variable is used or not.
BlkPrf Marker on block profiling instrumentation code

that allows it to be deleted later.
Unstructured Whether a function contains unstructured control

flow (gotos).
Leaf Whether a function is a static leaf (has no function

call sites).
UnrolledLoop Whether the loop was generated by an unrolling

operation.
MirvROData Whether a datum is read only.
Replaced Marker that ensures propagation does not propa-

gate something it just propagated without redoing
dataflow analysis.

Rematerialize Marker to avoid undoing CSE in propagation.
NotPromoted This reference was considered as a promotion

candidate but was not promoted.
SpecPromote This assignment is a speculative promotion opera-

tion. Used to generate special load opcode.
SpecUse This reference is a use of a speculatively pro-

moted value.

Table 7.3: MIRV attributes.

178

SpecDemote This assignment is the speculative demotion of a
previously speculatively promoted value. Used to
generate special store opcode.

Promote This assignment is a promoting load operation.
Demote This assignment is a demoting store operation.

Double ExecTime Execution time for a function
CumulativeExec-
Time

Execution time for a function and all of its chil-
dren.

Node AliasDataflow Collection of alias sets at each statement. An alias
set is a mapping of pointers to the data that they
potentially point to.

Alias For each reference to a data, it is the point-to set
for that data.

AliasRef All the data that can be referenced by a called
function.

Data Abstract name for a data object.
Def Set of data that is defined by a statement.
Use Set of data that is used by a reference.
DefUseChain Marker that indicates whether reaching-definition

analysis was run.
DefUseSummary Mod-ref information for a function. It contains the

non-local data items which are potentially modi-
fied or referenced by the function.

ReachingDef For each statement, collection of definitions that
reach the statement.

Replacement For each node on the parse tree, provides a back
pointer to the parent node and implements node
self-replacement.

AvailableExpres-
sion

For each statement, the collection of expressions
that reach the statement.

ValueProfile For each function, all the parameters and the val-
ues they take.

Labelflow Store goto and label information.
LiveOut, LiveIn,
LiveVariable

Used during inlining to estimate when inlining
should not be performed because of high register
pressure.

Type Name Description

Table 7.3: MIRV attributes.

179

7.5.14. Potential MIRV IR Modifications

Throughout the development of MIRV, several changes have been made to the

original IR design. This section summarizes a number of those and discusses what could

be changed in the future.

Past Changes
1. Unids were numeric. This was easy in the code but made debugging difficult.

They were then changed to a hierarchical name with a list of identifiers to

specify the unid. This was too expensive. Presently, the unid is simply a string.

This provides the best trade-off in execution time and readability.

2. Type sizes were specified with some flexibility. The frontend could suggest

or r equi r e that a type have a certain size. We eliminated this to simplify the

language. Type sizes are all required sizes. The backend can implement a type

with whatever size it likes, as long as it guarantees compatibility with the type

specified in the MIRV.

3. Early versions of MIRV did not support arbitrary got o statements. This was

intended to simplify dataflow analysis so that only structured code had to be

supported. However, so many benchmarks use got os that this restriction had

to be removed. Functions with gotos in them may be converted to structured

code or simply not optimized, dependent on the optimization filter that is run-

ning. Previous research and experience with MIRV show that got os usually

can be eliminated in favor of more structured approaches.

4. Early versions of MIRV had an of f set of operator which, given a field,

would return the offset of that field from the beginning of the structure. In the

present version, this is replaced by the addr of st r uct . f i el d construct.

5. There was no si zeof operator in early versions of MIRV. It was added to

enhance cross-platform compilation. The backend now determines the final

size of all data objects, particularly structures.

6. While and doWhile loops had initializer and pre- and post-execution blocks.

These have been removed and the frontend just places those codes in the

appropriate locations before or after the loop.

180

Future Changes
1. The package and module hierarchy could be simplified. Packages are do not

serve any useful purpose at this point.

2. New source languages and cross-platform compilation issues need to be

addressed more fully. Right now, MIRV is primarily designed to compile C.

Other enhancements need to be made to the language in order to support C++

and other languages.

3. Code in loop conditions is sometimes duplicated in MIRV, especially if in the

source language it has side effects such as function calls. This bloats the code

more than necessary. Other issues related to side effects have been trouble-

some.

4. Evaluation of the short-circuiting operators && and || in C is implemented

poorly and some changes to the language may be necessary to rectify this prob-

lem.

5. Multi-dimensional arrays are supported in MIRV. It has been debated back and

forth whether these should be changed into pointer arithmetic for the backend.

Currently, the transformation to pointer arithmetic is done to expose more

opportunity for high-level optimization. The backend supports either.

6. There is no way to represent the (internal) node attributes in the MIRV IR. This

may be useful to store information from one compilation to another.

7. No bytecode representation has been defined for MIRV.

8. MIRV has no built-in types. Changing this would allow the MIRV IR files to

be smaller.

9. A number of syntactical cleanups in initializer code and elsewhere would serve

to shorten the MIRV files significantly.

10. Support for volatile variables.

11. Null statements (called “none” statements) in MIRV are used too much.

7.6. MIRV High-Level Linker

An important feature of the MIRV compiler is the MIRV high-level linker. This

program reads several MIRV files and links them together into a single large MIRV file.

181

The linked files, which are usually a whole program (minus standard libraries) can then be

optimized together. This allows whole-program analysis and optimization. Because opti-

mizations are often restricted simply by lack of code visibility (in a separate compilation

environment), whole-program analyses and optimizations can result in significant perfor-

mance improvements.

Another important consideration is the code-reuse that is provided by the linker.

Many compilers must have one set of optimizations to work at the high-level IR, and

another to operate on code after (low-level) linking. In MIRV, once linking is done, the

code is in the same basic format as unlinked code, so that optimization filters can be used

both before and after linking, without modification.

Currently MIRV implements several whole-program optimizations. One is func-

tion inlining. The linker allows the inliner to view the whole program at once, build the

call graph, and decide which functions to inline based on their characteristics (how many

call sites are they called from, whether they are leaf functions, etc.) The linker allows

unused function to be deleted; in separate compilation, all functions must be retained

because of restricted visibility.

Another whole-program optimization is global variable register allocation. Con-

ventional compilers places global variables in memory. MIRV allows globals to be placed

permanently into registers; all the references to the global are changed so that instead of

referring to memory, they refer to the appropriate registers.

Whole-program analysis can be also used by the definition-use and alias analysis

filters in order to do simple interprocedural side-effect analysis [Bann79].

As with any linker tool, several hurdles had to be overcome to make the MIRV

linker function properly. In addition, because the linker operates on a high-level source

form, there are several additional issues that must be addressed.

Global variables and functions are made to have unique names so that there are no

name collisions. MIRV also contains type information in the MIRV file2, so types also

must be merged and named appropriately. Anonymous types present a difficulty because

the same type can have different names in different MIRV files. The type names for basic

integral and pointer types are standardized so that this is not a problem for them.

2. The MIRV symbol table is contained in the MIRV file.

182

To implement merging of anonymous types, the linker must examine each struct or

union type as it is encountered. If a matching type for a unid is found, the structs are com-

pared. If they match, parsing can continue. If they differ, the newly read type must be re-

named.

Since the newly-read type may have been read in under a different name, all of the

structure or union types known to the linker are examined. If any matches are found, the

newly-read unid is renamed to the unid of the matching type. Otherwise a new unid is gen-

erated. Such renaming also requires renaming of the field unids since the field names are

based on the name of their containing type. Any types using the renamed unid (it may

have been forward-declared) will need fixing-up to point to the correct type. These will

also likely be renamed since their unids are generated based on their child types.

Note that such mappings are only valid for a single source file. A new source file

will have different unid names for its types and requires a new mapping table. This renam-

ing could be avoided by standardizing names for structure and union types. This is non-

trivial as all of the field information in the type would need to be encoded in such a nam-

ing scheme, including nested structure types.

7.7. MIRV Filters

The “middle end” of the MIRV compiler consists of many “ filters” which collect

information about the code and optimize it. The filters are designed with a modular inter-

face so that they are easy to write. The compiler is written in C++. Well-known program-

ming “patterns” such as the visitor, singleton, and factory are used throughout the

compiler [Gamm95].

The filters currently implemented in MIRV are show in Table 7.4. The second col-

umn indicates whether the filter is for transformation (T), analysis (A), or instrumentation

(I). An analysis filter collects and propagates information about the source program. The

most common example is the definition-use (defUse) filter. It performs reaching definition

analysis. It in turn uses the alias analysis filter. The register promote filter is an example of

a transformation filter. It uses the defUse information, among other analyses, to determine

when it can promote a memory-based variable to a register over a loop region. It then does

183

the appropriate transformations to the code. An instrumentation filter adds MIRV code or

other attributes to the MIRV tree in order to allow later passes or simulations to collect

information. The block profile filter is an example of an instrumentation filter. These fil-

ters will be described later in this report.

7.7.1. The Register Promote Filter

The following is a simplified explanation of how the algorithm proceeds. Each

function in the module is treated separately, except for the alias information that is shared

between functions.

1. Collect global scalar variables and constants into globalCandidateList

2. Collect aliased scalar local variables into localCandidateList

3. Walk through the function and find each variable or constant reference, or suit-

able dereference. If it is a direct reference is to a globalCandidate or local-

Candidate, store this reference into the candidateReferenceList. There is a

candidateReferenceList for each promotion region. If it is a suitable derefer-

ence, also add it to the candidateReferenceList.

4. For each promotion region, remove aliased candidate references from the can-

didateReferenceList. An alias exists if the alias analyzer has determined there

is a potential definition or use of the candidate which is not through the candi-

date’s primary name.

5. For each promotion region, promote all candidates that remain in the candidat-

eReferenceList for the region. Do not promote something in an inner loop if it

can be promoted in an outer loop.

In MIRV, dereferences are only promoted in loop regions. A “suitable dereference”

is a load or store operation which satisfies a number of conditions. For this work, these

are:

1. The base address is a simple variable reference.

2. The dereference is at the top level block of the loop, i.e. not in a conditional

clause. Otherwise promoting it might cause a fault.

3. The loop must be a do-while loop so that it is guaranteed to execute at least

once. This is often satisfied because MIRV performs loop inversion to reduce

184

Filter Description
CSE T Traditional common-subexpression elimination.
LICM T Traditional loop-invariant code motion.
Arithmetic simplification T Simplifies computations like x + 0 to x.
Array to pointer T Convert array references to explicit pointer arith-

metic.
Block Profile I Add a counter array and counter increment state-

ments in each block statement in the program.
Call graph A Gathers function call information and creates call

graph.
Cleaner T Flattens nested block statements.
Constant fold T Evaluates expressions whose operands are constant.
Constant propagate T Propagate constants through assignments to later

uses.
Copy propagate T Propagates variable through a copy to later uses.
Dead code removal T Delete dead code from MIRV tree.
Definition-use A Traditional reaching definition analysis. Marks the

definitions that reach a use.
Frequency count A Mark each variable with a count indicating how

many times it is used or defined in the program. This
can be done statically by estimating loop trip count
or dynamically if the block profiler has been used to
instrument the program.

Function inline T Inline a function at a given call site.
Label removal T Recognize structured gotos and replaced with con-

tinue/break.
Live variable A Traditional live variable analysis. Determines which

variables are live at each point in the program.
Loop inversion T Change while loops to an if followed by a do-while.
Loop unroll T Traditional loop unrolling for loops with constant

bounds.
Read-Only Data A Determine which scalar and array data is only used

in a use context.
Reassociation T Puts expressions into sum-of-product, left associa-

tive, constants-in-front form.
Statistics A Counts nodes and variables in the MIRV tree.
Strength reduction T Convert complex operations into simple ones (multi-

ply to shift, divide to shift, mod to mask).
Web splitting T Splits a given variable into several variables, one for

each web.

Table 7.4: The MIRV analysis and transformation filters.

185

the number of branches in the loop, which turns while loops into do-while

loops.

4. The variable constituting the base address must be loop invariant and there

must be no other definitions of it in the loop.

Step 4 in the above algorithm depends on the alias analysis used in the compiler.

MIRV does flow-insensitive, intra-procedural alias analysis. Our alias analysis is based on

the presentation in Muchnick’s book, where he also notes that flow-insensitivity is not usu-

ally problematic [Much97]. The lack of inter-procedural alias analysis implies that point-

ers passed in function calls result in the conservative assumption that anything reachable

through the pointer is both used and defined in the callee. To mitigate the effects of func-

tion calls, the compiler performs a simplistic side-effect analysis [Bann79] For each func-

tion, the compiler records which global objects may be used and defined in the function.

Pointer arguments are assumed to point to any global object of compatible type. We have

observed that this process opens up many more chances for promotion than would other-

wise be possible.

The MIRV promoter can also promote dereferences of invariant pointers. For

example, the loop in Figure 7.13 has an array reference with a loop-invariant index. The

array element can be promoted to a register as shown in the figure.

Figure 7.13: Example of promotion of an indirect memory reference.
After optimization, the invariant address computation is moved out of the inner loop, leaving a dereference of t1. This
constitutes a load and store operation. Note that the address arithmetic is now explicit (no C scaling). After register

promotion, the dereference is removed from the loop [Brig92].

f or
(i =0; i <DI M_X; i ++) {
 B[i] = 0;

 f or
(j =0; j <DI M_Y; j ++)
 B[i] += A[i] [j] ;

f or
(i =0; i <DI M_X; i ++) {
 B[i] = 0;
 t 1 = &B + i * 4;
 f or
(j =0; j <DI M_Y; j ++)
 * t 1 += A[i] [j] ;

f or
(i =0; i <DI M_X; i ++) {
 t 1 = &B + i * 4;
 t 2 = 0;
 f or
(j =0; j <DI M_Y; j ++)
 t 2 += A[i] [j] ;

 * t 1 = t 2;

186

7.8. The MIRV Backend and Low-Level Intermediate Form

The MIRV backend is the portion of the compiler responsible for translating MIRV

IR into assembly code for a specific target architecture. Currently, the compiler targets the

Intel IA32, SimpleScalar/PISA, and ARM instruction set architectures. It accomplishes

the translation task in five major phases. Each function in the input MIRV is processed

separately by the backend according to the following phase order (the backend does only

simple inter-procedural optimizations):

1. Convert MIRV into the Medium Level IR (MLIR). The MLIR is a quad repre-

sentation of the function which assumes an infinite number of symbolic regis-

ters. Each quad contains an operator, a destination, and two source operands3.

This MLIR is structured around a basic block representation. The control flow

instructions refer to labels which are names for basic blocks. The MIRV com-

piler backend IR operations are listed in Table 7.5.

2. Simplify the MLIR. This task, called lowering, simplifies each quad to the

point that it can be executed directly on the target architecture. The resulting IR

is called the Low Level IR (LLIR). An important part of this step is the han-

dling of machine-dependencies such as instructions which require specific reg-

isters. Instructions are inserted into the IR which copy the symbolic register to

or from a machine register. Later, the coalescing phase of the register allocator

3. There are some exceptions. The MLIR instruction called “block copy” takes three sources. Mul-
tiply-accumulate is another example that takes three sources.

MIRV code Assembly

Figure 7.14: Operation of the MIRV backend

MIRV MLIR MIRV LLIR

3. Register Allocation

4. Optimization

2. “ Lowering”1. Parser
5. Assembly
Emission

187

attempts to remove as many of these copies as possible by directly allocating

the symbolic register into the particular machine register. If no such allocation

can be made, the copy remains in the code. In this way, sources and destina-

tions of odd instructions on the x86 such as block copy (esi/edi), divide and

modulo (eax/edx), shift (ecx) and return values (eax) are allocated to the proper

registers.

3. Register Allocation. The infinite symbolic register set is mapped into the lim-

ited register set of the target architecture. This will be described in detail in

Section 7.9.

4. Optimization and instruction scheduling. Traditional and global optimizations

are performed and instructions are reordered in each basic block to increase

overlap in instruction execution. The optimization phase order is shown in

Table 7.1.

Operator Class Operator
Miscellaneous literal, lit, ulit, blit, comment, info, nop
Data reference init, skip, intDataBegin, intData, intDataEnd, roDataBegin, float-

DataBegin, floatData, floatDataEnd, stringDataBegin, string-
Data, stringDataEnd

Function funcBegin, funcEnd, localStack, funcRet, funcArg, ffuncArg,
funcCall, funcICall

Assignment assign, blkcpy, fassign, ftoiassign
Arithmetic add, incr, fadd, sub, decr, fsub, neg, fneg, mul, fmul, divide, fdi-

vide, mod, ipow, fpow, isqrt, fsqrt, ftrunc
Cast/Conversion cast, fcast, itofcast, ftoicast
Bitwise bitAnd, bitOr, bitXor, bitRol, bitRor, bitShll, bitShrl, bitShla, bit-

Shra, bitComp
Short-circuiting condAnd, condOr, condNot
Compare-and-set setEq, setLe, setLt, setNe, setGe, setGt, fsetEq, fsetLe, fsetLt,

fsetNe, fsetGe, fsetGt
Compare-and-
branch

cmpEq, cmpbLe, cmpbLt, cmpbNe, cmpbGe, cmpbGt, fcmpEq,
fcmpbLe, fcmpbLt, fcmpbNe, fcmpbGe, fcmpbGt

Jump jump, jumpi
Switch Tables switchInst, switchTable
Memory addrof, deref

Table 7.5: The MIRV low-level IR operators.

188

5. Assembly Emission. Print out the final assembly code.

More sophisticated phase orders have been discussed in the literature; these itera-

tively run scheduling and register allocation or combine scheduling and register allocation

into one pass but MIRV does not implement them.

The backend MIRV parser implements a syntax-directed translation of the high-

level IR into a basic-block structured low-level IR. It does not use techniques like tree

matching used in GCC or LCC [GCC, LCC].

7.9. Register Allocation and Spilling

The MIRV backend’s register allocator performs the following steps. Explanations

are simplified for the sake of brevity and we assume the reader has some familiarity with

register allocation terminology [Chai81, Chai82, Brig92].

1. Build the control flow graph (predecessor and successor information)

2. Perform variable definition/use analysis and iterative live variable analysis

Figure 7.15: Operation of the MIRV register allocator.

MIRV LLIR

LV Analysis Build IF Graph Coalesce

Spill CostsColorSpill Code

Done

done
coalescing

5. not done
coalescing

done coloring

8. not done coloring

CFG Build1.

2.

3.
4.

6.7.

9.

189

3. Build the interference graph. The MIRV register allocator is modeled after a

standard Chaitin/Briggs register allocator [Chai81, Chai82, Brig92]. The allo-

cator assigns the symbolic registers to machine registers. Since in general there

are more symbolic registers than machine registers, the allocator algorithm

performs a packing algorithm which in this case is cast as a graph coloring

problem. The nodes of the graph represent machine and symbolic registers and

the edges represent interferences between the nodes. The interferences indicate

when two values cannot be assigned to the same register. This is determined by

examining the live variable analysis results and determining what variables are

simultaneously live.

4. Coalesce nodes of interference graph. Coalescing has several important fea-

tures: it removes unnecessary copy instructions; it precolors certain symbolic

registers; it allows easy handling of idiosyncratic register assignments for spe-

cial instructions and for the calling convention; and it allows the compiler to

seamlessly handle two-operand architectures such as the x86. Coalescing will

be described in more detail in the next subsection.

5. Repeat steps 2 through 4 until no more coalescing can be performed.

6. Compute spill cost of each node. Variables which are used more frequently (as

determined by a static count) are given higher spill costs. The spill cost deter-

mines which variables are selected first for spilling during the insertion of spill

code.

7. Attempt to color graph. As in [Brig92] our allocator speculatively assumes that

all nodes can be colored and only when a node is proved not to be colorable is

it spilled. Assign a color to every node that can be safely colored.

8. If the graph is not colorable, insert spill code. All registers which were not

assigned a color by step 7 are spilled. Spilling will be described in a later sub-

section.

9. Repeat steps 2 through 8 until the interference graph is colorable.

190

7.9.1. Coalescing

Register coalescing combines nodes of the interference graph before coloring is

attempted. It attempts to transform copy instructions of the form assign sX -> sY and allo-

cate symbolic registers sX and sY to the same register. It can do this if sX and sY do not

interfere (their live ranges do not overlap). If so, the assignment can be removed, and all

references to sX are changed to refer to sY. We say that sX has been coalesced with sY and

the result register is sY. This results in the elimination of the sX node from the interference

graph which simplifies the later graph coloring step. This optimization is really global

copy propagation, since it removes a copy instruction and propagates the result register to

all other use and definition sites. It is very effective since it runs late in compilation.

Which of sX or sY we choose to keep as the result register is only a matter of

implementation, except when one of the sX or sY is a machine register. Then the coalescer

must keep the machine register because a machine register cannot be removed from the

interference graph. This is useful, as was mentioned before, because it allows the earlier

IR lowering phase of the backend to insert fixup code which contains machine register

specifiers. This fixup code is executed without regard for how many copy instructions are

inserted or where they are inserted. The fixup code simply ensures that if a specific regis-

ter assignment is required by the architecture, a copy instruction is inserted whose source

is a symbolic register and whose destination is a machine register (or vice versa). Coalesc-

ing also assists in handling two-operand architectures such as the Intel IA32, as will be

explained below.

The example in Figure 7.16 demonstrates why these features of coalescing are use-

ful. In the C code, a left shift operation is requested. The IR equivalent is shown in (b). On

the IA32 architecture, the shift amount must be placed into the %ecx machine register, so

the lowering phase inserts a copy of sB into %ecx (c). It also inserts a copy of sA to sD

because the IA32 only allows two operand instructions (a = b + c must be implemented as

two instructions: a = b and a += c)4. In the example, two coalescing operations occur

between steps (c) and (d). The first coalescing operation occurs because sB is copied into

%ecx and those two registers do not interfere (b). So sB is coalesced into %ecx, effec-

4. This explanation is simplified, as will be shown later in this chapter.

191

tively pre-allocating sB before the graph coloring even runs. The second coalescing opera-

tion occurs because sA and sD are known not to interfere (from (a)). The lowering phase

can insert as many copies as it needs to put the code into a form that is acceptable to the

target architecture, and the register coalescer removes (propagates) as many of those cop-

ies as it can by pre-allocating symbolic registers into other symbolic or machine registers.

The pre-allocation feature of coalescing is particularly useful to handle specific

register assignments of the machine architecture. But the IA32 architecture also requires

that operate instructions such as addition take only two operands – one source and a desti-

nation which doubles as a source. In other words, a = b + c is not valid for the IA32, but a

= a + b is valid. The naive solution to this problem is shown in Figure 7.17. Here, the

three-operate format a = b + c has to be broken down into two simpler instructions – a = b

and a = a + c. This is the technique used in [Brig92]. We call this process “ inserting the

two-operand fixup instructions.”

There are two problems with the solution shown in Figure 7.17. As far as we know,

neither problem has been described in the literature, perhaps because experiments were

C Code IR Lowered IR Machine Code
a = 1;
b = 13;
. . .
d = a << b;

<a and d don’ t
i nt er f er e af t er
t hi s>

assi gn 1 - > sA
assi gn 13 - > sB
. . .
sD <- sA << sB

<sB doesn’ t
i nt er f er e wi t h
%ecx>

assi gn 1 - > sA
assi gn 13 - > sB
. . .
assi gn sB - > %ecx
assi gn sA - > sD
sD <<= %ecx

movl 1, %eax

. . .
movl 13, %ecx

shl l %ecx, %eax

(a) (b) (c) (d)

Figure 7.16: An example demonstrating the utility of register coalescing.

C Code IR Two-operand
Lowered IR

a = b + c sA = sB + sC sA = sB
sA = sA + sC

(a) (b) (c)

Figure 7.17: Coalescing for a two-operand architecture.

192

always run on a RISC (3-operand) architecture and not verified on the (2-operand) IA32.

The first is shown in Figure 7.18. In this case, a = b - a, the simple transformation

described above overwrites the value of a, which is needed as the second source of the

computation. In general, this kind of sequence requires three instructions and a temporary

variable to be correct, as shown in Figure 7.18(d)5.

The second problem with the solution used in Figure 7.17 is more subtle because it

generates suboptimal (but correctly functioning) code. The two-operand simplification

was performed in the IR lowering phase. However, the best place to do the two-operand

modification is in the coalescer and not in the IR lowering phase. This is because the coa-

lescer has information regarding interference of registers. This is convenient because it

allows the selective insertion of two-operand fixup instructions. In MIRV’s implementa-

tion of this more sophisticated approach to coalescing, the backend uses the following

steps to determine if it can coalesce the operands of an instruction:

1. For a copy instruction of the form a = b, coalesce a and b if possible. The

remainder of the algorithm is checking for two-operand optimizations.

2. If the machine requires two operand instructions, check the destination and

first source operand. If they can be coalesced, do so. In this case, we avoid

inserting any fixup code for the two-operand machine.

3. Again, for a two-operand instructions, if step 2 did not work, examine those

instructions which are commutative. Check dest and source2. If they can be

coalesced, do so and swap source1 and source2.

5. There are some cases which could be specialized by using negate or some other clever sequence
of instructions; our compiler chooses the straightforward approach shown in the figure.

C Code IR
Incorrect Two-

operand
Lowered IR

Correct Two-
operand

Lowered IR

a = b - a sA = sB - sA sA = sB
sA = sA - sA

sT = sB
sT = sT - sA
sA = sT

(a) (b) (c) (d)

Figure 7.18: Failure of the simple-minded coalescing algorithm.
For a two-operand architecture, the algorithm does not work. The value of sA has been overwritten in (c). The

correct code is shown in (d).

193

4. If both steps 2 and 3 did not coalesce the operands, then no coalescing can be

performed, either because the operator is not commutative, or both operands

are simultaneously live with the destination. Only in this case do we need to

insert the two-operand fixup instructions.

If two-operand fixup instructions are inserted too early (in the lowering phase), the

opportunity to swap operands later and coalesce them is lost forever. This produces less

than optimal code. This is demonstrated in Figure 7.19. Since the coalescer knows that a

and c are not simultaneously live, it can swap their positions in the add instruction and

allocate them to the same register and avoid any two-operand fixup instructions. The IR

lowering phase cannot know this since it has not computed liveness information, and so

must insert the two-operand fixup. Since a and b do interfere, no coalescing is possible in

Figure 7.19(c).

7.9.2. Spilling

During graph coloring, a node may be encountered which we cannot guarantee to

receive a color because it has more neighbors than colors (registers) available. In this case,

we may need to generate spill code. There are three major phases to the insertion of spill

code.

C Code IR
Two-operand

fixup in lowering
stage

Two-operand
fixup in coalesce

stage

a = b + c
<a and c do
not
 i nt er f er e, a
 and b do>

sA = sB + sC sA = sB
sA = sA + sC

sC = sB + sC
<sA has been
 al l ocat ed t o
 sC’ s
r egi st er >

(a) (b) (c) (d)

Figure 7.19: Early insertion of two-operand fixup code.
Knowing the register interference information allows more effective coalescing. Since variables a and b

interfere, the early coalescing algorithm gives up and inserts a copy instruction, as shown in (c). However,
since variables a and c do not interfere, a can take up residence in c’s register after the addition operation.

The final step in (d) is to swap the sB and sC operands of the addition (not shown).

194

1. Before coloring begins, the spill cost of each node in the graph is computed.

Machine registers receive an infinite spill cost (machine registers cannot be

spilled in our algorithm). Symbolic registers receive a cost which is based on

their static usage count. This count is called the “ frequency count” and is

weighted by loop nesting level so that uses in loops receive higher usage count.

Compiler-generated temporaries are given a slightly higher spill cost because

they typically have very short live ranges and spilling them would hurt perfor-

mance and not significantly impact the colorability of the interference graph.

2. During coloring, if we find that we cannot remove any nodes from the graph

which have degree less than or equal to the number of colors (registers) avail-

able, we select a spill candidate. The symbolic register selected for spilling has

the lowest spillCost / degree ratio. This is a common heuristic for selecting a

spill candidate [Brig92] which tries to select a spill candidate with low spill

cost (to reduce impact on execution time) and one which will remove a lot of

edges from the graph (to make the remaining nodes easier to color). Once the

spill candidate is selected, it is speculatively assumed to be colorable and the

coloring algorithm continues. Only after color assignment finishes and we

have determined that in fact no color was assigned to a spill candidate do we

actually insert spill code for it. The non-speculative version of this algorithm

would, upon selecting a spill candidate, immediately spill it.

3. After we determine that there were some nodes that were not colored, we insert

spill code for those nodes. This consists of walking the list of registers, and for

each one that did not receive a color, we insert a load before each use of that

symbolic register and a store after each definition of it. A later peephole pass

can eliminate redundant loads and stores. The loads and stores effectively chop

up the live range of the variable into many small pieces. When the next inter-

ference graph is built, there will be fewer edges because the spilled symbolic

register has very short lifetimes (much like a compiler-generated temporary).

Live range splitting and rematerialization are not present in the current version of

the register allocator. These optimizations reduce the cost of spill code [Brig92].

195

7.10. Comparisons to other compilers

Currently the only compiler which has been compared to MIRV is the SimpleSca-

lar/PISA port of the gcc-2.7.2.3 compiler. The details are reported in [Post00a]; they

include comparisons of execution time, cache performance, instruction mix, and a number

of other characteristics.

Future work will compare MIRV to other compilers in terms of performance and

regression test success. Primarily, this includes the newest version of the gcc compiler,

which has better optimizations than the version we compared against above [GCC]. Other

compilers which could be tested include LCC [LCC], the SGI Pro64 Compiler [SGI],

Greenhills [GHS], Impact/Trimaran [Impact, Trimaran], and the National Compiler Infra-

structure Initiative/SUIF [SUIF], and the DEC/GEM Compiler [Blic92]. These could eas-

ily be tested on our regression sources. A direct comparison of performance would require

retargeting either MIRV or these other compilers to a common target ISA.

7.11. MIRV Example

This section briefly describes the progression of a compilation by presenting an

example which shows how the source code proceeds through the compiler to assembly

code.

The source code we will be using for this example (Figure 7.20) is a simple C pro-

gram which does some arithmetic and prints out a few variables.

The MIRV code for our example is shown in Figure 7.21, after the MIRV frontend

has processed it. The initial symbol table information and variable declarations are not

shown to conserve space. The explanation of MIRV in Section 7.5 covers most of the ele-

ments of this of code.

The backend reads this code and produces a (relatively high-level) low-level IR

representation of it. This is shown in Figure 7.22. The operators of this language were pre-

viously described in Section 7.8. The l ocal St ack keyword is a marker for the backend

196

to insert function prologue code; the f uncr et keyword performs a similar function for

the function epilogue code.

Figure 7.23 shows the low-level IR after the backend simplifies the original low-

level IR. Register assignment has been performed and some spilling code has been intro-

ext er n i nt pr i nt f (char * , . . .) ;

i nt mai n(voi d)
{
 i nt i , j , k , l ;
 i = 0;
 j = 15;
 k = j ;
 l = - k;
 i = j + 1;
 pr i nt f (" i =%d, j =%d k=%d l =%d\ n" , i , j , k , l) ;
 r et ur n i ;
}

Figure 7.20: Example C source code.

 f def uni d mai n {
 assi gn vr ef uni d mai n. _5_7_i cr ef uni d s i nt 32_0
 assi gn vr ef uni d mai n. _5_10_j cr ef uni d s i nt 32_15
 assi gn vr ef uni d mai n. _5_13_k vr ef uni d mai n. _5_10_j
 assi gn vr ef uni d mai n. _5_16_l neg vr ef uni d mai n. _5_13_k
 assi gn vr ef uni d mai n. _5_7_i
 + vr ef uni d mai n. _5_10_j cr ef uni d s i nt 32_1
 f cal l uni d pr i nt f {
 addr Of uni d s i nt 8p
 cr ef uni d __mi r v_pack. m1. 30 # i =%d, j =%d k=%d
l =%d\ n\ 0
 vr ef uni d mai n. _5_7_i
 vr ef uni d mai n. _5_10_j
 vr ef uni d mai n. _5_13_k
 vr ef uni d mai n. _5_16_l
 }
 assi gn vr ef uni d mai n. __r et ur n_val ue vr ef uni d mai n. _5_7_i
 r et ur n
}

Figure 7.21: MIRV code for the example.

197

duced. The addition operation of the earlier code has been changed to an increment

(i ncr). Since the target being considered in this example is SimpleScalar/PISA, a target-

specific function call to __mai n has been inserted. This call sets up the runtime environ-

ment. The f uncr et has been replaced with an explicit jump to a label. Finally, the func-

tion call instruction has been broken into several f uncAr g instructions and the original

f uncCal l has become simpler. The arguments that were listed under the f uncCal l

opcode previously have been changed to individual instructions that set up the arguments.

These are operationally the same as assignments but are marked with a special opcode so

it is easier to determine the source of the operations.

The final step of the compilation is shown in Figure 7.24, where the SimpleScalar/

PISA assembly code is shown. Here the full detail of the machine is exposed. A stack

frame is declared; this is used only for debugging purposes. The return address ($31) and

the frame pointer ($fp) are stored to the stack. The stack frame is set up with by copying

the stack pointer into the frame pointer rand subtracting 64 (the size of the frame) from the

stack pointer. Then register 23 ($23) is stored to the stack below the frame pointer. This is

necessary because $23 is a callee saved register and the callee (in this case, main), is using

that register for a temporary. The initial call to __mai n is performed, and then the body of

gl obal f unct i on mai n {
 l ocal St ack
. L3:
 assi gn %53, $0
 assi gn %54, $15
 assi gn %55, %54
 neg %56, %55
 add %53, %54, $1
 f uncCal l pr i nt f
 &$$__mi r v_pack. m1. 30
 %53
 %54
 %55
 %56
 assi gn %2, %53
 f uncr et

Figure 7.22: Low-level IR code for the example.

198

the code begins. The low-level IR opcodes have been transformed to their appropriate

SimpleScalar/PISA (MIPS) counterparts. Notice the attention to unsigned arithmetic in

the subu and addu opcodes. This is necessary in C because the PISA/MIPS instruction

set architecture defines that an signed addition or subtract will have an undefined result in

the case of an overflow; C semantics say nothing of overflow, so all arithmetic operations

are emitted by the backend as if there is no signedness. The address of the pr i nt f format

string is then loaded into the first parameter register ($4), and the result of the add opera-

tion is put into the second parameter register ($5). The other parameters were calculated

directly into their parameter registers ($6 and $7). This is a result of the register allocator

and coalescing algorithm described earlier. The value of variable i (in $23) placed into $2

as the return value, the function restores register $23, restores the stack pointer, restores

the return address register, restores the frame pointer, and finally returns.

7.12. Test and Debug Environment

The success of any large software project depends to a large degree on the testing

environment that is built to ensure correct operation of the software. When an incorrect

gl obal f unct i on mai n {
 l ocal St ack
 assi gn $- 12+(%30) , %23 # spi l l
 f uncCal l __mai n
. L3:
 assi gn %23, %0
 assi gn %6, $15
 assi gn %7, %6
 neg %2, %7
 i ncr %23, %6
 f uncAr g %4, &$$__mi r v_pack. m1. 30
 f uncAr g %5, %23
 f uncAr g $16+(%29) , %2
 f uncCal l pr i nt f
 assi gn %2, %23
 j ump L4
L4:

Figure 7.23: Low-level IR code for the example, after further lowering.

199

operation is discovered, good debug tools are helpful to speed the bug discovery and cor-

rection process. This section describes the test and debug tools developed for MIRV.

7.12.1. Regression testing

The simplest form of testing for the compiler was also the first one developed.

Every time a bug is discovered, a test case which exposes the bug is manually generated.

Before committing any new changes to the source tree, all previous test cases are run to

ensure that no new bugs have been introduced. Presently, there are 472 test cases and each

of these is run at three optimization levels during regression testing. These test cases actu-

ally exposed two bugs in the version of SimpleScalar/PISA gcc that we use (2.7.2.3 with

GNU binutils 2.9.5+).

mai n:
 . f r ame $f p, 64, $31
 sw $31, - 4($sp)
 sw $f p, - 8($sp)
 move $f p, $sp
 subu $sp, $sp, 64
 sw $23, - 12($f p)
 j al __mai n
L3:
 move $23, $0
 l i $6, 15
 move $7, $6
 subu $2, $0, $7
 addu $23, $6, 1
 l a $4, $__mi r v_pack. m1. 30
 move $5, $23
 sw $2, 16($sp)
 j al pr i nt f
 move $2, $23
$L4:
 sw $23, - 12($f p)
$Lmai n_r et :
 move $sp, $f p
 l w $31, - 4($sp)
 l w $f p, - 8($sp)
 j $31

Figure 7.24: SimpleScalar/PISA assembly code for the example (unoptimized).

200

All the SPECint95 and 2000 benchmarks that MIRV compiles (presently 19) are

also run before each source tree modification is allowed to be put into the source reposi-

tory. Each benchmark is run at the same three optimization levels as in basic regression

testing.

Finally, tests can be run on the SPECint95 benchmarks over seven data sets and

three optimization levels. These are used to periodically evaluate the compiler’s perfor-

mance. Statistics are tracked at the function level to make it easier to find performance

regressions.

7.12.2. The bughunt Tool

When a bug is discovered in a multi-object-file program, the bughunt tool can help

to isolate the bug. It compiles a known-good version of the program using either gcc or

MIRV with -O0 optimization. This process produces a set of N known-good object files. It

then compiles a version of the binary with the optimization flags in question. One or more

of the object files produced during this compile is bad, but all of them are questionable

since it is not known which is bad. Each of these questionable object files is linked with

the other known-good object files and tested. In time linear with the number of object

modules in the program, bughunt finds out which object modules have been compiled

incorrectly.

There are several considerations that we found to be necessary during the develop-

ment of this tool. First, some object modules can cause the program under test to go into

an infinite loop. This necessitates a timer function in bughunt which times out after a cer-

tain amount of time passes. This amount of time is determined by multiplying the time it

takes for a known-good binary to be tested by some factor (in our case, 3).

Occasionally we have discovered incompatibilities between the code produced by

the known-good compile and code produced by the questionable compile. Sometimes, for

example, the PISA version of gcc produces code which does not conform to the UNIX

System V Application Binary Interface (ABI). This occurs in the areas of structure and

bitfield layout, for example. Such incompatibilities lead to the report of false bugs.

201

7.12.3. The cleaver and machete Tool

Once a bug is found in an object module, it may still be an onerous task to isolate

the bug to the function and line in the source code where it occurs. The cleaver and

machete tools help in this regard. Cleaver takes a MIRV file and chops it into a given num-

ber of pieces (or one piece per function). Machete is similar but chops up an assembly file

into pieces. We will only consider the cleaver tool from this point on.

Given a MIRV file with 10 functions in it and some global variables, cleaver chops

the MIRV file into 10 MIRV files - one per function - plus another MIRV file for global

variable definitions, and one more for declarations that must be included into each of the

other MIRV files. This is conveniently done because of the high-level structure of the

MIRV code. These MIRV files can then be compiled to object modules and used with the

bughunt program described in the previous section. Cleaver and bughunt can be used to

isolate the bug to the very function that is causing the error.

7.12.4. The brutal tool

The brutal tool is one which attempts to find new bugs in optimization filter

sequences. Given a set of test source files and a list of optimizations, it tries random selec-

tions and permutations of the optimizations on a random selection of the test files. It will

also focus on just a single test file, if desired. This is useful for finding bugs which are

only exposed by a certain sequence of optimizations. For example, one bug was found

which required a pass of reassociation, followed by register promotion, followed by low-

level common subexpression elimination. Brutal can be run for a given number of itera-

tions or forever. The failing compiler commands are sent to a database for future regres-

sion testing.

7.12.5. The lmrvOptimizeAndRun Tool

This tool simply takes a linked MIRV file and runs it through the compiler with a

given set of flags, runs the program, and determines if the output was correct. This is use-

ful for debugging large programs as will be described in the next section.

202

7.12.6. The cmdshrinker Tool

The cmdshrinker tool takes as an argument a Unix command string, in our case, a

compile command. This command has several flags in it to specify optimizations. The

cmdshrinker tool attempts to remove as many of those flags from the command line while

retaining a bug that was exposed by the original command string.

For example, if the failing command is mirvcc -fcleaner -fregPromote -fCSE -fLI-

CodeMotion test.c, then command shrinker could determine, in time linear in the number

of filters specified, that mirvcc -fCSE -fLICodeMotion test.c is the smallest command

string that fails. If any of the remaining flags were removed, the bug would disappear. This

effectively narrows in on the offending filter. One filter from that command could be

removed and then the MIRV or source code could be compared against the failing version.

the differences can show where the bug occurs.

7.12.7. Transformation Limit Tool

Once a bug is narrowed down to a particular optimization filter (say with the cmd-

shrinker tool), the transformation limit tool allows the programmer to “dial in” the exact

transformation that caused the error. For example, if the register promotion filter has a

bug, we can run mirvcc -fregPromote=--maxPromotes=N. Knowing the number of pro-

motes in the whole program allows us to determine the exact N’s for which register pro-

motion passes and for which it fails. A binary search is employed to find N for which it

passes and N+1 for which it fails. The intermediate representations of these two compila-

tions are then compared and the precise promotion that causes the bug is readily evident

by using the unix diff tool. It can then be determined why the promoter thought a transfor-

mation was legal when in fact it was not. This technique can be used on many optimiza-

tion filters: loop invariant code motion, register promotion, common-subexpression

elimination, loop unrolling. In general, it can be applied to any transformation filter where

the transformations can be applied independently of one another.

203

7.12.8. Miscellaneous Test Generator Tools

During the course of building the compiler we also found it helpful to have large or

complex test cases generated by scripts. One such script generates loops to use for unroll-

ing or other loop optimizations. Another such script generates a program which call func-

tions with all combinations of parameter types. This is useful for testing whether the

compiler implements the ABI correctly, that is, by passing the correct parameters in regis-

ters or on the stack.

7.12.9. The mirvbot Tool

The MIRV robot tool automates overnight testing of the compiler for correctness

and performance. Each night a number of the SPECint95 benchmarks are compiled and

checked to determine that they run correctly. Statistical printouts are also gathered which

show the performance of the compiled binary in a number of areas - number of cycles,

dynamic instructions, memory references, cache misses, etc. These can be examined daily

and over time to see how modifications to the compiler have affected performance.

7.12.10. The ssprofcomp tool

This tool gathers profile information from any number of SimpleScalar simulator

variables and attaches them to the functions in the program that are responsible for the

changes in the simulator statistics. For example, it shows if a particular function is causing

most of the cache misses or if a function is responsible for all of the memory accesses.

This directs the optimization tuning effort to look at the most important functions.

7.12.11. Select Optimization Subset (SOS)

One problem that rises during debugging very large MIRV files is the large num-

ber of functions to optimize. To wait for optimizations to happen on all the functions is

wasteful because only the one function which has the bug in it matters. MIRV has the abil-

ity to run filters on a single function or all functions up to and including some function (in

source order). In addition, MIRV can run a filter subset on all functions before the target

204

(last) function in the function subset. This is useful for performing tests of whole program

optimization. For example, several bugs were found in def-use analysis when it carried

information from one function to the next in our simple interprocedural analyses. Thus we

could run -fdefUse on those functions up to the one we discover the bug in, then fully opti-

mize that function, then skip optimizations on all the rest of the module. This relies, of

course, on the fact that the non-local (e.g. global and parameter point-to) def-use informa-

tion which summarizes a function does not change with optimization.

7.12.12. Generic findbug

With all of these tools, it is relatively easy for the programmer to track down a bug

in the compiler. In fact, we have written several scripts that automate the process of find-

ing bugs by using some combination of the above tools. Findbug is one such tool.

At the simplest level, findbug is composed of two phases: a binary search phase to

find the function in the source program that is badly compiled and a command shrinker

phase to reduce the number of optimizations that are run on the file to the minimal number

needed to expose the bug.

In the first phase, findbug makes use of the ability of MIRV to restrict filter opera-

tions on a subset of source functions, as described in the previous section. The binary

search phase of findbug uses these options in a variety of combinations to home in on the

source function which is being badly compiled. To do this it uses the “binsearch” library.

First, binsearch performs an lmrvOptimizeAndRun pass on the source program with the

specified options passed to the compiler. All functions in the source program are trans-

formed. lmrvOptimizeAndRun produces a return code which is saved off to the side. The

binsearch then runs lmrvOptimizeAndRun as before, but adds arguments to compile every

function up to and including the halfway point through the program. If the return code is

the same as before, the search space is restricted to the lower half of the program, meaning

that the errant compilation happened on a function in the first half of the program’s list of

functions. If it is not the same, the higher half of the program is searched. The binsearch

phase progresses as a standard binary search and the number of the offending function is

returned as the final result. Upon receiving the suspect function number from the bin-

search phase, findbug invokes cmdshrinker with the same arguments as binsearch, but

205

adding flags to restrict transformation only to the function returned by binsearch. This

greatly speeds the cmdshrinker process. In addition, flags are passed to run alias and

reaching definition analyses so that interprocedural dataflow information can be used in

the transformation process (if such action is specified in the mirvcc command line passed

to findbug). cmdshrinker reduces the filter list and prints the final offending command so

the user can re-run and examine the (incorrect) actions of the compiler.

Generally, we have found that once a command line is returned by findbug, remov-

ing a filter from the command-line, running it and comparing the (correct) output with the

(incorrect) output obtained by running the findbug result command produces such a small

number of differences that the cause of the error is immediately obvious. In the case of a

large number of differences, the transformation limit tool can be used to narrow the scope.

7.12.13. Future Tools

There is also a need to write a “ testshrinker” tool which will take a failing program

and shrink it to the minimal source file which still produces the bug.

7.13. Profiling Support in MIRV

MIRV presently has support for several kinds of profiling. The most basic is the

block profiling filter. Others include the value profiler and the time profiler. These will be

discussed in turn.

7.13.1. Block Profile Filter

The block profiling filter reads a linked MIRV program and produces one which,

when run, will produce a data file containing a counter for each block statement in the pro-

gram. The value of the counters equals the number of times that the block statement was

reached during the execution of the program.

Block profiling is actually done with a combination of two filters. The first instru-

ments the program by adding the code to increment the counter values at each block state-

ment. An array of counters is dynamically allocated before the program run begins and the

array is dumped to disk immediately at the exit of the program.

206

After running the program on a training data set, the counter values are then back

annotated into the original program source as attributes on the MIRV block statements.

These attributes can then be used by filters for a number of analyses or optimizations. In

our case, we use the counts to determine how many times a variable is referenced in the

program. For example, if a variable is referenced in two blocks whose counts are 10 and

15, then the variable is given a frequency count of 25. This dynamic frequency count of

the variable can be used to determine the importance of the variable in terms of register

allocation.

The count data produced by the block profiler is not completely accurate because

block statements do not always correspond to basic blocks in the program’s object code.

Thus, there are a few cases such as unstructured code and early exits from loops where the

block counting will not produce completely accurate results.

Block profile data can be used to direct optimizations. At this point, it is used to

direct the register promotion optimization to avoid promoting in regions that are not prof-

itable.

7.13.2. Value Profile Filter

The value profile filter tracks the values of function arguments and keeps track of

the most common sets of arguments passed to each function. This is useful for performing

function specialization where functions which take a certain set of arguments often are

cloned and optimized especially for those parameters [Green98].

7.13.3. Time Profile Filter

The time profile filter back annotates execution times for each function and cumu-

lative times for a function including all of its children, onto the MIRV tree. An instru-

mented version of the MIRV code is run, and the timing data dumped into a gprof-format

output file [GPROF]. The compiler can read in the MIRV file and the timing data and back

annotate the appropriate times into the MIRV tree.

Timing data is useful for optimizations such as inlining and specialization, where

optimizations should only be focused on heavily used functions.

207

7.14. Approach to High-Level Dataflow Analysis

The design and implementation of the MIRV dataflow analysis infrastructure is

described in early work done by Flautner, et. al. [Flau97, Flau98b, Flau98c], all available

at the MIRV website [MIRV].

7.15. MIRV Simulator

Another program that operates on linked MIRV programs is the MIRV simulator

[Flau98a]. This program simulates a MIRV program and can annotate the MIRV IR with

information about path frequency, branch prediction accuracy, data reference patterns, and

a host of other information. It implements system calls with stubs.

7.16. Software Engineering Considerations

During the course of developing the MIRV compiler, many software engineering

concerns have been raised. This section gives the general software design principles that

we have learned during the course of this project.

1. Simulation and compiler code should be designed to fail fast. Techniques such

as using assertions and panics liberally are one way to do this. Another way is

to use the proper simulator in SimpleScalar. For example, the si m- f ast sim-

ulator is an unsafe simulator that may produce correct output for an incorrect

program. We ran into several instances where this occurred; simply switching

over to the si m- saf e simulator caused the bugs to be manifested earlier in

the program (or to be manifested in the first place).

2. Make liberal use of other’s code. Library code such as STL and well-known

design patterns have saved a lot of time. The visitor, singleton/manager, and

factory patterns have been especially useful in this project.

3. Be paranoid about your own code. Assume that it is wrong and build in checks

to make sure that it is actually working the way you want. While this takes

additional effort up front, it saves a lot of time later and gives much more con-

fidence in the results.

208

4. In lieu of garbage collection, implement strict resource ownership and owner-

ship counting mechanisms in class objects. This exposes bugs sooner and helps

to more quickly track them to their source.

5. When a manager structure is accessed to find an object, do not create one auto-

matically for the user with default values. Assume that the programmer forgot

to create the object and return an error. Numerous logical errors resulted from

our default attribute creation code. In addition, memory usage became a prob-

lem at times because default objects were being created in places where they

were never needed; exposing these early by returning an error code would

allow these typos in the compiler code to be fixed earlier.

6. Use simple C++. This was particularly true in the earlier days when g++ could

not handle the newest C++ features. Limiting the use of the language also

facilitates multi-programmer development since each programmer need not be

familiar with the coding style used by the most sophisticated programmer.

7. The importance of data structure design cannot be overemphasized. Design

twice and code once is a rule which should be changed to “design three times

and code once.” Many errors and inefficiencies were found by thinking

through the algorithms that were implemented in the compiler.

In addition to those general principles there were several shortcomings that we dis-

covered with the STL library that we think relevant:

1. The size member in the list class is very inefficient. This design was required

to make other list operations fast, but required that we had to code around it by

keeping track of the size ourselves.

2. Part of the above problem is that iterators do not know about the container that

contains them. Thus, when an element is added to the middle of a list, the list

cannot be informed to the change. Thus, the list cannot keep track of the num-

ber of elements that it has and must resort to counting the list elements every

time list.size() is called.

3. String iterators are different than the iterators in the rest of the C++ library.

This makes coding a little difficult.

209

4. Lists do not provide convenient += operators (only ++). The += operator is

present in the advance() routine.

7.17. MIRV as a Teaching Tool

MIRV originated in 1995 from a class project in EECS 483. It is presently used in

the same course as well as the advanced compiler course EECS 583 at the University of

Michigan. In EECS 483, students write a lexical analyzer for a C-language subset, then

parse it and produce MIRV IR. The next assignment is to read the MIRV IR into a backend

lexical analysis and parsing phase and produce code for the SimpleScalar/PISA target.

The definition of the MIRV language, regression tests, and a number of tools are supplied

to the student to make this task reasonable to complete in a semester. By the end of the

semester, they have a working, though non-optimizing, compiler for a RISC target and a

subset of C.

The next course, EECS 583 course builds on that experience. The students are

given the source for the MIRV compiler, minus some functions which implement key

analyses and transformations, and they are asked to reproduce those functions. Later in the

course, student groups work on a compiler-related project. A number of groups have

attempted to retarget the compiler to different architectures; among these are ARM and

PowerPC.

7.18. Conclusions

This chapter has described the MIRV C compiler. The compiler was used as the

primary tool in the research presented in this dissertation. In addition, there are a number

of novel features in the compiler, such as the high-level intermediate form, regression test-

ing and debugging environment, MIRV high-level linker, MIRV simulator, details of

implementation of the register allocator, implementation of dataflow analysis using design

patterns.

A number of elements of MIRV were not described here. For example, the internal

operation of the compiler, how to add optimization filters, the detailed operation of each

210

backend target, and other basic instructional items are left for the online documentation

and source code comments.

211

Chapter 8

Conclusions

In this dissertation, we have discussed a number of closely related issues. After

introductory material in Chapters 1 and 2, Chapter 3 showed that aggressive compiler

optimizations require a large logical register file, in contrast to some previous work. When

all of the optimizations are applied, performance increases of up to 45% were possible.

Memory reference operations were reduced by 40% on average, and 60% or more in some

cases.

The primary challenge with a large logical file is the access time. Therefore in

Chapter 4 we proposed a new way to implement a large logical register file using a new

caching technique integrated with register renaming and physical register storage in an

out-of-order processor. We showed that a fast large register file improves performance by

about 20% over an un-cached (slower) register file and our caching technique comes close

to the performance of the fast register file.

In Chapter 5, we demonstrated that another technique to make more effective use

of processor registers, register promotion, was limited because of compiler alias analysis.

We proposed a new hardware structure called the SLAT and a compiler optimization to

allow register promotion to be applied to a larger number of variables. Benefits of this

approach were found to be largely benchmark-dependent, but it can eliminate up to 35%

of loads and up to 15% of stores for some benchmarks. This benefit can be achieved in the

context of separate compilation, though the whole-program optimizations presented in

Chapter 3 are easier to implement.

Chapter 6 then introduced some new metrics to quantify the effect of compiler

optimization on hardware complexity and analyzed the benchmarks to determine charac-

teristics of the memory operations. The issue-width equivalent metric is used to show how

212

the compiler optimizations compare to additional complexity in the issue logic of the pro-

cessor. The results showed that the optimizations were worth 1 or 2 issue widths of perfor-

mance; that is, a binary compiled with advanced optimizations and 256 registers on a 2-

issue processor performed just as well as an binary compiled with -O1 and 32 registers on

a 4-issue machine. Similarly, the cache-latency-equivalent metric was used to show how

compiler optimizations could be used to tolerate additional latency in the L1 data cache.

For some benchmarks, the L1 data cache can be removed entirely. Both of these analyses

showed that the advanced optimizations themselves (not basic optimizations used in all

compilers) were responsible for the performance benefits. Further analysis presented in

Chapter 6 showed a categorization of memory operations in several benchmarks. The

memory operations that are responsible for cache accesses and misses typically have com-

plicated addressing computations in loops and sometimes a memory address is dependent

on an immediately preceding load instruction. These are very difficult to optimize, and

since they load from a large range of addresses, the compiler cannot allocate these mem-

ory locations to registers. Other research into prefetching and miss latency toleration are

necessary to address these memory operations.

Chapter 7 described the MIRV compiler, the primary tool used for this research.

The frontend, optimization filters, and backend were described briefly. The MIRV lan-

guage and the test/debug environment used to build the compiler are described at length.

The importance of regular regression testing and a small development team to the realiza-

tion of the compiler were noted.

The techniques presented in this dissertation are not strictly additive. That is, the

results of the different proposals here cannot necessarily be concatenated one to another.

For example, some of the optimizations shown in Chapter 3 can optimize away cases that

the SLAT of Chapter 5 is intended to optimize. This particular instance arises because of

the whole-program optimization and analysis facility in MIRV. Other instances (for exam-

ple, inlining and register windowing) are simply targeting the same program overhead in

different ways and with different levels of effectiveness.

This work can be placed in a class with other work that combines compiler,

instruction set architecture, and microarchitecture research. For example, Chapter 3

showed the desirability of modifying the instruction set architecture so that a large number

213

of registers is available to the software. Chapter 4 then examined the microarchitecture

necessary to implement a large register file effectively with caching. Chapter 5 suggested

changes to the instruction set, compiler, and microarchitecture all at once to improve the

possibilities of register allocation.

This work can be extended in a number of ways in the future. One obvious way is

to attack the memory operations remaining after optimization. This can start with a study

of the effects of compiler optimizations on data prefetching performance for a number of

existing data prefetch algorithms. New caching and prefetching algorithms can be devel-

oped to address the unique characteristics of the types of memory operations that were

shown in Chapter 6 to be problematic. Of course, sequential structures such as arrays are

sometimes accessed in sequential fashion; the compiler can easily indicate this to the hard-

ware to allow it to do next sequential line prefetching or some derivative. Other structures

such as lists are sometimes accessed in a sequential fashion but they are not laid out in

memory in a sequential fashion. Other sequential structures like arrays are accessed in ran-

dom fashion, such as hash tables. The compiler can be used to insert instructions that

inform the hardware as to the region of memory that will likely be needed by the program

in the near future, since suggesting particular addresses to prefetch may be very difficult in

these contexts. Thus, the layout of the structure (sequential, non-sequential) and the pri-

mary use of it (sequential, non-sequential), must be used to determine how to successfully

keep the cache misses to a minimum. Conversion of structures and primary usage from

non-sequential to sequential may be helpful in attacking the remaining portions of the

memory problem.

Research that trades complexity and performance between the compiler and hard-

ware is ripe with possibility. For example, trends in the 1980s suggested a shift of com-

plexity upward in the system organization hierarchy, toward the software and compiler

and away from the hardware. This shift was successful in producing high performance

RISC microprocessors for a number of years and witnessed the birth of the MIPS, Alpha,

SPARC, and PA-RISC architectures. However, the push toward simpler instruction sets

and hardware gave way to another trend through the 1990s, namely putting more com-

plexity back into the microarchitecture and circuit levels to extract multiple instructions

per cycle from binaries compiled in existing instruction set architectures. This enabled

214

complex instruction set machines to become the best performing desktop and workstation

processors. Most recently, this trend is shifting yet again, with the introduction of new

instruction sets that support execution of old ones and put complexity into both the hard-

ware and software in order to extract maximum performance, either to help binary transla-

tion (Transmeta) or support speculative compiler optimizations (IA64). Research that

moves complexity across the instruction set architecture, the interface between the com-

piler and the microarchitecture, will continue to flourish as new ways of writing software

are introduced and as computers move away from the traditional desktop form-factor and

become smaller, more power-efficient, and take on new functionality.

215

Bibliography

[AD96] Analog Devices. ADSP-2106x SHARCTM User’s Manual. Second Edition (7/
96). Analog Devices, Inc. 1997.

[Aho86] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman. Compilers--Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, MA, USA, 1986.

[Ahuj95] Pritpal S. Ahuja, Douglas W. Clark and Anne Rogers. The Performance Impact
of Incomplete Bypassing in Processor Pipelines. Proc. 28th Intl. Symp. Mi-
croarchitecture, pp. 36-45, Nov, 1995.

[Augu98] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier, B. Cheng,
P. R. Eaton, Q. B. Olaniran and W. W. Hwu. Integrated Predicated and Specu-
lative Execution in the IMPACT EPIC Architecture. Proc. 25th Intl. Symp.
Computer Architecture, pp. 227-237, June, 1998.

[Ayers97] Andrew Ayers, Richard Schooler and Robert Gottlieb. Aggressive Inlining.
Proc. ACM SIGPLAN Conf. Programming Language Design and Implementa-
tion (PLDI-97), pp. 134-145, June, 1997.

[Bala99] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Transparent Dynam-
ic Optimization: The Design and Implementation of Dynamo. HP Laboratories,
Cambridge, MA. Technical Report HPL-1999-78, June 1999.

[Band87] S. Bandyopadhyay, V. S. Begwani and R. B. Murray. Compiling for the CRISP
Microprocessor. Proc. 1987 Spring COMPCON, pp. 265-286, Feb, 1987.

[Bann79] J.P. Banning. An efficient way to find the side effects of procedure calls and the
aliases of variables. Proc. Sixth POPL, Jan. 1979.

[Barr98] Luiz Andre Barroso, Kourosh Gharachorloo and Edouard Bugnion. Memory
System Characterization of Commercial Workloads. Proc. 25th Intl. Symp.
Computer Architecture, pp. 3-14, June, 1998.

[Beni93] Manuel E. Benitez and Jack W. Davidson. Register Deprivation Measurements.
Department of Computer Science, University of Virginia Tech. Report. Nov.
1993.

[Bere87a] A. D. Berenbaum, D. R. Ditzel and H. R. McLellan. Architectural Innovations
in the CRISP Microprocessor. Proc. SPRING COMPCON87, pp. 91-95, Feb,
1987.

[Bene87b] A. D. Berenbaum, D. R. Ditzel and H. R. McLellan. Introduction to the CRISP
Instruction Set Architecture. Proc. SPRING COMPCON87, pp. 86-90, Feb,
1987.

[Bern] David Bernstein, Martin E. Hopkins, and Michael Rodeh, International Busi-
ness Machines Corporation. Speculative Load Instruction Rescheduler for a
Compiler Which Moves Load Instructions Across Basic Block Boundaries
While Avoiding Program Exceptions. United States Patent 5526499. http://

216

www.patents.ibm.com.

[Blic92] David S. Blickstein, Peter W. Craig, Caroline S. Davidson, R. Neil Faiman, Jr.,
Kent D. Glossop, Richard B. Grove, Steven O. Hobbs and William B. Noyce.
The GEM Optimizing Compiler System. Digital Technical Journal Digital
Equipment Corporation, Vol. 4 No. 4, pp. 121-136, 1992.

[Brad91] David G. Bradlee, Susan J. Eggers and Robert R. Henry. The Effect on RISC
Performance of Register Set Size and Structure Versus Code Generation Strat-
egy. Proc. 18th Intl. Symp. Computer Architecture, pp. 330-339, May. 1991.

[Brig92] Preston Briggs. Register Allocation via Graph Coloring.. Rice University,
Houston, Texas, USA Tech. Report, 1992.

[Brun91] Richard A. Brunner. The VAX Architecture Reference Manual. Digital Press,
Burlington, MA, 1991.

[Burg97] Douglas C. Burger and Todd M. Austin. The SimpleScalar Tool Set, Version
2.0. University of Wisconsin, Madison Tech. Report. June, 1997.

[Carm00] Doug Carmean. Inside the Pentium 4 Processor Micro-architecture. Intel Devel-
oper Forum Slides, August 24, 2000.

[Case92] Brian Case and Michael Slater. DEC Enters Microprocessor Business with Al-
pha. Microprocessor Report, Vol. 6 No. 3, pp. 24. March, 1992.

[Chai81] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin
E. Hopkins and Peter W. Markstein. Register Allocation Via Coloring. Comput-
er Languages, Vol. 6 No. 1, pp. 47-57, 1981.

[Chai82] G. J. Chaitin. Register Allocation and Spilling via Graph Coloring. Proc. SIG-
PLAN ‘82 Symp. Compiler Construction, pp. 98-105, 1982.

[Chen91] W. Y. Chen, P. P. Chang, T. M. Conte and W. W. Hwu. The Effect of Code Ex-
panding Optimizations on Instruction Cache Design. Center for Reliable and
High-Perform ance Computing, University of Illinois, Urbana-Champaign
Tech. Report CRHC-91-17. May 1991.

[Chiu91] T.-C. Chiueh. An Integrated Memory Management Scheme for Dynamic Alias
Resolution. Proc., Supercomputing ’91: Albuquerque, New Mexico, November
18-22, 1991, pp. 682-691, Aug. 1991.

[Chow84] Frederick Chow and John Hennessy. Register Allocation by Priority-based Col-
oring. ACM SIGPLAN Notices, pp. 222-232, June, 1984.

[Chow88] Fred C. Chow. Minimizing Register Usage Penalty at Procedure Calls. SIG-
PLAN ’88 Conf. Programming Language Design and Implementation, pp. 85-
94, July 1988.

[Chow90] F. C. Chow and J. L. Hennessy. The priority-based coloring approach to register
allocation. ACM Transactions Programming Languages and Systems, Vol. 12
No. 4, pp. 501-536, 1990.

[Coop88] K. D. Cooper and K. Kennedy. Interprocedural Side-Effect Analysis in Linear
Time. ACM SIGPLAN Notices, Vol. 23 No. 7, pp. 57-66. July 1988.

217

[Coop97] Keith Cooper and John Lu. Register Promotion in C Programs. Proc. ACM SIG-
PLAN Conf. Programming Language Design and Implementation (PLDI-97),
pp. 308-319, June, 1997.

[Coop98a] Keith D. Cooper and Timothy J. Harvey. Compiler-Controlled Memory. Eighth
Intl. Conf. Architectural Support for Programming Languages and Operating
Systems, pp. 100-104, Oct, 1998.

[Cruz00] Jose-Lorenzo Cruz, Antonio Gonzalez, Mateo Valero and Nigel P. Topham.
Multiple-Banked Register File Architectures. Proc. 27th Intl. Symp. Computer
Architecture, pp. 316-325, June 2000.

[Dahl94] Peter Dahl and Matthew O’Keefe. Reducing Memory Traffic with CRegs. Proc.
27th Intl. Symp. Microarchitecture, pp. 100-104, Nov, 1994.

[DEC83] Digital Equipment Corporation. The PDP-11 Architecture Handbook. Digital
Press, Burlington, MA, 1983.

[Deif98] Keith Deifendorff. K7 Challenges Intel. Microprocessor Report, Vol. 12 No. 14
October 26, 1998.

[Ditz87a] D. R. Ditzel, H. R. McLellan and A. D. Berenbaum. Design Tradeoffs to Sup-
port the C Programming Language in the CRISP Microprocessor. Proc. Second
Intl. Conf. Architectural Support for Programming Languages and Operating
Systems-ASPLOSII, pp. 158-163, Oct, 1987.

[Ditz87b] David R. Ditzel, Hubert R. McLellan and Alan D. Berenbaum. The Hardware
Architecture of the CRISP Microprocessor. Proc. 14th Intl. Symp. Computer
Architecture, pp. 309-319, June, 1987.

[Diet88] H. Dietz and C.-H. Chi. CRegs: A New Kind of Memory for Referencing Ar-
rays and Pointers. Proc., Supercomputing ’88: November 14--18, 1988, Orlan-
do, Florida, pp. 360-367, Jan, 1988.

[Ditz82] David R. Ditzel and H. R. McLellan. Register Allocation for Free: The C Ma-
chine Stack Cache. Proc. Symp. Architectural Support for Programming Lan-
guages and Operating Systems, pp. 48-56, March, 1982.

[EDG] http://www.edg.com.

[Emam94] Maryam Emami, Rakesh Ghiya and Laurie J. Hendren. Context-sensitive inter-
procedural points-to analysis in the presence of function pointers. Proc. SIG-
PLAN ’94 Conf. Programming Lanugage Design and Implementation, pp. 242-
256, 1994.

[Emer84] J. S. Emer and D. W. Clark. A Characterization of Processor Performance in the
VAX-11/780. Proc. 11th Symp. Computer Architecture, pp. 301-310, June,
June 1984.

[Fark96] Keith I. Farkas, Norman P. Jouppi and Paul Chow. Register File Design Con-
siderations in Dynamically Scheduled Processors. Proc. Second Intl. Symp.
High Performance Computer Architecture, pp. 186-192, Jan. 1996.

[Flau97] Kris Flautner and David Greene. Optimization of MIRV Programs: Application

218

of structural dataflow. December 11, 1997. Available at [MIRV].

[Flau98a] Krisztian Flautner, Gary S. Tyson and Trevor N. Mudge. MirvSim: A high level
simulator integrated with the Mirv compiler. Proc. 3rd Workshop Interaction
between Compilers and Computer Architectures (INTERACT-3), Oct. 1998.

[Flau98b] Kris Flautner, David Greene, and Trevor Mudge. MirvKit: A framework for
compiler and computer architecture research. May 11, 1998. Available at
[MIRV].

[Flau98c] Krisztián Flautner, David Greene, Matthew Postiff, David Helder, Charles
Lefurgy, Peter Bird, and Trevor Mudge. Design of a High Level Intermediate
Representation for Attribute-based Analysis. October 9, 1998. Available at
[MIRV].

[Gall94] David M. Gallagher, William Y. Chen, Scott A. Mahlke, John C. Gyllenhaal
and Wen-mei W. Hwu. Dynamic memory disambiguation using the memory
conflict buffer. ACM SIGPLAN Notices, Vol. 29 No. 11, pp. 183-193. Nov.
1994.

[Gamm95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison Wesley Long-
man, 1995.

[GCC] http://gcc.gnu.org.

[GHS] http://www.ghs.com.

[Good96] D. W. Goodwin and K. D. Wilken. Optimal and Near-optimal Global Register
Allocation Using 0-1 Integer Programming. Software Practice and Experience,
Vol. 26 No. 8, pg. 929. Aug, 1996.

[Gonz97] Antonio Gonzalez, Mateo Valero, Jose Gonzalez and T. Monreal. Virtual Reg-
isters. Proc. Intl. Conf. High-Performance Computing, pp. 364-369, 1997.

[Gonz98] Antonio Gonzalez, Jose Gonzalez and Mateo Valero. Virtual-Physical Regis-
ters. Proc. 4th Intl. Symp. High-Performance Computer Architecture (HPCA-
4), pp. 175-184, Feb. 1998.

[GPROF] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: A Call
Graph Execution Profiler. SIGPLAN Notices, Vol. 17, No. 6, pp. 120-126, June
1982.

[Great] Great Microprocessors of the Past and Present. http://www.microprocessor.ss-
cc.ru/great.

[Green98] David Greene. Profile-Guided Function Specialization in the MIRV Compiler.
September 15, 1998. Available at [MIRV].

[Gwen94a]Linley Gwennap. Digital Leads the Pack with 21164. Microprocessor Report,
Vol. 8, No. 12. September 12, 1994.

[Gwen94b]Linley Gwennap. PA-8000 Combines Complexity and Speed. Microprocessor
Report, Vol. 8, No. 15. November 14, 1994.

219

[Gwen95] Linley Gwennap. Intel’s P6 Uses Decoupled Superscalar Design. Microproces-
sor Report, Vol. 9 No. 2 February 16, 1995.

[Gwen96] Linley Gwenapp. Digital 21264 Sets New Standard. Microprocessor Report,
Vol. 10, No. 14. October 28, 1996, pp. 11-16.

[Gwen98] Linley Gwennap. Mendocino Improves Celeron. Microprocessor Report, Vol.
12, No. 11, August 24, 1998.

[Half00a] Tom R. Halfhill. SiByte Reveals 64-Bit Core for NPUs. Microprocessor Report,
Vol. 14 No. 6 June 2000.

[Half00b] Tom R. Halfhill. Transmeta Breaks x86 Low-Power Barrier. Microprocessor
Report, Vol. 14 No. 2 February 2000.

[Hall96] Mary W. Hall, Jennifer M. Anderson, Saman p. Amarasinghe, Brian R. Mur-
phy, Shih-Wei Liao, Edouard Bugnion and Monica S. Lam. Maximizing multi-
processor performance with the SUIF compiler. Computer, Vol. 29 No. 12, pg.
84. Dec, 1996.

[Harb82] Samuel P. Harbison. An Architectural Alternative to Optimizing Compilers.
Proc. Symp. Architectural Support for Programming Languages and Operating
Systems, pp. 57-65, March, 1982.

[Henn96] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, San Mateo, CA, 1996.

[Heggy90] B. Heggy and M. L. Soffa. Architectural Support for Register Allocation in the
Presence of Aliasing. Proc., Supercomputing ’90: November 12--16, 1990,
New York Hilton at Rockefeller Center, New York, New York, pp. 730-739,
Feb, 1990.

[Hook97] R. J. Hookway and M. A. Herdeg. DIGITAL FX!32: Combining Emulation and
Binary Translation. Digital Technical Journal Digital Equipment Corporation,
Vol. 9 No. 1, pg. 3, 1997.

[IA6499] Intel IA-64 Application Developer’s Architecture Guide. May 1999. Order
Number: 245188-001. Available at http://developer.intel.com/design/ia64/
devinfo.htm.

[IBM98] IBM. Enterprise Systems Architecture/390 Principles of Operation. IBM,
Poughkeepsie, New York, 1998.

[Impact] http://www.crhc.uiuc.edu/Impact.

[Inte96] Intel Corporation. Penium Pro Family Developer’s Manual. Volume 2: Pro-
grammer’s Reference Manual. Order Number 242691. 1996.

[Kell75] Robert M. Keller. Look-Ahead Processors. ACM Computing Surveys, Vol. 7
No. 4, pp. 177-195. Dec, 1975.

[Kenn] H. Roland Kenner, Alan Karp, and William Chen, Institute for the Develoment
of Emerging Architecture, L.L.C. Method and apparatus for implementing
check instructions that allow for the reuse of memory conflict information if no
memory conflict occurs. United States Patent 5903749. http://www.pat-

220

ents.ibm.com.

[Kilb62] T. Kilburn, D. B. G. Edwards, M. J. Lanigan and F. H. Sumner. One-level Stor-
age System. IRE Transactions Electronic Computers, Vol. EC-11 No. 2, pp.
223-235. April, 1962.

[Kiyo] Tokuzo Kiyohara, Wen-mei W. Hwu; William Chen, Matsushita Electric In-
dustrial Co., Ltd., and The Board of Trustees of the University of Illinois. Mem-
ory conflict buffer for achieving memory disambiguation in compile-time code
schedule. United States Patent 5694577. http://www.patents.ibm.com.

[Kiyo93] T. Kiyohara, S. Mahlke, W. Chen, R. Bringmann, R. Hank, S. Anik and W.-M.
Hwu. Register Connection: A New Approach to Adding Registers into Instruc-
tion Set Architectures. Proc. 20th Intl. Symp. Computer Architecture, pp. 247-
256, May, 1993.

[Klai00] Alexander Klaiber. The Technology Behind CrusoeTM Processors. Transmeta
Corporation. January 2000.

[Kong98] Timothy Kong and Kent. D. Wilken. Precise Register Allocation for Irregular
Architectures. Proc. ACM SIGPLAN’98 Conf. Programming Language Design
and Implementation (PLDI), pp. 297-307, 1998.

[Kuck78] David J. Kuck. The Structure of Computers and Computations. John Wiley &
Sons, Pittsburgh, Pennsylvania, 1978.

[LCC] http://www.cs.princeton.edu/lcc.

[Lo98] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu and Peng Tu. Reg-
ister Promotion by Sparse Partial Redundancy Elimination of Loads and Stores.
Proc. ACM SIGPLAN’98 Conf. Programming Language Design and Imple-
mentation (PLDI), pp. 26-37, 1998.

[Lo99] Jack L. Lo, Sujay S. Parekh, Susan J. Eggers, Heny M. Levy, Dean M. Tullsen.
Software-Directed Register Deallocation for Simultaneous Multithreaded Pro-
cessors. IEEE Transactions on Parallel and Distributed Systems, Vol. 10, No. 9,
September 1999, pp. 922-933.

[Lone61] William Lonergan and Paul King. Design of the B5000 system. Datamation,
Vol. 7 No. 5, pp. 28-32. May, 1961.

[Loza95] Luis A. Lozano C. and Guang R. Gao. Exploiting Short-Lived Variables in Su-
perscalar Processors. Proc. 28th Intl. Symp. Microarchitecture, pp. 292-302,
Nov. 1995.

[Lu98] John Lu. Interprocedural Pointer Analysis for C. Rice University, Houston,
Texas, USA Tech. Report. April, 1998.

[MIRV] http://www.eecs.umich.edu/mirv.

[Mahl92a] Scott A. Mahlke, William Y. Chen, Pohua P. Chang and Wen-mei W. Hwu.
Scalar Program Performance on Multiple-Instruction-Issue Processors with a
Limited Number of Registers. Proc. 25th Hawaii Intl. Conf. System Sciences,
pp. 34-44, Jan 6-9, 1992.

221

[Mahl92b] S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal, W. W. Hwu, P. P. Chang and T.
Kiyohara. Compiler code transformations for superscalar-based high-perfor-
mance systems. Proc. Supercomputing ’92: Minneapolis, Minnesota, Novem-
ber 16-20, 1992, pp. 808-817, Aug. 1992.

[Mart97] Milo M. Martin, Amir Roth, and Charles N. Fischer. Exploiting Dead Value In-
formation. Proc. 30th Intl. Symp. Microarchitecture (MICRO’97), Dec. 1997.

[Monr99] T. Monreal, A. Gonzalez, M. Valero, J. Gonzalez and V. Vinals. Delaying Phys-
ical Register Allocation through Virtual-Physical Registers. Proc. 32nd Intl.
Symp. Microarchitecture, pp. 186-192, Nov. 1999.

[Moor65] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, Vol. 38 No. 8, pp. 114-117. April, 1965.

[Moud93] M. Moudgill, K. Pingali and S. Vassiliadis. Register Renaming and Dynamic
Speculation: An Alternative Approach. Proc. 26th Intl. Symp. Microarchitec-
ture (MICRO’93), pp. 202-213, Dec. 1993.

[MDR99] Chart Watch: Workstation Processors. Microprocessor Report, Vol. 13 No. 1,
pp. 31. Jan, 1999.

[MDR99b]Chart Watch: Workstation Processors. Microprocessor Report, Vol. 15, No. 14.
October 25, 1999.

[Much97] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 2929 Campus Drive, Suite 260, San Mateo, CA 94403,
USA, 1997.

[Nico89] Alexandru Nicolau. Run-Time Disambiguation: Comping with Statically Un-
predictable Dependencies. IEEE Transactions Computers, Vol. 38 No. 5, pp.
663-678. May, 1989.

[Nowa92] S. Nowakowski and M. T. O’Keefe. A CRegs Implementation Study Based on
the MIPS-X RISC Processor. Intl. Conf. Computer Design, VLSI in Computers
and Processors, pp. 558-563, Oct, 1992.

[PTSC] http://www.ptsc.com/psc1000/overview.html.

[Patt81] David A. Patterson and Carlo H. Sequin. RISC I: A Reduced Instruction Set
VLSI Computer. Proc. 8th Intl. Symp. Computer Architecture, Vol. 32 No. CS-
93-63, pp. 443-457. Nov. 1981.

[Post99] Matthew A. Postiff and Trevor Mudge. Smart Register Files for High-Perfor-
mance Microprocessors. University of Michigan CSE Technical Report CSE-
TR-403-99, June 1999.

[Post00a] Matthew Postiff, David Greene, Charles Lefurgy, Dave Helder, Trevor Mudge.
The MIRV SimpleScalar/PISA Compiler. University of Michigan CSE Techni-
cal Report CSE-TR-421-00, April 2000. Available at [MIRV].

[Post00b] Matthew Postiff, David Greene, and Trevor Mudge. Exploiting Large Register
Files in General Purpose Code. University of Michigan Technical Report CSE-
TR-434-00, October 2000. Available at [MIRV].

222

[Post00c] Matthew Postiff, David Greene, Greene and Trevor Mudge. The Store-Load
Address Table and Speculative Register Promotion. Proc. 33rd Annual Intl.
Symp. Microarchitecture (Micro33), Monterrey, CA. December 10-13, 2000,
pp. 235-244.

[Rein98] August G. Reinig. Alias Analysis in the DEC C and DIGITAL C++ Compilers.
Digital Technical Journal, Vol. 10 No. 1, pp. 48-57. Dec, 1998.

[Rixn00] Scott Rixner, William J. Dally, Brucek Khailany, Peter Mattson, Ujival J. Ka-
pasi and John D. Owens. Register Organization for Media Processing. Proc. 6th
Intl. Symp. High-Performance Computer Architecture, pp. 375-386, Jan. 2000.

[Sast98] A. V. S. Sastry and Roy D. C. Ju. A New Algorithm for Scalar Register Promo-
tion Based on SSA Form. Proc. ACM SIGPLAN’98 Conf. Programming Lan-
guage Design and Implementation (PLDI), pp. 15-25, 1998.

[Siew82] Daniel P. Siewiorek, C. G. Bell and A. Newell. Computer Structures: Principles
and Examples. McGraw-Hill, Pittsburgh, Pennsylvania, 1982.

[Smit82] Alan Jay Smith. Cache Memories. ACM Computing Surveys, Vol. 14 No. 3, pp.
473-530. Sep, 1982.

[SGI] http://oss.sgi.com/projects/Pro64.

[Siem97] Siemens. TriCore Architecture Overview Handbook. Version 1.1. September
17, 1997.

[Sima00] Dezso Sima. The Design Space of Register Renaming Techniques. IEEE Micro,
Vol. 20 No. 5, pp. 70-83. Sep/Oct 2000.

[Site79] Richard L. Sites. How to Use 1000 Registers. Proc. 1st Caltech Conf. VLSI, pp.
527-532, Jan, 1979.

[Site92] Richard L. Sites. The Alpha Architecture Reference Manual. Digital Press, Bur-
lington, MA, 1992.

[Srin98] Srikanth T. Srinivasan and Alvin R. Lebeck. Load Latency Tolerance in Dy-
namically Scheduled Processors. Proc. 31st Intl. Symp. Microarchitecture, pp.
148-159, Nov. 30-Dec 2, 1998.

[SUIF] http://suif.stanford.edu.

[Swen88] John A. Swenson and Yale N. Patt. Hierarchical Registers for Scientific Com-
puters. Proc. Intl. Conf. Supercomputing, pp. 346-353, July 1988.

[SysV91] UNIX System Laboratories Inc. System V Application Binary Interface: MIPS
Processor Supplement. Unix Press/Prentice Hall, Englewood Cliffs, New Jer-
sey, 1991.

[Taka63] S. Takahashi, H. Nishino, K. Yoshihiro and K. Fuchi. System Design of the
ETL Mk-6 Computers. Information Processing 1962, Proc. IFIP Congress, pg.
690, 1963.

[TI97] Texas Instruments. TMS320 DSP Development Support Reference Guide and
Addendum. August 1997. Literature Number SPRU226.

223

[TM1K] Philips Electronics. TM1000 Preliminary Data Book. TriMedia Product Group,
8111 E. Arques Avenue, Sunnyvalue, CA 94088. 1997.

[Tami83] Yuval Tamir and Carlo H. Sequin. Strategies for managing the register file in
RISC. ACM Transactions Computer Systems, Vol. 32 No. 11, pp. 977-988.
Aug. 1983.

[Toma67] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic
Units. IBM Journal Research and Development, Vol. 11 No. 1, pp. 25-33. Jan,
1967.

[Trimaran] http://www.trimaran.org.

[Tyso97] Gary S. Tyson and Todd M. Austin. Improving the Accuracy and Performance
of Memory Communication Through Renaming. Proc. 30th Intl. Symp. Mi-
croarchitecture, pp. 218-227, Dec, 1997.

[Vand00] Steven P. Vanderwiel and David J. Lilja. Data Prefetch Mechanisms. ACM
Computing Surveys, Vol. 32, No. 2, June 2000, pp. 174-199.

[Vlao00] Stevan Vlaovic, Edward S. Davidson and Gary S. Tyson. Improving BTB Per-
formance in the Presence of DLLs. Proc. 33rd Intl. Symp. Microarchitecture
(MICRO 2000), pp. 77-86, Dec. 10-13, 2000.

[Wall86] David W. Wall. Global Register Allocation at Link Time. Proc. SIGPLAN’86
Symp. Compiler Construction, pp. 264-275, July, 1986.

[Wall88] David W. Wall. Register Windows vs. Register Allocation. ACM SIGPLAN
Notices, Vol. 23 No. 7, pp. 67-78. July 1988.

[Weav94] David L. Weaver and Tom Germond. The SPARC Architecture Manual, Ver-
sion 9. Sparc International and PTR Prentice Hall, Englewood Cliffs, NJ, 1994.

[Wilk65] M. V. Wilkes. Slave Memories and Dynamic Storage Allocation. IEEE Trans-
actions Electronic Computers, Vol. EC-14 No. 2, pp. 270-271. April, 1965.

[Wils95] Robert P. Wilson and Monica S. Lam. Efficient Context-Sensitive Pointer Anal-
ysis for C Programs. Proc. ACM SIGPLAN'95 Conf. Programming Language
Design and Implementation (PLDI), pg. 1, 1995.

[Wing] Malcom J. Wing and Edmund J. Kelly, Transmeta Corporation. Method and ap-
paratus for aliasing memory data in an advanced microprocessor. United States
Patent 5926832. http://www.patents.ibm.com.

[Yeag96] Kenneth C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Mi-
cro, Vol. 16 No. 2, pp. 28-40. April, 1996.

[Yung95a] Robert Yung and Neil C. Wilhelm. Caching Processor General Registers. Intl.
Conf. Computer Design, pp. 307-312, Oct, 1995.

[Yung95b] Robert Yung and Neil C. Wilhelm. Caching Processor General Registers. Sun
Microsystems Laboratories Tech. Report. June, 1995.

[Zala00] Javier Zalamea, Josep Llosa, Eduard AyguadE and Mateo Valero. Two-level
Hierarchical Register File Organization for VLIW Processors. European Center

224

of Parallelism of Barcelona Technical Report UPC-CEPBA-2000-20. June 27,
2000.

	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	1.1. Theoretical Framework

	1.1.1. The Source of Memory Operations
	1.1.2. Alleviating the Memory Bottleneck
	1.2. Foundational Assumptions

	Background
	2.1. Registers, Caches and Memory
	2.2. Register File Design

	2.2.1. Large Architected Register Files
	2.2.2. No Architected Register File
	2.2.3. Register Windows
	2.3. Register Allocation and Spilling
	2.4. Alias analysis

	2.4.1. Background on Alias Analysis
	2.4.2. Modern Processor Memory Disambiguation
	2.4.3. Static Analysis
	2.4.4. Register Promotion
	2.4.5. CRegs
	2.4.6. EPIC
	2.4.7. Memory Renaming
	2.4.8. Other
	2.5. Summary

	Register Utilization in Integer Codes
	3.1. Introduction
	3.2. Background and Motivation
	3.3. Compilation Environment

	3.3.1. Register Promotion
	3.3.2. Link-time Global Variable Register Allocation
	3.3.3. Inlining
	3.4. Simulation Environment
	3.5. Experiment Results

	3.5.1. Register Promotion
	3.5.2. Inlining
	3.5.3. Combined Results
	3.5.4. Data Cache Effects
	3.5.5. Instruction Bandwidth and Cache Effects
	3.6. Theoretical Register Requirements

	3.6.1. Variable Count Arguments
	3.6.2. Instruction Count Argument
	3.6.3. Cross-Function Argument
	3.7. Register Windows Simulations
	3.8. Related Work

	3.8.1. Intra-Procedural Allocation
	3.8.2. Inter-Procedural Allocation
	3.8.3. Register Promotion
	3.9. Conclusions

	Register Caching
	4.1. Introduction
	4.2. Background and Motivation

	4.2.1. Register Renaming
	4.2.2. Register Architecture
	4.2.3. The Physical Register Cache
	4.3. The Physical Register Cache Design

	4.3.1. Microarchitecture Components
	4.3.2. Design Constraints
	4.4. Operation of the Physical Register Cache
	4.5. Physical Register Cache Advantages and Disadvantages

	4.5.1. Advantages Due to the Split LRF and PRF
	4.5.2. Advantages Due to the Use of Virtual Register Numbers
	4.5.3. Advantages Due to the Direct Virtual to Physical Mapping
	4.5.4. Other Advantages
	4.5.5. Disadvantages
	4.6. Experimental Evaluation

	4.6.1. Experiment Setup
	4.6.2. Results
	4.6.3. Results with Perfect Prediction, Caching, and TLBs
	4.6.4. Results of Varying Cache Size
	4.6.5. Results of Varying Available Register Ports
	4.7. Comparison to Previous Work
	4.8. Conclusions

	Store-Load Address Table and Speculative Register Promotion
	5.1. Introduction
	5.2. Background and Motivation
	5.3. The Store-Load Address Table (SLAT)
	5.4. Speculative Register Promotion Using the SLAT
	5.5. Experimental Setup
	5.6. Experimental Evaluation

	5.6.1. Register Promotion
	5.6.2. Speculative Register Promotion using the SLAT
	5.7. Background and Related Work
	5.8. Conclusions

	Effect of Compiler Optimizations on Hardware Requirements
	6.1. Introduction
	6.2. Effect of Compiler Optimization on Cache Performance
	6.3. Hardware-Compiler Trade-offs for the Cache
	6.4. Hardware-Compiler Trade-offs for Issue Width
	6.5. Characterization of Memory Operations

	6.5.1. Experimental Setup
	6.5.2. From the Viewpoint of the Memory System
	6.5.3. From the Viewpoint of the Instruction Stream
	6.5.4. Correlation of Data Address and PC with Access and Misses
	6.5.5. Source Code Examples
	6.6. Conclusions

	Design and Engineering of the MIRV C Compiler
	7.1. Introduction
	7.2. History and Development Team
	7.3. Overall Compilation flow
	7.4. MIRV Frontend
	7.5. The MIRV High Level Intermediate Language

	7.5.1. Basic Symbol Information: Unids
	7.5.2. Packaging Constructs
	7.5.3. Simple Type Declarations
	7.5.4. Complex Type Declarations
	7.5.5. Function Declarations
	7.5.6. Constant Declarations
	7.5.7. Function Definitions
	7.5.8. Global and Local Variable Declarations
	7.5.9. Statements
	7.5.10. Looping Constructs
	7.5.11. Simple Control Constructs
	7.5.12. Complex Control Structures
	7.5.13. Attributes
	7.5.14. Potential MIRV IR Modifications
	7.6. MIRV High-Level Linker
	7.7. MIRV Filters

	7.7.1. The Register Promote Filter
	7.8. The MIRV Backend and Low-Level Intermediate Form
	7.9. Register Allocation and Spilling

	7.9.1. Coalescing
	7.9.2. Spilling
	7.10. Comparisons to other compilers
	7.11. MIRV Example
	7.12. Test and Debug Environment

	7.12.1. Regression testing
	7.12.2. The bughunt Tool
	7.12.3. The cleaver and machete Tool
	7.12.4. The brutal tool
	7.12.5. The lmrvOptimizeAndRun Tool
	7.12.6. The cmdshrinker Tool
	7.12.7. Transformation Limit Tool
	7.12.8. Miscellaneous Test Generator Tools
	7.12.9. The mirvbot Tool
	7.12.10. The ssprofcomp tool
	7.12.11. Select Optimization Subset (SOS)
	7.12.12. Generic findbug
	7.12.13. Future Tools
	7.13. Profiling Support in MIRV

	7.13.1. Block Profile Filter
	7.13.2. Value Profile Filter
	7.13.3. Time Profile Filter
	7.14. Approach to High-Level Dataflow Analysis
	7.15. MIRV Simulator
	7.16. Software Engineering Considerations
	7.17. MIRV as a Teaching Tool
	7.18. Conclusions

	Conclusions
	Bibliography

