HIGH PERFORMANCE COMMUNICATIONS FOR
HYPERCUBE MULTIPROCESSORS

by
Gregory Dean Buzzard

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1988

Doctoral Committee:
Associate Professor Trevor N. Mudge, Chairman
Professor Daniel E. Atkins III
Professor Ronald J. Lomax
Professor William R. Martin

RULES REGARDING THE USE OF
MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertations submitted
to The University of Michigan and made available through University Micro-
films International or The University of Michigan are open for inspection,
but they are to be used only with due regard for the rights of the author.
Extensive copying of the dissertation or publication of material in excess of
standard copyright limits, whether or not the dissertation has been copy-
righted, must have been approved by the author as well as by the Dean of
the Graduate School. Proper credit must be given to the author if any
material from the dissertation is used in subsequent written or published
work.

© Gregory Dean Buzzard 1988
All Rights Reserved

To my family and friends

ii

ACKNOWLEDGEMENTS

I would like to thank the members of my dissertation committee: Dan Atkins, Ron
Lomax, Bill Martin and Trevor Mudge for their helpful comments and constructive crit-
icism. Special thanks go to my advisor and friend, Trevor Mudge, for his many useful
comments and observations on my thesis dissertation, papers and reports, and on the
graduate school experience, in general. I also appreciate the efforts of my fellow stu-
dents, Don Winsor, Tarek Abdel-Rahman, Kunle Olukotun, Chuck Jerian and Mark Segal
who have provided assistance in many stages of this work.

Financial support has been provided by a Kodak Ph.D. fellowship, the Advanced
Computer Architecture Laboratory, the Robotics Research Laboratory and the Center for
Information Technology Integration. The computer facilities of the latter three groups
have been an invaluable resource in the development and production of this dissertation.

Finally, I’d like to thank my moral support group which includes many more people
than I could list here. Special thanks, however, go to my Mother, for her continual
support; to Patty Dvorak, for her encouragement in the early stages of this effort, and
to Cheryl Huntington, for her support, encouragement and efforts to straighten out my

many convoluted prepositional phrases. What a long strange trip it’s been.

ifi

TABLE OF CONTENTS

DEDICATION
ACKNOWLEDGEMENTS
LIST OF FIGURES

LIST OF TABLES

CHAPTER

1 INTRODUCTION

1.1 Hypercube Connected Multiprocessors
1.1.1 Structural Definition
1.1.2 Advantageous Features.
1.1.3 Limitations o v v vt i
1.2 Hypercube Communications
1.3 History and Background
1.4 Goal and Scope of this Dissertation
1.5 Major Contributions o o

2 CHARACTERIZATION OF COMMUNICATIONS

2.1 Classification of Communications
2.1.1 Types of Communication
2.1.2 Modes of Communication
2.1.3 Taxonomy of Modes and Types
2.2 Classification of Programs
2.3 Logical Communication Topologies
2.3.1 Efficient Homomorphic Embeddings
2.3.2 Inefficient Embeddings

3 NEAR NEIGHBOR COMMUNICATIONS

3.1 Existing Implementations
31,1 NCUBE-Vertexuououuuuuenen..
312 Caltech-CrOS,
3.1.3 Broadcast Algorithms

iv

ii
iii
vii

1.4

13

13
14
15
17
18
21
23
26

32 Points of Inefficiency oL 37
3.3 Alternatives within the Existing Architecture 39
3.4 Near Neighbor Execution Time Model 41
3.5 ExperimentalResults 44
35.1 BasicParameterst 44

3.52 Instrumented Programso o v v v v v 49

3.6 Communications Architecture Support 61
361 ModelledResults 62

3.7 ChapterHighlights 69
4 RANDOM COMMUNICATIONS 72
4,1 Software Communication Environment Issues 72
4.1.1 Communication Instruction Semantics 74

4.2 Message Transport Strategies 717
4.3 Existing Implementations00 80
431 NCUBE iiiinnnennn 80

432 InteliPSC/2 i e 82

433 Ametek2010. e 83

434 JPLHyperswitch. 85

4.4 Message Transport Comparisons 86
44.1 Investigative Approach. 87

442 Comparitive Observations 90

4.5 Communication Processor Design Issues 102
4.6 Chapter Highlights, 109
5 COMMUNICATIONS SYSTEM ARCHITECTURE 111
5.1 Architectural Overview v v e 111
5.1.1 Communication System Queues 116

5.1.2 Message Initiation and Reception 120

5.2 Sequential Bottleneck at Source 124
5.3 Deadlock Avoidance 126
5.4 Implementation of Functional Units 127
541 BufferRAM 128

542 PacketBufferUnits 129

543 CrossbarSwitch 134

544 NodeOutputPort 136

545 NodeImputPort 138

54.6 Armrival TrackingUnit 140

547 ControlUnit 141

548 FlowControlUnit 142

5.5 Summary of Functional Unit Implementations 145
5.6 Bufferand PacketSizes 145
5.7 SimulatiomResults 145
5.8 Chapter Highlights 153

6 CONCLUSION
6.1 Future Work

BIBLIOGRAPHY

vi

1.1

2.1
22
2.3
24
2.5

3.1
3.2
33
34
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

LIST OF FIGURES

Hypercubes of dimension 0, 1,2,and 3.

Embedding of a one-dimensional grid.
Embedding of a two-dimensional (4 x4) grid.
Embedding of an odd dimensioned (4 x3) grid.
Homomorphic embedding of a two-leveltree..
Efficient embedding of a two-level tree.

Node-to-Node Communication (Vertex).« « o v v v v v
Global Send Routine.« . v i v vt iv i e e
Broadcast Spanning Tree. o oo it
Basic Ring Message Times.« ..o oo v
Basic Ring Message Times.
Basic Ring Message Times.
Send/Receive Overhead Times. oo v
Remote Data Requirements for Node A.
Linpack LU Factorization (Standard Vertex).
Linpack LU Factorization (Extended Vertex).
Coprocessor Interface Protocol. oo L
Linpack LU Factorization (Proposed Scheme).
Linpack LU Factorization (Asynchronous Broadcast, Proposed Scheme

Semantics). . . . v e e e e e e e e e e e e e e e e e e e

Send header block. v v i i e e e e e e e e e
Broadcast header block.« c i i e e e
Near neighbor broadcast header block.
Receive headerblock.« . o i i i v i v s e e e
Legend Explanation for Simulation Figures.
Message Time: Flooded Traffic, Len = 16, Dest =uni().
Message Time: Flooded Traffic, Len = exp(512), Dest = uni().
Message Time: Flooded Traffic, Len = nor(512, 256), Dest = uni(). . . .
Message Time: Flooded Traffic, Len = 8192, Dest = wmiQ.
Message Time: Flooded Traffic, Len = nor(8192, 2048), Dest = uni(). . .
Message Time: Flooded Traffic, Len = exp(512), Dest = dpf(0.2).
Message Time: Flooded Traffic, Len = exp(512), Dest = sl(2, 0.8).

Message Time: Flooded Traffic, Len = 16, Dest = dpf(0.2).

vii

4.14 Message Time: Flooded Traffic, Len = 16, Dest = s1(2, 0.8).
4.15 Message Time: Freq = exp(512), Len = exp(512), Dest = uni().
4.16 Message Time: Freq = exp(1536), Len = exp(512), Dest = uni(). RN
4.17 Message Time: Freq = exp(2560), Len = exp(512), Dest = uni(). .o
4.18 Message Time: Freq = exp(8192), Len = exp(8192), Dest = uni().
4.19 Message Time: Freq = exp(24486), Len = exp(8192), Dest = uni(). . . .
4.20 Message Time: Freq = exp(40960), Len = exp(8192), Dest = uni(). . . .
421 Message Time: Freq = exp(16), Len <= exp(16), Dest =uni().
4.22 Message Time: Freq = exp(48), Len = exp(16), Dest =uni().
4.23 Message Time: Freq = exp(80), Len = exp(16), Dest=uni().
4.24 Message Time: Freq = 1536, Len = nor(512,256), Dest = uni().
4.25 Message Time: Freq = 2560, Len = nor(512,256), Dest = uni().
4.26 Message Time: Freq = 48, Len = nor(16,8), Dest = uni().
4,27 Message Time: Freq = 80, Len = nor(16,8), Dest = uni().
428 Wormhole Routing Blockage.

5.1 Major Functional Units of Communication Processor.
52 Message Send QuUeues. oo oo e e e e e
53 Message Packet Format. oo
54 PacketBuffer Unit.
5.5 Connectivity of Input and Qutput Ports.
5.6 A 1-of-8 Arbiter Constructed from a Tree of 1-of-2 Arbiters.
57 NodeOutput Port. oo v vt v vt e et v

58 NodeInputPort.« i i iv i v i v
59 Arrval Tracking Unit. oo oo
5.10 Flow Control Circuit. v o v v v i vt e et o v o
5.11 Spice Simulation of Flow Control Circuit.
5.12 Mean Message Times, Length =exp(512).
5.13 Mean Message Times, Length =exp(2048).
5.14 Message Times, Buffer/Packet Tradeoffs, Length = exp(512).

5.15 Message Times, Buffer/Packet Tradeoffs, Length = exp(2048).

viil

94
96
97
97
98
98
99
99

100
102
103

2.1
2.2

3.1
32
33
34
3.5
3.6
3.7
3.8
3.9

3.10

5.1

LIST OF TABLES

Communication Mode Taxonomy. oo v v v v v 0 v v v 18
Index of Definitions. o v v ittt e 28
Basic Communication Performance. 45
NCUBE Send/Receive Call and Polling Overhead. 48
NCUBE Interrupt Driven Protocol Overhead. 49
Sobel Execution Profile, Standard Vertex. 53
Sobel Execution Profile, Extended Vertex. 56
Linpack Execution Profile, Extended Vertex. 59
Sobel Execution Profile, Proposed Scheme. 65
Linpack Execution Profile, (Proposed Scheme). 67
Linpack Performance for Standard and Extended Vertex and the Proposed

Communication Scheme. i e 68
Linpack Effective Processor Utilization for Standard and Extended Vertex

and the Proposed Communication Scheme. 69
Transistor Sizes (in microns) for Flow Control Unit. 144

ix

CHAPTER 1

INTRODUCTION

Conventional supercomputers rely upon pipelined operations and ever faster basic
components to achieve their high levels of performance. The incremental cost of faster
components translates into super price tags, even for machines of modest supercomputer
performance. Pipelining has been exploited close to its practical limit, and its benefits are
restricted to vector based arithmetic computations. Thus, massively parallel supercom-
puters built by interconnecting hundreds, or even thousands, of small and inexpensive
microprocessors are beginning to emerge as viable alternatives to the more conventional
supercomputers mentioned above. The success of massively parallel supercomputers will
hinge on the ability of the individual processors to cooperate productively on the exe-
cution of large programs. This cooperation requires both software tools to aid in the
development of algorithms from which inherent parallelism can easily be extracted and
an interconnection architecture that is sufficiently efficient so that it does not negate the
benefits of parallel execution. The remainder of this section will describe the major
distinguishing characteristics of parallel computer systems.

One of these characteristics is whether or not the individual processors share a com-
mon instruction stream. Systems with processors that do share a common instruction
stream are classified as SIMD, single instruction stream multiple data stream, comput-
ers [Fly66]. Systems in which individual processors fetch and execute independent in-

struction streams are classified as MIMD, multiple instruction stream multiple data stream.

MIMD machines allow several different applications to be executed simultaneously by
disjoint groups of processors. This can be of great practical importance because it al-
lows several users to verifying and debug their individual codes simultaneously. The
simultaneous execution of independent sections of code may also be required by cer-
tain classes of applications where the actions of individual processors are influenced by
external events. Real-time simulations comprise one such class.

Another important distinguishing characteristic is the memory organization. Shared-
memory systems, in which a global memory is accessible by all processors, are often
considered easier to program than distributed-memory systems. However, they require
the use of synchronization protocols to prevent simultaneous access by more than one
processor. They are also susceptible to large system-wide bottlenecks as processors
repeatedly compete for access to common memory units. Distributed-memory systems
provide local private memory for each processor. Information is exchanged between
processors by sending and receiving messages. Frequently, this message passing can be
controlled in an orderly fashion to minimize the competition for shared resources such
as communication links and buffers.

The choice of interconnection topology for distributed-memory multiprocessors in-
volves satisfying many requirements that frequently conflict. As a simple example, at one
extreme we can consider a unidirectional ring interconnection in which each processor
has only one inbound and one outbound communication link. Routing is simple, but the
average distance between processors grows linearly with N, the number of processors.
Clearly this is undesirable for large N. At the other extreme is a fully connected network
in which each processor has a direct connection to every other processor. While this
reduces the average distance between processors to one and retains simple routing, it
also requires that the number of (bidirectional) communication links grow as %(N -1
and the number of processor connections (fanout) as N — 1. It is clearly impractical to
build a fully connected computer for large V. As we show below, a topological structure

known as the binary hypercube provides a reasonable compromise to these conflicting

requirements.

1.1 Hypercube Connected Multiprocessors

In the hypercube interconnection topology, both the average distance between proces-
sors and the complexity of the connections between processors grow logarithmically with
the number of processors in the system. Hypercubes also possess mathematical properties
that further contribute to their usefulness in parallel computer systems. The properties,

features, and limitations of hypercubes will be examined in the following sections.

1.1.1 Structural Definition

An n-dimensional hypercube computer, also known as a binary n-cube, is a multipro-
cessor comprising IV = 2" processing nodes interconnected as an n-dimensional binary
cube. Each processing node, P, corresponds to a vertex of the cube, and contains its own
CPU and local memory. P also has direct communication links to n other (neighbor)
processors. The binary representation of the addresses of each of the 2" processors will
differ from that of their neighbors in exactly one bit position. This is shown for hyper-
cubes of dimension n < 3 in Fig. 1.1. The following recursive procedure describes the
construction of a hypercube starting with a 1-cube (two nodes). Given a 1-cube, label one
of the nodes with a 0, the other with a 1. In general, an n-dimensional cube is constructed
from two (n — 1)-dimensional cubes by prefixing the labels in one of the (n — 1)-cubes
(the zero cube) with a 0 and the labels in the other (the one cube) with a 1; then each of
the nodes in the one cube is connected to its counterpart in the zero cube. Thus, the node
Poy,, ;.5 (subscripts indicate addresses) is connected to node Py, _,...5 for each address
substring b,_3 - - - bo, where each b € {0, 1}. All hypercubes of higher dimension can be
constructed and labelled by repeated application of this procedure. Each dimension of
a hypercube has an associated axis that is labelled as follows: Node P, _,...5;,,06;_1-5 1S
connected to node Py__,...5;,15_,--b DY an edge that is in the direction of the sth axis,

where i € {0,n — 1} is the position of the differing bit in the respective node addresses.

O 1 2 Direction
— Values
n=0 0. of Axes

n=2

Figure 1.1. Hypercubes of dimension 0, 1, 2, and 3.

1.1.Z Advantageous Features

There are several features of the hypercube interconnection scheme that are useful for
supporting parallel computation. The fanout of each processor scales logarithmically (as
log, N) with the total number of processors. The structure of hypercubes allows a large
cube to be easily divided into smaller sub-cubes, and node adjacency is preserved within
these sub-cubes. An important consequence is that the view of the system that is seen by
an application program is isotropic. That is to say, application programs have the same
view of the hypercube environment, regardless of the sub-cube in which the program
is executed. As an example, a machine with N = 64 may be divided into a 5-cube,
composed of processors Pos,bybbite; and two 4-cubes composed of processors Piobyb,bbo
and Pyyp,t,5,6, Programs that are assigned to a subcube of dimension m (m < n) need to
use only m bits to address other nodes within the subcube. Thus, a dimension 4 program

may be executed in either the Pioss,6, 5, OF Piisyt;6,5, Subcube without modification. Many

other interconnection structures may be embedded into hypercubes [NCU85]. Two im-
portant examples are meshes (of any dimension) and binary trees [BI85]. Both of these
structures maintain their node adjacency when embedded into hypercubes. The com-
munication structures employed by many parallel sorting and FFT algorithms also map
directly [Swa86,Wal87,5Z87,Wag87]. Communications between random nodes travel a

maximum distance of log, N, and an average distance (as n — oo) of %log2 N.

1.1.3 Limitations

One of the more notable limitations of the hypercube interconnection scheme arises
from the fact that the fanout of communication links, despite its modest logarithmic
growth, is not fixed. This implies that hypercube systems must initially be designed to
accommodate growth up to a maximum limit that is fixed by some design parameter such
as chip pin limitations or the width of either the backplane or printed circuit board wiring
channels. In practical systems, however, the judicious use of modular design techniques
and clever engineering may mitigate many of these problems.

Another limitation is the potential for underutilized communication paths. This prob-
lem is noticeable when low dimensional problems are embedded into large dimension
hypercubes; for example, using an N = 1024 processor 10-cube to solve a 32 x 32 mesh
problem. In such a problem, at most -,‘-'5ths of the maximum channel capacity can be used
since the fanout of a two dimensional mesh is 4, irrespective of its size. However, this
underutilization constitutes a real limitation only when the maximum useable channel
capacity is insufficient to meet processing demands. This latter point is addressed in

more detail in Sec. 5.2.

1.2 Hypercube Communications

The performance of communications is crucial to the success of massively parallel
distributed-memory computers. Aside from the data sharing necessary for productive

cooperation during the computational phase of parallel program execution, the communi-

cation architecture must also provide for the efficient loading of programs and handling
of 1/0 with external devices. Evaluations of communication performance can be made
in several contexts. At an abstract level, one can define the ratio of time required to
communicate a simple data item to a neighboring processor versus the time required
to calculate it. This simple architectural parameter can then be used to determine, in
a general sense, the suitability of various algorithms for a given machine architecture.
Definitions of this type are given in [FK86a], as t.mm and t.., and the use of these
metrics is described in [FK86b]. The value of ¢... is defined as the time to execute a
typical arithmetic instruction, and t.omm is defined as the transfer time of one word to
a neighboring node. In [FK86a] %4, is defined as the time to execute a Fortran double
precision floating point statement of the form x = a * b . Though these definitions are
not precise, they can be employed to make some useful generalizations about parallel

programming environments. In particular, we classify the granularity of communications

as follows:
teomm/teate > 1000 as coarse grained parallelism
1000 > t.omm/tcate > 100 as medium grained parallelism
100 > teomm/teate > 10 as fine grained parallelism
10 > teomm/teate as very fine grained parallelism

The tcomm/teale Tatios for the commercially available first generation hypercube mul-
tiprocessors lie in the medium grained parallelism range. Even at this rather large
level of granularity a large class of algorithms are being efficiently executed on ex-
isting machines[Fox85], and as architects are able to lower the .mm [tcatc Tatio this class
will grow.

A basis for more detailed communication performance evaluations is provided by the
following measurements. Latency is a measure of the elapsed wall clock time between
the sending of a message on one node and the reception of its first byte on the destination

node. The sustained bandwidth indicates the rate of message delivery once the first byte

has arrived. Sending overhead is the time consumed by a process making a call to the
run-time system to send a message. Receiving overhead is the time consumed by a
process making a call to the run-time system to receive a message. This neglects any
waiting due to the message not having yet been delivered to the receiving node. The
relative importance of these different performance measurements will vary, depending on
the granularity, frequency and predictability of communications in the program.

When the apparent granularity, that is, the communication overhead that is noticeable
to a user process, drops to the fine or very fine range the potential exists for providing
the appearance of a shared-memory space to application programs. Programs may then
communicate through the shared-memory in addition to, or instead of, communicating
via message passing. The memory in a virtual shared-memory space may be either real
or virtual. Support for virtual memory (VM) is costly. VM systems require additional
resources such as a swapping device and an address translation mechanism. Additionally,
the handling of page faults can be very time consuming (typical times are reported in the
following paragraph). Virtual memory systems are almost always used in conjunction
with multiprocessing to minimize the effect of the time consumed by a page fault. Mul-
tiprocessing may also reduce the apparent granularity of communications by scheduling
another process, if possible, to execute while the previous process waits for the com-
pletion of a remote communication. However, multiprocessing on a distributed-memory
multiprocessor can be much more problematic than on a shared-memory machine. For
instance, process switches and swapping activity need to be carefully coordinated across
all cooperating nodes so that communication thrashing is avoided. The prefetching of
remote data may provide an alternative approach to minimizing the effects of page faults
and communication delays. It has been shown that prefetching remote data is more ef-
fective than caching data on demand (which is a standard VM technique) for numeric
codes in shared-memory parallel programs [LYL87,MP85]. As communication latencies
drop, similar results will be realized in hypercube systems.

The communication requirements for supporting a single VM space that is shared

across all nodes may be put in perspective by comparing the impact of communication
delays that are realized in hypercubes communications with the time required for common
virtual memory operations such as servicing page faults. As an example, we have mea-
sured the page fault times on a Sun 3/260, a high performance computation/disk server
that runs Sun’s implementation of the Unix 4.3bsd operating system. These times are
expressed in terms of the amount of time required to add a vector element and a scalar
and place the result in a scalar memory location. The real time consumed by a page fault
is 18,500 VSOPs (vector sum operations). Most of this time (86% or 15,900 VSOPs)
is spent waiting for the disk. We will show in Sec. 5.7 that internode communication
latencies can be reduced to a point where the time consumed communicating between
two arbitrary nodes in the hypercube is insignificant when compared to the latency time
of a disk access.

The reduction of granularity also increases the number of problems which massively
parallel machines can execute with reasonable efficiency. For most problems there is a
limit on the extent to which they can be parallelized. This limit is typically a function
of the overhead cost associated with communications that are necessary to support the
desired level of parallelisin. Decreasing the communication costs frequently leads to an
increase in the number of nodes that may be effectively used to solve the problem. This,
in turn, lowers the minimum possible overall execution time and opens up the possibility
of providing a cost effective and time efficient execution environment for computationally

demanding problems.

1.3 History and Background

One of the earliest multicomputer design proposals to employ a hypercube intercon-
nection scheme appeared in a 1963 paper by Squire and Palais from the University of
Michigan [SPCC]. They provided a paper design of a 4096 node hypercube connected
multiprocessor. Several other proposals appeared in the mid-1970’s, two of the more

notable were the CHOPP architecture of Sullivan, Bashkow and Klappholz at Columbia

University [SB77] and a machine comprising 256 Intel 8008 processors that was offered
commercially by IMS Associates. Unfortunately, IMS ceased to exist before building
their first machine. The CHOPP proposal called for a machine that was physically con-
figured as a distributed-memory hypercube, but which provided the virtual appearance of
a shared-memory multiprocessor to applications software. In a companion paper [SBK77]
they describe a distributed operating system to control their multiprocessor system with-
out relying on a single master processor. However, it was not until high density and
Jlow cost VLSI processors, memories, and communications chips became widely avail-
able in the early 1980’s that production of large scale hypercube multiprocessors became
economically feasible.

The first such machine built was the Cosmic Cube [Sei85]. This machine was the
product of research that began in 1978 at the California Institute of Technology. In 1983
the first production size Cosmic Cube became operational. It consisted of 64 nodes, with
each node containing an Intel 8086/8087 processor pair, 128 K-bytes of memory, and six
bit-serial communication links. Over the next few years, Caltech, in conjunction with
NASA'’s Jet Propulsion Laboratory (JPL), built a series of progressively more powerful
machines named the Mark I, Mark II, and Mark IIl [TPPL85,PTLPS85].

Three commercial manufacturers: Intel, Ametek and NCUBE, introduced hyper-
cube computer systems in 1985. This first generation of commercial machines con-
sisted of nodes with CPUs of about 2 MIPS of useable performance, 128-1024 K-bytes
of memory, and communication links with a bandwidth of about 1 M-byte per sec-
ond [NCU85,iPS85,Hyp]. In conjunction with the link bandwidth, the operating systems
on these machines supports levels of parallelism that ranged from coarse grained to about
midway into the medium grained range. Floating Point Systems (FPS) offered a first gen-
eration hypercube [BFHP87] that was based on the Inmos Transputer chip. However, for
a variety of reasons, not all of which were technical, the machines never became viable
enough to make FPS a major hypercube vendor

Two second generation commercial distributed-memory multiprocessors have been an-

10

nounced by Intel and Ametek in 1988. The Intel iPSC/2 is presently available [Nug88];
however, it has not been in the field long enough for any meaningful performance bench-
mark results to be available. The Ametek Series 2010 has not yet been shipped [Ame87a].
In their second generation machine, Ametek has abandoned the hypercube interconnec-
tion structure for that of a two-dimensional mesh with byte-wide communication links.
The design of the Ametek 2010 was influenced to a large extent by the thesis research
of William Dally at Caltech [Dal86b]. Dally’s thesis advisor, Charles Seitz, was the
principal consultant on the design of the Ametek 2010. It is widely expected that com-
munications performance of both these machines will lie near the fine grained end of the
parallelism range.

At present, JPL is upgrading the capabilities of the Mark III. They have recently
integrated the Weitek floating point unit into the nodes of the Mark III. Another upgrade
that is being worked on presently is the hyperswitch network (HSN) communication
chip [CMP87a,CMP*87b,CMP*88]. The hyperswitch allows the user to choose from
several different communication modes to route messages through the hypercube inter-
connection network of the Mark III in a time efficient manner. The HSN chip is discussed
in more detail in Sec. 4.3.4.

Another machine that played a part in the development of hypercube technology is
the Connection Machine from Thinking Machines Corporation [Hil85]. The Connection
Machine differs from the mainstream hypercube machines because it is structured as
a massive (65,536 node) collection of simple (bit-wide) processors that execute a sin-
gle instruction stream. Nonetheless, it has played an important role, especially in the

development of massively parallel algorithms [HS86].

1.4 Goal and Scope of this Dissertation

The goal of this thesis is to analyze communications on an existing hypercube system
to identify critical design issues, and then use the results of these analyses to specify

a paper design for a communication architecture to support fine grained parallelism for

11

MIMD hypercube distributed-memory multiprocessors. This investigation focuses on
two main design objectives. The first objective is to reduce the actual granularity of
parallelism, that is, minimize the actual cost of communications. The second objective is
to search for ways to overlap communications with other useful work as much as possible.
The extent of design considerations is bounded at the level of hardware functional unit

interconnections on one end, and run-time system issues at the other.

1.5 Major Contributions

The following are the major contributions of this thesis:

e A taxonomy of communications paradigms for parallel programming is developed
in Chapter 2. The concept of C-deterministic programs is also developed. In a C-
deterministic program certain communication activities and parameters are known
slightly in advance of their occurrence. It is later shown that C-deterministic

programs may be speeded up considerably on existing first generation machines.

o In Chapter 3 we describe a new node operating system communications module
for use by C-deterministic programs. Use of this new communication system
leads to significant improvements in communication system performance which is
highlighted by a total program execution time improvement of about 1.33 on the

Linpack code.

o In Chapter 3 we also profile two broadly representative numeric codes to determine
precisely where the execution time is spent. A model is then developed and used

to predict the effects of various architectural changes.

e In Chapter 4 a new message routing scheme is introduced. This new routing scheme
increases performance in a wide variety of programs in addition to those that are

C-deterministic.

12

e An architecture for our new routing scheme is described in Chapter 5. The results
of simulations that predict its performance relative to other existing schemes are
also presented. These results indicate improvements in communication latency that

range from 25% to 1000%.

CHAPTER 2

CHARACTERIZATION OF COMMUNICATIONS

In this chapter we develop a taxonomy for hypercube communications and provide
a classification for two major types of parallel programs. The relations within the com-
munication taxonomy and between that taxonomy and the program classifications are ex-
plained. Finally, the embedding of common communication structures onto a hypercube
is discussed. Some of the terms and criteria that we have used for these classifications
have appeared independently in other works or have been used without precise definition.
The goal in developing the taxonomy is to develop a consistent and complete group of
definitions to facilitate a clear presentation throughout this thesis. A key concept devel-
oped in this chapter is that of a C-deterministic program phase. A large potential exists
for increasing the performance of programs with C-deterministic execution phases on

existing hypercube systems.

2.1 Classification of Communications

Hypercube computers are typically comprised of three major units, the hypercube
processor array, the array I/O system, and the host system. The CPUs and memories
that are interconnected by the hypercube network are referred to as array nodes. The I/O
system provides connections from the array nodes to various peripheral devices such as
sensors, graphic display units or disks. The host system serves as a master controller for

the overall operation of the hypercube system. It usually provides the user interface as

13

14

well. Communications in hypercube multiprocessors can be classified in three ways:

¢ By the type of processors involved. That is, hypercube array (or node) processors,

I/O processors, or the host processor.
e By the relative positions of the communicating processors.

o By the synchrony of the communicating processes.

The first of this group will be referred to as the type of communication and a combination

of the latter two will be referred to as the communication mode.

2.1.1 Types of Communication

Array-processor-to-array-processor communications are primarily used to pass inter-
mediate calculation results among array nodes. They may also pass system administrative
messages. These administrative messages may convey such information as preferred mes-
sage routes or processor utilization statistics. At least one group [PR87] proposes storing
pages of program text (for programs that use the same code on all nodes) throughout
the array; each page would be assigned a home node from which it would not be dis-
carded (paged out). This would enable programs that would not otherwise fit in the
available memory on a single node to have their code demand-paged (via intra-array
communications) from other array nodes as needed. The interconnection topology for
these communications is a hypercube.

Array-processor-to-I/O-processor communications are used to load initial program
code and data, and to collect final program results. This type of communication is also
used for accessing I/O devices. It may also be used to support virtual memory or paging
capabilities. The interconnection topology for these communications is typically a tree
rooted at the I/O processor.

I/O-processor-to-1/O-processor communications are not necessary. However, they
can add to the flexibility and availability of the I/O subsystem. These communications

can be used to route I/O requests away from I/O subsystems that do not have a desired

15

1/O resource to one that does, thus preserving the array processors isotropic view of the
system. They can also be used to route out-of-band messages between array nodes. A
debugger message is an example of an out-of-band message. Such messages are not
part of the normal stream of messages that an application program would expect to see
flowing between array nodes.

1/O-processor-to-host communications are primarily used for initiating program loads
and for collecting any results that are to be presented to the external user interface or
saved in the mass storage system. This type of communication may also be used by
the host to query the status of the 1/O or array subsystems. The logical interconnection

topology is typically that of a tree rooted at the host.

2.1.2 Modes of Communication

Communication modes can be classified both spatially and temporally. The spatial

classification is described first.

Spatial Mode

Spatially, two communications groups are distinguished: near neighbor and random.

They are defined as follows.

Definition 1 (Near Neighbor — NN) NN communications are those where, from the point
of view of the application program, the destination node will always lie at a Hamming
distance of one from the source in the allocated subcube. That is, the binary representation
of the source and destination node differ in only one bit and, as consequently, the two nodes

will have a direct connection to each other.

Definition 2 (Random — RA) RA communications are those where, from the point of
view of the application program, the destination node may lie at a Hamming distance
of greater than one from the source. In this case, the two communicating nodes are not
likely to have a direct connection to each other and, hence, must rely upon other nodes to

properly forward their messages.

16

The term random is used because the destinations of such communications are frequently
unknown prior to program execution and posses no apparent pattern.

Finally, a special case may exist when common data is to be sent from the same
source to multiple destinations. The information can be broadcast simultaneously to all
destinations, thus incurring a communication startup overhead only once for each sending

node. Broadcasts (BC) are defined for both NN and RA communications as follows:

Definition 3 (Near Neighbor Broadcast — NNBC) NNBC communications are those
where, from the point of view of the application program, the set of destination nodes

all lie at a Hamming distance of one from the source, in the allocated subcube.

Definition 4 (Random Broadcast - BC) BC communications are those where, from the
point of view of the application program, the destination nodes are all of the remaining

nodes in the allocated subcube.

Temporal Mode

Communications may also be referred to as being either synchronous or asynchronous.
The sending process does not immediately await a response from the recipient in asyn-
chronous communications. Conversely, in synchronous communications, the sending
process immediately begins waiting for either return values (in the case of remote pro-
cedure call semantics) or confirmation that the message was correctly received (in the
general case). To provide a more detailed distinction in multiprocessing systems, the
synchronous class may be further divided into process synchronous and processor syn-
chronous communications [Spe81]. The distinction is that in the process synchronous
case the processor may perform a context switch and begin to execute another avail-
able process. In the processor synchronous case, no such context switch occurs and
all processing is suspended until the communication is completed. In the uniprocessing
environment of current hypercube systems, the process synchronous case is the same as

the processor synchronous case.

17

Asynchronous communications provide more flexibility than synchronous commu-
nications. In fact, synchronous communications can be readily constructed from asyn-
chronous primitives by requiring that all send operations be immediately followed by
receive operations that block, awaiting a possibly empty set of return values. Con-
versely, asynchronous communications may be constructed from synchronous primitives
only when some form of multiprocessing is available to immediately handle and ac-
knowledge an incoming message. Even then, this case incurs the additional expense of
the return communication and context switching overhead.

The chief advantage of synchronous communication semantics is that programs that
use them are more easily understood than those that rely on asynchronous communica-
tions. Consequently, most current parallel procedural programming languages provide
synchronous communication primitives. However, these languages are also typically de-
signed with the multiple code multiple data (MCMD) programming model in mind. Un-
fortunately, as discussed in Sec. 2.2, this is not the predominant programming paradigm
for massively parallel computers. Thus, there is still an existing need for improved
communication support in languages that are intended for massively parallel machines.

The individual send and receive operations in an asynchronous communication envi-
ronment may be classified as either blocking or non-blocking. A blocking send operation
will not release until the last byte of data has proceeded onto the communication link.
Non-blocking sends release immediately. Blocking receive operations will not release
until the awaited message has been delivered to the specified address. Non-blocking
receive operations simply check if the designated message has arrived. The semantics

and implications of these operations are discussed in Chapter 3.

2.1.3 Taxonomy of Modes and Types

The allowable spatial communication modes for each communication type, as viewed
by the application program, are given in Table 2.1. Only the array-processor-to-array-

processor and J/O-processor-to-I/O-processor communication types allow all of the possi-

18

Source Destination Node Type
Node Type array I/0 host
array RA, BC, NN Do Not Directly
NN, NNBC Communicate
1/0 NN, NNBC RA, BC, NN
NN, NNBC
host Do Not Directly | NN, NNBC | Do Not Directly
Communicate Communicate

Table 2.1. Communication Mode Taxonomy.

ble communication modes. Array-processor-to-I/O-processor communication topologies
can be viewed as a single level tree rooted at the I/O processor. All of these cases
are inherently NN since the tree has only a single level; also, broadcast mode is avail-
able outbound from the root (i.e., from the I/O processor). The I/O-processor-to-host
communication topology is also a single level tree. In this case, the tree is rooted at the
host. The communication modes are similar to those for array-processor-to-1/0-processor
communications. The other possible source/destination pairs do not directly communicate
with each other. This taxonomy assumes a system configuration like that of the NCUBE,
variations may exist for systems that are configured differently. However, many systems
are moving toward such a configuration so that they may provide greater I/O support to

the array processors.

2.2 Classification of Programs

Parallel programs can be broadly grouped into two categories based on the similarity
of the code being executed on processors throughout the computer. These groups are

defined below,

Definition 5 (Single Code Multiple Data — SCMD) In SCMD programs all processors
in the same allocated subcube execute the same code. The data that is processed by each

node is different. Differing paths of execution may be taken through the code due to data

19

dependent branches.

We will assume that all nodes executing SCMD programs are executing the same section
of code at about the same point in time. Throughout this dissertation any time that this
assumption does not hold it will be explicitly pointed out, and such SCMD programs

will be referred to as loosely coupled.

Definition 6 (Multiple Code Multiple Data - MCMD) In MCMD programs different
codes are executed on each processor. The data in each node may also be different.

The number of different copies of code will be referred to as the code multiplicity.

The SCMD programming model is by far the most prevalent for general problem
solving on massively parallel machines. This is to be expected since the primary rea-
son for building large scale hypercube multiprocessors is to dedicate a large number of
processors to work together to solve a single large problem. Intended usage aside, the
independent programming of several hundreds or thousands of individual processors is,
presently, an intractable proposition and is likely to remain so for the foreseeable future.
In those few cases where there are different copies of code loaded on the processors
within an allocated subcube (i.e., MCMD), the code multiplicity is small and the SCMD
model still plays a dominant role. The overall structure usually comprises a small number
of distinct SCMD groups each performing a specific set of tasks. These SCMD groups
are then interconnected to accomplish the overall programming goal, An example of such
a system is given in [Bra86].

To date, the overwhelming majority of programs written for hypercube machines
consist of a sequence of execution phases during which only one mode of inter-array
processor communication is active [Hea87). These programs are typically decomposed
into program phases where the nodes communicate among themselves (either globally or
within a group of their immediate neighbors) and perform calculations on local data and/or
data received from other nodes. These steps are then repeated as necessary until the final

results are assimilated and the program is terminated. Each successive communication

20

phase may employ a different communication mode, but the different communication
phases will not overlap as long as the program execution on the different processors
remain approximately synchronized. This approximate synchronization is inherent in any
algorithm in with program phases that employ NN, NNBC, or BC communication modes
that involve all of the nodes. Additionally, the run-time system can provide an explicit
synchronization service to prevent communication phases on communicating processors
from overlapping for any SCMD programs in which approximate synchronization is not
maintained (i.e., loosely coupled SCMD programs). The points that were enumerated

above lead us to make the following thesis statement:

Thesis Statement 1 A substantial performance increase is possible for a large and im-
portant class of hypercube programs by exploiting the knowledge of the communication

structure that is inherent in the algorithm.

We substantiate this statement by defining the class of programs for which sub-
stantial performance increases are possible. Communication primitives that lead to this
performance increase are then described in detail, along with their use, operation and

performance in Chapter 3.

Definition 7 (C-deterministic) A program phase is C-deterministic when each processor
knows the size of the messages that it is about to receive on each of its channels. It is not

required to know the order in which the messages arrive.

For example, consider the processors P; and Pj,.where P; and P; are two adjacent
processors in the allocated subcube. Define M;; = (m;jr | 1 < k < Lij;) to be the
ordered set of messages (m) sent from node P; to P; (where L; ; is the total number of
messages sent from P; to P;). The program phase is C-deterministic if, after receiving
m; ;x» every P; knows the size of at least m; ;.. for each M;;. In other words, the
arrival of an incoming message must always be expected by the receiver—the source node

may provide indication of a subsequent message delivery to the receiver by embedding

21

such information in an earlier message. The order of arrival of messages from different
sources need not be known in advance by the receiver.

A large number of NN, NNBC and BC program phases fall into this category, in-
cluding most numeric, search, and sort phases. Most communication phases that employ
RA communications will not be C-deterministic. This is because RA communications
often pass through intermediate nodes en route to their destination. These intermediate
nodes will not, in general, be able to anticipate the order of messages for which they are
not the final destination.

In Chapter 3 it will be shown that the communications performance of NN, NNBC,
and BC program phases that are also C-deterministic can be significantly improved by

exploiting this knowledge.

Thesis Statement 2 The performance of RA or non-C-deterministic programs may be im-
proved significantly over the performance that is possible on existing systems with suitable

modifications to the communication architecture.

This point is examined further in Chapter 4. We propose a new communication

architecture that should lead to substantially performance increases in Chapters 4 and 5.

2.3 Logical Communication Topologies

One of the most useful features of the hypercube interconnection topology is that
several other common topologies map into it in an efficient manner. It is desirable
for these mappings to be homomorphic because homomorphic mappings preserve node

adjacency. The following definition of a homomorphic mapping is taken from [Har69].

Definition 8 (homomorphic mapping) A homomorphic mapping, h, of graph G into G'
can be considered as a function h : V(G) — V(G') (where V(Q) is the node set of graph

G) such that if nodes u and v are adjacent in G, then h(u) and h(v) are adjacent in G’.

However, we will show in Sec. 2.3.2 that not all common topologies have both homo-

morphic and efficient mappings into hypercubes. As a practical matter, many hypercube

22

mappings use some version of the Gray code.

Definition 9 (Gray code) A Gray code, G(z), is a one-to-one mapping between integers
such that for two consecutive integers in the domain, the binary representation of their
corresponding values in the range will differ in e)cactly one bit position. The domain of
integers is assumed to be finite and the largest and smallest integers in the domain are

consecutive. The inverse Gray code function will be denoted by F(z), thus F(G(z)) = z.

Intuitively, one can see that the Gray code is important to hypercube mapping by not-
ing that processors whose binary representations differ in exactly one bit position are
physically connected to each other. Many unique Gray code mappings are possible. The
specific Gray code used in the examples in the following sections is given by the follow-
ing: let y be the logical right shift of = by one bit position; G(z) is then the exclusive
or of z and y.

Two figures of merit for the embedding of a graph G into another graph G’ via a
function h: V(@) — V(G') are defined below.

Definition 10 (Dilation) The dilation, D, of a graph embedding function is the max-
imum distance separating two nodes that were adjacent in the original graph: D =
max(d(h(u), h(v))) for all (u,v), where (u,v) are edges in G and d(z,y) is the distance

between nodes x and y in G'.

Definition 11 (Expansion) The expansion, E, of a mapping is a measure of the efficiency

in terms of the number nodes (graph vertices) required to achieve the desired mapping:

_ # of vertices in G'
of vertices in G

23

100 101 111 110
—O

58 011

&—®
000 001 o011 010

Figure 2.1. Embedding of a one-dimensional grid.

2.3.1 Efficient Homomorphic Embeddings

Efficient homomorphic embeddings exist for both perfect shuffles and toroidal and
linear grids of any dimension as long as the number of processors along any dimension is
a power of two [NCU85]. A one dimensional toroidal grid, shown in Fig. 2.1 (dark lines
indicate active communications paths), is simply a ring. The predecessor and successor

are given by the following:

predecessor: G(F(z)—1)

successor: G(F(z)+1)

As a further example, consider the embedding of the two dimensional toroidal grid
shown in Fig. 2.2. All of the available communications paths are used in this case. The
mapping of processor (z, y) in a two dimensional grid of 2M processors in the x-direction

and 2N processor in the y-direction is given by:
processor id = 2MG(y) + G(z)
Further, if a processor id number is ¥ = 2My + z then its neighbors are:

2My + G(F(z) — 1)

24

1010

n=4

Figure 2.2. Embedding of a two-dimensional (4 x 4) grid.
2My + G(F(z) + 1)
2MG(F(y) = 1)+

2MGF@) + D+

25

This scheme can be generalized to the n-dimensional case by dividing the processor

id into n fields, and computing the successor and predecessor along each of the » axes.

0010 ’\

0001

0000

Message
O Forwarding

@ Processing

0100 e’

0000 %

n=4

Figure 2.3. Embedding of an odd dimensioned (4 x 3) grid.

26

2.3.2 Inefficient Embeddings

0101 1100

J 1111

1011

n=4

Figure 2.4. Homomorphic embedding of a two-level tree.

Grids that are not an exact power of two in each dimension will not homomorphically
embed into a hypercube. This situation may be ameliorated, however, by adding proces-
sors to the dimensions that are not powers of two, see Fig. 2.3. These added processors
serve only as connecting nodes to forward communications along the given dimension.
They are labelled message forwarding in Fig. 2.3; again, the active communication paths

are indicated by the darker lines. The inclusion of the connecting nodes will add to

27

the communications cost incurred by all messages that must pass through them. Such

messages will be referred to as pass through messages.

@ Processing

Q Pass Through
011

n=3

Figure 2.5. Efficient embedding of a two-level tree.

Binary trees may be embedded homomorphically, albeit inefficiently. The mapping
of a two level binary tree rooted at node 0 is shown in Fig. 2.4. This tree could not
be homomorphically embedded into a 3-cube because each of the level 1 nodes has two
children and there are only three nodes that lie at a distance of two from the root. In
general, an (n+2)-dimension cube is required to embed an n-level tree with unit dilation,
even though only 2™ — 1 processors are actively used. In other words, an expansion
factor of slightly greater than two is required to embed a binary tree with a dilation of one.
However, the spatial requirements drop to 2™1 processors if communications between
certain pairs of processors are allowed to pass through otherwise unused channels of other
nodes in the tree. It has been shown in [BI85] that a complete binary tree of height n
with 2" — 1 processors can be embedded within an n-dimensional cube with one edge of
dilation two (that is, requiring one pass through node) and every other edge of dilation one,
for every n. They further show that the passed through node is the unused one. Such an
embedding is shown in Fig. 2.5. In this case node 4 (100) acts as the message forwarding
node for nodes 0 and 6. However, many applications that employ tree communication
structures do so with trees that grow and shrink dynamically [AMSB8,PLG87]. It is
also frequently the case that only the leaf nodes that are active at any given point in

time. Thus, the full usefulness of embedding trees will not be realized until they can be

28

Term Defined Page
NN — Near Neighbor Communications 15
RA - Random Communications 15
NNBC - Near Neighbor Broadcast Communications 16
BC - (Random) Broadcast Communications 16
SCMD - Single Code Multiple Data Programs 18
MCMD - Multiple Code Multiple Data Programs 19
C-deterministic Communications 20
Homomorphic Mapping 21
Gray Code 22
Dilation 22
Expansion 22

Table 2.2. Index of Definitions.

embedded dynamically. The dynamic embedding of trees will become more feasible as
multiprocessing support becomes more prevalent on hypercube array nodes.
The definitions introduced in this chapter and the page on which they appear are listed

in Table 2.2.

CHAPTER 3

NEAR NEIGHBOR COMMUNICATIONS

In this chapter we concentrate on the issues related to providing support for near
neighbor (NN) communications. Some of the issues we discuss will also be applica-
ble to the more general case of random communications which is the topic of the next
chapter. We begin by discussing the implementation of NN communications in existing
systems. The inefficiencies are enumerated and alternatives are suggested. In particular,
we describe our new communications module which leads to significant performance in-
creases in C-deterministic phases of program execution. A model for the execution time
of SCMD near neighbor algorithms is then developed. We present results from both mea-
surements on actual programs and simulations of program execution. The experimental
results are provided to both verify the model that we have developed for use in our sim-
ulations and to quantify the improvements that are realized by our new communications
module. Finally, we use our simulation models to quantify the further improvements in

efficiency that are possible with architectural changes.

3.1 Existing Implementations

The largest class of algorithms that have been implemented on large distributed mem-
ory machines employ NN, NNBC and BC communications. Efficient support for these
types of communications is absent from commercial operating systems. The only avail-

able system that attempts to provide efficient support for NN, NNBC and BC com-

29

30

munications is the Crystalline operating system (CrOS) which was developed at the
Caltech[FK86a].

Of the existing available operating systems NCUBE’s Vertex and Caltech’s CrOS
exhibit the best performance. Vertex is faster than CrOS for all but the smallest of
messages [MBA87]. These two operating systems provide communication primitives that
are close to the opposite extremes of functionality. Vertex provides a general mechanism
that will route arbitrary length messages from any source to any destination in the cube.
Whereas CrOS will send only fixed length messages to immediate neighbors. These two
operating systems are described in the following sections. The Vertex operating system
is explained in considerable detail because it serves as the basis for the communications

module that we have developed.

3.1.1 NCUBE -~ Vertex

Vertex is a run-time executive program that executes on the NCUBE array processors.
The services provided by Vertex are program loading, low-level error handling, low-
level debugger support, node identification and local time routines and communications
support that includes message routing and buffer handling. Vertex is compact, requiring
only about 6 K-bytes of memory for both code and data (excluding the communication
buffers). Entry to Vertex from high level language libraries and user written assembly
language routines is via an operating system trap call that saves the current program status
word and program counter and branches into Vertex code via an interrupt jump table.
A similar mechanism may also be invoked by the hardware in response to an execution
exception, or an external interrupt request.

User programs may query Vertex to learn the logical (with respect to the currently
allocated sub-cube) node address on which they are executing, the host interface processor
address and the dimension of the currently allocated sub-cube. They may also request
the time since node initialization, which is kept in multiples of 1024 clock cycles. These

two call handlers, and those of the communication system that will be discussed later,

31

comprise the primary operating services. These services are invoked via software traps.

The low-level error handlers are invoked by hardware recognized program exceptions.
They save processor state information and suspend execution of the user process. This
allows the debugger to examine the state of the node as it was when the exception was
detected.

Vertex communications are driven by two events: requests from the user program
via operating system traps; and responses to communication channel interrupts. A brief
description of the three calls that comprise the interface to the user program is given
here, a more detailed discussion appears later. The node write call is named nwrite. It
sends a message of a specified type to a designated destination (users may associate a
type value, an integer between 0 and 32783, with any message). The nread call examines
the received-but-unclaimed message queue for a message from the specified source of
the desired type. When the desired message is found, it is returned to the caller. The
ntest call performs a function similar to nread, except that it returns immediately after
checking the existing messages and only reports on the success of the search — located
messages are not returned.

A pool of communication buffers is maintained by Vertex. These buffers are used
on both the sending and receiving nodes. They allow callers of nwrite to be released
after a communication buffer is allocated and the user data is copied into it. Therefore,
callers may proceed while the system is waiting for access to a communication channel.
Furthermore, data to be sent that is allocated from dynamic storage may be released any
time after returning from the nwrite call. Callers of nread are not required to make their
calls before messages arrive since all arriving messages are first stored in communication
buffers.

The communication buffer pool begins as a single free buffer. Requests for buffers
are satisfied by searching linearly through the doubly linked buffer pool for free buffers
of a sufficiently large size. When one is located it is further checked to see if it exceeds

the requested size by 32 or more bytes. If so, the free buffer is split so that a buffer

32

of the requested size can be allocated from the end furthest from the front of the list.
This policy tends to concentrate free buffers near the beginning of the list. If no buffers
of sufficient size are located the request may be queued to search again when another
buffer is returned. Adjacent free buffers may be collapsed into a single buffer by the
buffer deallocation routine whenever a buffer is returned. Buffers that are in use may be
queued on other system queues via a second pair of link fields. Thus, Vertex provides
buffer allocate, deallocate, enqueue, and dequeue procedures for its own internal use.
The specific action of nwrite is to check for valid message length and destination,
allocate a communication buffer and copy the user data to it, calculate the outbound
channel to use, and, if the channel is inactive, initiate the message transfer protocol.
In the case that the channel is busy, the message is queued to be sent as soon as the
channel becomes available. In either case, the caller is released to continue execution.
An interrupt is signaled when the final step of the DMA controlled message transfer
has been completed. The service of this interrupt includes releasing the communication
buffer. Incoming messages are placed in communication buffers and then queued in an
unclaimed message list. Nread checks this queue for a message with a specific source
and type, if it is not found it will wait until an appropriate message arrives. When the
requested message is located, it will be copied to the user data space, dequeued from the
unclaimed message list and the communication buffer will be released. Callers to nread
and ntest may specify that messages of any incoming source or type are desired.
Message transmission is controlled via a three way handshake protocol. Simply stated,
the sender sends a two byte message to the receiver indicating the number of bytes it
wishes to transmit (all inactive channels are set to receive two byte transmissions). The
receiver allocates a communication buffer, sets the appropriate DMA channel to receive
the indicated number of bytes and then transmits a two byte acknowledgement back to the
sender. Upon receiving this acknowledgement, the sender transmits the entire message.
This protocol is initiated by a call to nwrite. However, the remaining steps are handled by

a sequence of interrupt events. Specifically, the reception of the two byte length message

33

by the receiver and the reception of the two byte acknowledgement by the sender both

signal interrupts. An interrupt is also generated on both the sending and receiving nodes

when the DMA transfer of the message is completed.

SENDING RECEIVING
PROCESSOR PROCESSOR
User Space User Space
3
1 4 ; 8
Vertex Vertex
H
2 6 5
® &
vig 7
Communication Communication
Buffers Buffers
Actions:
1. Sender: nwrite call
2. Sender: allocate communication buffer
3. Sender: copy buffer, release nwrite caller
4. Sender: transmission request
5. Receiver: allocate communication buffer
6. Receiver: transmission request accepted
7. Sender: transmit data
8. Receiver: if nread pending, copy buffer,
release nread caller
Potential Waits:
Interrupt:

after 4 on receiver

after 6 on sender

after 7 on sender and receiver

at 2 for local buffer

at 4 for use of channel
at 5 for remote buffer
at 6 for use of channel

Figure 3.1. Node-to-Node Communication (Vertex).

34

A more detailed description of a message send/receive transaction between two adja-
cent nodes is given below. Figure 3.1 expresses this transaction pictorially. In step 1, the
sender issues an nwrite call which generates an operating system trap event. In step 2, the
Vertex nwrite trap handler allocates a communication buffer, waiting in a buffer request
queue if none are presently available. Once allocated (step 3), the message data is copied
from the user process to the communication buffer and the buffer is queued in the send
list. The nwrite caller is released at this point. In step 4, the two byte transmission request
that indicates the message length is sent. If the channel to the requested destination is not
busy this action occurs as the final action of step 3. Otherwise, this transmission request
is queued awaiting the availability of the requested channel. Reception of the two byte
transmission request generates an interrupt on the receiving node. The handler for this
interrupt (step 5) attempts to allocate a communication buffer of the requested length.
If it is successful, an acknowledgement message is sent back to the sender (step 6). If
a buffer is unavailable, a buffer request is queued and the acknowledgement message is
postponed until after this request is satisfied. It may also be necessary to wait for the
channel from the receiver to the sender to become free at step 6 (if a previous message
send is still in progress). The reception of the two byte acknowledgement generates
an interrupt for the sender. In this interrupt handler (step 7), the DMA transfer of the
message is begun. Upon completion of this DMA transfer, an interrupt is generated for
both the sender and the receiver. On the sender, the communication buffer is dequeued
from the send queue and released. If another message is ready to be sent on the same
channel, this procedure is repeated from step 4, otherwise the channel is reset to the
inactive state. On the receiver, the message is checked to see if this node is the final
destination and if this message is a user message. If so, the communication buffer is
queued on the incoming unclaimed message list and the channel is reset to its inactive
state. If an nread call has been issued for the incoming message, it is dequeued from the
incoming unclaimed message list, copied to the user data space, and the communication

buffer is released. This corresponds to step 8.

35

Multi-hop messages are handled in a manner very similar to the above. The following
actions, beginning with step 8, occur on each of the intermediate nodes. The receiver
interrupt handler inspects the destination field of the message (this field is stored in a
header that is prepended to the message data); calculates the next channel to send it out
on in order to get it another step closer to its final destination; queues the communication
buffer on the send list and, if the channel is not busy, sends the two byte transmission
request message thus assuming the role of the sender at step 4. This procedure is repeated
on each of the intermediate nodes.

System messages (primarily for interactions with the low-level debugger) are also
handled in a very similar manner. On the destination receiving node at step 8 the message
is checked to see if it is a system message. If so, the appropriate system message handler

is invoked.

3.1.2 Caltech - CrOS

CrOS provides a very simple interface to the communications architecture [FK86a].
It has been implemented on variety of systems: the Intel iPSC/1, the JPL. Mark II and,
recently, the JPL Mark III [FJL*88] and the NCUBE [BF87a]. Though many versions of
CrOS exist, they all share two basic routines to read and write the physical communication
channels. The message data is sent as a sequence of fixed size packets. The size of these
packets is dictated by either the hardware (16 bytes on the iPSC/1) or the size of the
operating system communications buffer that is statically assigned to each communication
channel. The CrOS protocol is synchronous. A sending node will not return from a call
to the write operation until receiving a signal confirming that the receiving node has
read the packet from its communication buffer. Before a node writes to a channel, it
must first ensure that there is not an unread packet in the communication buffer of the
corresponding input channel. Failure to read a packet that is present in the corresponding
input buffer before writing to the output channel will result in deadlock. The arrival

of messages does not cause an interrupt. CrOS will repeatedly poll the input channel

36

if (not root)

{

from node = father(root_node, current_node)
receive message (from: from node)

}

son_nodes = sons(root_node, current_node)
for (each son in son_nodes) send message (to: son)

Figure 3.2. Global Send Routine.

until the incoming message is received. The limitations of the CrOS communications

paradigm are described in Sec. 3.2

3.1.3 Broadcast Algorithms

Broadcast messages are not directly supported by either Vertex or the early versions of
CrOS. A recent version of CrOS that has been designed for the NCUBE includes a broad-
cast capability that is similar to the one that we use in our communications module which
is described in Sec. 3.3. This capability was first described in [MBAS87]. Several algo-
rithms for implementing efficient broadcasts have been proposed [SW87,HJ86]. A library
of broadcast based operations is available from Intel for the iPSC/1 and iPSC/2 [Cub].
This set of operations has gained wide use due to its distribution through the Intel iPSC
users group. These routines have been ported to many other hypercube machines, includ-
ing the NCUBE. The basic broadcast routine is described below. A pseudo-C code listing
is given in Fig. 3.2. The subroutine father returns the node identifier (possibly null) for
the node that lies one hop closer to the root than the current node. The subroutine sons
returns the list (possibly null) of nodes that are one hop further from the root than the
current node in the spanning tree.

This routine implements a spanning tree rooted at the node originating the broad-
cast [BS86]. A parent child ordering of the spanning tree is used by this algorithm as

shown in Fig. 3.3. The diagram labelled local send loop in Fig. 3.3 shows the progress

37

— First Time Step
wnannnnnrife Gecond Time Step
4% Third Time Step

AVAAEAA!

110 111 110 111
2 e 4 e
101 L 100 % 101 i 100 §
2 | %
i ; g
| | .

" 000 001 000 001

Local Send Loop Local Broadcast

Figure 3.3. Broadcast Spanning Tree.

of broadcast messages in a typical implementation. This corresponds directly to the code
given in Fig. 3.2. If the communication architecture provides a broadcast instruction,
an algorithm that progresses as depicted by the diagram labelled local broadcast may
be used. In this case, the last line of code in Fig. 3.2 is replaced by a single call that

simultaneously broadcasts the message to all sons.

3.2 Points of Inefficiency

Two major points of inefficiency can be identified within the communication scheme
implemented in Vertex with respect to NN communications. One is the use of buffer
copies to move messages between the system communication buffers and user space.
The second is the overhead incurred between communicating nodes by the three-way
handshake protocol. In many cases, algorithms that fall into the NN classification are C-

deterministic. Presently, the knowledge that is inherent in the C-determinism is unused.

38

With simple extensions to Vertex, the information about impending communications can
be exploited to minimize both of the above inefficiencies.

The costs associated with the buffer copies are easy to quantify. Both the best case
time to dynamically allocate a buffer and the amount of CPU time consumed by the
copying of data from one buffer to another can be directly measured. The amount of
memory bandwidth wutilized in a copy operation can also be calculated. The cost of
using a communication protocol that is more complex than necessary is more difficult to
quantify. These costs can be traced to two major sources. One is the overhead incurred
by servicing interrupts generated by unnecessary protocol messages. This cost can be
directly measured. The second cost results from the loss of the use of the channel from the
receiving node to the sending node for the duration of time between the message length
transmission arriving at the receiver (step 4 in Fig. 3.1) and the acknowledgement arriving
back at the sender (step 6 in Fig. 3.1). This duration may be arbitrarily long because
the receiving node may not have sufficient communication buffer space immediately
available. These effects are reflected in the experimental results that are presented in
Sec. 3.6.1.

The communications paradigm employed by CrOS has four limitations. First, the
communications between adjacent nodes can occur in only one direction at a time. For
example, during the time that a message is traveling from node O to node 1 the protocol
precludes a message from node 1 to travel to node 0. Secondly, it is not possible for a
node to proceed with normal program execution while it is either sending or receiving
a message. The suspension of normal program execution on the sending node will last
from the time that the message send is initiated until the message has been completely
received on the receiving node. On the receiving node the suspension of normal programs
execution will last from the time that the call indicating the intention to receive the
message is made until the message has completely arrived. Send and receive activities
on different communication channels are also precluded from occurring simultaneously.

The third limitation is that the order of all message sends and receives must be known

39

on each node. This requirement is more restrictive than C-determinism. Finally, the cost
of supporting message packetization in CrOS leads to lower overall throughput when
moving large amounts of data.

Broadcast communications are an additional source of inefficiency. They are not
directly supported in any of the widely used systems. Broadcasts are frequently imple-
mented by a sequence of NN communications arranged in a spanning tree order as shown
in the local send diagram of 3.1.3. Each node (except the root) receives a message from
its parent node, then serially relays the message to each of its child nodes. The root node
begins the operation by serially sending the message to each of its child nodes. Thus, in
addition to the inefficiencies already noted for near neighbor communications, broadcasts
also incur a store and forward overhead (with two buffer copies), a serialization cost
associated with sending to only one spanning tree child node at a time, and the overhead
of making repeated calls to the operating system. These costs are accrued at each non-
terminal node in the spanning tree. On the NCUBE the costs associated with serialization
and repeated operating system calls are unnecessary because a broadcast instruction is
implemented in the instruction set of the node processors; however, NCUBE does not
take advantage of this instruction in their implementation of Vertex. This broadcast in-
struction allows a message to be sent on any subset of the output channels of a node in

a single DMA action.

3.3 Alternatives within the Existing Architecture

We have developed a new set of operating systems communication primitives to ad-
dress the major inefficiencies described in the preceding section. These operating system
routines and interrupt handlers may be installed on a channel-by-channel basis. This
allows Vertex to be used for communications along certain dimensions while simultane-
ously employing the new system for communications along other dimensions. The choice
of communication system may be changed during program execution as long as care is

taken to ensure that no communications are pending or in progress during the change.

40

This new system will be henceforth be referred to as Extended Vertex to distinguish it
from the standard Vertex system. The user interface to this system is described in the
following paragraphs.

The new send call, named send, and new receive call, named rcvreq, do not use
communication buffers allocated from system space. This eliminates the need for buffer
copying. These calls are also asynchronous. Consequently, the return from a send or
rcvreq call does not indicate completion of the communication activity. Instead, the
completion of communication activities is indicated in a flag variable that is specified
by the caller of the communication routine. The setting of the completion flag for both
the sender and receiver is triggered by the end-of-DMA interrupt. The caller of send is
required to ensure that the message data is not corrupted before the completion flag is set.
The receiving process is required to make a call to rcvreq to allocate a buffer before the
anticipated message begins to arrive. The primary benefit of bufferless communication
is that the incremental (i.e., per byte) cost is substantially reduced.

As a slight digression, we note that the requirement of having to call rcvreq before the
anticipated message begins to arrive could be relaxed if minor modifications were made
to the existing NCUBE architecture. The primary change would be to accommodate the
reception of messages whose length is embedded into the first few bytes of the message.
This change would allow messages that arrive before they are expected to be stored
in a predetermined system buffer for later retrieval by the receiving program. Such a
scheme would require protection against memory buffer overruns. This protection could
be provided by accepting only those incoming messages with lengths that are less than
the lengths of the available system buffers.

The send and rcvreq calls further exploit the a priori knowledge that is inherent in
C-deterministic programs by eliminating the three-way handshake protocol. The send call
makes the assumption that the receiver is ready, thus no transmission request message is
used. In addition, the caller of rcvreq is required to specify the exact number of bytes to be

received and, finally, no acknowledgement of message receipt is offered. The chief benefit

41

of eliminating the handshake protocol is a substantial reduction in the fixed overhead of
NN communications. A variation of the rcvreq call is also available. It allows a user
specified routine to be executed on the end-of-DMA interrupt. This variation provides
a great deal of flexibility for allowing further asynchrony of communication operations.
An example of this that leads to significant performance increases appears in the Linpack
part of Sec. 3.5.2.

There are three other calls that are available in Extended Vertex. Two routines switch
the currently active communication scheme. The final extension is a broadcast call that
allows a node to send the same message to any set of nearest neighbors simultaneously.

The broadcast routine is analogous to the send routine in all other aspects of its operation.

3.4 Near Neighbor Execution Time Model

We develop an execution time model for programs with NN communications in
this section. The chief attribute of this model is that it accounts for the overlap of
communications with calculations. Its is verified in Sec. 3.5.2. The model is then used
to predict the effects of various architectural changes on program execution times in
Sec. 3.6.1.

Interacting parallel SCMD programs can be described from the viewpoint of the
executing process as consisting of a sequence of program steps whose execution time
is given by: %, where i is a counter that is incremented for each successive step,
and where z is any of ¢ (calculations), s (setup for communications), or w (waiting
on communications). During any step 7, the program time is accounted for by exactly
one of %, ts;, OF t,; with the remaining t;; = 0. This notation must be extended to
accommodate asynchronous events such as the interrupt service routines that are part
of the communication protocol. These asynchronous events occur only as part of the
time that is classified as communication setup time (¢,;). Thus, for a communication
instruction that starts at time step ¢ and whose (interrupt driven) communication protocol

must complete before step 2.1y starts, the notation is extended to: 2, :k,. The subscripts

42

k and ! are used to handle the possibility of multiple independent asynchronous events
(i.e., multiple simultaneous communications) occurring in the interval ¢, j. The &k denotes
independent sequences of events (i.e., independent communications) and [indicates the
order of occurrence of the event within sequence k. This allows our notation to specify
that receive interrupts not occur before their corresponding send interrupts. No ordering
is implied for events in different sequences (k). As an exampie, consider the sequence

of events described by:
sy ts711s bess tesa2s Logs tegs co- 3.1

The major events in this sequence are:

time 5: send operation is started

time 6: calculations (that do not change send data) are performed
time 7: wait to receive data that was sent at time 5

time 8: calculations on the received message data are performed.

Between time steps 5 and 7, two sets of asynchronous interrupts occur. One set is for
the send operation, the other is for the receive operation. The times for these events
are accounted for, respectively, by t,s57.1,1 and t,57.12. Since the send and receive are
part of the same communication operation, we assign them the same k-value (k = 1)
(in reality, the related send and receive operations occur on different nodes, but since
we are modelling SCMD programs we can collapse the timing information into a single
node model). Since receive interrupts will occur no earlier than their corresponding send
interrupts, their [-value is higher (I = 2) than the [-value for the send interrupt operations

(I = 1). Total program execution time is given by:

T= Ztc; + Zt,,' + th; (3.2)

43

Where the ¢,; include both synchronous and asynchronous execution steps.

The values for £, %, and t,,; can be measured in existing programs. For hypothetical
programs the designer should be able to calculate these values, either precisely or with
knowledgeable estimates. The value T, = Zt,,- reflects the total time spent setting
up communication operations. This includes' the copying of non-contiguous message
data to contiguous memory locations, the time spent in the operating system to initiate
sends or receives, single polling operations for expected data, and the time spent handling
communication protocols including that of the interrupt service routines. Repeated polling
operations constitute time spent waiting and, as such, are counted as part of the ;.

The value T, = Etc,- accounts for the time spent calculating the desired results of
the program. If we l;ad “jdealized” communication operations (that is, the sums of Z,
and t,,; both equal zero) T, would be the total program execution time. The individual
t.; may be data dependent. If this is the case, either an average value can be used, or the
analysis can be repeated for the anticipated best and worst cases.

Finally, the value T}, = th,- reflects the total time spent in a blocked state waiting on
communications. In general: t,; is a function of message size (m), message transmission
rate (r), communication resource (i.e., link or buffer) contention, and the time elapsed
since the awaited communication was initiated, see (3.3). To account for this elapsed
time, the parameter j is added to tf;,,- to indicate the step when the communication that
we are awaiting was initiated (see 3.1). The time elapsed since communication initiation
can be determined given knowledge of the ¢.; and ¢,;. The effects of resource contention
are potentially much more difficult to model. However, for SCMD programs that are
NN or BC, such conflicts are usually avoidable by careful ordering of communication
operations. Those times when such conflicts are not avoidable can be indicated by a
non-zero value for t4; in (3.3). The time at step ¢ that is spent blocked waiting on a

message that was initiated at step j is thus given by:

s h
. =max(0,tg +mr — > o) (3.3)
k=j

44

where it is understood that Z;;J- ., does not include the time spent on any protocol
interrupt overhead for the communication on which we are waiting. Thus, for (3.1)
3, = mr — t., because ¢ represents the only activity between steps 5 and 7 that could

w

be overlapped with the message transmission (mr).

3.5 Experimental Results

The experimental results reported here, unless otherwise noted, have been measured
on an NCUBE/ten system with a 7 MHz clock. Basic communication performance
parameters are presented first. They are followed by performance measures extracted
from actual programs. The execution time irxodel is verified and then used, along with
further program measurements, to demonstrate the program execution time improvements
that may be realized by incorporating our new operating system calls into programs

executing on the existing NCUBE architecture.

3.5.1 Basic Parameters

The sustained bandwidth and latency are measured by a program that configures
64 node processors into a ring and sends messages of varying lengths around the ring
1000 times, one message at a time. The total time is recorded for each message. A
least squares method is then used to determine sustained bandwidth. The latency is the
time required for a zero length message to traverse one hop. The latency and inverse
sustained bandwidth (the inverse is given so that the measurement units are similar to
those for latency) values for both standard Vertex and our extensions are presented in
Table 3.1. Total message times for messages of length = can be expressed from the
values in Table 3.1 as ¢ = az + b, where a is the inverse bandwidth and b is the latency.
This table also lists the values reported in [RG87] for the Intel iPSC/1 (8 MHz) and
Ametek System 14/n (8 MHz) systems with their standard operating systems, and values
extrapolated from[FK86a] for the CrOS operating system running on an Intel iPSC/1
(8 MHz) and Caltech Mark II (§ MHz). Due to the packetizing nature of CrOS, small

45

message times cannot be accurately approximated with a single linear equation. Instead,
the curves are piece-wise linear with discrete discontinuities at multiples of the packet size.
Due to this piece-wise linearity of the message length/time curve for small messages, the
linear approximation for large messages (i.e., greater than 32 bytes) under CrOS is given
more accurately by: ¢ = 19.7x + 12 for the iPSC/1 and ¢ = 10.15z + 65 for the Mark II.
The results for all processor and operating system combinations are shown pictorially in
Figs. 3.4 through 3.6. As can be seen from these figures our extended version of Vertex
offers the best basic communication performance. Furthermore, these basic performance
measurements do not reflect the full potential for increased performance that is available in
extended Vertex. In particular, the benefits of simultaneous bidirectional communications
between adjacent processors and the possibility of greater overlap of communications and
normal program execution are not revealed. Throughout the remainder of this section
we will examine the performance of the Extended Vertex communication system with

respect to the performance of the standard Vertex system.

Latency Inverse Bandwidth
NCUBE Ext. Vtx. 83 (usec) 1.29 (usec/byte)
NCUBE Std. Vix. 466 3.14
Ametek 14/n 550 9.53
iPSC/1 IHOS 1700 2.83
iPSC/1 CrOS 304 19.70 (for large msg)
Mark II CrOS 90 10.15

Table 3.1. Basic Communication Performance.

The elimination of buffer copying has a large effect on the bandwidth of NN commu-
nications. Another way to effectively increase communication bandwidth via software
methods is to unburden the reverse channel from carrying protocol messages. This effect
is not seen in these simple measures because they only communicate in one direction.
However, simultaneous bidirectional communications occur often in actual program runs.
Even without the effect of the extra channel capacity that results from unburdening the

reverse channel, bandwidth is still increased by 2.43 over the standard Vertex imple-

46

mentation. The elimination of buffer copies also reduces latency, as buffer allocation is
no longer necessary. Buffer allocation takes about 40 us when buffers are immediately
available at the head of the queue. A much larger portion of the improvement in latency
times, however, is due to the elimination of the handshake protocol. The overall effect
is a speedup of 5.60 over the latency encountered in standard Vertex. The implications

that these changes hold for algorithm design will be explored in the following sections.

— NCUBEExt. = NCUBEStd. ~— iPSCIHOS == Ametek
120007
100007 e
_ 8000 } /
(rTnl?::?o 6000 + MM"”’M

sec)

4000" ‘/’;”,//M
e

ZOOO.WMM
0 Fem——————— 4 ¢ 4
0 256 512 768 1024
Message Length (bytes)

Figure 3.4. Basic Ring Message Times.

The send and receive call overheads have also been measured. All reported times
include the call overhead as experienced from a C program using the standard NCUBE
compiler calling conventions. Also, the execution path taken through the calls is the one in
which no resource contention is encountered. These values, along with the cost of polling
for message reception, are given in Table 3.2 for both standard and Extended Vertex. The
send and receive call overheads are also shown pictorially in Fig. 3.7. Recall that the
Vertex extensions do not require buffer copies to the communication buffer memory area,
thus they incur no incremental overhead. These effects all contribute to the ability of

Extended Vertex to efficiently support algorithms with finer granularity.

In addition to the cost incurred by initiating a send or receive operation via a library

47

0- NCUBEExt. ‘©- NCUBEStd. B- iPSCCrOS ‘0- Mark I CrOS

1400 T

1200t

1000 ¢+

Time ggoo0+
(micro |

sec) 600t o AO/
400-‘1-' =

o

200}

=]

0+ t $ + {
0 8 16 32 64
Message Length (bytes)

ca

el | O

Figure 3.5. Basic Ring Message Times.

0- NCUBEExt. ‘O- NCUBEStd. H- iPSCCrOS ‘O- Mark Il CrOS

25000 1
20000 ¢+]
Time 15000 ¢
(micro
sec) 10000+ /l/l:l
5000 /a/n
o
- (- |] o/
oo 0 ﬂcgﬁg/g/e.-:_—_——_q___.—’
0 8 16 32 64 128 256 512 1024

Message Length (bytes)

Figure 3.6. Basic Ring Message Times.

call from a C or Fortran program, there is the interrupt service cost associated with the
parts of the communication protocol that are interrupt driven. These values are reported
in Table 3.3 for both standard and Extended Vertex.

One of the major differences noted when programming with the Vertex extensions
is that algorithms may be structured to flow more closely with the availability of data

because of the substantially reduced message reception polling times. When polling for

48

Fixed Overhead Incremental Overhead
Ext. Vertex Recvreq 64 (usec)
Ext. Vertex Send 64
Ext. Vertex Poll 5 (all cases)
Std. Vertex Nread 162 1.00 (usec/byte)
Std. Vertex Nwrite 172 1.00
Std. Vertex Ntest (poll) 61 (best case)

Table 3.2. NCUBE Send/Receive Call and Polling Overhead.

— Ext. Send -~~~ Ext. Revreq - Std. Nread = - Std. Nwrite

1400 ¢
1200 + M

10007

Time 800 +
(micro
Sec) 600+

400 T /
%
200 ¢

0

et

0 256 512 768 1024
Message Length (bytes)

Figure 3.7. Send/Receive Overhead Times.

messages with standard Vertex, the system searches a central list of received but not yet
claimed messages for all channels. Thus, the polling time is a function of the length of the
unclaimed message list unless the search is ended early with a success. The incremental
time increase experienced in standard Vertex is approximately equal to that of the entire
search time in extended Vertex. Polling for messages in standard Vertex requires about
30 machine instructions when the message is found immediately at the front of the
queue. Roughly 10-20 simple high level language (HLL) statements could be executed
in comparable time. For each additional message that is checked while looking for the
requested message, about 2% more machine instructions (or another HLL statement) may

be executed. Further measurements that we have made indicate that the execution of

49

Overhead (us)
Standard Vertex Send 117
Standard Vertex Receive 186
Extended Vertex Send 25
Extended Vertex Receive 25

Table 3.3. NCUBE Interrupt Driven Protocol Overhead.

assembly coded BLAs (basic linear algebra operations) is about 2.4 times faster than the
equivalent Fortran77 code. Thus, under optimized conditions the equivalent of at least
20-40 simple HLL statements could be executed in each standard Vertex polling time.
With Extended Vertex, the cost of polling drops to the equivalent of about 2% simple
HLL statements. The large reduction in the polling cost for Extended Vertex will often
affect program design decisions. These design tradeoffs will be addressed in subsequent
sections.

Another difference between the standard and extended version of Vertex is that with
Extended Vertex the communication operations may be asynchronously decoupled from
the calculation sections of the program even further. For example, in some algorithms
message reception is polled for at several locations— not because the message is needed
at these locations (if it were, a blocking receive would have been used), but rather,
because the message needs to be modified and forwarded to another node as expeditiously
as possible. An alternative to periodic polling is provided by Extended Vertex. This
alternative allows user programs to specify a routine to be executed immediately upon
message reception. In this manner, incoming data may be immediately processed and
forwarded to other nodes. The user supplied data forwarding routine may also set the

message-reception-completed flag.

3.5.2 Instrumented Programs

Sobel Edge Detector. We have coded and executed several versions of the Sobel edge

detection algorithm. The Sobel edge detection algorithm is a simple low-level vision

50

(2777777727
| coomascl
Subimage |1 Data required
% |
; in node A [/ by A
%
7 4
(777777777

Figure 3.8. Remote Data Requirements for Node A.

algorithm that attempts to extract edge information in a grey-scale image [MAS87]. It
extracts this information by convolving a mask function (the Sobel operator) with a 3 x 3
pixel section (or kernel) of the image. The resultant value is used to replace the pixel
value at the center of the kernel. This convolution operation is repeated for each pixel in
the image. To execute this algorithm on a parallel processor, the image is divided into a
two dimensional grid and a subimage is given to each node. The nodes then exchange
edge and corner pixel values with the nodes that contain neighboring subimages, see
Fig. 3.8. The Sobel algorithm makes a useful example because an algorithm with the
same structure can be used for any problem requiring a convolution with a small kernel
(for convolutions with large kernels, fast Fourier transform techniques become more
efficient). The communication structure of the Sobel algorithm is also representative of
many other algorithms [OM87,KJ87].

We have executed the Sobel algorithm with a variety of communication types and data
set sizes. We have also varied the order of the communications operations. Execution
times of these various versions were extensively profiled. For the standard Vertex cases

the algorithm consists of the following steps:

51

1. gather the right and left edge data from the square subimage array into two buffers

2. send each of the four edge buffers and then the four corner pixels to their respective

neighbors
3. calculate interior subimage points
4. receive the first expected edge
5. calculate the corresponding edge points; repeat step 4, in order, for each edge
6. receive the first expected corner
7. calculate the corresponding corner point; repeat step 6, in order, for each edge.

The right and left edge data must be gathered into contiguous memory locations because
the DMA capabilities of present communication systems will only transfer contiguous
blocks of data.

Initial measurements quickly reveal that the communication phases of the Sobel al-
gorithm can be decoupled from their dependent execution phases sufficiently easily that
the specific ordering of communication operations is not critical. That is to say that the
nodes may send data to each of their eight neighbors in any order, calculate their interior
points, and then receive data from each of their eight neighbors in any order. In all cases
the remote data will be received before it is needed. In terms of the model developed
in Sec. 3.4, t,; = 0,Vi. Since there is no time spent waiting on blocked receive calls, -
the analysis of polling costs need not be performed. For this class of algorithms, optimal
scheduling of communications is easily achieved.

The times measured for the parameters of the execution time model using the standard
Vertex calls are given in Table 3.4 and are discussed below. The time to initiate send
operations is given in two parts, call to send and start transmit, which total to the time for
an nwrite of 8 bytes. This value is expressed in two parts to more accurately characterize

the time at which the message begins to travel on-the-wire. The results are reported for

52

a 64 x 64 pixel image distributed across 64 nodes. Thus the subimage on each node is
8 x 8 pixels. Total measured program execution time is T' = 25017 usec. The values of 7.
and T, are 17715 usec and 5168 usec, respectively. The approximately 2 milliseconds
not accounted for by summing the component times in Table 3.4 is due to the fact that
minimum component time values are used and that there are a few source code statements
not included in any of the timing loops. The Nread routine is particularly susceptible to
underestimation of execution time since the number of arrived, but not yet read, messages
that are searched in the process of retrieving a specific message is not accounted for by
the model.

There is no contention for communication resources (links and buffers) in this algo-
rithm. Thus, the ¢,; components of the total execution time are greater than zero only
if the mr term of Equation 3.3 is larger than the difference of the times between the
initiation of the message send and the message receive (neglecting, as stated earlier, the
interrupt overhead times for protocol support for the communication on which ¢, is
waiting). With m = 8 and r = 1.29 this clearly cannot be the case for any of the t,;.
The t,,; terms will be zero even for the limiting case of one pixel per node because the
transmission time is insignificant when compared to that of the overheads involved in

initiating a communication and handling the resultant protocol interrupts.

The algorithm employed for the Extended Vertex Sobel code consists of the following

steps:
1. queue receive requests for each of the edges and corners to be received
2. gather the left and right edge data into contiguous buffers
3. send each of the four edge buffers to its respective neighbor

4. receive the first expected edge

b

polling once for reception of any edge data (if successful, forwarding the corner

on to its final destination)

53

Parameter time (us) Comment

ta 275 data gather

ta 160 call to send 1st edge

ts3 20 start transmit

t43,10:1,1 117 send protocol overhead
ts 160 call to send 2nd edge

t.s 20 start transmit

155,20:1,1 117 send protocol overhead
ts6 160 call to send 3rd edge

ts7 20 start transmit

ts721:1,0 117 send protocol overhead
t.8 160 call to send 4th edge

ts 20 start transmit

159,22:1,1 117 send protocol overhead
ts10 153 call to send 1st corner
ta11 20 start transmit

ts11,24:1,1 117 send protocol overhead
ta12 153 call to send 2nd corner
t,13 20 start transmit

121325:1,1 117 send protocol overhead
14 153 call to send 3rd corner
515 20 start transmit

ts15,26:1,1 117 send protocol overhead
ts6 153 call to send 4th corner
1517 20 start transmit

ta1727:1,1 117 send protocol overhead
.18 10036 process interior

ta19 170 call to receive 1st edge
t53,10:12 186 receive protocol overhead
1520 170 call to receive 2nd edge
45,20:1,2 186 receive protocol overhead
t:1 170 call to receive 3rd edge
ts121:1,2 186 receive protocol overhead
to22 170 call to receive 4th edge
t59,22:12 186 receive protocol overhead
tas 6681 process edges

t.o4 163 call to receive 1st corner
t11.2411,2 186 receive protocol overhead
ts 163 call to receive 2nd corner
t51325:1,2 186 receive protocol overhead
t.26 163 call to receive 3rd corner
t515,26:1,2 186 receive protocol overhead
to27 163 call to receive 4th corner
t517,271,2 186 receive protocol overhead
tos 998 process corners

Table 3.4. Sobel Execution Profile, Standard Vertex.

54

6. calculate interior subimage points

7. poll for reception of edges in order (if successful, forwarding the corner and cal-

culating the corresponding edge points), repeat until all edges are calculated

8. poll for reception of the corners in order (if successful, calculate the corresponding

corner point), repeat until all corners are calculated.

This main difference between this algorithm and the standard Vertex algorithm is in
the handling of the corner pixels. The Vertex extensions forbid non-NN communications.
None of the diagonally adjacent subimages are near-neighbors. Therefore, once an edge
is received the program attempts to forward the end (corner) pixel to its final destination
as soon as possible. Since polling is relatively inexpensive in extended Vertex, a check
is made for the reception of edge data before it is needed so that we may forward on
corner data if possible.

A more general solution to the problem of receiving and forwarding data in an expe-
ditious manner so as not to delay downstream nodes is provided by one of the options
in Extended Vertex. Instead of specifying a flag to be set when an expected message
arrives, one can specify a parameterless subroutine to be executed. This subroutine can
perform any processing that is necessary, forward the appropriate data, and then set a
completion flag for the benefit of the local node before returning. Thus the forwarding
of the data occurs as soon as the data is received, rather than at the next poll. Both the
first extended Vertex algorithm described, and one employing parameterless forwarding
procedures were benchmarked. For the Sobel program both algorithms executed in about
the same time, so further results are specified only for the initial algorithm.

The times measured for the parameters of the execution time model using the Ex-
tended Vertex calls are given in Table 3.5. These results are also for a 64 x 64 pixel
image distributed across 64 nodes. This time we are less accurate in our modeling of
communication transfer start times. Instead of splitting the communication initiation time

in two, we leave it as a single time and assume that the communications do not start

55

on-the-wire until the end of the single step. Since we are, again, well ahead of the point at
which we would have to wait on communications, this slightly more coarse modelling of
communication start times will have no practical impact other than simplifying table 3.5.
Total measured program execution time is T' = 19783usec. The values of T; and T, are
17948 psec and 1779 usec, respectively. In this case our model is within 100 psec of
the measured execution time.

The Extended Vertex version of the Sobel algorithm is about 1.26 times faster than
the standard Vertex version in total program execution time and 3.06 times faster in
communications time. Communication overhead can be lowered even further. Several
improvements that require architectural changes will be discussed in Sec. 3.6. However,
a significant gain can be easily realized by reducing the number of successive calls to
the operating system. The cost of a parameterless operating system call incurred from a
C program is 26 ;lsec. Thus, a 17% improvement in communication performance of the
Extended Vertex Sobel code can be realized by coalescing the two groups of repeated
calls to the operating system (steps ,1—t s and £,10—%,13) into just two calls. This improves

the speedup to 1.29 times the standard Vertex code.

Linpack LU Factorization. We have also instrumented several versions of the Linpack
lower/upper (LU) matrix factorization algorithm. These versions vary in the type of
communications, size of matrix and number of processors used. Execution times of these
various versions have been profiled. The standard Vertex version of the Linpack LU
factorization algorithm is shown in Fig. 3.9 in pseudo-C code, the actual programs were
written in Fortran77 by Cleve Moler. The matrix data is distributed, by columns, across
the nodes. Node z will contain columns z, z + N, = + 2N, etc.

The global send operation executes the spanning tree broadcast algorithm described
in Sec. 3.1.3. The measured execution of an LU factorization of a 477 x 477 matrix
with 64 processors (the largest problem that will currently fit on our NCUBE) using the

standard Vertex calls yields T = 22.475 seconds and T, = 11.524 seconds. Thus, 10951

56

Parameter time (us) Comment

ts1 64 queue 1st edge receive request
t 64 queue 2nd edge receive request
i3 64 queue 3rd edge receive request
tsa 64 queue 4th edge receive request
.5 64 queue 1st corner receive request
ts6 64 queue 2nd corner receive request
ts7 64 queue 3rd comer receive request
tes 64 queue 4th corner receive request
10 275 data gather

ts10 64 start 1st edge send

51023 25 send interrupt overhead

ts11 64 start 2nd edge send

te11,25 25 send interrupt overhead

512 64 start 3rd edge send

512,27 25 send interrupt overhead

ts13 64 start 4th edge send

513,20 25 send interrupt overhead

1514 5 poll for edge

1515 64 send corner

ts1531 25 send interrupt overhead

ta16 5 poll for edge

517 64 send corner

t517,33 25 send interrupt overhead

t,18 5 poll for edge

.19 64 send corner

151935 25 send interrupt overhead

520 5 poll for edge

t.o1 64 send corner

t521,37 25 send interrupt overhead

to2 10036 process interior

23 10 poll for 1st edge (twice)

151023 25 receive interrupt overhead

to4 1743 process edge

1525 10 poll for 2nd edge (twice)

ts11,25 25 receive interrupt overhead

tea6 1743 process edge

521 10 poll for 3rd edge (twice)

ts12.27 25 receive interrupt overhead

tos 1743 process edge

Table 3.5. Sobel Execution Profile, Extended Vertex (part 1-of-2).

b

57

Parameter time (us) Comment

ts29 10 poll for 4th edge (twice)
ts13,29 25 receive interrupt overhead
ta0 1743 process edge

.31 5 poll for 1st corner

151531 25 receive interrupt overhead
taz 235 process corner

1433 5 poll for 2nd corner

151733 25 receive interrupt overhead
t34 235 process corner

tas 5 poll for 3rd corner

51935 25 receive interrupt overhead
ta6 235 process corner

1537 5 poll for 4th corner

t521,37 25 receive interrupt overhead
t.a8 235 process corner

Table 3.5. Sobel Execution Profile, Extended Vertex (part 2-of-2).

for(i = 1; i <= matrixorder; i++)

{
if (this node has ith column)
{
find pivot index
calculate multiplier column
}
global send
do row elimination
}

Figure 3.9. Linpack LU Factorization (Standard Vertex).

seconds, or 49% of total program execution time is spent either setting up or waiting on
communications.

The pseudo-C code description of the Extended Vertex version of the algorithm is
given in Fig. 3.10. The major difference in the algorithm is that several steps that were
handled by the global send library call in the standard Vertex case have been performed

explicitly in this case. This allows the structure of the program to be seen more clearly,

58

do initial receive buffer setups (first two)
for(i = 1; i <= matrixorder; i++)

{
determine sons in spanning tree and active buffer
if (this node has ith column)
{
find pivot index
calculate multiplier column
broadcast to neighbors
}
else
{
determine father in spanning tree
await reception of broadcast
broadcast to sons (if any)
setup receive (for the one after next)
}
do row elimination
}

Figure 3.10. Linpack LU Factorization (Extended Vertex).

it also facilitates further experimentation with the design of the algorithm. The standard
Vertex program structure could have been left intact, with changes made only to the global
send library routine. The difference in performance between these two Extended Vertex
versions of the program is negligible (less than one percent). Execution measurements
of the 477 x 477 LU matrix factorization yield T = 16.786 seconds. T, remains the same
(11.524 seconds), thus the time spent either setting up or waiting on communications
is reduced to 5.262 seconds, or 31% of total program execution time. Total program
execution speedup is 1.34, communication speedup is in excess of 2.

The execution time model parameters are given in Table 3.6, where, for the current
iteration, z is the number of sons in the broadcast spanning tree, y is the number of
active matrix columns and z is the active length of the columns (the active column
length decreases by one each time a row is eliminated); ¢ is the current execution step

number and d is the dimension of cube on which the program is executed. Table 3.6

59

Parameter time (us) Comment

to1 2(12d + 11 + 63.5) + 529 setup initial receive requests

ts2 17.4d + 19+92.8 determine sons and active buffer
te3 21.262 +280 determine pivot, calculate multiplier
tws 0 no wait when we start broadcast
ts5 14.5z + 66 broadcast

o6 0 no setup of receive this time

te y(16.52 +92)+3 row elimination

ts8 17.4d +19+92.8 same as i,

teo 0 skip, don’t have pivot column
twlo tei7 + BL(tsi_s +25+5.22) wait to receive broadcast

t.11 14.5z + 81 or 15 forward broadcast to sons (if any)
to12 12d +278.5 setup receive (one after next)

to13 y(16.5z2 +92)+3 same as iy

Table 3.6. Linpack Execution Profile, Extended Vertex.

shows the execution steps through the first two iterations. The first iteration is one in
which the modelled node has the pivot column, the second iteration is one in which it
does not. Steps similar to 8-13 are iterated 2¢ — 1 times, followed by an iteration of
steps similar to 2-7, and so on until a number of iterations equal to the matrix order of

the problem to be solved have executed.

The parameters in Table 3.6 are described below.

t,1 Setup the receive requests for the first two iterations for which the node does not
contain the pivot column. The parenthesized values are the times to make calls to
father and rcvreq. The father routine determines the father node in the broadcast
spanning tree, its execution time is a function of the dimension of the cube plus
a small constant for the call/return overhead. The result of father is used as a
parameter to the rcvreq call. The remaining time is spent selecting and setting up
the buffers for the expected data. Three buffers are preallocated and repeatedly

used in a cyclical order.

¢, t.s The sons in the broadcast spanning tree and the active buffer for the current

iteration are determined. The execution time of the sons routine is a function of

60

the dimension of the cube plus a small constant for the call/return overhead. The
sons of the current node are used later in #,5 and ¢,;. This time also includes

conditional test to determine to determine if the node contains the ith column.

ts Determine the pivot and calculate the column multipliers. This step is performed
only on the node that contains the pivot column. The execution time is a function

of the length of the column, which is a function of the iteration step.

t,s Broadcast the column multipliers to each of the sons in the spanning tree. This step
is performed only on the node that contains the pivot column. The execution time

is a function of the number of sons.

ta, tas Eliminate a row of the matrix. This step is performed by all nodes. The execution
time is a function of both the length of the columns and the number of active

columns located on the node.

twio This is the time spent waiting to receive the broadcast. This step is performed only
on those nodes that do not contain the pivot column. The wait consists of the time
for the corresponding node that contains the pivot column to determine the pivot
and calculate the column multipliers, plus the product of the average number of
hops that the column multiplier broadcast must travel and the time for each hop.
The average distance is one-half of the diameter of the cube. The time at each
step is comprised of the time required to initiate the broadcast, plus the interrupt

overhead, plus the per byte transfer cost.

ts11 Relays the broadcast information on to the sons of the current node. If sons exist,
the execution time is a function of the number of sons. If not, the execution time
is a small constant. This step is performed only on those nodes that do not contain

the pivot column.

t.12 Setup the receive request for another iteration. This step is performed only on those

nodes that do not contain the pivot column for all but the last two iterations. About

61

half of the work of %, is repeated in this step.

The model as applied to both the extended and standard Vertex Linpack execution
times is accurate to within 5% for all cases between 100 x 100 and 477 x 477. In all
cases over 50% of the discrepancy is attributable to the T,, term. Even greater accuracy
was achieved for all cases of the Extended Vertex Sobel model. Modelled results for a
wide variety of problem sizes are given in Sec. 3.6.1.

In the preceding sections the costs of individual communication primitives have been
determined, a model that accounts for total program execution time in terms of the
individual times of communication operations and calculations has been verified and the
potential for significant speedup based upon new operating system calls that can be easily
incorporated into existing programs has been demonstrated. The following section will

discuss architectural design issues that lead to further performance increases.

3.6 Communications Architecture Support

We have identified five items that should lead to significant performance improve-
ments based upon our examination of the communication performance. These items may
be divided into the following two groups: 1) performance improvements that are made
directly to the communication system and 2) efforts that are directed towards reducing
interference from the communication system on the processor that executes the program

computations. Improvements aimed directly at the communication system include:
e minimizing the overhead incurred by invoking communication operations

o increasing the effective system bandwidth by allowing bidirectional communica-

tions to proceed simultaneously and

e modifying the hardware design to improve the basic communication system per-

formance.

Changes that are intended to improve the computational performance include:

62

e reducing the cost of communication protocol interrupt handling that must be borne

by the compute processor and

e allowing the processing of message data to begin before the entire message has

arrived.

The results presented in Sec. 3.5.2 have demonstrated the benefits that are available
within the existing communication system architecture by reducing the overhead of com-
munication system calls and returns, reducing the time spent handling the communication
protocol interrupts and improving the basic communication system performance. In the
following section we will use our program execution time model to predict the perfor-
mance improvements that would result from a new communication system architecture
that addresses all of the items listed above. The details of this new communication system

architecture are developed in the next two chapters.

3.6.1 Modelled Results

The new communication system that we are modelling in this section is described
in Chapter 5. This section is included in the current chapter so that all of the performance
information for the Sobel and Linpack algorithms will be together. It may be desirable
to skim this section on the first reading.

Communication instructions in this system are executed by a communication copro-
cessor. Therefore, the node CPU may be released to continue execution of its instruction
stream, after an initial short synchronization with the coprocessor. We assume that the
coprocessor interface is like that described in [MC685]. The actions of the main CPU and
coprocessor during this short synchronization period for the send, receive and broadcast
instructions are given in Fig. 3.11. The message header block is described in Sec. 4.1.1.
The synchronization period should last no longer than the time to execute two arith-
metic instructions with memory based operands. After this short synchronization period
the main CPU is released to continue executing instructions from its instruction stream.

Meanwhile, the communication coprocessor can proceed with its actions as described

63

Main Processor Coprocessor

M1 Recognize Coprocessor
Instruction Operation Word

M2 Write Coprocessor Command
Word to Command Coprocessor
Interface Register (CIR) — C1 Decode Comand Word and
Initiate Command Execution

c2 Request Address of Message
M3 Read Request, Perform 4+—> Header Block, Await Response
Requested Service

c3 Reflect "No Come Again”

M4 Proceed with Execution of 44— in Response CIR (see note 1)

Next Instruction

C4 Complete Command Execution

o] Reflect "Processing Finished"
Status in Response CIR (see
note 2)

NOTES:

1. "Come Again" indicates that further service is being requested of the main processor.

2. The main processor may not proceed with M2 of a subsequent instruction until C5
has been completed by the current instruction.

Figure 3.11. Coprocessor Interface Protocol.

in Chapter 5. Typical communication processor instructions (i.e., those that do not have
to search through long queues) should complete their initial actions in about the same

amount of time as four or five node CPU instructions.

Sobel Edge Detector. The algorithm for the Sobel edge detector using the commu-
nication semantics described in Sec. 4.1.1 is similar to the Extended Vertex algorithm.
The chief difference is that we can now directly send the corner pixels to their non-NN
destinations. This eliminates the corner forwarding steps from the Extended Vertex al-
gorithm. Another difference is that the main CPU is no longer interrupted to indicate
the completion of message actions. The algorithm employed for the new communica-

tion semantics consists of executing asynchronous receive instructions for each of the

64

edges and corners to be received, gathering the left and right edge data into contiguous
buffers, sending each of the four edge buffers and the four corner pixels to its respective
neighbors, calculating interior subimage points, polling for reception of edges in order
(if successful, calculating the corresponding edge points), repeating the last step until all
edges are calculated, then performing steps similar to the last two for the corners.

Again, no time is spent waiting for message data to arrive. Based on data in Chapter 5
the time to transmit the edge data should be lesé than 22 usec (after accounting for the
NCUBE clock rate). Even after waiting behind outgoing edge data, less than 37 pusec
is required to transmit corner pixels. Thus, the time required to process the interior of
the message (f.2) is, again, much greater than the time to transmit either the edge or the
corner data among neighbors.

The times for the parameters of the execution time model using our new communi-
cation system are given in Table 3.7. The predicted total execution time for a 64 x 64
pixel image distributed across 64 nodes is T = 18327usec. This time is about 80% of
the time predicted for the standard Vertex algorithm executing on the NCUBE, and about
93% of the time predicted for the Extended Vertex algorithm. The value of T is re-
duced to 379usec as compared to 5168usec in the standard Vertex case and 1779usec for
Extended Vertex. The value of T, could be reduced further to 104usec if our proposed
architecture were modified to handle DMA strides other than one. Such a modification is
easy to accommodate, though it is not apparent that it is required often enough to justify
the change. With the present proposed architecture the communication time is only 2%
of total program execution time. This is substantially better than the 29% for standard
Vertex or even the 9% for Extended Vertex. This program does not take advantage of the
ability to process data in a message that is still arriving, however, the following program

will.

Linpack LU Factorization. The algorithm for the Linpack LU factorization using the

communication semantics presented in the following chapter lies between the extended

65

Parameter time (us) Comment

ts1 4 queue 1st edge receive request
ts2 4 queue 2nd edge receive request
t3 4 queue 3rd edge receive request
1.4 4 queue 4th edge receive request
1.5 4 queue st corner receive request
t6 4 queue 2nd corner receive request
ts7 4 queue 3rd corner receive request
ts8 4 queue 4th corner receive request
1,0 275 data gather

t510 4 send 1st edge

tsi1 4 send 2nd edge

ts12 4 send 3rd edge

513 4 send 4th edge

t,15 4 send corner

1517 4 send corner

ts19 4 send corner

i1 4 send corner

) 10036 process interior

t523 5 poll for 1st edge

taa4 1743 process edge

1525 5 poll for 2nd edge

te26 1743 process edge

ts27 5 poll for 3rd edge

tas 1743 process edge

20 5 poll for 4th edge

ta0 1743 process edge

431 5 poll for 1st corner

taz 235 process corner

33 5 poll for 2nd corner

ta4 235 process corner

ts35 5 poll for 3rd corner

tae 235 process corner

1537 5 poll for 4th corner

ta8 235 process corner

Table 3.7. Sobel Execution Profile, Proposed Scheme.

and standard Vertex versions of the code in complexity. The pseudo-C code description
of this algorithm is given in Fig. 3.12. Many of the operations necessary to setup and

forward the broadcasts of the column multiplier in the Extended Vertex case are no

66

do initial receive buffer setups (first two)
for(i = 1; i <= matrixorder; i++)

{

determine active buffer
if (this node has ith column)

{
find pivot index
calculate multiplier column
broadcast to neighbors

}

else

{
await reception of broadcast
setup receive (for the one after next)

}

do row elimination

Figure 3.12. Linpack LU Factorization (Proposed Scheme).

longer needed. This results in two fewer entries in Table 3.8 which gives the times for
the parameters of the execution time model using our proposed communication system.
However, the repetition and structure of the parameters in this table are similar to those
of Table 3.6 which were discussed in the previous section. A notable difference is in
the ¢, term. First of all, the per hop portion of the term is multiplied by % of the cube
diameter instead of % of the diameter. This additional amount of time accounts for the
chance that the broadcast message for a particular node may have to wait behind a copy
of the same message that is destined for some other node. The specific actions of the
broadcast message for this communication scheme are described in Chapter 5. Secondly,
the main CPU no longer spends time servicing communication interrupts nor does it
incur the overhead of forwarding the broadcast message. Finally, our proposed scheme
permits the processing of message data to begin after the first packet (containing seven
data bytes) of the message has arrived. The execution times of all steps that include

execution of communication instructions are significantly reduced.

67

Parameter time (us) Comment

ot 2(4) +529 setup initial receive requests

ta 92.8 determine active buffer

ta 21.262+280 determine pivot, calculate multiplier
tws 0 no wait when we start broadcast
tss 2z +2 broadcast

ts y(16.52+92) +3 row elimination

17 92.8 same as ¢y

ts 0 skip, don’t have pivot column
9 toing + 2217(5.2) wait to receive broadcast

ts10 4+100 setup receive (one after next)
tenn y(16.52+92)+3 same as t¢

Table 3.8. Linpack Execution Profile, (Proposed Scheme).

The modelled results for the standard and Extended Vertex codes, along with the
results using our proposed communication scheme are given in Table 3.9. Recall that d
is the dimension of the cube and m is the order of the matrix. The model indicates that
the Extended Vertex code executes from 1.29 to 1.7 times faster than the code that used
the standard Vertex calls. The improvements for the proposed communication scheme

range from 1.53 to 2.23.

Another performance metric that is useful for evaluating parallel computer systems
is the effective processor utilization, U. Effective processor utilization provides a rough
indication of the price/performance value of a given system. There are two common
definitions for effective processor utilization. One definition is given as follows, let Sy
be the speedup achieved by solving a problem on N processors as compared to the time
to solve the same problem one processor, U is then given by U = %1,1 This definition
of U has two limitations, one is that parallel algorithms are often structured differently
for various ranges of N. This is certainly the typical case for N = 1 as compared to
N > 1; however, it is also often the case for other ranges of N (see [FO88,FMO*87],
for example). The second problem is that the data set of a large problem is often

distributed across the memories of all of the processors in a large multiprocessor sys-

68

[Version d m Tups) Tu(us) Tous) T(us) Speedup |
standard 4 50 28.1x10° 146 x 10° 884 x10° 263x10° 1.00|
extended 4 50 28.0x10° 68.4 x 10° 88.4 x 10° 185 x 10° 1.42
proposed 4 50 10.7 x10° 428 x10*° 88.4 x 10° 142 x 10° 1.85
standard 4 100 653 x10° 435 x 10° 498 x 10° 999 x 10° 1.00
extended 4 100 55.6x10° 136 x 10° 498 x 10° 772 x 10° 1.29
proposed 4 100 209 x 10 8.12x 10° 498 x 10° 655 x 10° 1.53
standard 7 500 837 x10° 139 x10° 6.66 x 10° 21.4 x 10° 1.00
extended 7 500 329x10° 5.63 x 10° 6.66 x 105 12.6 x 105 1.70
proposed 7 500 106 x 10> 2.88 x 10° 6.66 x 105 9.65 x 10° 2.22
standard 7 1000 2.67 x 10° 52.4 x 10° 49.0 x 10° 104 x 10° 1.00
extended 7 1000 657 x 10° 21.7 x 10° 49.0 x 10° 71.4 x 10° 1.46
proposed 7 1000 212x10° 11.0x 10° 49.0 x 10¢ 60.3 x 10° 1.72
standard 10 5000 59.7 x 10° 1.50 x 10° 793 x 10° 2.36 x 10° 1.00
extended 10 5000 3.74x10° 628 x 10° 793 x 105 1.42 x 10° 1.66
proposed 10 5000 1.06 x 105 268 x 10° 793 x 105 1.06 x 10° 2.23
standard 10 10000 219 x 10° 5.97 x 10° 597 x 10° 12.2 x 10° 1.00
extended 10 10000 7.48 x 105 2.50 x 10° 597 x 10° 8.48 x 10° 1.44
proposed 10 10000 2.12 x 105 1.07 x 10° 597 x 10° 7.04 x 10° 1.73

Table 3.9. Linpack Performance for Standard and Extended Vertex and the Proposed
Communication Scheme.

tem [MWP*87,CT87,Wal88,GMB88]. The significance of many programs is derived
from the size of their data sets. Restricting the program size to fit on a smaller system
can lead to uninteresting results, especially for programs whose execution times scale in
a complex manner with either data size or the number of processors. Many large sim-
ulation programs fall into this group. Therefore, we prefer to define effective processor
utilization as U = %&, which corresponds to the fraction of total program execution time
that is spent calculating results.

Effective processor utilization values for the standard and Extended Vertex codes,
along with the results using our proposed communication scheme are given in Table 3.10.
Our proposed communication scheme yields roughly twice the processor utilization of the
standard Vertex code. The processor utilization for the Extended Vertex cases typically

lies about halfway between that of standard Vertex and our proposed scheme.

69

| Version d m Utilization
standard 4 50 34
extended 4 50 48
proposed 4 50 .62
standard 4 100 .50
extended 4 100 .65
proposed 4 100 .76
standard 7 500 31
extended 7 500 53
proposed 7 500 .69
standard 7 1000 A7
extended 7 1000 .69
proposed 7 1000 81
standard 10 5000 34
extended 10 5000 56
proposed 10 5000 75
standard 10 10000 49
extended 10 10000 70
proposed 10 10000 85

Table 3.10. Linpack Effective Processor Utilization for Standard and Extended Vertex
and the Proposed Communication Scheme.

3.7 Chapter Highlights

We have shown that improvements to the communication system software can yield
significant performance improvements on an existing architecture. The primary cost
of this improvement is that it is limited to programs or program phases that are C-
deterministic. On the NCUBE architecture, C-determinism requires that both the order
and the length of expected messages be known before their arrival. The modest changes
to the existing architecture that were noted in Sec. 3.3 could eliminate the restriction of
this first class of performance improvements to C-deterministic programs. However, as
will be discussed in the following chapter, the message transport strategy that is employed
by first generation hypercube systems such as the NCUBE has other severe performance
limitations. The communication architecture that we propose in Sec. 4.5 employs a novel

message transport strategy that provides significantly better performance and provides the

70

robustness necessary to handle non-C-deterministic programs.

As a final observation we note that the asynchronous communication semantics that
are available in both our Extended Vertex and the communication scheme that we propose
in Sec. 4.5 allow many programs to be restructured. Such restructuring can lead to
further performance improvements. As an example, a large part of the execution time
of the Linpack code is spent waiting to receive the pivot column broadcast. Much
of this time can be attributed to all but one processor idly waiting for the pivot column
multipliers to be calculated and broadcast. With asynchronous communication primitives,
the broadcast waiting cost can be mitigated by effectively overlapping the calculation of
the pivot column multipliers and broadcast with the row elimination step of the previous
iteration. Consider the actions of a node that has the pivot column for iteration k. Once
this node performs the row elimination step for its first column on iteration k — 1, it
can begin to calculate the pivot column multipliers for iteration k. These multipliers
can be broadcast, and then the remainder of the row elimination steps (for the remaining
columns) for iteration £ —1 can be completed. Meanwhile, the other nodes are performing
row elimination steps for all of their active columns. As long as the time to perform the
row eliminations on all of the active columns exceeds the time to perform the elimination
on the first column plus the time to calculate and start the broadcasts of the pivot column
multipliers, the cost of waiting on the broadcast is substantially reduced. The pseudo-C

code for this modification is shown in Fig. 3.13.

71

do initial receive buffer setups (first two)
if (this node has first column)
{
find pivot index
calculate multiplier column
broadcast to neighbors
}
for(i = matrixorder; i > 0; i--)
{
switch
{
case (this node has ith column)
do row elimination
break
case (this node has (i+l)th column)
await reception of broadcast
setup receive (for the one after next)
do row elimination on first column
find pivot index
calculate multiplier column
broadcast to neighbors
do row elimination on remainder of columns
break
case (any other)
await reception of broadcast
setup receive (for the one after next)
do row elimination '
break

Figure 3.13. Linpack LU Factorization (Asynchronous Broadcast, Proposed Scheme
Semantics).

CHAPTER 4

RANDOM COMMUNICATIONS

We consider the more general communication issues involved in supporting messages
that may pass by several nodes en route to their destinations in this chapter. A description
of software interface requirements to support RA (random) and BC (broadcast) communi-
cations is given first. Several different message transport mechanisms are then discussed.
This is followed by descriptions of representative existing systems. An approach for
investigating the performance of different system design tradeoffs is developed and used.
The results of this performance investigation are analyzed and a new design is offered

and evaluated. The implementation of this new design is discussed in Chapter 5.

4.1 Software Communication Environment Issues

We identify three requirements of parallel software that we would like to see met
by the underlying communication architecture in this section. The first of these is sup-
port for arbitrary length messages. This is a basic requirement of most communication
systems. At the level of the application program, one program statement should suffice
to send a message of any size to any destination node. System software must take the
responsibility for providing the appearance of this to the application program if support
for such messages is not provided by the architecture. This would then require the system
software on the sending node to break the message into pieces that are small enough for

the underlying architecture—system software on the receiving side would then have to

72

73

reassemble the pieces of the message. Several time consuming context switches would
be required. Thus, it is highly desirable that support for arbitrarily large messages be
provided by the architecture.

The second requirement is that communication operations be handled with a minimal
number of user executable machine instructions. Typically such operations are performed
in an operating system call. The motivations for performing operations within the con-
text of operating system calls are to provide security and to facilitate the sharing of
resources. Neither security nor sharing are requirements of single user operating sys-
tems. If multitasking is demonstrated to be cost effective in a hypercube environment,
the communication instruction semantics that we offer below can handle multiple simul-
taneous communications without direct operating system intervention. The architectural
support for multitasking consists of informing the operating system at the end of message
send and receive operations so that task scheduling operations may be performed if they
are necessary. In essence, we would like to have communication operations treated like
coprocessor floating point instructions. This is motivated by a desire to eliminate context
switch and call/return overhead for communications that is incurred on existing systems.

Finally, we would like to be able to use message data as it arrives, rather than
having to wait until the entire message is received. Many parallel algorithms access
message data in sequential order. For such algorithms, especially those that receive large
messages, this allows us to further overlap calculation with computation. The major
design consequence of this scheme is that the communication system need only maintain
a point-to-point bandwidth that is equal or greater than the consumption rate of data.
Once this bandwidth requirement is met, the remaining design decisions can be made to
minimize message latency. Clearly, though, for such a scheme to be useable, we must

have a mechanism to prevent the accessing of data before it has arrived.

74

queue link

destination
type
length

buffer pointer

completion flag

Figure 4.1. Send header block.
4,1.1 Communication Instruction Semantics

The instruction semantics that we propose below assume that the communication pro-
cessor is implemented as a coprocessor meeting an interface specification like that of the
Motorola 68020 [MC685] family. The instruction set architecture of the communication
coprocessor provides a basic and efficient interface. This interface is intended to be

useable with a minimum of compiler and library support.

Send. The send instruction requires a pointer to a message header block in which the
user specifies message destination, type and length values, and a pointer to the message
buffer. This block should also contain space for a completion flag and a queue link for
use by the communication processor. If the communication processor cannot immediately
handle the request, the message header block is enqueued in a wait list for later processing.
The completion flag is set to 1 once the message send is in progress, and to 3 once the
send is complete. A diagram of the message header block for the send instruction is

shown in Fig. 4.1.

Broadcast. Broadcasts occur frequently in numeric codes. Several efficient algorithms
are known [HJ86,SWar]. However, none have yet been incorporated into hypercube hard-

ware designs. An integrated architectural solution would eliminate the need to involve

75

queue link
type
length

buffer pointer

completion flag

Figure 4.2. Broadcast header block.

node CPUs in broadcasting messages. It would also lessen the bandwidth requirement
between the communication network and the node memories because the need to forward
the message from the node memory is eliminated. The fields within the message header
block and the completion flag actions for the broadcast are similar to those for the send
instruction, except that a destination field is no longer required. Message transmission
will proceed in approximate synchrony as outbound ports become available. This syn-
chrony arises from the fact that the transfer from node memory to communication chip
occurs only once, regardless of the number of communication processor output ports that
the message is sent through. Broadcast messages will have specially tagged headers so
that later communication chips will be able to recognize the potential need to forward .
the packet through more than one output port. A diagram of the message header block
for the broadcast instruction is shown in Fig. 4.2.

The special case of broadcasts to near-neighbors will be handled with a separate
instruction. Near-neighbors are nodes that lie one link away from each other. The number
of near-neighbors of a node is equal to n, the degree of the cube. For this instruction,
we require a list of near-neighbor destinations and a value (< n) indicating the number
of entries in the list, rather than the implicit destinations assumed for the cube-wide
broadcast instruction described above. Therefore, our NN broadcast can send messages
to a subset of its immediate neighbors. The remainder of the instruction arguments and

the completion flag actions are similar to the send instruction. Message transmission will,

76

queue link
type
length

buffer pointer

completion flag

number of destinations

destination 1

destination n

Figure 4.3. Near neighbor broadcast header block.

again, proceed in approximate synchrony as described above for the general broadcast
case. A diagram of the message header block for the near-neighbor broadcast instruction

is shown in Fig. 4.3.

Receive. The receive instruction also requires a pointer to a message header block. In
this block, the user specifies message source and type values (either of which may assume
the value ANY), the length of the message buffer, and a pointer to the message buffer. This
block should also reserve space for the completion flag, two quéue links, and two extra
data fields for use by the communication processor. The use of the second queue link and
the extra data fields is explained in Sec. 5.1.2. A null message pointer indicates that the
user would like to use a system allocated message buffer. This is useful in a few cases:
when the user suspects that the message may have already begun to arrive and does not
want to incur a block move overhead; when the user does not want to be burdened with
managing message buffers; and when the length of the incoming message is unknown.
In such cases, the communication processor writes the address of the message buffer and
its Iength into the message header block and the user assumes responsibility for returning

the buffer space, via the buffer release instruction, to the system. When a valid message

71

buffer pointer is provided, the specified message buffer will be used. If the message has
already begun to arrive, it will be copied from the system buffer to the user specified
buffer. The completion flag is set to 1 once the message receive is in progress and to 3
once the reception is complete.

The completion flag and message overrun exception mechanism allow the user to
begin processing arriving data before the message reception is complete. This is accom-
plished by waiting for the completion flag to indicate receive-in-progress before starting
to process the data. An exception will occur if a memory request is made for data that
has not yet arrived. This request may be continually retried until the data arrives. The
more conservative user may just wait for the message completion flag to indicate that
the reception is complete before processing the message. The flags are specified such
that a process waiting for the receive-in-progress indication may also be released by the
reception-completed flag. In a multitasking environment, repeatedly retrying a memory
request or repeatedly testing a flag may not be acceptable mechanisms for waiting on
asynchronous events like message reception. In such a case, the operating system should
provide a signalling service that allows processes to suspend themselves pending the
occurrence of an asynchronous event (for example, see [Bac86]). A diagram for the

message header block for the receive instruction is shown in Fig. 4.4

Buffer Release. System buffer space is returned via the buffer release instruction. The

instruction requires only a single operand that points to the buffer.

4.2 Message Transport Strategies

Perhaps the most fundamental architectural design decision to be made in support of
RA communications is the choice of message transport strategy. At the highest level of
abstraction, there are two choices to consider: store-and-forward and circuit switching.
The prime conceptual example of circuit switching is the telephone system. First, a circuit

is established (dial a number); then an arbitrary amount of information is exchanged

78

queue link

source
type
length

buffer pointer

completion flag

queue link

extra field 1

extra field 2

Figure 4.4. Receive header block.

(talk); finally, the circuit is released (hang up). Once the circuit is established, all
subsequent data follows the same path through the network, thus incurring no further
routing overhead. Physical resources, chiefly in the form of network bandwidth, are
reserved for the user from the time the circuit is established until it is released, even
if there are long pauses in the conversation. Circuits can be very wasteful unless they
are established and released on a message by message basis. This is especially true
for multicomputer network communications which tend to be rather bursty. Another
problem is that as the average circuit length increases, fewer circuits can simultaneously
co-exist. Therefore, the performance of circuit switching under conditions of non-local
communications will be significantly affected as message traffic loads get heavy. Further
information on circuit switched networks can be found in [Joe79,MGN79].
Store-and-forward systems can be divided into three specific transport mechanisms:
datagram, packet switching and virtual circuits. Datagram transport systems require that
a buffer be allocated at each intermediate node along the path from source to destination.
Datagrams (messages) of varying sizes can be accommodated. The sending node must
be notified when a receiving buffer of the appropriate size has been allocated so that

message transmission can begin. The requirement to handle variable size messages adds

79

significantly to the complexity of buffer management. Typically, a three way handshake
protocol like that described in Sec. 3.1.1 is used to provide notification that the buffer
allocation has been completed. Routing decisions are made on a hop-by-hop basis for
each datagram. The routing decisions at each hop may be either fixed or adaptive. The
next hop is determined entirely as a function of the current node and destination node in
the case of fixed routing. For adaptive routing, the decision of which node to route to
next may be additionally influenced by the perceived traffic loads of the various paths
to the destination. Most of the first generation of commercially available large scale
hypercube multiprocessors employ a dat‘agram transport mechanism.

Packet switching is very similar to datagram transport. The chief difference is that
packet switching uses fixed sized packets and may require several packets to deliver
one message. This eliminates much of the buffer management problem associated with
datagrams; however, it incurs an additional routing expense for each of the extra packets
required for the message. If adaptive routing is used, packets from the same message
may arrive out of order, requiring an additional reassembly expense. In Sec. 4.5, we
propose a variation of packet switching that is shown to perform very well.

Virtual circuits have been suggested as a hybrid approach to message transport. They
combine the routing efficiency of circuit switching with the dynamic bandwidth allocation
of packet switching while incurring an acceptable buffer management overhead [RF87].
Data is divided and sent in fixed sized packets as in packet switching. However, the route
(virtual circuit) that the packets will take is established by an initial header packet. The
links between adjacent nodes are divided into a set of virtual channels. This division
may occur via preallocated time slots or it may be demand driven by prepending a
channel identification tag on each data packet. Arriving packets are temporarily buffered,
then dispatched based upon their channel tag. Issues of routing, flow control and buffer
management must be dealt with by the switch architecture. The X-Tree project at the
University of California at Berkeley yielded a design and partial implementation of a

virtual circuit based multicomputer system [DP78,Fuj83].

80

An idea known as virtual cut-through can lead to significant improvement in any store
and forward based message system. The idea is to begin forwarding an arriving packet
via an output link as soon as the link is ready. The consequences of using virtual cut-
through are that the communication links must be synchronous and that error checking and
retransmission must be left to an end-to-end protocol. Because massively parallel systems
are typically compact, with physical dimensions on the order of a few feet, synchronous
communication links can be easily provided and the expectation of transmission errors
is very low. A queuing system analysis of virtual cut-through is given in [KK79]. The

simulation results that we provide in Sec. 4.4 verifies the performance improvement.

4.3 Existing Implementations

We will describe two of the better performing commercially available RA message
handling systems, the NCUBE and the Intel iPSC/2. The NCUBE is among the best of
the first generation of commercially available hypercube computers. The iPSC/2 is the
first machine of the second generation of commercially available hypercubes computers.
We also consider the Ametek 2010 which is based in part on the Torus Routing Chip
project at the California Institute of Technology and Hyperswitch Network project at the
Jet Propulsion Laboratory. Though systems incorporating the Hyperswitch are not yet
available, several detailed simulations have been run to predict the performance of its

various transport schemes [CMP87a,CMP*87b,CMP*88,GR88]).

43.1 NCUBE

The key architectural feature of the NCUBE is its 22 on-chip, bit serial, DMA chan-
nels. These 22 asynchronous DMA channels provide 11 inbound and 11 outbound com-
munication lines. These lines are paired to provide one bidirectional connection to the
host, with the remaining 10 bidirectional connections available to be configured into a
cube of up to 10 dimensions. Each DMA channel has independent count and address

registers. When a count register is decremented to zero, the DMA activity for that chan-

81

nel ceases and an interrupt is signalled. An interrupt service routine that is unique to the
interrupting channel may then be selected and executed via a vectored interrupt facility.
The DMA devices communicate with memory via a common memory interface unit that
is shared with other on-chip functional units. Due to pin limitations, the path between
the memory interface unit and memory is 16 bits wide. Thus, at a message transmission
rate of 7 MHz, an active channel will write or fetch a memory word about every 2.3us.
NCUBE claims that up to nine channels can be simultaneously receiving data without ex-
periencing overruns due to memory contention [HMS*86]. The high scale of integration
achieved by placing the communication hardware on chip allows 64 nodes (processors
and memory) to be placed onto each board. Thus, a 1024 node system is contained
within a single small cabinet. The chief limitation is that the nodes are not expandable
to include more memory (512 K-bytes is standard) or additional functional units.

The instruction set interface to the DMA communication capabilities is via four in-
structions, seven processor status registers, and the vectored interrupt facility. The LPTR,
load pointer (address), instruction is used to indicate the starting memory location at which
the DMA fetches or stores are to occur. The LCNT, load count, instruction is used to
indicate the number of bytes to be fetched or stored. The loading of a non-zero value in
the count register has the effect of starting the DMA operation. The BPTR and BCNT
(broadcast) instructions are provided to reduce DMA activity. They allow for the trans-
mission of the same set of memory values to an arbitrary set of output channels in a
single DMA operation. In all four of these instructions the second operand is used to
select the channel or set of channels to be operated on.

A datagram transport service is used for communications. The routing is handled by
the software in the end-of-receive DMA interrupt service routine. If the message is not
yet at its destination, it is routed to a node that is one step closer. The routing is statically
determined. Messages are sent in the direction of the first differing bit in the result of
the exclusive-or of the current and destination nodes. For example, a message from node

011010 to node 110100 would always travel, in order, through nodes 011000, 011100

82

and 010100 before arriving at node 110100. Since virtual cut-through is not employed,
messages always arrive in their entirety at each intermediate node before any action is
taken on them. It is a further consequence of the three way handshake employed by

standard Vertex that only one message may travel on a bidirectional connection at a time.

4.3.2 Intel iPSC/2

The Intel iPSC/2 implements nodes as either single boards or two board sets. This
allows more flexibility in the configuration of nodes. Two board nodes may include, for
instance, either additional memory or vector processing hardware. The chief limitation of
this scale of integration is that total system size is restricted to 128 nodes in four separate
cabinets.

The Intel iPSC/2 employs a fixed route circuit switching mechanism to transport
messages [Nug88]. All messages follow a fixed route using the e-cube [Lan82] routing
scheme. This is the same routing algorithm that was described above for the NCUBE.
The message routing system appears as an I/O device to the node CPU. Two separate
wires are used to provide bidirectional data links between each pair of adjacent nodes as
in the NCUBE. The routing mechanism employs a short probe message that attempts to
establish a circuit. An acknowledgement is relayed back to the initiator if the circuit is
successfully established. Each 16 bits of data that is transmitted is actually wrapped in
a 20 bit packet with the additional 4 bits providing control information. Thus, important
control information does not wait behind any messages for delivery. One purpose of the
control information is to indicate whether the paired link (in the opposite direction) is
part of a circuit that has been successfully established or is part of a failed circuit that
must be released. The control bits may also indicate that a circuit has completed its

function and may be released.

83

4.3.3 Ametek 2010

The Ametek 2010 system implements a 2-dimensional mesh connected multiproces-
sor [Ame87a,Ame87b]. Each node may consist of multiple boards incorporating several
functional units such as a CPU and floating point coprocessor, vector floating point ac-
celerator, disk interface, memory, and communications interface and routing chip. The
maximum system size is claimed to be 1024 nodes. However, a more reasonable maxi-
mum size system, in terms of incremental performance gains, is likely to be 256 nodes.
Two large cabinets are required to house a 256 node system. A modified wormhole
message transport is implemented on top of a routing chip that is partially based upon
the torus routing chip (TRC) [DS87,DS86]. Technical details of the Ametek routing chip
were not available at the time of publication. In lieu of this, the details of the TRC are
given below—after the explanation of wormhole routing.

Wormhole routing can be thought of as a persistent form of circuit routing. As the
head of the message is routed through the network, communication resources (i.e., links
and buffers) are accumulated. The message data (or body of the worm) immediately
follows the head. If the progress of the head of the message is blocked, the flow of the
message is halted; the communication resources are not released (attempts at establishing
the circuit are persistent). Since communication resources are not released until the
message delivery is completed, care must be taken to avoid routing decisions that can
lead to deadlocks. Any blockage that the head of the message encounters must be
guaranteed to be temporary.

The chief attributes of the torus routing chip are deadlock avoidance and speed. A
pair of unidirectional 8-bit wide data paths provide input/output connections between the
communications processor and the TRC. The TRCs are interconnected by four unidirec-
tional, 8-bit wide data paths. There is one inbound and one outbound path in each of
the X and Y directions. Additionally, four control lines provide flow control for each of
the data paths between the TRCs. Two additional control lines provide flow control for

the data path between the TRC and node processor. The TRCs function as intelligent

84

3 x 3 crossbar switches. The message packets begin with two relative address bytes, one
each for the X and Y directions, followed by an arbitrary number of non-zero data bytes.
They are terminated by a tail byte of value zero. Messages are routed in the direction of
decreasing addresses, first along the X dimension, then along the Y dimension. The des-
tination addresses are specified as a relative distance from the source and are decremented
at each routing step. When the correct X coordinate is reached the relative X dimension
address is stripped from the packet and routing is initiated along the Y dimension. When
the packet arrives at its final destination the relative Y dimension address is stripped and
the data and tail byte are routed to the processor.

The TRC internally consists of a 5 x S crossbar with each of the X and Y inputs being
internally demultiplexed into one of two internal channels by a self-timed internal state
machine. The existence of the two channels facilitates deadlock avoidance by providing
routing paths that are free of cycles. The pairs of X and Y output signals are multiplexed
into single X and Y outputs in a similar manner. The four control lines for the data
paths between TRCs provide separate request and acknowledge lines for each of the two
logical internode channels. Only two control lines are needed for the data path between
the TRC and node processor since there is only one logical channel on this data path.
TRCs have been designed with a routing latency of about 150ns per step.

The Ametek equivalent of the TRC is called the Automatic Message Routing Device
(AMRD). Each AMRD is claimed to be able to transmit messages at the rate of 80 M-
bytes per second, 20 M-bytes per second on each of four channels. Latency through the
AMRD is less than 1 us. A small amount of “glue” logic sits between the AMRD and the
node processor. This logic makes the AMRD appear like intelligent memory to the node
processor. Thus, the semantics of the message send operation are very similar to those for
freeing a memory buffer. Once the message buffer is freed it is no longer useable by the
application program; the system then begins to transmit the message. When the message
transmission is complete, the buffer is returned to the pool of free memory space. A

system of 256 nodes represents the largest size system that is commonly thought to favor

85

the faster but longer average message paths that are feasible with the low dimensionality
and wide data paths of mesh interconnections. Ametek 2010 systems are expected to be

available by mid-1988.

4.3.4 JPL Hyperswitch

The current generation hypercube computer developed at the Jet Propulsion Labora-
tory is the Mark ITI [PTLP85]. The Mark III can be configured with up to 128 nodes. Each
node has a dedicated I/O control processor (IOCP). Even with the IOCP, the software
overhead limits the maximum attainable communication bandwidth between neighboring
nodes to 20% of the hardware bandwidth of 100 M-bits per second. Additionally, a large
latency (40 psec) is incurred for each message hop and only one message channel per
node can be served at any one time. In order to break these limitations the hyperswitch
network (HSN) was developed.

The HSN [CMP87a,CMP*88] is designed to support both packet and circuit switched
message transport. This system is designed to optimize the performance of circuit switch-
ing, therefore, we will not consider the packet switching operation in this discussion. The
HSN has two operating modes: path setup and data transmission. A path setup is required
for each message transmission. During this time no data is moving, thus, path setup time
is a component of message latency. Two heuristically driven dynamic route finding al-
gorithms are available: I and IK(K — 1). These algorithms differ in the tenacity with
which they will search for an available route. The K algorithm will make at most one
attempt to reach all of the penultimate nodes, resulting in an execution time complexity
of O(I), where I is the order of the cube. The K(I{ — 1) algorithm will make every
possible attempt to reach all of the penultimate nodes, resulting in an execution time
complexity of O(K?). The K(I — 1) scheme attempts to take maximum advantage of
the high degree of link connectivity, L!, that is available between two nodes that lie L
hops apart.

Each hyperswitch node contains a bit-wide crossbar switch, I communication channel

86

interface chips, I hyperswitch chips and three buses. The channel interface chips are
implemented in ECL technology and the hyperswitch chips in CMOS. Full connectivity
is provided between communication channel inputs and outputs by the crossbar switch.
A bidirectional status line accompanies each data link between neighboring nodes. In
path setup mode, the status indications are: 1) ready-to-receive header; 2) ready-to-
receive data; 3) header backtracked to previous node and 4) header error, retransmit.
The original state of all hyperswifches places them in path setup mode. During path
setup, the header backtrack signal is raised for the preceding node if the current node
cannot acquire the next link in the route. The node that raises the signal will release
its circuit resources. The node that receives the signal will either try to route through
another neighbor or will propagate the signal to its predecessor. Path setup mode is
maintained until a header progresses to its destination. At that time, the status is changed
to ready-to-receive data which indicates a transition into data transmission mode. The
receive data signal is propagated through the established route to the source. In data
transmission mode, the status indications are: 1) break-pipeline to source; 2) ready to
receive data; 3) wait for next data packet and 4) data error, retransmit. For flow control
purposes, the transmitted data is packetized into packets that range from 4 to 256 bytes
in length. The flow of this data is controlled by the ready and wait status signals. When
the last byte of a message has been received the destination node begins the propagation

of the break-pipeline signal back to the source.

4.4 Message Transport Comparisons

We present the results of a general investigation into design alternatives for message
transport mechanisms in the following two sections. We begin by describing our method

of investigation.

87

44.1 Investigative Approach

The very nature of programs that employ RA communications typically causes them to
fall into either the loosely coupled SCMD or the MCMD classification. These algorithms
often lack the tight synchronization that is inherent in most NN and BC programs. While it
may be possible to draw certain generalizations about the communication patterns of such
programs, the specific destinations and time ordering of communications is typically not
known much in advance of their occurrence. Therefore, RA programs lend themselves
well to simulations that capture the general pattern of communications by modelling
destinations and message initiation times in a pseudo-random fashion. This approach has
been used by Reed and Grunwald and is discussed further in [RG87]. We extend the
nature of Reed and Grunwald’s work by developing an event driven simulator [SC81]}
that allows us to quickly vary the communication parameters of the machines under test.
This allows us to predict the performance of architectural changes such as the use of
different message transport schemes (e.g., datagram), or changes that effect the speed of
basic communication parameters.

The message transport mechanisms that we compare are datagram, datagram with cut-
through [KK79], and circuit switching. Throughout the rest of this section we will refer to
datagram with cut-through as simply cut-through. The specific protocol that we simulate
for the datagram with cut-through case is analogous to the one described in [ABG85]. Our
implementation of circuit switching is persistent. That is, blocked circuits do not surrender
their resources and try again. Messages wait until the blocking condition disappears. In
this sense, it is similar to wormhole routing [Dal86a]. With adaptive routing schemes such
behavior can lead to deadlock. Several deadlock-free routing schemes exist for store-and-
forward transport schemes [Gel81,Gun81,MS80,TU79,Tou80]. A deadlock-free routing
scheme for k-ary n-cubes employing wormhole routing has also been developed [DS87].
For our simulation we break potential deadlocks by assigning priorities to messages in
order of their creation and requiring that a message never be allowed to block another

message of higher priority (earlier creation) unless it is in the process of being received

88

at the destination. Messages that are being actively received cannot cause deadlocks
because they will only hold their resources for a limited amount of time. Though there are
several methods for avoiding or breaking deadlocks, we feel that this scheme should yield
simulation results that provide a fair basis for comparison. We additionally consider the
effects of adaptive routing and independent simultaneous bidirectional communications.

Hypercube communication protocols typically employ some form of handshaking that
requires acknowledgement information to be passed from a message destination back to its
source. Since the original sending node may not continue to process messages on a given
link until any expected acknowledgements are received, true bidirectional communica-
tions may be difficult to achieve if the acknowledgement information is blocked behind
another message on the return link. For further discussion on this topic see [MBAS7].
By allowing independent simultaneous bidirectional communications in our simulation
model we can evaluate the benefit of removing acknowledgement or confirmation mes-
sages from the link that runs in the opposite direction of the the original message. Such
a scheme may be implemented at the expense of additional circuitry at the I/O pads of
a custom chip (details are discussed in Sec. 5.4.8). Alternatively, Intel circumvents this
problem by interspersing small amounts of control information, which may include ac-
knowledgements, into the data stream of the link that runs in the opposite direction of the
original message. JPL avoids this problem at the expense of dedicating separate status
lines to carry control information. The simulation results that are described throughout
the remainder of this section compare the three transport mechanisms mentioned above.
These comparisons are made with both adaptive and fixed routing, and unidirectional and
bidirectional links.

In order to save space on the figures, part of the legend used in Figs. 4.6 through 4.27 is
described in Fig. 4.5. The results reported in Figs. 4.6 through 4.27 indicate the minimum,
average, average plus one standard deviation and maximum times for the set of random
test messages to reach their destinations. The average length of messages is abbreviated

in the figure captions. It is either a fixed constant value, an exponentially distributed

89

DCAB Datagram Cut-Through Transport, Adaptive Routing Bidirectional
Links

DCAU Datagram Cut-Through Transport, Adaptive Routing Unidirectional
Links

DCFB Datagram Cut-Through Transport, Fixed Routing Bidirectional
Links

DCFU Datagram Cut-Through Transport, Fixed Routing Unidirectional
Links

CSAB Circuit Switched Transport, Adaptive Routing Bidirectional Links

CSAU Circuit Switched Transport, Adaptive Routing Unidirectional Links

CSFB Circuit Switched Transport, Fixed Routing Bidirectional Links

CSFU Circuit Switched Transport, Fixed Routing Unidirectional Links

DTAB Datagram Transport, Adaptive Routing Bidirectional Links

DTAU Datagram Transport, Adaptive Routing Unidirectional Links

DTFB Datagram Transport, Fixed Routing Bidirectional Links

DTFU Datagram Transport, Fixed Routing Unidirectional Links

Figure 4.5. Legend Explanation for Simulation Figures.

random value with the specified mean or a normally distributed random value with the
mean and standard deviation expressed as mean,destination. The message destination
is typically chosen uniformly from the the set of all nodes excluding the source. The
exceptions are explicitly discussed.

We must establish a reasonable standard for the execution times of the basic com-
munication operations before attempting to compare the performance of the different
message switching strategies that rely on them. For this purpose, there are three basic
times that are of interest. One is the amount of time required to transmit a byte of data.
The second is the time required to setup the communication links between adjacent nodes.
The third is the time required to allocate a storage buffer to hold a message while it is
being transmitted. We will use times of 1, 1, and 40 ticks, respectively. The relative
transmit and buffer allocation times are similar to times measured on existing NCUBE
systems. The link setup time is taken to be a few times slower than the times expected

by Dally and Seitz for their TRC chip. These times are intended to provide a reasonable

90

DCAB
DCAU
DCFB
DCFU
CSAB
CSAU
CSFB
CSFU
DTAB
DTAU
DTFB
DTFU

Minimum
Mean

Mean + S. D.
Maximum

NENE

0 2000 4000 6000 8000 10000 12000

Figure 4.6. Message Time: Flooded Traffic, Len = 16, Dest = uni().

DCAB W4 .17 B Minimum
DCAV 7777 Mean
DCFB P24 727 B Mean +S. D
DCFU 77 Maximurm

CSAB Wizt =iz
CSAU 7772777722720 0 s
CSFB s W72

CSFU WPZZzzzzzzzzzziz: iz
DTAB 4 vz

DTAU 277472727
DTFB B4 vz

0 100000 200000

v,

Figui‘e 4.7. Message Time: Flooded Traffic, Len = exp(512), Dest = uni().

basis of comparison for the evaluation of general design alternatives.

4.4.2 Comparitive Observations

We first consider cases in which the communication system is flooded with messages.

This situation is defined by a communication traffic load in which the average number

91

DCAB PZZZ 77

DA Vean
DCFB W Mean + S. D
OCRl M:;mt,m' '

CSAB W77z A

CSAU ////////////////////////////////WV/////////////
CSFU f////////////////////%i:a’”?*
DTAB B2z V7
DTAU 77 777
DIFB

DTFU ////////// b %////////

0 100000 200000

S

0

Figure 4.8. Message Time: Flooded Traffic, Len = nor(512, 256), Dest = uni().

DCAR [Pl - B Minimum
DCAU *///////4//////////; S Mean

DCFU ////////////z v

CSAB P27+ vz

CSAU PZzzzZzZzZzZzzzzzziz: i
CSFB W72+ vz

CSFU PZz7z77272224 s
DTAB WZZzzz::vz/

DTAU B4 7777
DTFB Wz -7

DTFU ‘//////7//// e

O 1000000 2000000 3000000

Mean + S. D.
Maximum

S %,

Figure 4.9. Message Time: Flooded Traffic, Len = 8192, Dest = uni().

of messages being processed or awaiting processing is greater than N, the number of
processors in the system. Flooding can be achieved by having the message production
rate exceed the message delivery rate on each node. In Figs. 4.6-4.10 we compare the

performance of datagram, circuit switching, and cut-through transports for messages of

92

DCAB Pz 777 & Minimum
DCAU 7z il Mean
DCFB 2272 Mean + S. D.

DCRU WYz vz

CSAB Vzzzzzzz:witz7zZ
CSAU W7Zzzzzzzzzzzzzzziza::
CSFB Wza.. vz

CSHRU Wzzzzzzzzzzz4: Sz
DTAB pzzuziz: vz

DTAU W77zzzzzzz4 iz

DTFB @ v

DTFU PZza . 7777

. T x
0 1000000 2000000 3000000

Maximum

Figure 4.10. Message Time: Flooded Traffic, Len = nor(8192, 2048), Dest = uni().

various size distributions. For each type of transport we consider the effects of adaptive
routing and non-interfering bidirectional links. In all cases, a new message is generated
every 50 ticks and the message destination distribution function is uniform over all nodes
(with the source and destination always being different nodes). Unless otherwise noted,
all simulations in this chapter are for hypercubes of degree 6, N = 64.

A few major trends can be noted. First, there is essentially no performance differ-
ence between datagram and cut-through switching. This is expected since, in the case
of extremely flooded conditions, the cut-through algorithm is rarely able to establish a
connection of length greater than one. Both cut-through and datagram transports per-
form consistently and significantly better than circuit switching. This occurs since under
heavy message traffic many links are idle but reserved while waiting for a circuit to
become fully established. The negative effects of circuit routing are most noticeable for
small messages. When comparing the effects of message lengths, there is only a slight
performance difference for any of the cases between fixed length messages and those
with a normal distribution centered about the length of the fixed messages, see Figs. 4.9

and 4.10 for example. The same is not true when either fixed or normal distributions are

93

DCAB /////ﬁ%ﬁf/////////////// B Minimum
DCAU s =777 %) Mean
DCFB mm»%/////////////////// Mean + S. D.

O Wl T (e
CSAB ////%’//////éﬁ////////////////////// aximum
csAU
CSFB

CSFU W s Y7272

DTAB =177

DTAU 8 7222

DTFB W72 ///////

DTl P 777777772274

T T
0 10000 20000 30000 40000 50000

Figure 4.11. Message Time: Flooded Traffic, Len = exp(512), Dest = dpf(0.2).

DCAB iz [Minimum
DCAU 77 Mean
DCFB =7 Mean + S. D

DCRU PP 2222
CSAB ////////////////gs *%%*’w //////////
CSFB ////////zmﬁ V//////,
CSRU 7 7772227
DTAB P# vz

DTAU 74 22z

DTFB A VA4

DTFU //////////// szfimﬁgy/////// ////////

0 20000 40000 60000 80000 100000 120000

Maximum
Yz

Figure 4.12. Message Time: Flooded Traffic, Len = exp(512), Dest = sl(2, 0.8).

compared with exponential distributions of the same mean, as in Figs. 4.7 and 4.8. This
is because the message traffic in the exponential case is dispersed more evenly in time;
whereas, with fixed or normal cases we have distinct phases of communication activity.

The use of non-interfering bidirectional links directly contributes to about a doubling

in performance in all cases. The performance increase is even better for small mes-

DCAB
DCAU
DCFB
DCFU
CSAB
CSAU
CSFB
CSFU
DTAB
DTAU
DTFB
DTFU

Figure 4.13. Message Time: Flooded Traffic, Len = 16, Dest =

DCAB
DCAU
DCFB
DCFU
CSAB
CSAU
CSFB
CSFU
DTAB
DTAU
DTFB
DTFU

94

//////////////
Pl
??W//////////////// 7
. iz
B
RAT
77722
g
[z
o pzzzzzzz2z2zz
iz

1 Minimum
Mean

Mean + S. D.

Maximum

WY 2 //f'///////
: :

1 T

0 200

400

600

800

dpf(0.2).

g7

fV///////////////////////
% ////////////////

8

SRR

WA
- -

727222222

Minimum
Mean

Mean + S. D.
Maximum

A,

]
0 1000 2000

1
3000

4000

5000

Figure 4.14. Message Time: Flooded Traffic, Len = 16, Dest = sl(2, 0.8).

sages. Conversely, adaptive routing leads to marginal performance improvements at best

and often leads to significant performance decreases. This is especially true for circuit

switching. Changing the message destination distribution function to exhibit more lo-

cality yields results similar to the above for the large average message size cases. For

95

small messages, circuit switching looks comparatively better, especially for the cases with
non-interfering bidirectional links or when the locality is extremely tight. The latter case
is demonstrated in Fig. 4.13. In Figs. 4.11 and 4.13, a decreasing probability function
with a decay parameter of 0.2 is employed. Both Figs. 4.12 and 4.14 use a sphere of
Jocality function with a radius parameter of 2 and probability parameter of 0.8. These

two distribution functions are described below [RG87].

Sphere of Locality Probability Function. Tierative partial differential equation solv-
ing algorithms communicate mostly between neighbors, but they periodically send in-
formation to a global convergence checker. Communication traffic in algorithms with
characteristics similar to this can be modelled by having each node centered within its
own sphere of locality. The local region is parameterized by the radius of the sphere (r),
that is, the number of communication links a message can Cross and still be within its
locality. The chance of communicating with a node within your locality is given a rather
high probability (say, ¢), nodes outside of your locality have a 1 — ¢ chance of being
communicated with. In a hypercube of degree n, the number of nodes within a sphere

of locality is given by:
z n!
R(r,n) = %“{ Lt,n) where L(,m)= gy

In a hypercube with N nodes, each nodes lies within the locality of R other nodes and
outside of the localities of N — R — 1 nodes. Thus, given values for ¢ and 7 the message
routing probability distribution in terms of [, the distance of the destination from the
source, is given by:

R

A=BLn) . < p

siim) 1 <i<r
¢() =
N-R-1

One of the L nodes that lies at a distance ! from the source is chosen with uniform

probability to be the message destination.

96

DCAB - §72 = Minimum
DCAU 7 V77 Mean
DCFB - 4077 Mean + S. D.
DCRU - P77 Maximum
CSAB Wz vz
CSAU Wzzzzzzz28 .- 2222
CSFB W
DTAB
DTAU
DTFB B
DT | '
0 100000 200000

Figure 4.15. Message Time: Freq = exp(512), Len = exp(512), Dest = uni().

Decreasing Probability Function. Another useful message destination distribution
function is one in which the probability of sending a message to a node decreases as its
distance from the message source increases. A simple and straightforward function of
this type is given by:

¢(l) = D(d,n) - d' 0<d<1,

where D(d, n) is a constant to normalize ¢. This constant is chosen such that:

D(d,n) Y d' =1
=1

Again, one of the L nodes that lies at a distance [from the source is chosen with uniform
probability to be the message destination.

Performance tradeoffs are next studied under conditions with less intense commu-
nications traffic. These comparisons are structured similarly to those above, the chief
difference is that the time between the generation of successive messages is varied from

a rather heavy communication load to a light, but significant, level.

For moderate and light communication loads (Figs. 4.16, 4.17, 4.19, 4.20, 4.22, and

DCAB
DCAU
DCFB
DCFU
CSAB
CSAU
CSFB
CSFU
DTAB
DTAU
DTFB
DTFU

97

A 77722

T "l\:'”'"‘“m
T, Me""" S0
D OO, L vean + S
4?//////////// . Maximum
e Y,
LB

77

////%3%////////////////////
///%%3//////////////////////////,
e 72777777

v I
0 10000 20000

30000

Figure 4.16. Message Time: Freq = exp(1536), Len = exp(512), Dest = uni().

DCAB
DCAU
DCFB
DCFU
CSAB
CSAU
CSFB
CSFU
DTAB
DTAU
DTFB
DTFU

D V27072727222

V. 0222
BB,

Vs 0227222777

A 22222

4 272722227

T ////////W W
e 7777777777777 A

NENE

Minimum
Mean

Mean + S. D.

Maximum

0 10000

20000

Figure 4.17. Message Time: Freq = exp(2560), Len = exp(512), Dest = uni().

4.23) we see that adaptive routing is useful, though its effect is frequently small. The chief

exceptions occur with small packets (Figs. 4.21-4.23). In this case, adaptive routing, in

conjunction with circuit switching, again consistently leads to decreases in performance.

Circuit switching approaches cut-through performance as traffic loads decrease, as we

expect. However, circuit switching performs consistently poorly on small messages,

98

DCAB
DCAU
DCFB
DCFU
CSAB
CSAU
CSFB
CSFU
DTAB
DTAU
DTFB
DTFU

% & Minimum
R Mean

wz

1
0 1000000 2000000 3000000

Figure 4.18. Message Time: Freq = exp(8192), Len = exp(8192), Dest = uni().

DCAB G777z

DCAU B m'n'mum

DCFB 77777 Mea" s

ocll 7777 | Mean +3S.D.
Maximum

CSAB BZ7
CSA0 P 777
CSFB @777

CSFU BT 7777777777

DTAB B

DTAU BT 7777777777777

DTER BB 7777777

DTFU @z i

0 100000 200000 300000 400000 500000
Figure 4.19. Message Time: Freq = exp(24486), Len = exp(8192), Dest = uni().

especially with unidirectional links. An interesting side note is that the maximum values
for communication times using circuit switching is less than that for cut-through under
moderate traffic conditions for moderate length messages. This anomaly, which can be
seen in Fig. 4.16, appears to indicate a point where it is better to patiently wait a small

time for a circuit path to clear rather than hastily allocating a buffer and paying the store

99

vcas 77777007
DCAU Y7 Voan
norB 7007 4
DCFU I
csaB [E77

CsaU Y

csFB AR

csFU 77
DTAB 77777,
DTAU 7
DTFB 0,
DU 7,

Minimum

Mean + S. D.
Maximum

0 100000 200000

300000

Figure 4.20. Message Time: Freq = exp(40960), Len = exp(8192), Dest = uni().

pcAB W4 2 B Minimum
pcay P22z 77z Mean

ocFrB WA 7z " 5 b
Dcry 2272 vzzzzu — eaf’l +S.D.
CSAB 7//////////// s“é”f”'“f///// Maximum
CSAU i % ‘««% /////////////

CSFB
CSFU ////////////// ;
DTAB ////?.f%////////
DTAU WA 7777
DTFB Y4 v

e,

0 10000

20000

Figure 4.21. Message Time: Freq = exp(16), Len = exp(16), Dest = uni().

before forwarding overhead. This anomaly may be avoided with a more sophisticated

switch design that allows cut-through even after a store operation has begun. Datagrams

without cut-through generally trail in performance. This is due to the cost associated with

storing the data at each intermediate node before it is forwarded on to the next node.

The sensitivity of circuit switching is readily apparent under bursty communication

100

ggﬁﬁ & Minimum
7/

DCFB e

DCFU

////////
CSAB 2%
CSAU
CSFB
CSFU
DTAB
DTAU
DTFB

DTFU

0 5000 10000 15000

Figure 4.22. Message Time: Freq = exp(48), Len = exp(16), Dest = uni().

DCAB B Minimum
gg’;‘g Mean
DCFU Mean + S. D.
CSAB W 71 Maximum
CSAU D
CSFB

CSFU

T
Tt

0 2000 4000 6000 8000 10000

Figure 4.23. Message Time: Freq = exp(80), Len = exp(16), Dest = uni().

loads as illustrated in Figs. 4.24-4.27. In these cases, we have made the time gap between
the generation of successive messages constant. This is similar to the type of behavior
that we would expect to see in closely synchronized SCMD programs. Circuit routing

is, by far, the most sensitive to the onset of periods of heavy message traffic.

101

All three of the transport schemes that we have evaluated have significant drawbacks
when considered by themselves. The primary purpose of this particular investigation
was to determine the impact of various design decisions; we did not intend to advo-
cate the adoption of any specific case. Nevertheless, the following general conclusions
can be drawn. The inability of circuit switching to gracefully degrade in performance
under heavy traffic loads renders it a poor choice for environments where moderate to
heavy bursts of traffic are likely to occur. Our simulations show that datagrams, both
with and without cut-through, require buffers that are many times larger than the largest
message to maintain reasonable'performance. Without flow control, maximum buffer
requirements can quickly become excessive: ranging from about 100 K-bytes for light
loads to in excess of 200 K-bytes for heavier traffic for messages averaging 8192 bytes
in length. Clearly, for any store-and-forward based transport scheme to be viable it
must employ flow control.. Even with flow control, however, datagram based schemes
require buffers at least as large as the largest allowable message size at each node. The
advantages of cut-through are significant for all but the heaviest traffic conditions. For
both of the datagram cases, as well as for circuit switching the most significant perfor-
mance improvement under moderate to heavy traffic conditions is gained by providing
non-interfering bidirectional links. Adaptive routing was also helpful for datagrams for
all but heavy traffic cases with small messages. This was particularly the case when
adaptive routing was used in conjunction with non-interfering bidirectional links. For
small messages under heavy traffic loads, adaptive routing lead to performance decreases
which were particularly significant for the uni-link case. The benefits of adaptive routing
were typically much smaller than those of bidirectional links for all but the light traffic
cases. Adaptive routing was not as helpful when used in conjunction with circuit switch-
ing. Performance decreases occurred for small messages under all traffic loads. When
used without bidirectional links, performance decreased for medium and large messages
under moderate and heavy traffic loads as well.

Message transport tradeoffs are also being studied by Reed and Grunwald [GR88].

102

DCAB WYY . Minimum
DCAU V77 Mean
DCFB W77 :

Mean + S. D.

DCFU 777777

CSAB A7

CSAU P
CSFB W77

CSHl vz 7 7
DTAB Ve 777777777

DTAU g 77777

DIFB Y7777

DTN 77777777777

0 10000 20000

Maximum

Figure 4.24. Message Time: Freq = 1536, Len = nor(512,256), Dest = uni().

Their work includes evaluating the different routing mechanisms that are possible with the
hyperswitch in JPL Mark III computers. The general observations from their preliminary
results appear to coincide with ours. In particular, for moderate to light traffic loads
they show the best results for wormhole and an adaptive form of circuit routing known
as (X —1). The K(K - 1) scheme provides a small but consistent performance

improvement over wormhole routing.

4.5 Communication Processor Design Issues

We consider communication processor design issues to encompass the instruction set
specification, choice of message transport mechanism, the division of labor and level of
interaction with other node components, and the design of the internal architecture. The
instruction set specification was given in Sec. 4.1. The design of the internal architecture,
along with the details of our proposed design, are discussed in Chapter 3.

Message transport performance for RA communications is improved the most by

providing non-interfering bidirectional communications in moderate to heavy traffic and

103

DCAB W4 777277777774 = Minimum
DCAU BT 777722222 Mean

DCFB //////ﬁ?é%%/////////////////////////////// Mean + 5. D.
DCFU Vg:’;@":i /// Maximum

CSAB Bz 77zz7777777
CSAU P2 7777777772 2277/2
CSFB WA V777777777

CSFU W 7777777777727
DTAB P 77777700 000

DTAU W7z 7777777777722
DTFB Wz 7777777772722
DT PP 77777777/

0 2000 4000 6000 8000

Figure 4.25. Message Time: Freq = 2560, Len = nor(512,256), Dest = uni().

DCAB W
DCAU ¢

DCFB
DCFU
CSAB
CSAU
CSFB
CSFU
DTAB
DTAU
DTFB
DTFU

B Minimum
7 Mean

Mean + S. D.
1 Maximum

8777777
0 5000 10000 15000

Figure 4.26. Message Time: Freq = 48, Len = nor(16,8), Dest = uni().

by avoiding the store-and-forward overhead in light traffic. Non-interfering bidirectional
communications can be provided by the underlying architecture for any of the transport
schemes that we are considering. Avoiding store-and-forward overhead requires a trans-

port strategy based upon some variant of circuit switching, or datagram with cut-through.

104

Bgﬁg B Minimum

DOFS Mean

DORU Mean + S. D.

CSAB Maximum

ggAU i %
FB

DTAB

DTAU

DTFB

DTRU B

0 2000 4000 6000 8000 10000
Figure 4.27. Message Time: Freq = 80, Len = nor(16,8), Dest = uni().

However, the buffering requirements of cut-through conflict with the desire to support
arbitrary length messages. Packet switching, in which individual messages are broken
into fixed sized packets, provides a reasonable solution to this conflict by limiting the
buffering requirements while maintaining the ability to handle arbitrarily large messages
by using a similarly large number of packets. In order to preserve the ordering of pack-
ets within a message, all packets must follow the same route from source to destination.
Alternatively, one could attach sequence numbers to each packet and reassemble them in
the correct order at the destination. However, reassembly is a very expensive operation
whose cost cannot be justified in this context. This is especially true when trying to allow
the processing of message data to proceed concurrently with the arrival of later portions
of the same message. The limitations placed on packet switching by the reassembly
problem will be shown later to be surmountable. The task of coordinating the processing
of message data with the arrival of the later portions of the same message is made easier
when messages arrive in a contiguous non-interleaved fashion on a particular channel.
Message transport mechanisms that are based on circuit switching deliver their messages

in such a manner, packet based schemes do not. Packet based transport schemes may

105

still accommodate the overlapped processing and reception of message data; however,
doing so requires additional architectural complexity. This additional complexity can be
seen in Sec. 54.6.

We further investigate two schemes. The first is wormhole routing, a variant of fixed
route circuit switching. Wormhole transports generally compare favorably with other
existing schemes. However, they have two drawbacks. One is their relatively poor
performance for small messages in heavy traffic. We expect that for several algorithms
a large proportion of messages under conditions of heavy traffic will be of relatively
short length. Certainly, most request messages in algorithms that use a request/response
communication paradigm will be short. Also, there are many amorphously structured
algorithms, such as chess [FMO*87] or programs incorporating branch-and-bound tech-
niques [AM88,AC87,Qui87,WLY85], that would like to make a random accesses to small
amounts of global data. The second drawback is that the presence of a long message can
effectively delay the delivery of other messages.

A simple example of the second drawback is illustrated in Fig. 4.28. In this example,
assume that with the two messages starting at about the same time, the circuit for the
larger message gets established first, forcing the shorter message to wait until the larger
message completes for its circuit to be established. At a high level, we can view the
message transmission time of a circuit or cut-through based transport scheme as being
proportional to M + k3, where M is the length of the message, h is the number of hops
from source to destination, and f§ reflects the speed with which the communication links
can be acquired. The magnitude of A is dependent upon the traffic load (i.e., number and
size of active messages), and the availability of communication resources—in this case,
links. Alternatively, if we could break messages into packets, then interleave the packets
of the two messages, transmission time would be proportional to %(p+ ha). Where o
reflects the apparently reduced bandwidth of the link as viewed from the message level
due to the multiplexing and additional overhead of packet headers, and p is the size of

the packets. This, of course, can be rewritten as M + —’gha. When we take into account

256 bytes

10 K-bytes

Figure 4.28. Wormhole Routing Blockage.

the fact that the message packets are pipelined through the network, the multiplicative
effect of the number of packets (%) on ha is reduced to one. Thus, the better performing
transport scheme will depend on which of a or g is lower.

Returning to our simple example, we see that with wormhole routing the transmission

times for the long (¢;) and short (¢,) messages are:

t=M+h
ty = M, + ht;
And with a packet based scheme:
t;=M;+ hq where, a; = 1
t,=M,+ ha, where, a, ~ 2

The effect of o4 is negligible due to the size of M; relative to M,, and a, is slightly
larger than 2 to account for the additional overhead of packet headers. In general, the
outlook is not quite this bleak for wormhole transports. However, it is important to note

that while « tends to be, at worst, linearly proportional to the average number of packets

107

vying for a link, 3 suffers additionally from the effect of link starvation. This occurs as
a result of messages being blocked after having acquired, possibly several, links. Thus,
in addition to waiting on a given link, the waiters also hold out of service all of the links
that they have already acquired. Similar effects with packet buffers, in the case of packet
based transports can be easily avoided with a modest number of buffers. These effects
can be seen in the results reported in Sec. 5.7.

The second scheme that we consider employs a packet based transport mechanism
that allows packets from different messages to be interleaved. It uses a combination
of fixed and adaptive routing in which the first packet may adaptively select its first
routing step in any direction that will take closer to its destination. All subsequent
packets from the message are routed in the same initial direction. All routing decisions,
other than the first, are determined by a fixed routing algorithm that depends only on the
current and destination nodes. Thus, packets from the same message will always arrive
in order at their destination. There are two primary costs associated with this scheme:
1) each packet must now carry its source and destination node numbers, thus lowering
the effective bandwidth for message data as discussed above; and 2) the architectural
scheme for detecting if the node CPU requests part of a message before it arrives is more
complicated than the comparable implementation for wormhole routing. Implementation
restrictions limit the number of concurrently arriving messages that a communication
processor can check. These checks are made by the hardware by employing multiple
pairs of comparators to monitor the address bus for addresses that fall between the
address of the most recent byte received and the address of the last byte expected for
messages that are actively being received. Since wormhole messages do not interleave on
individual channels, the maximum number of concurrently arriving wormhole messages
is at most n, the degree of the cube. Thus, potential overruns can can be detected for
all arriving wormhole messages with n pairs of comparators. For packet routing, which
can concurrently receive a far greater number of packets, we have to maintain a cache of

addresses that track the progress of the first m messages that arrive concurrently. This

108

cache simultancously feeds m pairs of comparators that check these addresses against
the node CPU memory requests that appear on the node address bus. Messages that have
their arrival tracked by entries in the comparator cache (which is referred to as the arrival
tracking unit in the following chapter) have their completion flags marked to indicate that
message arrival has begun and that monitoring for overruns will be performed. Upon
completion of message arrival their completion flags are marked to indicate reception-
completed. Any message that begins to arrive while the comparator cache is full will
have its completion flag marked only upon completion of message arrival, thus indicating
that overrun checking is not being performed for this message. While not all arriving
messages may be able to be processed concurrently with their reception, this should not
be a problem in practice since the node CPU will still have several arriving messages
with which to overlap computations.

The responsibilities of the communication processor include the execution of all com-
munication instructions that are encountered in the node CPUs instruction stream. These
instructions were described in Sec. 4.1. The only direct communication from the com-
munication processor back to the the node CPU occurs via the interrupt mechanism. The

communication processor can request a node CPU interrupt for several reasons, including:

e errors encountered during the execution of a communication instruction (e.g., in-

valid message buffer address)
¢ node CPU memory requests for message data that has not yet arrived and
o to indicate that a message of type system has been delivered.

Interrupts are not generated upon the delivery of messages of type user. It is assumed that
programs will poll for the delivery status of such messages. In a multitasking environment
it may be desirable to eliminate the need for repeated polling of message delivery status.
This can be accomplished by mapping the user message types into some subset of the
system type range. In order to transfer message data between user specified buffers and

the communication network the communication processor needs to be able access all of

109

the user accessible memory. The communication processor also reserves a portion of the

node memory for its own internal use.

4.6 Chapter Highlights

We have identified the relative strengths and weaknesses of several design alternatives
that may be used in the implementation of various routing schemes in this chapter. We
also developed a set of communications instructions and semantics based upon a dis-
cussion of general communication environment issues. These instructions and semantics
were then combined with the results of our routing design comparisons to outline a new
communication processor design.

The key features of our new design include:

o the handling of all communication system interrupts by the communication proces-

SOT.

¢ communication instructions that are directly executable by user processes
e architectural support for broadcasts

e true bidirectional communications

e packet based message transport service

o partially adaptive message routing

o the ability to overlap the processing of message data with its arrival.

The first three items reduce the communication processing demands that are made on the
main node processor. The next three items will reduce message latency in environments
with with large messages or bursty traffic patterns. Our packet based scheme also avoids
store-and-forward overheads by cutting-through packets that are being forwarded and by

storing any packet data that is accumulating at an intermediate node in a high-speed

110

buffer memory. The final item allows many programs to take advantage of the reduction
in message latency times even when total message times may have increased. This is
possible because there is typically both a large excess in communication system bandwidth
and a very small number of accesses to message data that do not occur in order. The
greatest departure from existing designs is provided by the last three items. The design for
our new quasi-adaptive packet routing communication system will be developed further

in the following chapter.

CHAPTER 5

COMMUNICATIONS SYSTEM ARCHITECTURE

In this chapter, we further develop and evaluate the performance of the packet based
message transport that we introduced in Sec. 4.5. We begin by presenting an architectural
overview of the communication processor. This is followed by a discussion of the analysis
that lead to the development of our quasi-adaptive routing scheme and an examination of
the deadlock issue that it introduced. Functional descriptions of the major components
of the communications processor are then given. Finally, we discuss the results of our

simulation based performance analysis.

5.1 Architectural Overview

Several different implementations of a communications processor which meets the
criteria discussed in Sec. 4.5 are possible. We discuss one such implementation in this
chapter. Our intent is to show that it is feasible to build the communication processor
architecture that we describe in a manner that is consistent with our simulation model.
This is done by offering a functional description for the major components of the processor
and analyzing the critical path time. We attempt to minimize the number of connections
required across major functional boundaries in the architecture that we specify. This is
done so that the implementation may be divided across multiple chips. We have also
attempted to minimize the number of functional units that are on the critical timing path

of packets that are passing by a node. We do not claim that the specific design that

111

112

(@ buffer RAM ﬁ

(2]
g N
o
: v
g - ’Jl‘”""p’aic.i(?iﬁ."'ﬂ "44 -
o : buffer unit ' :
E _
5] M |
g 1 —Ms 3P
= o
0] —
y acket = =
buffer unit 4 | 3 5
0 Q
al &
B 2
control unit j<@=— 2
| node output B 31
portp i\
T control/status &
arrival : Ir node input
tracking unit port <

node address bus node data bus
Avvd

Figure 5.1. Major Functional Units of Communication Processor.

we offer is optimal in any sense. A thorough analysis that carefully considers all major
design alternatives is considered to lie beyond the scope of this thesis.

Our implementation consists of eight major functional units. These units are listed
below. A block diagram of the communication processor that shows seven of the eight

units is given in Fig. 5.1.

113

The buffer RAM provides space efficient storage for packets passing through the
communication processor. The RAM is dual ported, with reads and writes using separate
ports, to reduce contention. Space in the buffer RAM is divided evenly among the packet
buffer units described below.

Packet buffer units serve five functions: 1) they handle the reception of packets
from preceding nodes; 2) they store in their fast access memory the first few bytes of
packets that pass through the communication processor; 3) they hold the address of the
buffer RAM location at which the remainder of the packet is stored; 4) they arbitrate for
packet buffer space on the next node on behalf of each of the packets they are holding;
and 5) once the arbitration is successful they oversee the delivery of the packets. Packets
from the same message are always forwarded in order. However, packets from different
messages may be interleaved to allow them to progress at independent rates that are
governed only by the available resources on their specific paths. When resources are
not available, a flow control mechanism (described below) is used to temporarily halt
the incoming packets until more resources become available. The packet buffer units
are active entities that each have there own autonomous controllers to sequence their
operations. There is one packet buffer unit on each node for each dimension in the cube.

The crossbar switch provides connections from any of the packet buffer units and
the node output port to the node input port and any of the output links that lead to a
neighboring node. The (n+1) x (n+1) crossbar allows multiple simultaneous connections
to exist. Like the buffer RAM, the crossbar switch is a passive entity.

The node output port receives packets that are generated on the local node and
introduces them into the network through the crossbar switch. It is an active entity
that performs several of the functions of the packet buffer unit: providing partial packet
storage, arbitrating for further resources on behalf of its packets and forwarding the
packets when the resources have been acquired. The number of partial packets that may
be stored in the node output port is equal to the degree of the cube. Storage for a partial

packet is referred to as a buffer slot. There is one buffer slot allocated for each link to

114

a neighboring node. The main control unit (described shortly) is responsible for moving
data from the node memory to buffers within the node output port.

The node input port is a FIFO buffer that holds the packets that have arrived at their
destination node until the main control unit can store them at the appropriate location
in node memory. The incoming data that is stored in the FIFO buffer arrives from a
packet buffer unit via the crossbar switch. The node input port has a simple controller to
handle write operations on the FIFO. This enables it to emulate the flow control actions
of a receiving packet buffer unit. Thus, the node input port will look just like another
downstream packet buffer unit to the packet buffer unit that is forwarding the packet.

The arrival tracking unit tracks the progress of arriving messages. It maintains
the node memory addresses of the current and final byte of the arriving messages. The
node CPU’s memory requests are monitored and compared against these address pairs.
If the CPU requests part of a message that has not yet arrived, this unit requests a CPU
interrupt. The current node memory address of the arriving message indicates the location
at which the control unit should place the arriving packet that is currently being buffered
in the node input port. This unit can request a CPU interrupt, but has no controller of its
own.

The (main) control unit continually checks the node output and input ports to see if
any data needs to be transferred between either port and the node memory. It also executes
all of the communication instructions that the node CPU encounters and maintains data
structures, both on-chip and in node memory, that track the state of communications.
The communication instructions were described in Sec. 4.1.1 and the communication
data structures are discussed in Sec 5.1.1.

The flow control unit is the only major unit not shown in Fig. 5.1. The flow control
unit is comprised of a sending section and a receiving section that reside on separate nodes
at opposite ends of each communication link. The purpose of the receiving section is to
prevent a packet buffer unit or a node output port from overrunning the input capabilities

of a neighboring downstream packet buffer unit. The receiving section may also be used

115

by a receiving packet buffer unit to refuse a contrary packet from an upstream node
output port if the packet may lead to deadlock—contrary packets are defined in Sec 5.3.
The node input port emulates the actions of the receiving section so that it also does
not receive more data than it can handle. The sending section of the flow control unit
continually polls the status of its corresponding receiving section. When the receiving
end is ready to accept data, the sending section can relay this information to a unit that
has data to send. The specific actions of this unit and all of the others described above
are discussed separately in Sec. 5.4.

The three units located toward the top of the illustration in Fig. 5.1 comprise the
packet switching section of the chip. Packets that pass by a node are handled exclusively
by these three units. After arriving at a packet buffer unit, a small portion of the packet is
stored directly at the buffer unit. This allows the packet to be moved rapidly to the next
node if the resources are immediately available. The remainder of the packet is stored in
the buffer RAM. As resources at the next node become available, the packet buffer unit
forwards packets through the crossbar switch to the packet buffer unit at the next node.
Packets arriving on their final node are handled in a similar manner. The chief exception
is that they are passed via the crossbar switch to the node input port instead of being sent
to a packet unit on a neighboring node. Packets on their originating node are primarily
handled by the interface section of the communication processor which will be discussed
below. For broadcast packets, which are denoted by having same value for both their
source and destination fields, the packet buffer units must forward a copy of the packet
to all higher order units (the specific routing requirements are specified in Sec. 5.4). In
such a case, the packet buffer unit will send a copy of the packet to each higher order
unit in order, holding the packet in its buffer until all copies have been sent.

The four remaining units that are illustrated in Fig. 5.1 comprise the node interface
section of the communication processor. All messages that originate on a given node pass
from the node memory, through the node output port and crossbar switch, to a packet

buffer unit on an adjacent node. Conversely, all messages that are destined for a given

116

node are passed from the packet buffer unit on that node, through the crossbar switch
and node input port, to the node memory. The node input and (;utput ports each have
their own autonomous controller to handle their interactions with the packet switching
section of the communication processor. The actions of the node interface side of both
of these ports, however, are directed by the main control unit. FIFO buffers separate
the two sides of these units. The actions of the arrival tracking unit are directed by the
control unit. A description of the communication system queues that are maintained by
the main control unit and an overview of the functions performed by the node interface

section of the communication chip are given below.

5.1.1 Communication System Queues

The control unit of the communication processor maintains five different groups of
queues in node memory to support communication activities. The message header blocks
that were described in Sec. 4.1.1 are manipulated among four of these five queues. The
message header blocks serve as repositories of information about messages when the
messages are located in node memory. Unlike the message data, the header blocks
remain on the same node. Users may allocate memory for header blocks as needed or
a pool of header blocks may be provided by the operating system. When messages are
attached to the header block, or while the header blocks are being manipulated among
the communication queues, they contain information about their current or expected
messages. For the remainder of their existence, they convey no specizl meaning and may
be treated like any other allocated data object.

The first group of queues are the message send queues. These queues are used to hold
newly created messages until they can be introduced into the communication network.
There is one queue for each buffer slot in the node output buffer. Thus, the number of
queues is equal to the degree of the cube. A table of pointers is maintained to point to
the message header block of the first message in each queue. This table is indexed by

the number of the node output buffer slot to which the queue is assigned. The message

117

Table of
Queue Heads
1 —>| Message
2 Header
3 Block
4 ~ next
| | Message Ptr
| | _l-—b Message #1 Data
n-1
n —®1 Message | Message
Header Header
Block Block
P~ —
next next
Message Ptr Message Ptr
Message #3 Dat
Message #2 Data - a

Figure 5.2. Message Send Queues.

send queues are illustrated in Fig. 5.2

The second group of queues are for the header blocks of expected messages that have
not yet begun to arrive. Queues in this group will be referred to as expected message
queues. An expected message is a message for which a receive instruction has been
executed prior to the beginning of its arrival. Once such a message has begun to arrive it
may still be referred to as an expected message, but it will no longer reside in an expected
message queue. Several expected message queues are maintained. The pointers to the
first message header block in each queue are held in a table. This table is indexed by a
hash value that is a function of both the source and type of the expected message. Making
the hash value a function of both the message source and type minimizes the chance of a

potential search problem in multiuser environments. In a multiuser environment there is a

118

reasonable chance that two independent programs executing on a given node would each
be receiving messages at about the same time from two different processes that also share
a common node. This is particularly possible if the two nodes are near neighbors, which
in many algorithms have a higher probability of communicating than two distant nodes. If
the hash value were a function of only the message source, the communication processor
may frequently search through message header blocks queued for messages expected by
the first process while looking for header blocks for messages expected by the second
process. A hash function that is based on a combination of message source and type
would lessen this chance of conflict by spreading such messages among different queues.
The handling of requests for messages from ANY source represents an exceptional case
that is not accommodated by the scheme as described above. This anomaly is rectified
by allocating a special table entry for the header blocks of such requests. When a new
message arrives, the communication processor first searches the special queue for requests
for ANY message. If none are found it then looks in the queue corresponding to the hash
value generated from the source and type of the arriving message. The communication
processor can maintain an on-chip counter to determine when the check of the ANY
source queue may be omitted. If a header block that matches arriving message cannot
be located in either queue, the arriving message is said to be unexpected.

The third group of queues form the message arrival table. The on-chip message
arrival unit can store only a limited amount of information for tracking the progress of
arriving messages. Therefore, it functions as a cache of the most likely to be needed
subset of information that is available in the node memory message arrival table. The
on-chip cache never writes back to the table in node memory. Instead, the information on
an arriving message sticks in the on-chip cache until the message arrival is complete; at
which time information about the message is purged from both the table in node memory
as well as the on-chip cache. The table that is maintained in node memory consists of
pointers that point to header blocks of messages that are in the process of arriving. This

table of pointers is also indexed by a hash value based on both the source node and type

119.

of the arriving message. It is possible for more than one message to be simultaneously
arriving from the same source node. This is a side effect of the multiple routes that are
possible with our quasi-adaptive routing scheme. Since at most one message will leaving
a source node in each direction at any point in time, the arriving packets of multiple
messages from the same source can be assigned to the correct message by inspecting the
direction of the first routing step. This information is encoded within the unused bits at
the high end of both the source and destination fields by the communication processor at
the source node.

The fourth set of queues are for user messages that have completely arrived, but
have not yet been claimed by a message receive instruction. This queue set is also
implemented as a table of pointers to queues of message header blocks. The same hash
function described above is used to index this table as well. This group of queues would
also be susceptible to searching problems similar to those described for the expected
message queue if its hash function were not also a function of both the message source
and type.

The size of the pointer tables for the preceding three groups of queues may be modified
by changing the specific hashing function that is used. Implementing the hashing function
in a manner that allows the range of the hash values to be programmable will be useful to
accommodate systems of varying memory space. If there is concern about the possibility
of careless users flooding the queues with requests or unclaimed messages to the point
where systems communications may be affected, the hash function could be chosen to
map messages in the type range reserved for the system into a separate section of the
pointer tables.

The final queue that is maintained to support communications is the pool of available
system message buffers. This is the pool from which buffers for unexpected messages
are allocated. Application programs that receive buffers from this pool are expected to
return them by using the buffer release instruction when they are no longer needed. The

locations of the queue head of the system message buffer queue and of the pointer tables

120

for the preceding four groups of queues are stored within the communication processor.

5.1.2 Message Initiation and Reception

Message transmissions are initiated by coprocessor instructions that are encountered
by the node CPU. These instructions, either send, broadcast, or near-neighbor broadcast,
are executed by the control unit of the communication processor. The control unit will
check the status of the node output port. If the desired buffer slot is available, the required
data from the message header block will be marshalled into the buffer slot in the output
port. If the message is to be broadcast, the control unit will write the message data to
each required buffer slot as space becomes available. If space is not available in the node
output port, the header block will be added to one of the send queues in node memory for
later processing. A separate queue is maintained for each output buffer slot. The header
block will be assigned to the shortest queue that corresponds to a buffer slot that forwards
packets in a viable routing direction (i.e., a direction which takes the packet closer to its
destination). Once the message progresses through the queue to the node output port,
the control unit within the port begins to arbitrate for space in the packet buffer unit of
the next node that the message will visit. Once this space is acquired, the node output
buffer begins introducing the first packet into the network through the crossbar switch.
The preceding two steps will be repeated for each packet of the message. Meanwhile, the
main control unit, as one of its usual functions, is keeping the FIFO of the node output
port full. After the node output port has introduced the final byte of a message to the
network, the main control unit will check the appropriate queue in node memory to see
if another message is waiting to be sent.

Messages that have arrived at the packet buffer unit on their destination nodes arbitrate
for space in the node input port. When an arbitration request is granted, the control unit
within the node input port releases its flow control block and begins to store the arriving
packet in the FIFO at the node input port. As one of its usual functions, the main control

unit continually checks the status of the node input port. When the main control unit

121

notices that a packet is present in the FIFO, it consults a table in the arrival tracking
unit to determine the node memory lbcaﬁon at which to store the arriving data. If this
information is not available on-chip in the arrival tracking unit, the control unit will then
consult its arrival table in node memory. If a message header block corresponding to the
arriving message is found in the node memory arrival table and there is space available
in the on-chip cache, the current and final message buffer addresses will loaded into the
cache and the completion flag in the message header block can be set to the receive-in-
progress value. The receive-in-progress indication can be set because the arrival tracking
unit will now keep track of the arrival progress of this message until it has completely
arrived. If no message header block which matches the arriving message can be found in
the node memory table, the expected message table is searched next. Expected but not
yet arriving messages will have had their message header blocks queued into the expected
message queue by the control unit when their corresponding receive instructions were
executed. Expected messages are not required to specify a message buffer. If they do
not specify a message buffer the control unit will allocate the necessary space from the
system buffer pool and write a pointer to this space into the message header block. If
a matching header block is found in the expected message queue this header block is
moved to the arrival table, and if space is available in the on-chip cache, the cache is
loaded as described above. If a matching header block is still not found, the arriving
packet must be unexpected. If this is the case, the control unit will allocate space for
the message data and the message header block from the system buffer area in node
memory, update the header block, queue the header block in the arrival table, and load
the on-chip cache if space is available. Once the location of the message buffer for the
arriving packet is determined, the control unit begins to store the packet in node memdry.
As the last packet byte is written to memory, the arrival table information is updated as
described immediately below.

If the arriving packet is the first packet of the message, there are two possibilities.

Either; 1) there is space in the on-chip tracking unit —in this case an entry in the on-chip

122

arrival tracking unit that contains the locations to which both the next arriving packet and
the final byte of the arriving message will be written is created, additionally, the control
unit writes the receive-in-progress indication to the completion flag of the message header
block in node memory or 2) there is no space in the on-chip tracking unit—in this case
the locations to which both the next arriving packet and the the final byte of the arriving
message will be written are stored in the arrival table in node memory, and no changes
are made to the completion flag. In both cases above, the location to which the final
byte will be written is computed from the address of the message buffer and the message
length field which is part of the first packet of the arriving message.

If the arriving packet is not the first packet of the message there are also two possi-
bilities. Either: 1) the packet that just arrived belongs to a message that is being tracked
by the on-chip arrival tracking unit—in this case the location to which the next arriving
packet should be written is updated only in the on-chip arrival table or 2) the packet that
just arrived belongs to a message that is not being tracked by the on-chip arrival tracking
unit—in this case the location to which the next arriving packet should be written is
updated in the node memory arrival table.

If the arriving packet is the last packet of the message, information about it is purged
from the on-chip cache and the completion flag in the message header is set to arrival-
completed. Additionally, one of the following two actions is taken. If the message header
block was allocated from system space and the second queue field is null, the block is
moved to the unclaimed message queue. If the message header block was allocated from
system space and the second queue field is not null, the message information is copied
to the header block that is attached to the second queue field. This case is described
further in the next few paragraphs. If the message header block was allocated from user
space, the block is pointed to by some user process and can be unlinked from the arrival
table. In any of the above cases, if the message type lies in the range reserved for system
messages a node CPU interrupt is raised.

Like all of the other communication instructions, the receive instruction is also exe-

123

cuted by the main control unit of the communication chip. There are two major classes
of receives, those that specify the message buffer that is to be used, and those that do not
specify a message buffer. The receive instruction can be executed before, during or after
message arrival. The first action in the execution of the receive instruction is to check
if the message has already arrived. This is done by searching the appropriate unclaimed
message queue. If, for receive instructions where a message buffer has been specified,
a matching message is found, the message header information and data are copied from
the system buffer space to the user supplied header block and message buffer. The mes-
sage header block and buffer that were allocated in system space are then returned to
the system buffer pool. For receive instructions where a message buffer has not been
specified, if a matching message is found the message header information and a pointer
to the system allocated message buffer is copied from the system buffer space to the user
supplied header block. In this case, it is the responsibility of the user to explicitly return
the system allocated message buffer when it is no longer needed.

If the requested message is not located in the unclaimed message list, the arriving
message queues in node memory are checked for any arriving, unexpected, messages
that match the requested message. Unexpected messages can be identified in the arriving
message queues because they are the only messages with header blocks that have been
allocated from system space. If a matching header block is found here, the message
header block that is specified as a parameter to the receive instruction can be attached
to the header block that was found in the queue. This attachment can be made via the
second queue link field. When the message arrival has completed, the information from
the system allocated header block can be copied to the attached header block and one of
the two following actions will be taken. Either: 1) the attached message header block has
a pointer to a user supplied message buffer—in this case the data in the system allocated
buffer and header block is copied to the user specified buffer and header block and the
system allocated space is released or 2) the attached message header block does not have

a pointer to a user supplied message buffer—in this case the update to the attached header

124

block includes receiving a pointer to the system allocated message buffer, the user then
assumes the responsibility for later returning the system allocated message buffer via the
buffer release instruction.

A requested message that is not located in either the unclaimed message queues
nor the arriving message queues, has not yet begun to arrive. For such messages the
header block that is specified as the parameter to the receive instruction is queued in
the appropriate expected message queue. The addresses of the first and last byte of the
expected message are entered into the two extra data fields of the message header block.
If the header block contains a pointer to a user supplied message buffer, if the request
is for a message of ANY type and if there is space available in the on-chip arrival table,
the addresses of the first and last byte of the expected message are also entered into the

on-chip table.

5.2 Sequential Bottleneck at Source

Message bottlenecks near busy source nodes can significantly limit the performance
of the communication system. The chief challenge in avoiding this problem is to spread
the communications load among the many available links while still avoiding deadlock.
While techniques for reducing local congestion away from source nodes have been dis-
cussed [Val82], our quasi-adaptive routing scheme provides a unique solution to reducing
congestion near a busy source.

Originally, we used entirely fixed routing for all packets. However, initial studies
revealed that the performance advantage of the packet based transport for heavy message
traffic was quickly lost as the average message size was increased. Closer inspection
determined that messages were blocking in sequential order on their source nodes, just as
they do for the wormhole transport. When average message times were computed from
the time messages began to leave their source nodes the performance advantage returned.
In fact, the relative advantage was even greater than we had previously noted because

the same effect had been occurring with the shorter messages as well.

125

The primary factor that limits the speed with which messages can be moved off of their
source node is that fixed routing schemes direct messages to half of the nodes in the cube
out of a single channel, messages to half of the remaining nodes go out the next channel,
ete. Under conditions of constant uniform traffic, of course, this scheme makes optimal
use of the links by evenly distributing the message load from all nodes across all links.
However, in reality we expect message traffic to be bursty and chaotic. This can lead to
excessive link contention for the most popular link by messages that are attempting to
Jeave their source nodes. As a simple example, with all other communications quiescent,
a pair of simultaneously generated messages on any given node in a cube of dimension
n will collide while attempting to acquire their respective initial links with a probability
given by: ,

n n
The (5-3—27)2 term accounts for the fact that a node will not send a message to itself. The
term in the summation is derived from the 5‘; chance, for each message, that the kth link
is chosen.

Rather than interleaving the message with packets that have been queued for trans-
mission, we have chosen to adaptively select the first routing step for the message based
upon the shortest queue that takes the message in a direction closer to its destination. All
packets of the message still follow the same route; however, the direction of the first step
in the route is no longer fixed. In this case, with all the other communications quiescent,
a pair of simultaneously generated messages on any given node in a cube of dimension
n will collide while attempting to acquire their respective initial links with a probability

r=(70) 5 () (70) 52

k=1

given by:

In this case, there is a 5‘,‘- chance that the first message chooses the kth link, and a 5,,'—_1
chance that the second message cannot use any of the remaining links. Comparing (5.1)

and (5.2), we can show that lim,_,. Py = % and lim,,,o P, =0, also Py > P, for all

126

n > 2, therefore we conclude that our adaptive packet transport scheme significantly
reduces the problem of messages colliding prior to entering the communication network.
We also investigated adaptively routed the message by choosing the first step at random.
Both analytical and simulation analyses showed this scheme to be inferior to routing in

the direction of the shortest queue.

5.3 Deadlock Avoidance

Fixed routing schemes that preclude the formation of cyclical routing dependencies,
such as the ecube scheme are inherently deadlock free. However, the use of fixed routing
specifies a single path between source and destination nodes. Our quasi-adaptive routing
scheme allows any of d (where d is the distance between the source and destination) paths
to be used. As a consequence of relaxing the fixed routing requirement, the possibility
of deadlock is introduced. Fortunately, this possibility can be easily avoided in our
quasi-adaptive scheme. Let us refer to packets that are taking their first routing step in a
direction that differs from the direction that they would take in the fixed routing scheme
as contrary packets. Once a contrary packet has left its source node it will be routed
along the normal fixed routing path, thus we will no longer consider it to be contrary.
The non-cyclical nature of the fixed routing scheme that is used for non-contrary packets
guarantees that as long as at least one buffer slot in each packet buffer unit on every
node is either free, or occupied with a non-contrary packet, all non-contrary packets will
eventually progress to their destinations, leaving only contrary packets in the network.
Given this restriction on the allocation of buffer slots, the only way that deadlock can
occur is if contrary packets by themselves can form a routing cycle. However, this cannot
occur. In order to form a cycle at least two packets must take their first routing step in
each of the dimensions (or routing directions) represented in the cycle. In any cycle at
least two packets will take their first routing step in the same direction that they would
have under fixed routing and, hence, will not be contrary. Thus, the existence of routing

cycles formed entirely by contrary packets is precluded and deadlock cannot occur.

127

bit 255 32 16 0
data source destination packet) next | ¢
length | port | f
bit 264 41 25 9 5 10
packet header pre-header
(28 bytes) (4 bytes) (9 bits)

Figure 5.3. Message Packet Format.

5.4 Implementation of Functional Units

In this section we discuss further implementation details of the eight major functional
units described in Sec. 5.1. The specific actions of each of these units are described and
the message transport times through the critical path is discussed.

A central function of most of the functional units is the manipulation of message
packets. The format of the message packets is illustrated in Fig. 5.3. Each message
packet requires 4 bytes of header information that specifies the node numbers of both
its source and destination. The destination node number is obtained from the message
header block by the communication processor on the source node when the beginning of
the message is first introduced into the network. The source value is known implicitly.
The remaining nine bits provide information to the packet routing hardware. These bits
are known as the packet preheader.

The first preheader bit indicates whether or not the packet is a contrary packet. Since
packets may be contrary for at most one routing step, this bit is reset as it leaves its first
packet buffer unit. The next 4 bits encode a selector to indicate the output port desired -
at the next node the packet will visit. As will be seen in the following sections, this field
decreases the allocation time for routing resources. The final 4 bits indicate the length of
the packet data and header (in 16 bit words), this allows the final packet of the message

to be shorter than its earlier packets.

128

54.1 Buffer RAM

The buffer RAM is intended to provide temporary space efficient packet storage for
all of the packet buffer units. The space within the RAM is evenly divided among the
packet buffer units. The RAM is dual ported with output ports, from which data is only
read, sharing simultaneous access with input ports, to which data is only written. The
decision to use a RAM to hold the majority of the buffered packets instead of storing

entire packets in the packet buffer unit was made for two primary reasons.

1. RAM cells used in a memory are typically much smaller than those used in regis-

ters [FMM87,HC85,mbo87].

2. Having a separate RAM allows more flexibility in distributing the implementation
of the communication processor across multiple chips. In fact, high speed off-the-

shelf static RAM chips could be used.

Based on our simulation studies, a reasonable RAM size for a degree 10 cube would be
4096 bytes. This would provide storage for 13 packets for each of the 10 packet buffer
units. Dual ported CMOS static RAM cells that allow data to be written on only one of
the RAM ports can be implemented with seven transistors [WE85]. For 4096 bytes of
static RAM the storage cells alone would require about 230, 000 transistors. This amount
of information cannot be stored in registers within the packet buffer units with current
technologies. However, storage for this amount of information could be provided by a
pair of off-the-shelf 2K x 8 dual port static RAMs such as CY7C132-35C [IC 87].
Though it is part of the packet switching section of the communication chip, the
buffer RAM does not lie directly on the critical timing path through the chip. This is
because the first 25 bits of information that arrive at a packet buffer unit do not pass
through the buffer RAM. The 9 bit packet preheader and the first 16 bits of the packet
header use storage space within the packet buffer unit (described below) to bypass the
buffer RAM. As long as the output side of the packet buffer unit can acquire the next

16 bits of the packet from the buffer RAM in less time than it takes it to send 25 bits

129

of information to the next node, the buffer RAM remains off of the critical timing path
for the head of the packet. It is further required that each additional 16 bit word of
the packet be accessed within 16 bit transmit times (which is the amount of information
delivered by a previous buffer RAM access) to keep the buffer RAM out of the critical
timing path for the transmission of the remainder of the packet. Assuming an order 10
cube and 35 ns memory access time we should be able to access memory at least every
350 ns. Thus, the buffer RAM will remain out of the critical path for all link bandwidths
below 45 MHz.

5.4.2 Packet Buffer Units

A block diagram showing the data path components of a packet buffer unit is given in
Fig. 5.4. The major component of a packet buffer unit is the shiftable content addressable
memory (CAM). This memory is 29 bits wide: 1 bit to indicate if the packet is a contrary
packet, 4 bits to select the next port, 4 bits to indicate the packet length (in 16 bit words),
the first 16 bits of the packet header (the destination field), and 4 bits to specify the
buffer RAM address at which the remaining bytes of the packet are stored. For this
implementation we will assume the height of the CAM, that is, the number of packets that
it and its corresponding space in the buffer RAM can hold, to be 13. In our simulations
have we have evaluated CAM sizes that range from 2n to 2n. The results were reasonable
throughout the entire range. However, performance does increase slightly with increases
in the CAM size. These results are explained further in Sec. 5.7.

The bit-wide value that results from the logical-and of all of the contrary flag bits is
available to the controller at the input side of the packet buffer unit. This information
allows the input controller to signal the receiving side of the flow control unit to refuse an
incoming packet that would fill the CAM with contrary packets. The contents of the next
port field of the CAM are used to associatively address the memory. It is useful to think
of the CAM as having head and tail rows. Data in all rows of the memory may be shifted

down so that all free memory rows accumulate at the tail end. When accessing memory

130

for either reads or writes, if multiple rows match the next port field, the row closest to
the head is used. This allows multiple packets from the same message to move through
the memory in a manner such that their order is preserved, while still allowing packets
from different messages (and on different routes) to be accessed randomly. The ability
to access packets randomly allows us to interleave the packets from different messages
on the output link in a fair manner.

Each packet buffer unit contains two small, cooperating, controllers. One handles the
loading of arriving packets into both the CAM and the buffer RAM. The other controller
handles the forwarding of packets from the CAM and buffer RAM through the crossbar
switch to the next packet buffer unit or the node input port. With the exception of the
crossbar arbitration request register, all of the registers that the input controller affects
are located above the CAM in the illustration given in Fig. 5.4. All of the registers that
the output controller affects are located below the CAM in the illustration.

The operation of the input controller is given below.

1. Start: when free (CAM) row register is greater than 0, assert intention to use the

CAM on the next cycle. Proceed.

2. Latch the RAM address offset into the RAM address register from the free row
entry in the CAM. Zero the low order bits of the RAM address register. The
high order bits of the RAM address register are wired to the buffer RAM offset
for each specific packet buffer unit. The mid-order bits are latched into a static
register from the CAM. The low order bits are implemented as a counter that is

incremented after each write.

3. Release flow control block on input. Wait for start bits (10) to arrive on input line

before proceeding.

4. Check the logical-and of the first arriving bit and the contrary flag line. If true,
assert the flow control block and return to step 1. If not true, decrement the free

row register and proceed.

131

to buffer RAM in port

RAM addr | RAM data length | | shift
counter counter

input i» incoming packet shift register

[¥ ¥ ¥

next port §
offset in packet packet (match) g
buffer RAM destination length field <
(4 bits) field (16 bits) |(4 bits) (4 bits) =
«Q
— 4
next node # ROM
v H 0-15
exclusive-or Cb encdr
— 1
length < | arb
counter req
v v v
parallel loading output shift register &
v T 2 to link
RAM addr RAM data
counter f

to/from buffer RAM out port

Figure 5.4. Packet Buffer Unit.

5. On the arrival of bit 8, latch the packet length field of the arriving packet into the

length counter.
6. During the arrival of bit 23, assert intention to use the CAM on the next cycle.

7. On the arrival of bit 24, latch the first 24 bits of the incoming packet into the

132

first free CAM row, and set the bit that corresponds to the desired next port in the
crossbar arbitration request register (the desired bit is determined by a 4 bit 0-to-15

decoder which is not illustrated).

8. After the arrival of 16 more bits, latch them into the RAM data register and check
the length counter. If zero, assert the flow control block, write a non-valid address
to the RAM address register, and return to step 1. If not zero, decrement the length

counter and proceed.

9. While more bits are arriving, arbitrate for the buffer RAM input bus and write the
buffer RAM data.

10. Increment the RAM address register, go to step 8.

Other parts of the input side of the packet buffer unit that are not shown include
the free row register and the control unit. The input controller is given priority on all
accesses to the CAM. Thus, on all accesses to the CAM, the output controller will enter
a one cycle wait if the input controller has asserted its intention to use the CAM. The

operation of the output controller is given below.

1. Start: when any of the crossbar arbitrations are successful, read the corresponding
data from the CAM into the output shift register, RAM address register and length
counter. The contrary bit is reset in the output shift register, since packets flowing
out of a packet buffer unit are no longer contrary. The next port value is updated
for the next routing step by setting it to a value determined from the next node
number and the packet destination field. Proceed. The crossbar arbitration grant
lines, which are not shown, feed into the 0-to-15 4 bit encoder. The result of this

encoding is used to select the CAM entry.

2. Begin shifting, check if this packet is to be broadcast and not all of the broadcast
copies have been sent. This is indicated by the source field of the packet being

equal to the destination field and the next port field being less than the maximum

133

port number. If this is the case, increment the next port field and write it back to
the CAM and set the appropriate bit in the crossbar arbitration register. If this is
not the case, set a flag register to indicate that the CAM entry is to be freed as the
last step of forwarding this packet. If the CAM entry were freed immediately, it
could be reused and new packet data could be written to the corresponding buffer

RAM locations before all of the current data is read.

. Increment the length register to account for packet header bytes as explained for

the input controller.

. While bits are shifting out, check the length register and the input sidle RAM
address register. If the length is not zero, the next action will depend on the result
of comparing the RAM address registers on both the input and output sides. This
check will prevent the output controller from trying to read RAM data before the
input controller has written it. If the addresses are equal, the output side must
wait until the input side finishes its current write. If the addresses are not equal,
arbitrate for and read the first 16 bits of packet data from the buffer RAM into
the RAM data register. When successful, increment the RAM address register and

decrement the length register. If the length register is zero, go to step 6.

. Wait until the low water mark is reached in the output shift register. Then, latch

data from RAM data register into shift register. Go to step 4.

. Check the two following independent conditions. If another packet with the same
next port field is not in the CAM, reset the crossbar arbitration register. If the flag
indicating that this CAM entry is to be freed is set, free the entry and reset the
flag. Return to step 1. A CAM entry is freed by shifting all of the entries above
it one step closer to the head. Simultaneously, the mid-order bits of the current
RAM address register and a special next port value that indicates that this is a free

entry are written to the tail of the CAM.

134

Parts of the output side of the packet buffer unit that are not shown include the
control unit and logical-and gates for RAM address comparison and broadcast checking.
A CMOS implementation of the CAM with 13 entries requires about 4000 transistors.
The control units for both the input and output sides of the packet buffer unit can be
constructed from PLAs. These PLAs and the remaining registers and logic require about
2500 additional transistors. Thus, the total device count for each packet buffer unit is
approximately 6500 and about 65,000 devices would be required for an implementation
of a 10-cube.

The critical path time is 31 cycles for the head of a packet. The majority of this time
is consumed shifting the first 25 bits (plus two discarded start bits) into the incoming
packet shift register. Without contention for resources, there is an additional cycle for
loading the CAM, 2 cycles for arbitrating for the output link (see Sec. 5.4.3), and 1 cycle
for unloading the CAM. Shifting of the output register can commence on the 32nd cycle.
The critical path times for the remaining words of a packet are typically less since writes

to the buffer RAM can commence after the arrival of each additional 16 bits.

54.3 Crossbar Switch

The routing scheme that we have proposed requires partial (upper triangular) crossbar
connectivity between the input and output ports. That is, if we assume that: 1) our
hypercube is connected in the standard manner such that all output ports O; (where
1 > ¢ > n) on each node are connected to an input port I; on some other node whose
binary representation differs from the first node only in the ith bit position and 2) the
node output port and node input port on each node are assigned the number O (ie.,
Opandly refer to the node output port and node input port, respectively), our routing
scheme will always route a packet from input port I; through an output port O; such that
1 < 7. The required crossbar connections are illustrated in Fig, 5.5. The inputs labelled 1
through n correspond to the output of the packet buffer units with the same numbers, and

input O corresponds to the node output port. Similarly, the outputs labelled 1 through n

135

0 n 3 2 1
outputs

Figure 5.5. Connectivity of Input and Output Ports.

correspond to the input of the downstream packet buffer units with the same numbers,
and output 0 corresponds to the node input port. A second similar crossbar is required
to provide a path in the opposite direction for the flow control signals.

The units of the input side of the crossbar must arbitrate for the use of the outputs.
This is accomplished by using a 1-of-(n+1) arbiter for each of the n+ 1 crossbar outputs.
Several designs for such arbiters exist (see [MHW87] for a brief overview or [PFL75] for
more details). Generally, tree structured arbiters provide the most reasonable compromise
between speed and fairness. A tree structured 1-of-8 arbiter, constructed from seven 1-of-
2 arbiter modules is shown in Fig. 5.6. Each 1-of-2 arbiter module has two request lines
and two corresponding grant lines. The grant line at the root of the arbitration tree is not
asserted until the output flow control status is not blocked. As described in [PFL75], a
1-of-2 arbiter module may be constructed from 12 gates. The request signal experiences
two gate delays for each arbiter module through which it passes, while the corresponding
grant signal will experience one gate delay through each module. The total delay for a
1-of-M arbiter is 3Alog, M, where A denotes the nominal gate delay. For a cube of
degree ten crossbar arbitration will require 12 gate delays. The critical path time stated

in Sec. 5.4.2 allowed two cycles for arbitration. Thus, for clock periods in excess of

136

M

R: G
1-of-2 arbiter
Ro Go R G;
! I
} I
R: G R;: G.
1-of-2 arbiter 1-of-2 arbiter
Ro Go R G; Rg Go R1 G
1 L 1 [
[1 [1
R Gc R; G R. G, R.: G
1-of-2 arbiter 1-0f-2 arbiter 1-of-2 arbiter 1-of-2 arbiter
Ry Go Ri G Ro Gy R G Ro Go Ri1 G Ry Go R; Gy
[} [} [} [! [[4 !
RiG R2G2 R3 Gs3 R4G4 Rs5Gs R¢ Gg R7Gy RgGg

Figure 5.6. A 1-of-8 Arbiter Constructed from a Tree of 1-of-2 Arbiters.

6 gate delays the two cycles allowed for arbitration will be sufficient.

5.4.4 Node Output Port

The node output port introduces packets generated on the local node to the network
through the crossbar switch. Its function is similar to that of the output side of the
packet buffer units. An illustration of the node output buffer is provided in Fig. 5.7.
All of the components illustrated are replicated for each of the n buffer slots. The main
communication processor control unit is responsible for initiating the actions of the node
output port. When a buffer slot for which a waiting message is available, the control
unit fetches the 16 bit destination field of the packet from node memory. It then creates
the 9 bit packet preheader (contrary flag, packet length, and next port number). This
25 bits of information is written to the prefetch buffer, 25 is written to the load register

of the corresponding counter and the prefetch data available flag is set. The controller for

137

32 bits 32 bits | 32 bits 32 bits

g 7> [6 bit
8 < shift prefetch | next mem | last mem ‘oi g | ontr &
o data data address | address |&» ZF control
2 v | logic

Figure 5.7. Node Output Port.

the buffer slot will notice the prefetch flag and begin its actions. Meanwhile, the main
controller writes the node memory addresses of both the next and last words to fetch into

their respective buffers.

The actions of the buffer slot controller are given below.

1. Start: When prefetch data is available, load the shift register with the data from the
prefetch buffer, load the counter with the value in the counter load register, reset

the prefetch refill request flag, and begin arbitration for the output link. Proceed.

2. When the output link is granted and data flow is enabled, start the shift register.

Decrement the counter on each shift.

3. If the counter load register is not equal to 25 (i.e., if this is not the beginning of a
packet), skip this step. After the 9 preheader bits have been sent, check the flow
control signal. If the buffer slot controller is attempting to send a contrary packet
which the downstream packet buffer unit is refusing, the flow control block that
the downstream unit will have raised will be recognized during this bit. The details
explaining why the flow control block will be recognized at this time are given in

Sec. 5.4.8. If this is the case, return to step 1. Otherwise, proceed.

4. When the counter reaches 23, assert the prefetch refill request line. In response, the
main control unit will reset the prefetch data available line and begin the operation

of refilling the prefetch buffer if there is more message data to be sent.

138

5. When the counter reaches 0, return to step 1.

The main control unit loads subsequent data from the node location indicated by the
next word field of the buffer slot into prefetch buffer 32 bits at a time. For each such load,
the load register of the counter is set to 32 and the value of next word is incremented by
four. An exception to this may occur for the last load of the last packet of a message
which may be only 16 bits in length. In this case, the load register of the counter is set
to 16. When the next word field is greater than the last word field the message has been
completely loaded and the main control unit may begin to load the first packet of the
next message from the send queue corresponding to the free buffer slot.

Broadcast packets are handled in the same manner as single destination messages
by the buffer slot controllers. The only changes are in the manner in which the main
controller loads packet data into the buffer slots. The main controller will fetch message
data from main memory only once. This data is then written, as space becomes available,
to the prefetch buffer of all the buffer slots to which the message is being broadcast. The
next word and last word data that guides the fetching of message data rom node memory,
needs to be recorded in only one location. Registers internal to the main control unit
keep track of which buffer slots have and have not received the currently fetched word

of packet data.

5.4.5 Node Input Port

The design of the node input port is illustrated in Fig. 5.8. The major component of
the node input port is the FIFO. The 16 bit-wide FIFO receives data from the network
via the crossbar switch. Data in the FIFO is removed from its bottom entry by the main
control unit and written to the node memory. Writes to node memory are done 32 bits at
a time whenever possible. Access to the FIFO counter is also shared by both the input
and output sides of the unit. This counter provides the FIFO address to which the input
shift register will write its next two bytes of packet data. After every two byte write,

the counter is incremented by the node input port controller. A status flag that is read

139

flow control halt
arbiter grant

packet
from word cntr «a———q
xbar - —| - -
——| input shift reg inputshift
cntr & ctrl
\ 1
Q.
& ¢4 FIFO cntr
node input FIFO §
AN i from
// AN — main
y 4 \‘ ctrl
- Y >

node data bus

Figure 5.8. Node Input Port.

by the main controller is set whenever the counter is non-zero—thus, indicating that data
is available in the FIFO. Upon reading each two bytes of data from the FIFO, the main
controller will shift the FIFO and decrement the counter.

Whenever space is available in the FIFO, the input port controller will grant arbitration
requests and enable the data flow signal. The specific actions of the input port controller

are described below.
1. Start: Load the input shift counter with 26 and the packet word counter with 0.

2. When data flow is enabled, assert the grant line for the arbiter. The flow control

line is wired to the FIFO counter, whenever the counter is below its maximum

value, input data flow will be enabled.

3. After the start bits (10) arrive, begin to shift data into the input shift register,

decrement the shift counter on each shift. Start bits will not arrive when data flow

140

is disabled.

4. On the arrival of the 8th bit (shift count equals 18), check the packet word counter.

If it is zero, latch the 6th through 8th bits into the packet word counter.

5. On the arrival of the last bit of the packet word (shift count equals 0), write the
packet to the FIFO, increment the FIFO counter and check the packet word counter.
If it is zero, return to the start state. If it is not zero, decrement it, load the input

shift counter with 18 and go to step 3.

5.4.6 Arrival Tracking Unit

The design of the arrival tracking unit is illustrated in Fig. 5.9. This unit serves two
purposes. It watches the node address bus to ensure that the node CPU does not attempt
to access message data before it has arrived. Additionally, it serves as an on-chip cache
for the message arrival table. The chief component of the arrival tracking unit is a CAM
with entries that specify the node memory addresses at which to store the next byte
and the last byte of arriving messages. The main control unit consults and updates this
memory when transferring arriving packets from the node input port to node memory.

Each active entry in the CAM corresponds to a message that is currently arriving
at its destination node. Entries are uniquely identified by the message source and the
direction of the first routing step; hence, this information is used to associatively address
entries in the CAM. An additional one bit associative field is used to identify expected
entries. There are two types of non-active entries: free entries, and entries for expected
but not yet arriving messages. Expected entries are allowed only for requests for ANY
message type. This is required because the associative field does not distinguish message
types. When space in the CAM is needed for an arriving message, the first choice is
to use a free entry. However, if no free entries exist, an entry for an expected message
will be used if one is available. In such a case, the existing expected entry will not be

saved because a valid copy of its information will exist in the arrival table located in

141

address cPU 4
bus interrupt
src/rte | current DMA address D
7
match '
[eyl
field | -
I
src/rte L D
T last DMA address
adSL:SS address bus
compare lines
tag
match | address bus / compare range check l

Figure 5.9. Arrival Tracking Unit.

node memory. When a message for an expected entry begins to arrive, the state of the
entry is changed from expected to arriving. Arriving entries are not removed from the
CAM until the arrival of their message has completed. Space may also be requested for
an expected entry. In this case, the request will be granted only if a free entry exists.

A magnitude comparator exists for each node memory address in the CAM. If a
memory request is made for a location that lies between the next byte and last byte

values of any active entry in the CAM, a CPU interrupt will be generated.

5.4.7 Control Unit

The actions of the main control unit fall into two domains, those in response to
communication instruction execution fequests and those in response to status indications
from any of the three functional units over which it may exercise control. The main
control unit is responsible for the control of the arrival tracking unit, the input side of

the node output port and the output side of the node input port. Though each of these

142

activities have already been discussed in detail, they are summarized below.

As a result of communication instruction execution requests, the control unit will
manipulate communication queues and, possibly, initiate the actions of the node output
port. In response to requests from the node output port the main control unit may fetch
message data from node memory, manipulate the send queue and/or update the status or
data in the node output port. Requests from the node input port may require the writing
of message data to node memory, updating the status of the input port, manipulation of
several communication queues and/or updating of the arrival tracking unit. Additionally,
the main control unit may need to generate an interrupt for the node CPU. The only
requests from the arrival tracking unit will be for the generation of an interrupt sequence
for the node CPU, either for anomalies that it detects or on behalf of the arrival tracking
unit.

A controller of such complexity may be implemented in several different forms rang-
ing from PLAs to a microcode engine. In any case, it is reasonable to assume that
such a controller could be implemented on a custom chip with enough room left to also

accommodate a few of the smaller remaining functional units.

54.8 Flow Control Unit

The flow control unit consists of two separate sections: the receiving section and
the sending section. These sections are located at opposite ends of the single wire links
between nodes. Flow control information is passed on the same wire as the message
data. For this purpose, a two bit synchronization pattern (a one followed by a zero) is
interspersed with the data that travels on each link. This pattern is generated by the units
that submit data to the crossbar—that is, the output side of the packet buffer units and
the node output port. The pattern is inserted after the nine bit preheader and after every
16 bits for the remainder of the packet.

The simple circuit that comprises the flow control unit is shown in Fig. 5.10. The

capacitor C1 represents the total capacitance of the interconnect between the two chips.

143

Vee
— ‘input
‘gf— _901 _903
| " " CL_ 2 ignore
Q2 Q4 Q7 |
; —]
Vec
asY]
hotd < —_
Qé”

Figure 5.10. Flow Control Circuit.

This value represents the capacitance of one meter of backplane wire and the input and
output capacitance of the chips at each end of it, as calculated from data in [Mot83a]
and [Mot83b]. The single transistor Q7 functions as the receiving section of the flow
control unit. It is turned on when the receiving unit wishes to block the reception of
further information. As long as Q7 is off reception is enabled.

The output driver on the sending chip is modelled by Q1 through Q4. The flow
control detection circuit consists of the inverter formed by Q5 and Q6. When the output
of this inverter (labelled hold) is high during the one bit of the one-zero synchronization
pattern it is an indication that the receiver is blocking the reception of further data. In
this case, transmission of the one bit is repeated by the sending unit until the blocking
condition is removed.

The sizes of transistors Q1 through Q7 are given in Table 5.1. The results of a spice

simulation on the flow control circuit are given in Fig. 5.11. The spice simulation shows

144

transistor width length
Q1 100 5
Q2 40 5
Q3 250 5
Q4 100 5
Q5 25 5
Q6 20 5
Q7 250 5

Table 5.1. Transistor Sizes (in microns) for Flow Control Unit.

that the assertion of a flow control block signal can be detected by the sending side of the

flow control unit within 15ns of it being raised by the receiving side of the flow control

nsS 5.0 16.0 15.0 26.0 25.0 36.0 35.0 4o.o
5.0V

0,0V

nore

5.0V _ —

D, 0V S

0,8y

5.0V —

oul

.

~—

TN
Figure 5.11. Spice Simulation of Flow Control Circuit.

145
5.5 Summary of Functional Unit Implementations

The design for the communication processor that was offered in the preceding sections
can be easily partitioned for implementation across several chips. One possibility is to
partition the functional units into the following groups: the control unit, the input and
output ports, and the arrival tracking unit; the packet buffer units, the crossbar switch,
and the flow control units; and the buffer RAM. Such a partitioning allows the use of

off-the-shelf RAMs while yielding reasonable pin and transistor counts on each chip.

5.6 Buffer and Packet Sizes

Our quasi-adaptive packet based message transport scheme dedicates a fixed number
of packet buffers to each packet buffer unit in the communication processor. Since
the total amount of packet storage within a communication processor will be limitied,
attempts at tuning performance can be made by varying the packet size and the number of
buffers while holding the product of the two constant. The simulation results reported in
the following section assume packet lengths of 32 bytes with 13 packet buffers per packet
buffer unit. In an effort to investigate the tradeoff between the number of buffers and
packet size, we compare the results from the following section with two additional sets
of simulation runs. The first of these sets differs by doubling the number of packets that
may be handled by each packet buffer unit to 26. The second set of simulations keeps
the number of packets that may be handled by each packet buffer unit the same at 13
and, instead, doubles the size of the packets to 64 bytes. The results of this comparison

are included in the following section.

5.7 Simulation Results

We explain the simulation metrics and parameters, and present and discuss the results

for wormhole routing, our original fixed packet routing and our improved quasi-adaptive

146

version of packet routing in this section. The primary performance metric presented is
the average elapsed time from the moment a message is queued for sending on its source
node until it reaches its destination. We have also compared the times for messages of
specific lengths and distances. These results correlate well with the average values that
are presented. All results are given for two different average message lengths across a
variety of traffic loads. As a further check, we have also compared both the maximum
times taken by any message and the total simulation times. Neither of these checks
indicate anomalies in any of the simulation cases.

For all cases, message destinations are chosen uniformly. The message lengths are
given by an exponential distribution with a mean of 512 bytes for the first set of results
and with a mean of 2048 bytes for the second set. The intergeneration time for messages
at each node is given by a normal distribution. This data was gathered at nine different
rates of message generation. For the shorter messages the mean of the intergeneration
time ranges from 1024 ticks to 9216 ticks, with two increases of 256 ticks, followed by
three increases of 512 ticks and, finally, three increases of 2048 ticks. The variance is
always equal to half of the mean. For the longer messages the mean of the intergeneration
time ranges from 4096 ticks to 36846 ticks, with increases of 1024 ticks, 2048 ticks and
8192 ticks. The link transfer rate is 2 ticks per byte and arbitration for shared resources
is assumed to take 4 ticks. These values are derived from the implementation which was
presented in the preceding sections. For all routing schemes the same pseudo-random
sequence of numbers are generated for the message destination, length and intergeneration
time. This ensures that the kth message will be of length [and will travel from source s
to destination d starting at time ¢ for all of the routing schemes evaluated. In all cases,
simulations are performed for hypercubes of degree 6.

The intergeneration time for messages is expressed as an ideal link utilization value.
This value is derived by calculating the total amount of link time required to handle the
transfer of all of the messages generated during the simulation. For example, a message

of length M that travels L hops will contribute 2M - L link ticks to the link time total.

147

This time is then divided by the product of the total number of links in the hypercube
and the time from the start of the simulation until the last message is generated. This
is not a true utilization value in the sense that we only integrate the total available link
capacity up until the time of the last message generation. However, this does meet our
primary objective providing a utilization value that is the same for all transport schemes
with the same simulation parameters. This is guaranteed because the time of generation
for the last message is always the same; whereas, the total time varies somewhat for each
different routing mechanism.

The simulation results are given in Figs. 5.12 and 5.13. The figures for cach of the
two different message lengths are given in two parts with differing vertical scales. By
examining the link utilization axis it can be seen that the two parts of Fig. 5.12 overlap
by two data points. Similarly, with Fig. 5.13. The mean elapsed times for both the arrival
of the first packet (or 32 data bytes) and the last byte are shown. This allows us to see
the effect that the packet interleaving has on both latency and bandwidth. The first times
(e.g., the line labelled first wormhole) indicate message latency. The difference between
corresponding first and last times (e.g., last wormhole less first wormhole) provide an
indication of the message bandwidth.

For the smaller messages our initial fixed routing packet scheme leads to decreases
in message latency times that range from 35% of the wormhole latency times for the
heaviest link utilization values to 87% of the wormhole time for the lightest utilization
value. The latency times remain below 50% of the wormhole times for the four heaviest
utilization values. On the other hand, bandwidth for the fixed packet scheme has also
decreased from about 37% of that of the wormhole scheme for the heavier loads to about
81% for the lighter loads. Even with the moderate decreases in bandwidth incurred by
the packet routed scheme, the arrival time for entire messages is quicker for the three
heaviest traffic loads.

Blockage at the source nodes limits improvements in latency times for the large

messages at higher link utilizations. For the lower link utilizations the improvements in

148

3000
-+ 1st Wormhole
-+ | ast Wormhole
3 -6 1st Fixed Pkt
E -~ Last Fixed Pkt
‘s 2000 -= 1st Adapt Pkt
= -0~ Last Adapt Pkt
&
[}
=
c
@ 1000 -
=
0

0.002 0.004 0©0.006 0.008 0.010 0.012 0.014
Link Utilization (lighter loads)

Figure 5.12. Mean Message Times, Length = exp(512) (Part 1-of-2).

latency time are greater than they were for the shorter messages. This occurs because the
benefits of interleaving packets from different messages have a much greater impact as
message size increases. For the longer messages our initial fixed routing packet scheme
leads to decreases in latency times that ranged from 47% of the wormhole times to 69%
of the wormhole times. Bandwidth ranges from 39% to 72% of the wormhole times.
The change to the quasi-adaptive packet scheme leads to significant improvements.
For smaller messages the latency times decrease to less than 50% of the times for worm-
hole routing for all but the 3 lightest loads. The latency times range from 10% to 77%
of those for wormhole routing. Bandwidth for our quasi-adaptive packet scheme ranges
from about 28% of that for wormhole at the heaviest traffic load to about 81% at the
lightest load. For the four heaviest traffic loads the average time for the messages to
completely arrive is less with the quasi-adaptive packet scheme than it is with wormhole

routing.

149

20000
-+ 1st Wormhole
-+ Last Wormhole
a ~o- 1st Fixed Pkt
E 1 = Last Fixed Pkt
S -= 1st Adapt Pkt
g -0~ Last Adapt Pkt
(13
8 10000 1
=
oot
1]
(5}
=
0 — T T T
0.005 0.015 0.025

Link Utilization (heavier loads)
Figure 5.12. Mean Message Times, Length = exp(512) (Part 2-of-2).

The results are even better for the large messages. Message latency ranges between
14% and 31% of that for wormhole routing across the entire range of loads. Bandwidth
for the adaptive packet scheme ranges from about 31% of that of wormhole at the heaviest
traffic loads to about 72% at the lightest.

The decreases in bandwidth will likely have an insignificant effect on most programs.
Consider, for example, that the NCUBE hypercube with on-chip floating point hardware
consumes message data at a rate of 0.188 Mbytes per second when performing the double
precision vector operation: X = aX +Y. Peak message bandwidth on the same system
is 0.77 Mbytes per second. Bandwidth would have to decrease by more than a factor
of four in any system with a similar calculation to bandwidth ratio before performance
in the above operation would begin to be affected. Even then, our packet based scheme
still has the advantage of being able to start processing message data much sooner. It is
also the case that the difference in bandwidth between wormhole routing and our packet

scheme is the least significant in those cases where our improvement in latency times

Mean Message Times

150

12000
| * 1st Wormhole
| = Last Wormhole
100007 - 15t Fixed Pkt
1 o Last Fixed Pkt
8000 1 = 1st Adapt Pkt
-0 | ast Adapt Pkt
6000 -
4000 -
2000 A
"
0

0.002 0.004 0.006 0.008 0.010 0.012
Link Utilization (lighter loads)

Figure 5.13. Mean Message Times, Length = exp(2048) (Part 1-of-2).

30000

-+ {st Wormhole

-z~ Last Wormhole
" - 1st Fixed Pkt
‘é’ -~ Last Fixed Pkt
i= 200001 = 1st Adapt Pkt
S -0~ Last Adapt Pkt
&
(7]
Q
=
S 10000 -
Q
=

- "
0 ‘_.——'——.""

0.005 0.015 0.025

Link Utilization (heavier loads)
Figure 5.13. Mean Message Times, Length = exp(2048) (Part 2-of-2).

151

6000
-+ 1{gt Base
5000 - -+ |ast Base
@ -~ st 2x Buffer
£ —o- Last 2x Buffer
";, 40001 = 1st 2x Packet
o -0~ Last 2x Packet
(41}
@ 3000
=
c
i
s 2000 1
1000
0 v L | L4 T T
0.00 0.01 0.02 0.03

Link Utilization

Figure 5.14. Message Times, Buffer/Packet Tradeoffs, Length = exp(512).

are also least significant. Considering all of the above, it seems reasonable to expect
that most programs would be able to reap the benefits of reduced message latency times
without incurring any costs from the effectively reduced message bandwidth by using
our quasi-adaptive packet based routing scheme.

The tradeoff between increasing packet size and the number of packets is shown in
Figs. 5.14 and 5.15. From these figures we can see that it is preferable to increase the
length of packets rather than the number of packet buffers. This trend is consistent for
the arrival of the last packet and should remain so until packet length begins to approach
the average message length. However, if we look closely at the arrival times of the
first packets we see that for the shorter messages increases the additional time required
transmit the larger packet does not lead to lower message times until the traffic load

gets very high. The tradeoffs in packet and buffer sizes are summarized by the follows.

152

20000
-+ 1{stBase
-4 |ast Base
3 -~ {st 2x Buffer
E 1 - Last 2x Buffer
o = 1st 2x Packet
§ - Last 2x Packet
@ 10000 -
=
[=t
(1]
Q
=

0.00 0.01 0.02 0.03

Link Utilization

Figure 5.15. Message Times, Buffer/Packet Tradeoffs, Length = exp(2048).

Adding buffers provides the greatest performance gain until an adequate supply of buffers
is available. An adequate number of buffers appears to be from about 1 to 1% times the
order of the cube. Once an adequate supply of buffers is available the arrival times
for the total packet can be improved by increasing the packet size until the point where
packet size approaches the average message size. However, increasing packet sizes may
also lead to increases in the delivery time for an individual packet. Therefore, in systems
where the latency of the first packet is important (i.e., systems where message use is to
be overlapped with message arrival), packet sizes should be limited to a small fraction
of average message size. In the systems that we simulated, packet sizes of about 10% of

the average message size worked best.

153
5.8 Chapter Highlights

In this chapter we have developed a new communication architecture: its function-
ality has been explained and its implementation has been described. We concluded by
providing a set of performance simulation results for random communication loads. Our
results indicate that the performance potential for our scheme exceeds that of wormhole

routing which is among the most preferred of the existing schemes.

CHAPTER 6

CONCLUSION

A large potential exists for increasing the communication performance of hypercube
multiprocessors. The development of this potential will allow an increasing variety of
algorithms to be efficiently executed on these systems. In this dissertation we have
introduced a classification scheme for parallel programs and their communications. The
classification scheme established a framework to facilitate discussion of communication
system issues. This framework was then used to identify classes of programs with similar
communication characteristics. Further discussion of communication issues was divided
into two broad groups: NN and BC communications and RA communications. Support
for communications from both of these groups was combined into a new communication
architecture called quasi-adaptive packet routing that we introduced in Chapter 5.

Within the class of programs that use NN and BC communications, we identified a
large subclass of communications that we called C-deterministic. Programs that have
C-deterministic communications contain an inherent knowledge of their communication
patterns. This knowledge allows us to remove much of the generality that is built into typ-
ical communication protocols (e.g., NCUBE’s Vertex, Intel’s IHOS, and to a lesser extent
Caltech’s CrOS). By streamlining the protocols and providing more asynchronous and ef-
ficient semantics for the communication routines that interface to user programs we were
able to realize significant performance improvements. These improvements surpassed

those reported by other groups that have addressed similar issues [BFFO87,BF87b]. For

154

155

C-deterministic programs, the improvement in communication support does not require
any architectural changes.

The above improvements may also be realized for the class of NN and BC com-
munications. However, achieving the improvements for this class requires additional
effort because the NCUBE architecture cannot handle messages of unknown size without
using the cumbersome three-way handshake protocol that was described in Sec. 3.1.1
(similar situations exist for the other first generation architectures). Information about
subsequent messages may be embedded in earlier messages, providing a sender driven
form of C-determinism. Alternatively, the minor hardware changes described in Sec. 3.3
could be implemented. Either of the above changes would enable the largest class of
existing hypercube programs (those that use BC and NN communications) to execute
with significantly increased communication performance. We consider this to be one of
the two key contributions of this thesis. Our experiments on two representative programs
show that the communication performance was improved by a factor of about 3 on the
program that employed NN communications and about 2 on the program with BC com-
munications. Total program execution time decreased by a factor of about 1.3 as a result
of the improved communications. This suggests that programs designed for high perfor-
mance communication systems will be able to take greater advantage of the increase in
effective CPU power that is available as a consequence of the reduced demands of the
more powerful communication system.

Our study of NN and BC communications included measuring the times for all of
their constituent operations. As a result of the insights obtained from these experiments,
we were able to optimize several of these operations and embody the improvements
in our communications module. The optimization of some of the remaining operations
require architectural changes. Simulation results that predict the effect of the architectural
changes indicate additional, substantial improvements. We also showed that most of
the optimizations identified for NN and BC communications are also applicable to RA

communications.

156

Our study of RA communications began by considering the requirements of appli-
cation programs. This provided the basis for the set of communication operations and
semantics that we introduced. We then considered many different strategies for transport-
ing messages among non-neighboring nodes. Several key design choices were simulated.
As a result of our study, we chose two transport strategies for further consideration:
wormhole routing, which is an existing scheme, and the quasi-adaptive packet routing
scheme that we developed in the latter sections of this dissertation. The limitations of
wormhole routing were then analyzed and our quasi-adaptive transport scheme, which
was designed to avoid the chief limitations of wormhole routing, was introduced.

We designed, as a proof of principle, our quasi-adaptive communication system. The
discussion of this system began with an overview of the architecture. This was followed
by a discussion of the data structures that are maintained by the communication proces-
sor and an explanation of the message transport semantics. The issues of deadlock and
bottlenecks at the message source were discussed. A more detailed description of the
functional units that constitute the communication processor was then given. Finally,
we offered simulation results that compared the performance of various versions of our
design and the wormhole routing scheme. These results demonstrated the potential for
significant improvements in the execution time of RA programs (results for NN and BC
programs were given earlier) that would result from the use of our proposed communi-
cation architecture. We consider the potential for significant RA program performance

improvements to be the second key contribution of this thesis.

6.1 Future Work

An important direction for future work is to investigate the complete requirements
for the efficient support of a shared virtual memory system. The existence of a high
performance communication system is certainly necessary, but not sufficient. Providing
a shared virtual memory programming environment may prove to be the crucial first

step in integrating large scale distributed-memory multiprocessors into the mainstream of

157

general purpose computing.

[ABGS5]

[AC87]

[AM8S]

[Ame87a]

[Ame87b]

[Bac86]

[BF87a]

[BF87b]

[BFFO87]

[BFHPg7]

BIBLIOGRAPHY

Mauricio Arango, Hussein Badr, and David Gelernter. Staged circuit switch-
ing. IEEE Transactions on Computers, C-34:174-180, February 1985.

Steven Anderson and Marina C. Chen. Parallel branch-and-bound algorithms
on the hypercube. In Michael T. Heath, editor, Hypercube Multiprocessors
1987, pages 309-317, SIAM, Philadelphia, 1987.

Tarek S. Abdel-Rahman and Trevor N. Mudge. Parallel best first branch
and bound algorithms on hypercube multiprocessors. In Geoffrey C. Fox,
editor, Proceedings Third Conference on Hypercube Concurrent Computers
and Applications, ACM, 1988.

Ametek Series 2010. Sales Brochure, Ametek Computer Research Division,
606 E.Huntington Drive, Monrovia, CA 91016, 1987.

Ametek Series 2010. News Release, Ametek Computer Research Division,
606 E. Huntington Drive, Monrovia, CA 91016, 1987.

Maurice J. Bach. The Design of the Unix Operating System, pages 200-211.
Prentice-Hall, Englewood Cliffs, NJ, 1986.

C. Baillie and J. Flower. CrOS III and Cubix on the NCUBE. Caltech Con-
current Computation Project Technical Report C3P-432, California Institute
of Technology, May 1987.

Clive Baillie and Jon Flower. CrOS III on Ncube — the Limits. Caltech Con-
current Computation Project Technical Report C3P-492, California Institute
of Technology, 1987.

Clive Baillie, Ed Felton, Jon Flower, and Steve Otto. CrOS IIl+ on Ncube —
CrOS III Plus a Library of Super-fast Functions. Caltech Concurrent Com-
putation Project Technical Report C3P-434, California Institute of Technol-
ogy, 1987.

Donna Bergmark, Joan M. Francioni, Brenda K. Helminen, and David A.
Poplawski. On the performance of the FPS T-series hypercube. In
Michael T. Heath, editor, Hypercube Multiprocessors 1987, SIAM, Philadel-
phia, 1987.

158

[BI8S]

[Bra86]

[BS86]

[CMP87a]

[CMP*87b]

[CMP*88]

[CT87]

[Cub]

[Dal86a]

[Dal86b]

[DP78]

[DS86]

[DS87]

159

Sandeep N. Bhatt and Ilse C. F. Ipsen. How to Embed Trees in Hypercubes.
Research Report YALEU/DCS/RR-443, Department of Computer Science,
Yale University, December 1985.

J. E. Brandenburg. Description and analysis of concurrent silmbolic pro-
grams with dynamic load balancing. In Michael T. Heath, editor, Hypercube
Multiprocessors 1986, SIAM, Philadelphia, 1986.

Joseph E. Brandenburg and David S. Scott. Embeddings of Communica-
tion Trees and Grids into Hypercubes. Technical Report 1, Intel Scientific
Computers, 15201 N.-W. Greenbrier Parkway, Beaverton, OR 97006, 1986.

E. Chow, H. Madan, and J. Peterson. Hyperswitch Network for the Hyper-
cube Concurrent Computer. Concurrent Processor Systems Group, Technical
Report, NASA Jet Propulsion Laboratory, 1987.

E. Chow, H. Madan, J. Peterson, D. Grunwald, and D. Reed. Hyperswitch
Network for the Hypercube Computer. Caltech Concurrent Computation
Project C3P-484, California Institute of Technology, 1987.

E. Chow, H. Madan, J. Peterson, D. Grunwald, and D. Reed. Hyperswitch
network for the hypercube computer. In 15th Annual International Sympo-
sium on Computer Architecture, pages 90-99, May 1988.

Tony F. Chan and Ray S. Tuminaro. Implementation of multigrid algorithms
on hypercubes. In Michael T. Heath, editor, Hypercube Multiprocessors
1987, pages 730-737, SIAM, Philadelphia, 1987.

Cubelib-Software Library. Intel Scientific Computers, 15201 N.W. Green-
brier Parkway, Beaverton, OR 97006.

William J. Dally. On the Performance of k-ary n-cube Interconnection Net-
works. Department of Computer Science Technical Report 5228:TR:86,
California Institute of Technology, 1986.

William J. Dally. A VLSI Architecture for Concurrent Data Structures. PhD
thesis, Department of Computer Science, California Institute .of Technology,
1986.

A. Despain and D. Patterson. X-tree: a tree structured multiprocessor com-
puter architecture. In Proceedings of the Sth Annual Symposium on Computer
Architecture, pages 144-151, April 1978.

William J. Dally and Charles L. Seitz. The Torus Routing Chip. Distributed
Computing, 1:187-196, 1986.

William J. Dally and Charles L. Seitz. Deadlock-free message routing in
multiprocessor interconnection networks. IEEE Transactions on Computers,
C-36:547-553, May 1987.

[FIL*88]

[FK86a]

[FK86b]

[Fly66]

[FMM87]

[FMO*87]

[FO88]

[Fox85]

[Fuj83]

[Gel81]

[GMBS8]

160

Geoffrey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto,
John K. Salmon, and David W. Walker. Solving Problems on Concurrent
Processors Volume I: General Techniques and Regular Problems. Prentice
Hall, Englewood Cliffs, NJ, 1988.

Geoffrey C. Fox and Adam Kolawa. Implementation of the high per-
formance crystalline operating system on the Intel iPSC hypercube. In
Michael T. Heath, editor, Hypercube Multiprocessors 1986, pages 269-271,
SIAM, Society for Industrial and Applied Mathematics, 1400 Architects
Bldg., 117 South 17th Street, Philadelphia, PA 19103, 1986.

Geoffrey C. Fox and Steve W. Kolawa. Concurrent computation and the
theory of complex systems. In Michael T. Heath, editor, Hypercube Multi-
processors 1986, pages 244-268, SIAM, Society for Industrial and Applied
Mathematics, 1400 Architects Bldg., 117 South 17th Street, Philadelphia,
PA 19103, 1986.

Michael J. Flynn. Some computer organizations and their effectiveness.
IEEE Transactions on Computers, C-21, September 1966.

Michael J. Flynn, Chad L. Mitchell, and Johannes M. Mulder. And now a
case for more complex instruction sets. Computer, 71-83, September 1987.

E. Felten, R. Morison, S. Otto, K. Barish, R. Fatland, and F. Ho. Chess on
a hypercube. In Michael T. Heath, editor, Hypercube Multiprocessors 1987,
pages 327-332, SIAM, Philadelphia, 1987.

Edward W. Felten and Steve W. Otto. Chess on a hypercube. In Geoffrey C.
Fox, editor, Proceedings of the Third Conference on Hypercube Concurrent
Computers and Applications, ACM, 1988.

Geoffrey Fox. The Performance of the CalTech Hypercube in Scientific Cal-
culations, a Preliminary Analysis. Technical Report CALT-68-1298, Hm161,
California Institute of Technology, 1985.

R. M. Fujimoto. VLSI Communication Components for Multicomputer Net-
works. PhD thesis, Computer Sciences Division, University of California,
Berkeley, 1983.

David Gelernter. A dag-based algorithm for prevention of store-and-forward
deadlock in packet networks. IEEE Transactions on Computers, C-30:709-
715, October 1981.

John L. Gustafson, Gary R. Montry, and Robert E. Benner. Development of
parallel methods for a 1024-processor hypercube. SIAM Journal on Scientific
and Statistical Computing (to appear), July 1988.

[GR88]

[Gun81]

[Har69]

[HC85]

[Hea87]

[Hil85]

[HJ86]

[HMS*86]

[HS86]

{Hyp]

[IC 87]

[iPS85]

[Joe79]

[KJ87]

161

Dirk Grunwald and Daniel Reed. Multiprocessor computer networks: mea-
surements and prognostications. In Geoffrey C. Fox, editor, Proceedings of
the Third Conference on Hypercube Concurrent Computers and Applications,
ACM, 1988.

K. D. Gunther. Prevention of deadlocks in packet-switched data transport
systems. IEEE Transactions on Communications, COM-29:512-524, April
1981. -

Frank Harary. Graph Theory. Addison-Wesley, Reading, 1969.

M. Horowitz and P. Chow. The MIPS-X microprocessor. In Proceedings
of Wescon, Stanford University, 1985.

Michael T. Heath. Hypercube Multiprocessors 1987. SIAM, Philadelphia,
1987.

W. Daniel Hillis. The Connection Machine. The MIT Press, Cambridge,
Massachusetts, 1985.

Ching-Tien Ho and Lennart Johnsson. Distributed routing algorithms for
broadcasting and personalized communication in hypercubes. In Proceed-
ings of the 1986 International Conference on Parallel Processing, pages 640-
648, IEEE, 1986.

John P. Hayes, Trevor N. Mudge, Quentin F. Stout, Steve Colley, and John
Palmer. A microprocessor-based hypercube supercomputer. /EEE MICRO,
6-17, October 1986.

W. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Communi-
cations of the ACM, 1170-1183, December 1986.

Hypernet system 14/n data sheet. Ametek Computer Research Division, 606
E. Huntington Drive, Monrovia, CA 91016.

IC Master Volume II. Hearst Business Communications, Inc., 645 Stewart
Avenue, Garden City, NY 11530, 1987.

iPSC User’s Guide. Intel Scientific Computers, Santa Clara, California,
order number 175455-001 edition, 1985.

A. E. Joel. Circuit switching: unique architecture and applications. I[EEE
Computer, 10-22, June 1979.

A. E. Kayaalp and R. Jain. Parallel implementation of an algorithm for
three-dimensional reconstruction of integrated circuit pattern topography us-
ing the scanning electron microscope stereo technique on the NCUBE. In
Michael T. Heath, editor, Hypercube Multiprocessors 1987, pages 438-444,
SIAM, Philadelphia, 1987.

[KK79]

[Lan82]

[LYL87]

[MAS7]

[MBAS7]

[mbo87]

[MC685]

[MGN79]

[MHWS87]

[Mot83a]

[Mot83b]

[MP85]

[MS80]

162

P. Kermani and L. Kleinrock. Virtual cut-through: a new computer commu-
nication switching technique. In Computer Networks, Volume 3, pages 267—
286, North-Holland, Amsterdam, 1979.

C. R. Lang. The Extension of Object-Oriented Languages to a Homogeneous
Concurrent Architecture. Department of Computer Science, Technical Re-
port, 5014:TR:82, California Institute of Technology, 1982.

Roland L. Lee, Pen-Chung Yew, and Duncan H. Lawrie. Data prefecthing
in shared memory multiprocessors. In Proceedings of the 1987 International
Conference on Parallel Processing, pages 28-31, 1987.

Trevor N. Mudge and Tarek S. Abdel-Rahman. Vision algorithms for hyper-
cube machines. Journal of Parallel and Distributed Computing, 4(2):79-94,
1987.

Trevor N. Mudge, Gregory D. Buzzard, and Tarek S. Abdel-Rahman. A
high performance operating system for the ncube. In Michael T. Heath,
editor, Hypercube Multiprocessors 1987, pages 90-99, SIAM, Philadelphia,
1987.

Anant Agarwal et. al. On-chip instruction caches for high performance pro-
cessors. In Proceedings of Advanced Research in VLSI, Stanford University,
March 1987.

MC68020 32-Bit Micrporocessor User's Manual. Motorola Incorporated,
second edition edition, 1985.

G. M. Masson, G. C. Gingher, and S. Nakamura. A sampler of circuit
switched networks. IEEE Computer, 32-48, June 1979.

Trevor N. Mudge, John P. Hayes, and Donald C. Winsor. Multiple bus
architectures. Computer, 4248, June 1987.

Motorola High-Speed CMOS Integrated Circuits. Motorola Incorporated,
1983.

Motorola Schottky TTL Data. Motorola Incorporated, 1983.

Mohammad Malkawi and Janak Patel. Compiler directed memory man-
agement policy for numerical programs. In Proceedings of the Tenth ACM
Symposium on Operating System Principles, pages 97-106, December 1985.

P. M. Merlin and P. J. Schweitzer. Deadlock avoidance in store-and-forward
networks-I: store-and-forward deadlock. IEEE Transactions on Communi-
cations, COM-28:345-354, March 1980.

163

[MWP#*87] William R. Martin, Tzu-Chiang Wan, Doug Poland, Trevor N. Mudge, and

[NCU85]

[Nug88]

[OMB87]

[PFL75]

[PLG87]

[PR87]

[PTLP85]

[Qui87]

[RF87]

[RG87]

[SB77]

[SBK77]

Tarek S. Abdel-Rahman. Monte carlo photon transport on the NCUBE. In
Michael T. Heath, editor, Hypercube Multiprocessors 1987, pages 454-463,
SIAM, Philadelphia, 1987.

NCUBE Handbook. NCUBE Corporation, 1815 N.W. 169th Place, Suite
2030, Beaverton, OR 97006, 1985.

Steve Nugent. The iPSC/2 direct-connect communications technology. In
Geoffrey C. Fox, editor, Proceedings of the Third Conference on Hypercube
Concurrent Computers and Applications, ACM, 1988.

O. A. Olukotun and T. N. Mudge. A preliminary investigation into parallel
routing on a hypercube computer. In Proceedings of the Design Automation
Conference, pages 814-820, June 1987.

R. C. Pearce, J. A. Field, and W. D. Little. Asynchronous arbiter module.
IEEE Transactions on Computers, 931-932, September 1975.

Chrisila C. Pettey, Michael R. Leuze, and John J. Grefenstette. Genetic
algorithms on a hypercube multiprocessor. In Michael T. Heath, editor, Hy-
percube Multiprocessors 1987, pages 333-341, SIAM, Philadelphia, 1987.

David A. Poplawski and David O. Rich. Code Paging on Hypercubes. Com-
puter Science Technical Report CS-TR 87-1, Michigan Technological Uni-
versity, January 1987.

J. Peterson, J. Tuazon, M Liberman, and D. Pniel. The Mark III hypercube-
ensemble concurrent computer. In Proceedings of the International Confer-
ence on Parallel Processing, pages 71-73, 1985.

Michael J. Quinn. Implementing best-first branch-and-bound algorithms on
hypercube multicomputers. In Michael T. Heath, editor, Hypercube Multi-
processors 1987, pages 318-326, SIAM, Philadelphia, 1987.

Daniel A. Reed and Richard M. Fujimoto. Multicoinputer Networks:
Message-Based Parallel Processing, pages 138-144. The MIT Press, 1987.

Daniel A. Reed and Dirk C. Grunwald. The performance of multicomputer
interconnection networks. Computer, 6373, June 1987.

Herbert Sullivan and Theodore R. Bashkow. A large scale, homogeneous,
fully distributed parallel machine, I. In Proceedings of the 4th Annual Sym-
posium on Computer Architecture, pages 105-117, 1977.

Herbert Sullivan, Theodore R. Bashkow, and David Klappholz. A large
scale, homogeneous, fully distributed parallel machine, I In Proceedings
of the 4th Annual Symposium on Computer Architecture, pages 118-124,
1977.

[SC81]

[Sei85]

[SPCC]

[Spe81]

[SW87]

[Swa86]

[SWar]

[SZ87]

[Tou80]

[TPPLS85]

[TU79]

[Val82]

[Wag87]

164

Charles H. Sauer and K. Mani Chandy. Computer Systems Performance
Modeling, pages 194-212. Prentice-Hall, Englewood Cliffs, New Jersey,
1981.

Charles L. Seitz. The Cosmic Cube. Communications of the ACM, 28:22—
33, January 1985. :

Jon S. Squire and Sandra M. Palais. Programming and design considerations
of a highly parallel computer. In AFIPS Conference Proceedings, pages 395—
400, 1963, SICC.

Alfred Z. Spector. Multiprocessing Architectures for Local Computer Net-
works. PhD thesis, Stanford University, August 1981..

Quentin F. Stout and Bruce Wagar. Passing messages in link-bound hy-
percubes. In Michael T. Heath, editor, Hypercube Multiprocessors 1987,
pages 251-257, SIAM, Philadelphia, 1987.

P. N. Swarztrauber. Multiprocessor FFTs. preprint, National Center for
Atmospheric Research, Boulder, Colorado, November 1986.

Quentin F. Stout and Bruce A. Wagar. Intensive hypercube communication
I: prearranged communication in link-bound machines. Journal of Parallel
and Distributed Computing, to appear.

Steven R. Seidel and Lynn R. Ziegler. Sorting on hypercubes. In Michael T.
Heath, editor, Hypercube Multiprocessors 1987, pages 285-291, SIAM,
Philadelphia, 1987.

S. Toueg. Deadlock-and livelock-free packet switching networks. In Pro-
ceedings of the 12th ACM Symposium on the Theory of Computing, pages 94—
99, 1980.

J. Tuazon, J. Peterson, M Pniel, and D. Liberman. Caltech/JPL Mark II
hypercube concurrent processor. In Proceedings of the International Con-
ference on Parallel Processing, pages 666—671, 1985.

S. Toueg and J. D. Ullman. Deadlock-free packet switching networks.
In Proceedings of the 11th ACM Symposium on the Theory of Computing,
pages 89-98, 1979.

L. G. Valiant. A scheme for fast parallel communication. SIAM Journal of
Computing, 350-361, May 1982.

Bruce Wagar. Hyperquicksort: a fast sorting algorithm for hypercubes. In
Michael T. Heath, editor, Hypercube Multiprocessors 1987, pages 292-299,
SIAM, Philadelphia, 1987.

[Wal87]

[Wal88]
[WEB85]

[WLY85]

165

Stephen R. Walton. Performance of the one-dimensional Fast Fourier
Transform on the hypercube. In Michael T. Heath, editor, Hypercube Mul-
tiprocessors 1987, pages 530-535, SIAM, Philadelphia, 1987.

M. Mitchell Waldorp. Hypercube breaks a programming barrier. Science,
240:286, April 15 1988.

Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design.
Addison-Wesley, 1985.

Benjamin W. Wah, Guo-jie Li, and Chee Fen Yu. Multiprocessing of com-
binatorial search problems. IEEE Computer, 93108, June 1985.

