A Hardware/Software Approach for Alleviating Scalability
Bottlenecks in Transactional Memory Applications

by

Geoffrey Wyman Blake

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2011

Doctoral Committee:

Professor Trevor N. Mudge, Chair
Professor Dennis M. Sylvester
Associate Professor Scott Mahlke
Assistant Professor Thomas F. Wenisch

© Geoffrey Wyman Blake 2011

All Rights Reserved

To my wife Jennifer

il

ACKNOWLEDGEMENTS

There are almost too many people to thank that have helped me survive my trials
through the PhD program here at the University of Michigan.

I would first like to thank my advisor Professor Trevor Mudge who took a chance tak-
ing me on as a student in the Fall of 2005 and providing funding when I was still unsure
if I could survive in the program. His hands off advising style was a perfect fit that al-
lowed me to pursue what I found interesting, but still hands on enough to help me ask
the right questions about what I was doing to continue making progress toward eventually
graduating.

Thanks to Taeho Kgil, a senior graduate student I used as my surrogate advisor when
Trevor was on sabbatical my first year. His patience in answering my endless stream of
questions about all things regarding research and the state-of-the-art in computer architec-
ture was invaluable in pointing me towards finding my niche.

I would like to thank Ronald Dreslinski for spending numerous hours editing papers
with me.

To all my lab-mates over the years: Jeff Ringenberg, Mark Woh, Yuan Lin, Gabe Black,
Ali Said, Lisa Hsu, Kevin Lim, Korey Sewell, Tony Gutierrez and Joe Pusdesris. Thanks
for the many conversations, whether it be research related or just anything at all, to pass the
time when working seemed too dull that day.

Finally, I could not have succeeded without the support of my family and friends.
Thanks to my parents for supporting my decision to pursue this degree. Thanks to Steve
Plaza for first planting the idea I should get a PhD instead of just taking the easy way and
settling for a Masters. To Chris McLean for moral support on numerous life issues and the
many others who I've befriended along the way. Lastly, to my wife Jennifer who I could
not have completed this degree without. She helped me balance life and research when
I was too focused on getting just one more experiment done after hours and hours of not
getting anywhere. Jennifer also kept me motivated to complete all the work required to

finish, for that I cannot thank her enough.

il

TABLE OF CONTENTS

DEDICATION e il

ACKNOWLEDGEMENTS o .. iii

LIST OF FIGURES o . vii

LIST OF TABLES e Xi

LIST OF EXAMPLES Xiii

ABSTRACT e Xiv
CHAPTER

1. Introduction L 1

1.1 Transactional Programming 3

1.2 Transactional Memory 4

1.3 Scalability Bottlenecks 6

1.4 Contributions Lo 8

1.4.1 Proactive Transactional Memory Scheduling 8

1.4.2 Identifying Proble Critical Sections for Boosting 9

1.4.3 Multi-Threaded Fetch Throttling 10

1.5 Organization e 10

2. Background and Related Work 11

2.1 Chip Multi-processor Architecture 11

2.1.1 Symmetric Chip-Multiprocessor 11

2.1.2 Asymmetric Chip-Multiprocessor 12

2.1.3 Per Core Multi-threading 14

2.2 Chip Multi-processor Challenges 15

2.2.1 Thread Synchronization 15

2.2.2 Thread Schedulingin AMPs 15

2.2.3 Resource Partitioning in Multi-Threaded Cores 16

v

2.3 Hardware Transactional Memory 16

2.4 Transactional Memory Benchmarks 21
2.5 Contention Management for Transactional Memories 22
2.5.1 Programmer Managed 22

2.5.2 Contention Managers 26

2.6 Asymmetric Multi-Processor Thread Scheduling 31
2.7 Multi-Thread Fetch Policy 33
2.8 Summary . ..o ... e e 34
3. Proactive Transaction Scheduling 35
3.1 Motivation 35
3.1.1 Programmer Managed Contention Management 36

3.1.2 Reactive Contention Management and Theory 37

3.1.3 ConflictLocality 37

3.1.4 Proactive Contention Management 39

3.2 Implementation, 40
3.2.1 Hardware Additions 41

3.2.2 Proactive Scheduling Runtime 42

3.2.3 Proactive Scheduling Runtime Optimizations 49

3.2.4 Hybrid Proactive Scheduling 51

33 BEvaluation 51
3.3.1 Simulation Environment and Benchmarks 51

3.3.2 Performance Analysis 53

3.3.3 Execution Time Breakdown 56

3.3.4 Sensitivity Studieso oL 59

3.3.5 Measuring Prediction Accuracy 65

34 Conclusions 66
4. Bloom Filter Guided Transaction Scheduling 68
4.1 Motivation 68
4.1.1 Transaction Behavior and defining the Similarity Metric 69

4.1.2 Bloom Filter Operations to Extract Similarity 71

4.2 Implementation, 72
4.2.1 Scheduling Hardware Accelerator 73

4.2.2 Software Implementation 75

4.2.3 BFGTS-HW/Backoff Algorithm 80

43 Evaluation 83
4.3.1 Simulation Environment and Benchmarks 83

4.3.2 Performance Analysis 85

4.3.3 Execution Time Breakdown 89

4.3.4 BFGTS Sensitivity Tests 92

4.3.5 BFGTS Predictor Compared to PTS Predictor 99

4.3.6 Potential Corner Cases for BEGTS 100

4.4 Conclusions e 101

5. Voltage Boosting to Reduce Scalability Bottlenecks in Transactional

Applications 109
5.1 Asymmetric Multi-Processors 109

5.2 Implementation 111

5.2.1 Voltage Boosting Architecture 111

5.2.2 Identifying Problem Ceritical Sections 113

5.3 Evaluation 117

5.3.1 Simulation Environment and Benchmarks 117

5.3.2 Performance Analysis 119

5.3.3 Sensitivity Studieso 123

54 Conclusions 125

6. Multi-Threaded Fetch Throttling in Transactional Applications 128
6.1 Motivation 128

6.2 Implementation 129

6.2.1 MT Architecture Model 129

6.2.2 Identifying When to Throttle 131

6.3 Evaluation 132

6.3.1 Simulation Environment and Benchmarks 132

6.3.2 Performance and Sensitivity Analysis 133

6.4 Conclusions 140

7. Conclusions 142
7.1 Future Work 144
APPENDIX e 146
BIBLIOGRAPHY 162

Vi

Figure

1.1
2.1
22
2.3
24
2.5
3.1

32
33

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

LIST OF FIGURES

Illustration of the serializing effects of scalability bottlenecks.. 7
An SMP system with multiple identical cores. 12
An AMP system with many small cores and one large high performance

core with the same area as the SMP system. 13
Reactive contention manager operation. 27
Proactive contention manager operation. 28
Data forwarding/predicting contention manager operation. 30
Proactive Transaction Scheduling contention management example oper-

AtON. e 40
Hardware/Software stack of our proposed system 41
Additional registers and interconnect extensions to support proactive schedul-
ing. New additions are bolded. 42
Data structure representation for an example 8 CPU system. 43

Probability of an intersection returning elements in common for a 8192bit
Bloom filter being intersected with another 8192bit Bloom filter that has
50 addresses hashed into it with number of hashes (k) setto 1,2, 4, and 8. 49
Overall best attainable performance of PTS and PTS-Backoff Hybrid

compared to Backoff for a 16 processor system. 54
Percent difference of PTS and PTS-Backoff Hybrid over Backoff for a 16
ProCessOr SYStEM. i e e e e e e e e e 55
Breakdown of where time is spent in the PTS and PTS-Backoff Hybrid
predictors normalized to single core performance. 57
Distribution of where time is spent in the PTS and PTS-Backoff Hybrid
predictors, each benchmark is normalized to its own runtime. 58
Speedup of PTS and PTS-Backoff Hybrid using the Small Transaction
Optimization compared to No Optimization for a 16 processor system. . . 61

Speedup of PTS and PTS-Backoff Hybrid using the Split Transaction
ID optimization over Small Transaction Optimization for the Delaunay,

Vacation and Yada benchmarks. 62
Sensitivity to Bloom filter size for PTS for a 16 processor system for best
performing configuration. 63
Sensitivity to Bloom filter size for PTS-Backoff Hybrid for a 16 processor
system for best performing optimizations. 64

vii

3.14
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

5.1

5.2

Sensitivity to PTS scheduling latency for a 16 processor system. 65
Example transaction executions that show similar execution behaviors

OVEr tiME. o ittt e et e 69
Example transaction executions that show dissimilar execution behaviors
OVEI IME. . . .« v v e v et e e e e e e e e e e e e 69
Hardware required to accelerate scheduling on TX_BEGIN for a 4 core
SYSIBIML. L e e e e e 74
Data-structures for the confidence tables, transaction statistics table and
Bloom filter tables kept in virtual memory. 77

Speedup of Backoff, PTS, ATS, BEGTS-SW, BFGTS-HW, BFGTS-SW/Backoff
Hybrid, BEFEGTS-HW/Backoff Hybrid and BFGTS-NoOverhead on a 16
processor systemover L core L. 85
Percent difference of ATS, BEFGTS-SW, BEFGTS-HW, BEGTS-SW/Backoff
Hybrid, BEGTS-HW/Backoff Hybrid and BFGTS-NoOverhead over PTS

on a 16 processor systemover lcore 87
Breakdown of where time is spent for PTS, ATS, BFGTS-SW, BEGTS-
HW, BFGTS-SW/Backoff Hybrid, and BEFEGTS-HW/Backoff Hybrid . . . 102

Distribution of where time is spent in the PTS, ATS, BFGTS-SW, BEGTS-
HW, BFGTS-SW/Backoff Hybrid, and BEGTS-HW/Backoff predictors,

each benchmark is normalized to its own runtime. 103
Sensitivity of BFGTS-SW to Bloom filter sizes ranging from 512bit-
I92bit. 104
Sensitivity of BFEGTS-HW to Bloom filter sizes ranging from 512bit-
I92bit. 104
Sensitivity of BFGTS-SW/Backoff to Bloom filter sizes ranging from
S12bit-8192bit. L 105
Sensitivity of BFEGTS-HW/Backoftf to Bloom filter sizes ranging from
S12bit-8192bit. L 105

Sensitivity of BEGTS-SW to changing the frequency of updating small
transaction similarity data every 0, 10, 20, 40, 80, 160 small transaction
EXECULIONS. .« . v v v v v e v e e e e e e e e e e e e e 106
Sensitivity of BEGTS-HW to changing the frequency of updating small
transaction similarity data every 0, 10, 20, 40, 80, and 160 small transac-

tION €XECULIONS. v v it e e e e e e 106
Sensitivity of BEGTS-SW, BFGTS-HW, BEGTS-SW/Backoff, and BFGTS-
HW/Backoff to the time decay factor parameter set to 2, 5, 7, 10, and 50. . 107
Sensitivity of BEGTS-SW/Backoff and BEGTS-HW/Backoff Hybrids to

the switching threshold from backoff to BFGTS (solid line) and alpha
value (dotted line). 108
Speedup’s attainable on an area equivalent of 32 simple in-order cores
(called Core-Units) SMP and AMP systems core system with 99.9%,
97.5%, 90% and 50% parallelizable code(figures reproduced from equa-

tions in paper by Hill and Marty [68] 111
Boosting one core (shown in red) while the remaining cores operate at
less than nominal voltage (light blue) to keep within TDP. 112

viii

5.3

54

5.5

5.6

5.7

5.8

5.9

5.10

6.1
6.2

6.3

6.4

6.5

Al

A2

A3

A4

AS

A.6

Cluster Boosting architecture showing two clusters. One cluster runs at
nominal voltage (blue), while the other allows one boosting core (red)
with the others shut off (gray), caches remain active to serve coherence
TEQUESES. © v v v v e e e e e e e e e e e e e e e e e e 113
NTC Boosting architecture showing two clusters of cores. Unboosted
cores (blue) share a large cache operating at high frequency (red). Boosted
cores (red) get access to the entire shared cache but the remaining cores

in a cluster must be shut off (gray). 114
Speedup for a non-overcommitted 16 processor system for boosting one
core architecture. 120

Percent difference in speedup for a non-overcommitted 16 processor sys-
tem for boosting one core architecture compared to a non-boosted archi-

TBCLUTE. ot e e e e 121
Speedup for a non-overcommitted 16 processor system for cluster and
NTC boosting architectures architecture. 122

Percent difference in speedup for a non-overcommitted 16 processor sys-
tem for cluster and NTC boosting architectures compared to a non-boosted

architecture. 123
Boost latency sensitivity for a non-overcommitted 16 processor system
for the three boosting architectures. 125
Sensitivity of the boosting one core architecture for an overcommitted 16
Processor SYyStem. 126
The modeled MT Architecturein M5 130

Performance and sensitivity to number of threads, .1 cache size and
bandwidth allocation for the Delaunay and Genome STAMP Benchmarks. 134
Performance and sensitivity to number of threads, L1 cache size and
bandwidth allocation for the Kmeans and Vacation STAMP Benchmarks. 136
Performance and sensitivity to number of threads, L1 cache size and
bandwidth allocation for the Intruder and Ssca2 STAMP Benchmarks. . . 138
Performance and sensitivity to number of threads, L1 cache size and
bandwidth allocation for the Labyrinth and Yada STAMP Benchmarks. . . 139
Overall best speedup for PTS and PTS-Backoff for a 16 processor system
using 16 threads. L L o 150
Time breakdown of where PTS and PTS-Backoff spend time executing
each benchmark normalized to the runtime of 1 core for each benchmark

using a 16 processor system using 16 threads. 151
Time distribution of PTS and PTS-Backoff executing each benchmark
using a 16 processor system using 16 threads. 152
Sensitivity of PTS and PTS-Backoff to the Small Transaction Optimiza-
tion for a 16 processor system using 16 threads. 153
Sensitivity of PTS and PTS-Backoff to the Split Transaction Optimization
for a 16 processor system using 16 threads. 153
Sensitivity of PTS to the Bloom filter size for a 16 processor system using
I6threads. L 154

X

A7

A8

A9

A.10

A1l
A.12
A.13

A.14

Sensitivity of PTS-Backoff to the Bloom filter size for a 16 processor
systemusing 16 threads., 154
Best Overall performance attained for ATS-Pthread, ATS-Spinlock, BFGTS-
SW, BFGTS-HW, BFGTS-SW/Backoff and BEGTS-HW/Backoff com-
pared to 1 core for a 16 processor system using 16 threads. 156
Time breakdown of where ATS-Pthread, ATS-Spinlock, BEGTS-SW, BFGTS-
HW, BEGTS-SW/Backoff and BFGTS-HW/Backoff spend time execut-

ing for a 16 processor system using 16 threads normalized to a 1 core
system for each benchmark. 158
Time distribution of ATS-Pthread, ATS-Spinlock, BEGTS-SW, BFGTS-

HW, BFGTS-SW/Backoff and BEFGTS-HW/Backoff for a 16 processor
systemusing 16threads oL 159
Bloom filter sensitivity of BEGTS-SW for 16 processor using 16 threads. 160
Bloom filter sensitivity of BFGTS-HW for 16 processor using 16 threads. 160
Bloom filter sensitivity of BFGTS-SW/Backoff for 16 processor using 16

threads. 161
Bloom filter sensitivity of BFGTS-HW/Backoff for 16 processor using
I6threads. L 161

Table

1.1

1.2

2.1
3.1
3.2
33
34
3.5
3.6
3.7
4.1
4.2
4.3
4.4
4.5
4.6

4.7

LIST OF TABLES

Speedup observed for STAMP Benchmarks with simple Randomized Back-

off contention manager for a 16 processor system using a LogTM like
Transactional Memory system. 7
Contention observed for STAMP Benchmarks with simple Randomized
Backoff contention manager for a 16 processor system using a LogTM

like Transactional Memory., 8
Taxonomy of select Hardware Transactional Memory implementations. . 19
Conflict Group Set for the transactions in the STAMP Benchmarks. 39
STAMP Benchmark descriptions, version used, and input parameters. . . 52
MS5 Simulation Parameters. 0oL 53
Contention experienced for each contention management technique: Back-

off, PTS, and PTS-Backoff Hybrid for a 16 processor system. 54
Amount of scheduling overhead experienced in cycles per transaction
commitfor PTS. oo 59
Amount of scheduling overhead experienced in cycles per transaction
commit for PTS-Backoff Hybrid. 60
The PTS technique’s prediction accuracy, as measured from the point-of-

view of the algorithm. oL, 66

Matrix representation of the conflict graph observed during the execution
of each STAMP benchmark and measured average similarity for each

unique transaction. e e e e 71
STAMP Benchmark input parameters. 83
MS Simulation Parameters.o Lo 84

Contention experienced for each contention management technique: Back-
off, PTS, ATS, BFGTS-SW, BFGTS-HW, BFGTS-SW/Backoff Hybrid

and BFGTS-HW/Backoff Hybrid for a 16 processor system. 88
Amount of scheduling overhead experienced in cycles per transaction
commit for BFGTS-SW, and BFGTS-HW. 91

Amount of scheduling overhead experienced in cycles per transaction
commit for BFGTS-SW/Backoff Hybrid, and BFGTS-HW/Backoff Hybrid. 92
Average percent improvement over PTS for BFGTS-SW and BFGTS-
HW for Small Transaction Update intervals of 0, 10, 20, 40, 80, and 160
fora 16 processorsystem. 95

X1

4.8
5.1
5.2
5.3
54
6.1

6.2
Al

A2

A3

A4

A5

A6

The BFGTS technique’s prediction accuracy, as measured from the point-

of-view of the algorithm. 99
STAMP Benchmark input parameters. 119
M5 Simulation Parameters. L oo 119
Percentage of execution time that a core was in a boosted state for a non-

overcommitted system with O cycle boosting latency 124
Percentage of execution time that a core was in a boosted state for a over-

committed system using a O cycle boost latency 126
STAMP Benchmark input parameters. 132
MS Simulation Parameters. oL Lo L. 133

Speedup observed for STAMP Benchmarks with simple Randomized Back-

off contention manager for a 2-16 processor system using a LogTM type
Transactional Memory with threads equal to processors. 148
Contention observed for STAMP Benchmarks with simple Randomized
Backoff contention manager for a 2-16 processor system using a LogTM

type Transactional Memory with threads equal to processors. 148
Speedup and Contention observed for a Reactive Thread- Yield contention
manager for a 16 processor LogTM type system using 64 threads. 149
Contention for PTS and PTS-Backoff for a 16 processor system with 16
threads. 150
Contention for ATS-Pthread and ATS-Spinlock for a 16 processor LogTM
system with 16 threads. 155

Contention for BEGTS-SW, BEGTS-HW, BEGTS-SW/Backoff and BEFGTS-
HW/Backoff for a 16 processor LogTM system with 16 threads. 156

Xii

Example

1.1

2.1

22
2.3
3.1
3.2
33
4.1

4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
5.1

5.2

5.3

LIST OF EXAMPLES

Example pseudo-code illustrating the semantic usage of Transactional
Programming compared to fine grained synchronization using locks for
updating a graph data-structure represented as a 2-D matrix.
Using Selective Marking to optimize out contention for sorted linked list
INSEIt. o e
Using open nesting to optimize out contention for sorted linked list insert.
Using early release to optimize out contention for a sorted linked list insert.
Schedule Transaction Pseudo Code for the PTS algorithm
Conflict Handling Pseudo Code for the PTS algorithm
Commit Transaction Pseudo Code for the PTS algorithm
Lookup algorithm implemented by hardware accelerator for BFGTS al-
gorithm
Predictor Hardware setup Pseudo Code for BFGTS algorithm
Suspend Transaction Handling Pseudo Code for BFGTS algorithm
Conflict Handling Pseudo Code for BFGTS algorithm
Pseudo code for routines used during Transaction Commit for the BEGTS
algorithm. L L
Predictor Hardware setup Pseudo Code for Hybrid BFGTS predictor . . .
Suspend Transaction Handling Pseudo Code for Hybrid BFGTS predictor
Conflict Handling Pseudo Code for Hybrid BFGTS predictor
Pseudo code for commit routine used during Transaction Commit for Hy-
brid BFGTS predictor.
TM Boosting Pseudo-code used to evaluate when to boost a core for the
“Boost One” architecture
TM Boosting Pseudo-code used to evaluate when to boost a core for
the “Cluster Boost” and “NTC” architectures when a core is beginning
atransactionorstalling. L L.
TM Boosting Pseudo-code used to evaluate when to boost a core for the
“Cluster Boost” and “NTC” when a core is waking up from being shut
down. e

Xiii

74
77
77
78

79
80
81

ABSTRACT

A Hardware/Software Approach for Alleviating Scalability Bottlenecks in Transactional
Memory Applications

by
Geoffrey Wyman Blake

Chair: Trevor N. Mudge

Scaling processor performance with future technology nodes is essential to enable fu-
ture applications for devices ranging from smart-phones to servers. But the traditional
methods of achieving that performance through frequency scaling and single-core archi-
tectural enhancements are no longer viable due to fundamental scaling limits. To continue
scaling performance, parallel computers in the form of Chip Multi-processors (CMPs) are
now prevalent. The evolution from single-threaded processors to CMPs has moved the use
of parallel programming from niche problem domains to general problems.

Producing scalable, efficient parallel programs is challenging. One challenging area
is scalable synchronization to shared data structures. Traditional synchronization meth-
ods synchronize multiple threads accesses to shared data structures by restricting memory
accesses to a defined correct set of interleavings which the programmer must enforce by
hand. It can take many years for even expert programmers to use traditional synchroniza-
tion methods to craft an efficient, scalable and correct scheme to synchronize access to data
structures in a complex program. The use of CMPs in almost all forms of computers has
led researchers to look into methods to make scalable synchronization more tractable, in-
creasing programmer productivity by raising the level of abstraction. One proposal to raise
the level of abstraction is to use “Transactional Programming”, to represent atomic sections
of code. Transactions abstract synchronization to shared data structures as large, coarse-
grained sections of code that execute atomically with respect to one another or not all.
This relieves the programmer of identifying all appropriate memory interleavings. Trans-

actional programming can be supported underneath in many ways, one of which is to use a

Xiv

“Transactional Memory” (TM) system that can efficiently support transactions.

One main problem with TM systems is scalability bottlenecks. Performance scaling
stops or reverses when moving from small to large CMPs when transactional applications
are written to emulate future average programmer practices—namely using large transac-
tions instead of crafting transactions to behave like traditional synchronization methods.
This happens because transactions as represented in the TM system may be dependent on
each other—accessing the same data and therefore must serialize—without the program-
mer being knowledgable about these dependencies due to the abstraction hiding system
details.

This thesis develops a hardware/software approach to alleviate scalability bottlenecks in
large TM enabled CMPs, while maintaining the level of abstraction—Ilarge, coarse-grained
sections of code—presented in transactional programming. I first introduce “Proactive
Transaction Scheduling” (PTS), a technique that dynamically profiles the parallel code
as it executes to determine an order transactions should execute in to maintain forward
progress and increase the parallel utilization by hiding dependencies among transactions.
To further increase scaling I then propose using PTS to automatically determine which
transactions must be accelerated by increasing the frequency of the core the transaction
is executing on for short periods of time. This allows a transaction that is causing other
dependent transactions to wait to complete faster and promote scaling. I then show PTS
can be used to determine how to partition resources in a Multi-threaded processor core to

get better scaling in the overall system over a fair partitioning of resources.

XV

CHAPTER 1

Introduction

In the early 2000s chip manufacturers began to migrate from single-threaded proces-
sors. Chip architects were struggling to improve single-threaded performance without in-
creasing the complexity of the design or the power consumption needed to maintain high
clock frequencies. This was very apparent in Intel’s Pentium 4 [58] processor. It was an
extremely complicated single-threaded design with more than 30 pipeline stages that im-
plemented a vast array of techniques to enhance performance. The Pentium 4 design was
also extremely power hungry. Transistors, however, were still scaling to smaller geometries
allowing for double the amount of transistors approximately every two years. Researchers
began to experiment with Chip Multi-processors (CMPs) as an alternative method to scale
performance. Examples such as the Stanford Hydra [63] and Compaq Piranha [25] were
proposed as a way to make profitable use of the increasing number of transistors available
each process generation. CMPs increase available raw compute performance by placing
multiple processor cores on die. Because CMPs rely on explicit parallelism in the program
code for performance, overall design complexity can be reduced by reusing core designs
as well as reducing power consumption by not increasing frequency. The initial research in
CMPs was followed closely by IBM releasing the first commercial CMP: the POWER4 [1].
Intel and AMD followed closely thereafter with CMPs of their own [3, 2].

CMPs are now prevalent across many domains from mobile chips for smart phones
to servers. AMD and Intel have at the time of this writing, server chips with 8 to 16
processors [11, 12]. ARM partners are releasing chips for mobile devices such as tablets
and smart phones with 2 to 4 processors [10]. Processors for more specialized applications
such as network processing chips have even more cores per die. Chips from Cavium have
up to 32 processors [13], while chips from Tilera have greater than 100 cores [5].

The influx of CMPs has led to a resurgence of research into parallel programming
methodology. As Sutter [104] has written, the free lunch is over for transparent perfor-

mance increases from processor makers due to frequency and architecture enhancements.

New software programming techniques and architectures are needed to leverage the com-
pute performance in CMPs that is still largely untapped as shown in [29] for applications
outside the normal domain for parallel programs. Before CMPs, parallel processing was
mainly used in domains that were easily parallelized such as scientific computing and com-
mercial server applications. Because of this small domain, methodologies for programming
these machines remained low-level and accessible only to a small group of experts. Now
that CMPs are being used in many more computing platforms all the way down to smart-
phones, low-level programming methodologies are insufficient as more programmers will
now be programming CMPs. Making parallel programming tractable to more developers
is of main concern among researchers in academia and industry.

One of the areas of concern is performing scalable, yet easy and safe synchroniza-
tion for accessing shared data. Currently, synchronization in parallel programming is still
very low-level and only tractable to a select group of experts. Programmers are required
to synchronize separate threads accesses to shared data by using primitives such as locks,
semaphores, monitors, and condition variables that restrict access to memory locations in
programmer defined orders. Use of these primitives is difficult as they are opaque data-
types with meaning only to the programmer. Composing the correct synchronization prim-
itives to protect critical sections is difficult, especially if the critical section accesses mul-
tiple pieces of shared data. This can be difficult as specific acquire and release orders
must be maintained to prevent deadlock conditions from occurring. Therefore these prim-
itives must be carefully documented to prevent future synchronization errors. Other prob-
lems with traditional synchronization include priority inversion where a low priority thread
blocks a high priority thread from executing because it is holding a lock. Race conditions
are an additional problem caused by omitting use of the proper locks leading to difficult to
find bugs that occur occasionally. As an alternative to these primitives, researchers have
also explored using lockless data-structures [66] that use low-level ISA provided atomic
instructions. Lockless data-structures can eliminate priority inversion. In many cases lock-
less algorithms are more complicated and even slower than using the above mentioned
synchronization primitives.

Using synchronization primitives is very hard to do effectively and in a scalable man-
ner. Synchronization primitives must be used in a fine grained fashion, i.e. multiple locks
used to protect shared accesses, to have scalable synchronized code. If one lock is used
to synchronize a program, then it will not be able to scale to many processors. Because
CMPs will continue to get bigger as more transistors become available, performance will
become a problem with using traditional synchronization for most programmers. Develop-

ing scalable, fast algorithms using these primitives is very difficult. For example, a paper

by Ellis [53] shows a scalable and fast locking algorithm for inserting and deleting from
an AVL tree. The algorithm itself is complicated using three classes of dynamically cre-
ated locks and requiring very specific orders of acquires and releases to enable a scalable
deadlock free algorithm. If one of the locks is taken in the wrong order, or omitted, dead-
lock or hard-to-track race conditions can occur that are difficult to debug. Because the
current methods of providing synchronization are complicated, low-level and time con-
suming to implement, only particular applications that absolutely require parallel operation
have been profitably multi-threaded using current synchronization primitives. For exam-
ple, it has taken many years of work to transition the locking algorithms in the Linux v2.4
kernel to support scalable fine grained locking for future CMPs in the Linux v2.6 kernel
as described by Hoffman et al. [69]. These applications include: scientific applications,
web-servers, databases and operating systems.

Low-level primitives are great for expert programmers. Experts can precisely control
the behavior of their parallel programs and extract the maximum performance. Conversely,
it is not a viable option for the remainder of the programming community. This has led
researchers in industry and academia to look at raising the level of abstraction to make
synchronization in parallel programs more accessible to programmers other than a few
experts. One promising technique that researchers are actively investigating to raise the

level of abstraction for synchronization is enabling Transactional Programming.

1.1 Transactional Programming

Transactional programming takes ideas from the database community and applies it to
traditional program synchronization. The initial idea for transactional programming was
proposed first by Lomet [81]. Transactional programming provides the following desirable
semantics for synchronization that raise the level of abstraction for programmers: 1) Crit-
ical sections represented by transactions are atomic, they complete in entirety or not at all
2) Transactions are isolated and outside transactions cannot see interim updates, 3) Trans-
actions are placed around code instead of using opaque data types such as locks to guard
data, 4) Provides coarse-grained semantics. Transactional programming theoretically al-
lows the programmer to concentrate more on defining where the critical sections should be
in a coarse grained manner, but not have to worry about scalability, atomicity, and isolation.

Transactional programming can be seen in the same light for parallel programming as
managed languages that use garbage collection for memory management are for sequential
programming [60]. An example of the easier semantics is presented in Example 1.1. Ex-

ample 1.1 assumes that a programmer wants to insert multiple elements into a graph data

structure represented as a 2-D matrix and have the inserts all happen atomically at once
while being scalable. As seen in the example pseudo-code on the left of the example, with
transactional programming all the programmer is required to do is encapsulate the opera-
tion he wants to be atomic and the underlying implementation that provides the transactions
takes care of ensuring atomicity, isolation and scalability. On the other hand, the locking
version of the code on the right in Example 1.1 needs to use multiple locks for fine grained
synchronization. If a single lock was used, no concurrent updates could happen. With fine
grained locking, there is also the very real chance of errors. Example 1.1 illustrates this
by having thread 1 and thread 2 take locks in an incorrect order. By taking the locks on
locations [5,5] and [4,5] in different orders for the two threads, deadlock is possible. A
study by Rossbach et al. [93] tested whether the benefits between transactional program-
ming and traditional synchronization existed for a group of non-expert programmers. The
study showed that transactional programming was less prone to errors than constructing
fine-grained synchronization algorithms. The verdict was inconclusive amongst the tested
programmers if transactional programming was any easier over traditional synchroniza-
tion. Still, this is a promising result, it shows that transactional programming is a useful
abstraction. It shows that raising the level of abstraction does allow novice programmers
easier access to producing correct synchronization in parallel programs while maintaining

acceptable performance.

1.2 Transactional Memory

For transactional programming to become acceptable it has to be both easy to program
and high performance. High performance means that transactional programming should
perform near or better than locks in applications. To support transactional programming,
Transactional Memory (TM) has been proposed to provide high-performance transactions
to the programmer.

Transactional Memory was first proposed by Herihly and Moss [67] as an architectural
extension for writing lockless data structures easier, and not an interface to transactional
programming originally. Research that followed by numerous authors began proposing TM
as a potential method to enable transactional programming. TM systems are used to pro-
vide the properties necessary for fast and efficient transactional programming: 1) Critical
sections are atomic, they complete in entirety or provide the appearance nothing happened
and retry and 2) Critical sections are isolated and outside threads cannot see interim updates
that may cause hard to track bugs, and 3) Enables fine grained synchronization performance

by tracking individual memory accesses. These guarantees provide sufficient support for

Example 1.1 Example pseudo-code illustrating the semantic usage of Transactional Pro-
gramming compared to fine grained synchronization using locks for updating a graph data-
structure represented as a 2-D matrix.

0NN N kW=

W W DN DN DN NN NN DN DD = omm m em em m m pm m
— O 00 IO WU W= OOV INWN PR WND=O\©

//global variables
int graph[100][100];

void+ threadwork ()

{

TM_BEGIN ;

insertIntoGraph (5,5,25);
insertIntoGraph (4,5,50);
insertIntoGraph (99,99 ,1);
TM_END;

}

void+ threadwork?2 ()

{

TM_BEGIN;

insertIntoGraph (4,5,15);
insertlntoGraph (5,5,50);
insertIntoGraph (98,98 ,2);
TM_END;

}
void insertlntoGraph (idx1,
idx2 ,
val)
{
graph[idx1 J[idx2] = val;
}

1 //global variables

2 int graph[100][100];

3 mutex global_locks[100][100];
4

5 void+ threadwork ()

6 {

7

8 lock (global_locks [5][5]);

9 lock (global_locks [4][5]);
10 lock (global_locks[99][99]);
11 insertIntoGraph (5,5,25);

12 insertIntoGraph (4,5,50);

13 insertIntoGraph (99,99 ,1);
14 unlock (global_locks [5][5]);
15 unlock (global_locks [4][5]);
16 unlock (global_locks [99][99]);
17

18 }

19

20 voidx threadwork?2 ()

21 {

22

23 lock (global_locks [4][5]);
24 lock (global_locks [5][5]);
25 lock (global_locks [99][99]);
26 insertIntoGraph (4,5,15);

27 insertIntoGraph (5,5,50);

28 insertIntoGraph (98,98 ,2);
29 unlock (global_locks [4][5]);
30 unlock (global_locks [5][5]);
31 unlock (global_locks [99][99]);
32

33 }

34

35 void insertIntoGraph (idx1,

36 idx2 ,

37 val)

38 {

39 graph[idx1 J[idx2] = val;

40 }

implementing a transactional programming infrastructure. TM prototypes have been by im-
plemented by many researchers in a number of different methods. TM can be implemented
a software runtime layer that is used by the programmer or the compiler for Software Trans-
actional Memory (STM), as architectural extensions to the processor and memory systems
as Hardware Transactional Memory (HTM), or a mix of limited hardware supported with
a software runtime layer to create a Hybrid Transactional Memory (HyTM).

STM systems can run on unmodified hardware and use compilers to generate the proper
traditional synchronization primitives to provide the transactional programming interface.
Unfortunately, they are extremely slow as shown by Cascaval et al. [40]. This has limited
the impact of STM as it is much slower than traditional primitives even though it offers the
easier semantics of transactional programming. HyTM and HTM systems on the other hand
natively support transactional programming primitives (the transaction). This allows them
to execute transactions fast and efficiently, making transactional programming competitive
with locks. HTM systems in particular though can still suffer from conditions where their
performance is much worse than locks. This problem is what this thesis aims to solve.
These conditions are presented in the next section. For the remainder of this thesis, unless
otherwise state, TM will refer to a system that supports transactional programming on an
HTM system.

1.3 Scalability Bottlenecks

A product of raising the level of abstraction for synchronization operations in parallel
programming is the increased chance for scalability bottlenecks. Scalability bottlenecks in
the context of this thesis are critical sections that hold up other critical sections for long
periods of time. This slows down the system by not making profitable use of parallel
resources. Figure 1.1 shows how scalability bottlenecks can affect a parallel program’s
execution by causing long periods of idle time. With the number of cores likely to keep
increasing on die, scalability bottlenecks will prevent these extra cores from being used
profitably and solutions must be found to either eliminate them or hide the effects of these
bottlenecks.

In TM, especially Hardware Transactional Memory (HTM), scalability bottlenecks
must be minimized as it can suffer less than serial performance if contention is high. The
main argument for HTM is that it has higher performance than locks as well as natively
supporting the conceptually easier to programming technique, transactional programming.
Contention is when two or more transactions try to modify the same memory locations,

also know as a conflict, and cause one or more transactions to abort and try executing

CPU 3I | Critical Section | I

-| Critical Section | I

CPU 2| B

CPU 1| L _______ I Critical Section | I

CPU 0| P

\J

Figure 1.1: Illustration of the serializing effects of scalability bottlenecks.

] \Delaunay Genome Kmeans Vacation‘

2 13 1.7 1.9 1.9
4 2.0 2.9 3.8 3.9
8 3.0 1.8 6.6 5.7
16 3.5 0.4 6.7 7.0
| | Intruder SSCA2 Labyrinth Yada
2 15 1.6 1.7 1.3
4 1.5 2.8 3.0 1.9
8 0.8 42 3.8 2.8
16 0.3 5.7 6.0 3.7

Table 1.1: Speedup observed for STAMP Benchmarks with simple Randomized Backoff
contention manager for a 16 processor system using a LogTM like Transactional
Memory system.

the transaction again. This can happen for applications that are written with large coarse
grained transactions, such as the STAMP benchmarks, when using simplistic contention
management. Table 1.2 shows for the STAMP benchmarks that contention can be very
high for its applications for a large 16 core CMP (in Table 1.2 contention is measured
as number of transactions aborted divided by the number of transactions began). This in
turn leads to very poor performance as seen in Table 1.1. This is especially evident in
the Kmeans, Genome and Intruder benchmarks from the STAMP benchmark suite. As the
number of processors increase, the contention can increase to a point where performance
either plateaus or becomes worse than serial at 16 processors. Under low contention, many
of the STAMP applications scale well. Because TM supports the transactional program-
ming abstraction for synchronization, it should not be expected of programmers to have to
tune the transactions to the TM implementation in their program to eliminate contention.
It may also be the case that they cannot tune transactions as they may be contained in a li-
brary that is a black box. Researchers must find ways to minimize the effects of scalability

bottlenecks that may be present in transactional code.

] \Delaunay Genome Kmeans Vacation

2 29.8% 0.5% <0.1% 0.1%
4 45.5% 2.6% 0.2% 0.6%
8 577% 23.3% 3.8% 4.0%
16 73.4% 49.7% 20.6% 10.4%
|| Intruder SSCA2 Labyrinth Yada
2 25% <0.1% 7.6% 21.6%
4 127% <0.1% 62% 34.1%
8 382% <0.1% 10.5% 45.3%
16 701% <0.1% 182% 54.6%

Table 1.2: Contention observed for STAMP Benchmarks with simple Randomized Backoff
contention manager for a 16 processor system using a LogTM like Transactional
Memory.

1.4 Contributions

The opposing goals of architects and software writers makes developing for transpar-
ent solutions for alleviating scalability bottlenecks very important. Raising the level of
abstraction is required to make synchronization operations in parallel programming easier
and tractable. This means that programmers will not be able to (or expected to) optimize
their programs to the degree expert parallel programmers can achieve with low-level prim-
itives. This thesis contributes an approach using a combination of minimal hardware and
software runtime that transparently alleviates scalability bottlenecks and lets more cores be
profitably used for an assumed LogTM [84] like Hardware Transactional Memory system

that supports transactional programming.

1.4.1 Proactive Transactional Memory Scheduling

I first propose a technique called Proactive Transaction Scheduling (PTS). Many con-
tention managers for transactional memories assume that transaction conflicts are a rare
and random event. Therefore they employ reactive contention managers built on simple
randomized backoff schemes. On a conflict, reactive contention managers will simply
abort one of the transactions and give a random time to wait before restarting. Reactive
managers do work well for benchmarks that have a low amount of contention as they incur
low overhead. As seen in Table 1.2, low contention is not always the case. In fact, high
contention is sometimes common, and should be assumed if TM becomes widely used.
Novice programmers will not always write applications with inherently low amounts of

contention. Bottlenecks will become more likely for higher processor counts—as seen in

the benchmark suite tested.

PTS is a contention management strategy for HTM systems that approaches the prob-
lem of high contention among coarse grained transactions as a scheduling problem. Instead
of reacting to conflicts as they happen by assuming they are rare, PTS instead assumes that
conflicts are common. PTS tracks the conflicts seen by each transaction and uses the result-
ing dependency graph to make predictions about the future conflicts each transaction may
see if executed. It uses this conflict information to schedule transactions to run only when it
is predicted the currently running transactions will not conflict with the transaction waiting
to execute. To keep utilization of the processor cores as high as possible, when a transac-
tion is predicted to conflict with another in the system, a new transaction is swapped in by
calling the Operating System to switch in a new thread to execute. This means the system
is overcommitted (more threads than cores). This is a realistic assumption as many appli-
cations use more threads than cores, because threads are expected to occasionally block
and the extra threads can use the idle cores that would otherwise be wasted. I show in this
thesis that PTS is a viable contention management scheme, and greatly reduces contention
by hiding dependencies among transactions, increasing utilization of cores and alleviating
scalability bottlenecks. PTS is capable of doing so transparently to the programmer, and

not requiring transactions to be tuned.

1.4.2 Identifying Proble Critical Sections for Boosting

A key observation for CMPs is that symmetrical systems are ill-suited for dealing with
applications that show-case a significant number of scalability bottlenecks. Instead an
asymmetrical system is shown to be better suited for executing programs with scalabil-
ity bottlenecks. An asymmetrical system has a mix of fast and slow cores. To reduce
scalability bottlenecks a critical section that has many dependencies could execute on the
faster core to complete quicker and reduce the amount time other critical sections may
spend waiting on it. The main challenges for this type of system are the following: 1) De-
termining the critical section causing bottlenecks needing acceleration, 2) How to build the
asymmetrical system, 3) How to place the critical section onto the core that will provide
the acceleration.

I propose to use PTS techniques to identify the transactions that are causing scalability
bottlenecks. Using voltage boosting techniques that are possible on Near-Threshold Com-
puting systems (NTC) [51], we show it is possible to construct an asymmetrical system
where the accelerator core moves around to accelerate transactions. This eliminates the
need to migrate the transaction to another core, instead the core goes to the transaction. I
show in this thesis that using voltage boosting and PTS to guide when and where to boost

can further alleviate scalability bottlenecks and further increase performance.

1.4.3 Multi-Threaded Fetch Throttling

The final contribution is to Multi-Threaded (MT) processor fetch policy. One of the
problems with MT processors is determining the fetch policy that provides optimal through-
put. In transactional applications with scalability bottlenecks, a fair and bottleneck oblivi-
ous fetch policy will give bandwidth to threads that are not doing useful work. This effec-
tively reduces the realizable performance in an MT processor with HTM support.

I propose in this thesis to leverage the ideas from the voltage boosting and PTS im-
plementations and apply it to MT fetch policies. The problem with an MT fetch policy is
the reverse of the boosting problem. Instead of trying to find the core that is preventing
cores from proceeding forward and accelerating that core, the MT fetch policy has to find
the thread doing no useful work and slow it down. Finding threads that are not providing
forward progress to the transactional program and giving them less fetch bandwidth allows
the remaining threads to execute faster. PTS again be used to predict which transactions
cannot run, and give hints to the core about reducing their fetch bandwidth. I will show that
this is an effective method for reducing scalability bottlenecks in transactional applications

in the context of MT processors.

1.5 Organization

This thesis is organized in the following manner. In Chapter 2 I will cover the material
necessary to understand the concept of transactional memory and how it is used in this the-
sis. Chapter 2 will also cover the basics of heterogeneous chip multi-processors and how
they will be useful in future systems. Chapter 2 also covers the work that is related to this
thesis in the areas of transactional memory and heterogeneous computing as it pertains to
eliminating scalability bottlenecks. Chapter 3 covers the motivation, implementation, and
evaluation of the “Proactive Transaction Scheduling” technique for transactional memory
contention management. Chapter 4 covers the “Bloom Filter Guided Transaction Schedul-
ing” technique, which is an improved version of PTS. Chapter 5 covers the motivation,
techniques used to guide core boosting for eliminating scalability bottlenecks, and eval-
uation of the technique. Chapter 6 covers techniques for guiding MT fetch policies in
processors using transactional memory as well as its evaluation. Finally, in Chapter 7 I

offer my conclusions and reflections on this thesis and the research that has gone into it.

10

CHAPTER 2

Background and Related Work

In this chapter I cover the background material necessary to understand the terminology,
concepts and challenges present in modern day parallel architecture along with related
work in the areas this thesis covers. This chapter first presents a background on basic chip
multi-processor architectures and the challenges exposed by them. This chapter then covers
the specifics of Hardware Transactional Memory (HTM) as it pertains to this thesis as a
solution to the challenge of scalable, tractable synchronization for chip multi-processors.
It will cover the basic topics on how HTM works, as well as cover more in depth on the
specific topic of contention management and the related work in this area. The chapter will
conclude with describing challenges and related work in the area of asymmetric parallel

architecture thread scheduling and multi-threaded instruction fetch policy.

2.1 Chip Multi-processor Architecture

Chip Multi-processors are an extension of traditional parallel architectures that used
multiple processor chips interconnected by external busses. True multi-processor machines
have existed since the 1960’s with the Burroughs D825 [54] system. Now, because of

available transistor budgets, an entire multi-processor system can be placed on one chip.

2.1.1 Symmetric Chip-Multiprocessor

The most common form of CMP that is routinely programmed for and manufactured is
the Symmetric Multi-Processor (SMP). SMP machines employ a set of identical cores—
identical in performance, area, power and instruction set. Figure 2.1 shows the organization
of an SMP system. The SMP system is easy to build and to an extent, write code for. It is
easy to program in regards to determining thread schedules. Since every processor is iden-

tical, code will run at the same speed on any processor. This removes a variable from the

11

LG L LR EE LR

LG L LR EE LR

Figure 2.1: An SMP system with multiple identical cores.

thread scheduling problem, which is to determine an optimal schedule to run threads. CMPs
that are SMP systems with a large number of cores usually sacrifice single thread perfor-
mance in an attempt to boost parallel performance such as Sun’s Niagara 2 processor [70].
This leads to the main disadvantage of SMP systems which is they deal very poorly with
serial code. This is because they lack high single-thread performance cores in favor of
identical cores to ease the programming and scheduling burden with the requirement pro-
grammers must write efficient parallel code for them. As more and more researchers and
developers attempt to extend parallel programming into general domains away from his-
torically good domains (scientific computing, servers), they have found SMPs constrained
by serial sections of code, limiting scaling to more cores. This is because it is becom-
ing harder to decompose serial sections into parallel code to take advantage of SMP style
CMPs. Codes that have many blocking critical sections that suffer from contention also

perform poorly on SMP systems.

2.1.2 Asymmetric Chip-Multiprocessor

Asymmetric Multi-Processors (AMPs) attempt to provide an architecture that can solve
the problems with SMPs. As larger CMPs have been proposed it has been troublesome to
create applications to take advantage profitably of more than a handful of cores in an SMP

system. One of the main reasons for this lack of scaling is due to scalability bottlenecks

12

l—

l—

| | EHEHR) B

LELILELILELEELELE

Figure 2.2: An AMP system with many small cores and one large high performance core
with the same area as the SMP system.

caused by small serial sections of code. Hill and Marty [68] showed in their analysis of
CMPs that the serial portion of code severely limited scaling when using SMP systems.
To solve these bottlenecks, they proposed using AMPs—CMPs with a mix of cores with
differing single-thread performance, area and power—to reduce these bottlenecks. AMPs
can accelerate the serial sections of code on the fast cores, making the serial section be
less of the execution. Work by Eyerman et al. [56] looked at modeling the effect of crit-
ical sections serializing code mathematically in a similar fashion to the work by Hill and
Marty [68]. They also come to the conclusion that AMPs are a better design decision than
SMPs. AMPs are not a new idea, first being proposed by Kumar et al. [73] for reaching
the optimal energy and performance point for single-threaded applications. They are now
being looked at in a new light to allow for continued scaling for programs that are not easily
parallelized.

Figure 2.2 shows a depiction of one type of AMP system. In this figure, the AMP has
some small cores, and one large high performance core, depicted by its larger area and mul-
tiple pipelines. AMPs can use multiple methods to attain cores with different performance
characteristics. Using a mix of big cores and little cores is one such way. Another proposal
is to use an SMP system and allow cores to run at their optimal voltage and frequency so
some cores clock faster or slower than others due to variation in manufacturing. A proposal
by Dreslinski [52] presents an AMP architecture that is dynamic instead of fixed at design

13

time by utilizing voltage boosting. AMPs can also be built from a mix of programmable
accelerators to provide different compute capabilities that match specific applications. This
is being done by AMD with their Fusion cores [6] by integrating a GPU and CPU on the

same die where the different processors have different ISAs.

2.1.3 Per Core Multi-threading

As architects move towards giving more parallel resources to programmers in the form
of more cores, another problem emerges. This problem is under used execution resources
in the parallel cores due to pipeline stalls from long latency memory accesses. These long
latency accesses become more common in CMPs because memory resources are shared.
As more cores are added to a CMP the less memory resources it has access to. To combat
under utilization, Multi-Threading (MT) can be used. MT processors are processor cores
that support the execution of multiple software threads concurrently on the processor hard-
ware to more efficiently share resources and keep utilization and throughput high in the
presence of high latency operations, such as cache misses. To enable MT, a processor core
needs to replicate the needed control structures to allow multiple software threads to exist
in hardware on the same core. Traditionally only one thread of execution runs on a core
at a given time. The replicated structures are usually the register file and control registers,
the remaining processor units can be shared by hardware threads. There are three main
implementations of MT cores. Coarse-grained MT forces a context switch when a high la-
tency operation is encountered. A context switch means one hardware thread is suspended
and another is allowed to execute. In MT processors, only one thread is usually allowed
to issue instructions at a time. An early proposal of coarse-grained MT was the APRIL
processor by Agarwal et al. [14]. Fine-grained MT context switches each cycle. The Tera
Computer by Alverson et al. [17] was an early proposal that used fine-grained MT. The Ni-
agara processor from Sun Microsystems [71] uses fine-grained MT as well. The last type
is Simultaneous MT (SMT), first proposed by Tullsen et al. [108]. SMT allows a processor
to dispatch instructions from multiple threads in a cycle at a time. This allows better uti-
lization of resources over coarse and fine-grained MT because it removes the requirement
for only one thread to be issuing at a time.

To software, an MT processor makes multiple logical processors visible per physical
processor. This gives software access to more concurrently executing threads, potentially
increasing performance. Many current CMPs now use MT to enable better overall through-
put. Examples include the Sun Microsystems Niagra 1 [71], Sun Microsystems Niagara
2 [70], Intel Xeon [8], and Nvidia Fermi architecture [9].

14

2.2 Chip Multi-processor Challenges

The previous section introduced current architectures for CMPs that expose many threads
to a programmer to leverage. This has lead to many challenges in profitably leveraging
these programmer exposed hardware resources. This section will cover the challenges of

thread synchronization, AMP thread scheduling and resource partitioning in MT cores.

2.2.1 Thread Synchronization

As introduced in Chapter 1, scalable and efficient synchronization among threads in a
CMP is a hard challenge. The traditional methods of synchronization do not scale well as
CMPs get larger and the pool of programmers that must program CMPs gets larger as CMPs
continue to enter more computing domains. This is due to traditional methods requiring
explicit control by the programmer to effect an efficient and scalable program. As argued
previously, requiring programmers to perform such explicit control is not desirable and new
methods must be investigated to allow easier thread synchronization for shared memory
CMPs. In section 2.3 I will introduce Hardware Transactional Memory as an architecture
technique to enable efficient and scalable synchronization. I will also introduce contention
management, an automatic technique that aims to provide acceptable performance with

little to no programmer intervention.

2.2.2 Thread Scheduling in AMPs

AMPs raise many interesting problems due to their heterogeneous nature. The biggest
problem is thread scheduling. Programs themselves need to be aware of the asymmetry to
direct the Operating System (OS) and place the correct threads on the correct cores to re-
duce scalability bottlenecks and attain the best performance. Alternatively the OS needs to
deal with the asymmetry when it is scheduling threads and intelligently devise a schedule
that will make best use of the asymmetric cores. Work by Lakshminarayana et al. [76],
Balakrishnan et al. [23] and Li et al. [80] are examples of looking at scheduling threads on
an AMP from the OS and program perspective. The dynamic and phasic nature of most
programs makes this scheduling problem hard. It is difficult to deduce a static schedule
during programming or compilation, and the OS schedules at too coarse a granularity in
most cases. Another interesting problem to the software community is AMPs may lever-
age multiple ISAs. Writing programs to take advantage of such a situation as done by
Nightingale et al. [86] is part of ongoing research. If AMPs can be leveraged properly,
they can reduce the impact of serial sections of code and improve overall scaling for par-

allel programs, lessening the burden of trying to decompose hard to parallelize codes by

15

using asymmetric resources. In section 2.6 I will present related work in the area of thread
scheduling in AMPs from an architectural standpoint and how it pertains to this thesis in

the context of scalability bottlenecks.

2.2.3 Resource Partitioning in Multi-Threaded Cores

One key area of research in MT enabled processors is looking at different fetch poli-
cies in MT processors to maximize resource utilization and per thread performance. The
optimal fetch policy has been to found to be different per application and no policy wins
in all cases. This is a challenge because the system must now dynamically find the optimal
policy, just as with thread scheduling to AMPs. In section 2.7 the related work in the area
of MT fetch policies and how they pertain to this thesis.

2.3 Hardware Transactional Memory

To enable fast, efficient and tractable synchronization, transactional programming through
the use of Transactional Memory has been proposed. As discussed in Chapter 1 there are
three methods for building TM: Hardware, Software and Hybrid. I cover only the mecha-
nisms of Hardware Transactional Memory (HTM) here, as Software Transactional Mem-
ory (STM) and Hybrid Transactional Memories (HyTM) are not applicable to this thesis.
Readers interested in these two methods of implementing TM as well as more exhaustive
descriptions of the topics covered in this section should refer to the two books that focus ex-
clusively on presenting a survey of the state-of-the-art in Transactional Memory by Harris
et al. [65] and Larus and Rajwar [77].

Hardware Transactional Memory uses architectural techniques to provide high perfor-
mance transactional programming semantics to the programmer. This is done by adding to
the Instruction Set Architecture (ISA) to enable the construction of transactional programs
and expose transactions to the architecture. The memory system is modified to provide
conflict detection and memory versioning support. Additional support for nesting, non-
transactional operations like Input/Output (I/O) and contention management will also be
covered in this section.

The ISA support for HTM must consist of at least the following two instructions:
TM_BEGIN and TM_END. The TM_BEGIN instruction is used to transition the processor and at-
tached caches into transactional mode. Entering into transactional mode consists of primar-
ily taking a register checkpoint that the processor can revert to in case the need to abort the
transaction and restart arises. All accessed memory addresses after the TM_BEGIN instruc-

tion are protected by the hardware and made to be viewed as atomic to remote processors.

16

The TM_END instruction causes the processor to commit all accessed memory addresses as
one transactional unit. If in between the TM _BEGIN and TM_END instruction, a condition
is detected that would break the atomic and isolated conditions required of TM, the cpu
will automatically retry the transaction by reverting to the register checkpoint and restoring
memory to its proper state before the TM_BEGIN instruction was executed. In effect the
transaction appears as if it never executed when a retry is needed in keeping with trans-
actional semantics. Other instructions can be added to allow for more flexible and richer
transactional support. Such instructions include the TM_ABORT instruction that allows the
programmer to abort transactions whether or not a conflict was detected. This is useful for
certain programs, such as the transactional version [109] of Lee’s routing algorithm [78].
Another instruction that is supported by some HTMs is the TM_RELEASE instruction. This
instruction allows the TM system to remove transactional protection from accessed mem-
ory locations. This is useful in lowering contention as investigated by Skare et al. [101]
and Christie et al. [44]. Other additional instructions have been proposed to fit the needs of
the authors and providing transactional programming support they were trying to provide
in the following works [33, 82, 94].

Conflict detection is the process by which the TM system determines if two or more
transactions are trying to make modifications to the same memory locations in a fashion
that is not serializable. Serializability is the property by which a specific ordering can be
assigned to accesses (access 1 happens before access 2 which happens before access 3 etc.)
that does not include any loops in the happens before graph. A loop would be if the follow-
ing access pattern was observed: access 1 happens before access 2 which happens before
access 1. HTM’s detect this condition by modifying the coherence protocol and cache lines
with extra “Transactional” states to detect conflicting accesses to the same memory ad-
dress. These conflicting accesses would be Read after Write conflicts, Write after Write
conflicts and Write after Read conflicts. Read after Reads are ignored by HTMs as they
do not constitute a conflict. There are two ways in which conflict detection can performed,
it can be performed as Eager or Lazy. Eager conflict detection continuously watches the
transactional execution looking for conflicting accesses. Upon the first instance of a con-
flicting access, an Eager conflict detection mechanism will decide which processor making
the conflicting access to abort. Because this method of conflict detection resolves conflicts
early, it has the ability to allow a minimum of wasted work to occur within transactions.
But pathologies can occur, such as cascading aborts as seen by Bobba et al. [36]. The
other method of conflict detection is Lazy conflict detection. Lazy conflict detection defers
detecting conflicting accesses until commit (TM_END instruction). Upon commit, the HTM

will attempt to validate the memory addresses read and written (called the Read/Write Set,

17

or RWSet). If other committed transactions have already made changes to locations in the
validating transactions RWSet, the transaction aborts. Lazy conflict detection can lead to
more wasted work from deferring conflict detection. On the other hand it can allow more
parallelism as seen by Tomic et al. [106]. The work by Tomic et al. additionally devised
methods to mix eager and lazy conflict detection in an HTM.

HTMs also have two methods of versioning memory locations touched by a transaction.
Because TM has to provide the semantics of an all or nothing transaction, it has to keep
two versions of the memory while executing. It must keep the old version of memory that
is restored on abort and a new version that will be seen after commit. The two methods of
versioning are also termed Eager and Lazy. Eager versioning places the new version of the
memory location in the place where it will be stored on commit. Therefore the old version
must be stored to the side, and restored on commit. There are multiple ways to accomplish
this, one method is store the old version in a log in virtual memory, and restoration happens
on abort by the way of a software routine that reads the log and overwrites the new memory
value with the old value. This was first proposed by Moore et al. [84]. Another method is
to force the upper level caches to write back old values to lower level caches and store the
new value in the upper level caches. On abort the upper level caches are flash invalidated
as proposed by Blundell et al. [33]. Eager versioning allows for very fast commits, while
aborts can be slow in the case of LogTM. Lazy versioning, as with lazy conflict detec-
tion waits until commit to place the new values into their final locations. Lazy versioning
needs a mechanism to store the new values off to the side that can be accessed later during
commit. The very first HTM, proposed by Herlihy and Moss [67], used lazy versioning
and did so by dividing the cache into two pieces to hold new transactional state and old
transactional state. On commit the pointers denoting which half held old values and which
held new values were flipped on commit. Other implementations such as Transactional
Coherence and Consistency (TCC) HTM by Hammond et al. [64] and AMD’s Advanced
Synchronization Facility (ASF) [44] propose using special associative write buffers to hold
modified lines until commit. Lazy versioning allows for fast aborts as the old data still
remains in place. Commits, on the other hand, can be slow as the caches must broadcast all
stores out to the remote processors one at a time while holding a global commit lock which
can limit performance. There are ways to remove the need for a global commit lock. One
proposal is from Chafi et al. [43] where transactions commit the write set in sorted order to
prevent deadlock. Using conflict detection and memory versioning, a taxonomy of HTM
proposals can be constructed. Table 2.1 shows a selection of HTM proposals and how they
fit. As can be seen the majority of proposals fit in either the Lazy/Lazy or Eager/Eager

block in the taxonomy and are all academic works. This is due to these two design points

18

having desirable properties. These properties include exposing higher amounts of paral-
lelism by default in Lazy/Lazy designs or limiting wasted work in Eager/Eager designs.
These design points also offer interesting system redesign opportunities in terms of coher-
ence protocols and cache design. The third design point, Eager conflict detection and Lazy
versioning has less examples as it was discovered to have a large problem with contention
as seen in the paper by Bobba et al. [36] cataloguing pathologies. Interestingly enough,
two commercial companies Sun and AMD designed HTMs in this space. This was chosen
as the Eager/Lazy design requires the fewest changes to an existing chip-multiprocessor’s
memory system. Most importantly, and Eager/Lazy HTM can be designed in such a way
that it leaves cache coherence completely untouched. This is important to companies as
coherence changes require massive efforts to debug, because bugs in the coherence scheme

can prevent a system from functioning.

Version Management
Lazy Eager
TCC [64]
Bulk [42]
RTM [100]
FlexTM [99]
Colorama [41]
EazyTM [106]
SigTM [38] LogTM [84]
MIT LTM [18] MIT UTM [18]
Eager | Intel/Brown VIM [90] | MetaTM [92]
AMD ASF [44] TokenTM [35]
Sun ROCK [48] DATM [91]

Lazy

Conflict Detection

Table 2.1: Taxonomy of select Hardware Transactional Memory implementations.

HTM also needs to support nesting of transactions and non-transactional actions inside
of a transaction (notably Input/Output). Nesting is when a transaction contains transac-
tions. Support for nesting is useful for when programmers want to compose programs using
transactions that themselves use libraries or functions that use transactions internally. With
traditional synchronization, composing critical sections that contain other critical sections
can be non-trivial and difficult. There are three types of nesting that have been proposed:
closed, open and parallel nesting. Closed nesting is the most intuitive to understand, as the
parent transaction subsumes any child transactions and all child transactions must commit
successfully for the parent transaction to also commit. Closed nesting can be implemented
with flat semantics, where child transaction TM_BEGIN and TM_END are treated as NOPS

19

and only the parent TM_BEGIN and TM_END are processed. Closed nesting can also allow
partial aborts, where an abort only rolls back the child transaction that is conflicting, and
restarts from the TM_BEGIN of the conflicting child transaction. The implementation details
needed to support this type of nesting for an Eager/Eager HTM can be found in work by
Moravan et al. [85]. Open nesting is a more complicated form of nesting that allows child
transactions to commit early and allow their changes to memory to be visible before the
parent transaction completes. The complications come from when a parent transaction of
an already committed child transaction is aborted. The child transaction has already been
committed, and the HTM system is no longer able to roll back the changes. To solve this,
McDonald et al. [82] proposed using special abort handlers for open nested child transac-
tions to provide the necessary fix-up operations to ensure correct operation when the parent
transaction restarts. These fix-up operations must be programmer supplied. The last type of
nesting is called parallel nesting [21, 24, 15]. Parallel nesting is where a parent transaction
spawns additional threads that themselves contain transactions. This presents numerous
complications with versioning and conflict detection that are not be covered here.
Supporting non-transactional operations is one of the remaining challenges in HTM
design. This is also true of all transactional systems, including databases as stated by
Gray and Rueter [59]. The main problem with non-transactional actions is that they break
atomicity and isolation guarantees, and in many cases cannot be rolled back. There have
been many proposals for solving this problem, but no universally accepted solution has yet
emerged in the HTM community, and therefore is still an active area of research. Buffer-
ing non-transactional actions until commit has been proposed [82]. This works for some
non-transactional actions, unless a transaction both writes and reads, for example writing to
the terminal displaying a prompt and waiting for input. The transaction will hang because
the write will not be visible for the user to input data to the terminal. Another method to
support non-transactional actions and make them appear transactional is to require com-
pensating actions in case the transaction aborts. This also has problems because it requires
the programmer to define what could be complex compensation actions for the transaction.
On top of these compensations there are non-transactional actions that can not be compen-
sated for, such as printer output. Another proposal is to grant permission to one transaction
at a time in the system to perform non-transactional actions [33]. If permission is granted
to a transaction to perform non-transactional actions it is guaranteed to commit, therefore
eliminating the rollback problem. A problem noted by researchers with this approach is
that parallelism is limited if more than one transaction wants to perform non-transactional

actions and they are independent.

20

2.4 Transactional Memory Benchmarks

Transactional Memory benchmarks are important for the evaluation of HTM designs.
Initially, transactional benchmarks did not exist. Researchers were forced to rely on already
parallel applications and simply replace the locks in these programs with transactions. A
popular application set for early HTM work was the SPLASH?2 [110] benchmark suite. It
featured scientific applications that used small amounts of synchronization. The transac-
tions in this benchmark suite were small, and contention was very infrequent. This led
researchers to believe that TM in general did not have to worry about contention in the
common case. However, these benchmarks were very highly tuned applications from ex-
perts, meant to scale to a large number of cores and even across machines. Therefore
synchronization was kept to a minimum.

Because HTM was meant to enable a higher level of abstraction of transactional pro-
gramming to programmers, the likelihood that future transactional applications would fea-
ture small, unlikely to conflict critical sections like those in SPLASH?2 is small. This led
researchers to develop new benchmarks designed to represent applications that HTM sys-
tems were likely to encounter. Specifically applications with large, coarse grained transac-
tions that were likely to have moderate to high contention. Such benchmarks include the
STAMP [37] benchmark suite, which does showcase large transactions that also has a high
amount of contention. Other benchmarks emerged such as a transactional version of a par-
allel Delaunay triangulation by Kulkarni et al. [72] and a transactional implementation of
Lee’s routing algorithm [78] by Watson et al. [109]. Other transactional benchmarks have
been developed, such as versions of the Linux kernel using transactions for synchronization
instead of locks. The first implementation was a transactional version of the v2.6 kernel
by Rossbach et al. [94]. It had small critical sections and was more akin to the SPLASH2
benchmarks but showcased that highly complex parallel programs such as the Linux could
use transactions. Later work by Hoffman et al. [69] developed a transactional version of
the v2.4 Linux kernel which used large transactions and showed that transactions allowed
coarse grained semantics with performance approaching fine grained locks. These newer
benchmarks show that attaining scalable performance and not requiring expert program-
mers is a large challenge. In this thesis I use the STAMP benchmark suite to evaluate my

solutions to the scalability problem.

21

2.5 Contention Management for Transactional Memories

This thesis deals very heavily with contention management in transactional memory,
as conflicts in TM form scalability bottlenecks that can induce pathological performance
degradation. As seen in Tables 1.1 and 1.2 in Chapter 1 for the STAMP benchmark suite,
conflicts in HTM can lead to less than serial performance in cases. Because of this, con-
tention management techniques have been a large area of research for all in the TM research
community. One of the first works that realized the importance of advanced contention
management and concentrated on identifying contention pathologies was written by Bobba
et al. [36]. Bobba et al. found that Eager/Eager and Eager/Lazy HTMs suffered from con-
tention more than Lazy/Lazy.This has led to multiple ways to deal with contention to allow

HTM provide the fast and efficient transactions.

2.5.1 Programmer Managed

The most powerful and flexible method for reducing contention is to have the program-
mer tune transactions to guarantee low contention. There are four types of programmer
guided contention management: minimize transaction size, selective cache line marking,
open-nesting and early release.

Minimizing transaction size, and breaking large transactions into multiple small trans-
actions can reduce contention. This requires the programmer to look at coarse grained
transactions that may contain functions and determine if it is safe to make the transaction
smaller and/or break the transaction into multiple smaller transactions. It has been shown
that smaller transactions do reduce contention as it minimizes the window of time in which
transactions can conflict in. On the other hand, making fine grained transactions to reduce
contention goes against the aim of transactional programming which is: coarse-grained
semantics are acceptable regardless of the transactional implementation underneath.

Selective marking of individual data elements that should be protected is one method
to reduce contention. The program, or compiler if possible, must inspect each transaction
and mark only the necessary lines that must be tracked by the TM system. This keeps the
RWSet small and reduces the risk of accidental conflict due to false sharing in the caches.
For STMs, this is more important as STMs have problems with increasing overheads as
the number of locations that must be tracked grows. Because of this, selective marking
is commonly seen and practiced by STM implementations and benchmarks. For HTMs,
tracking overhead is negligible to performance in most cases but increased chances of con-
tention can reduce performance seen. An example of how selective marking can be used

to make a minimal transaction RWSet is shown in Example 2.1 for inserting into a sorted

22

linked list. As shown in the example it takes some clever manipulations to reduce conflict
opportunities. The examples checks to make sure nothing changed between finding the
insertion point and inserting the new list node transactionally. If a change to the insertion
point occurred, then the transaction needs to be aborted by the user assuming user abort is
supported by the HTM’s ISA.

Example 2.1 Using Selective Marking to optimize out contention for sorted linked list

insert.

1 void+ threadwork ()

2 {

3

4 TM_BEGIN;

5 insertIntoList (5);

6 TM_END;

7

8 }

9 // example is simplified not to show
10 // the corner cases of inserting at
11 // the head or tail of the list
12 void insertIntoList(int val)

13 {

14 ptr = head;

15 while (ptr—>val < val) {

16 ptr = ptr—>next;

17 }

18 TM READ(ptr = ptr—>prev);

19 TM READ(next = =ptr—>next);

20 if (xptr—>val > val) TX ABORT;
21 else {

22 node = newNode(val);

23 TM_WRITE (% ptr —>next = node);
24 TM_WRITE(next—>prev = node);
25 }

26 }

Open nesting is another option that can be used to limit the size of the transaction’s
RWSet and therefore limit contention. Example 2.2 shows how open nesting can be used to
accomplish RWSet minimization as was done in the previous example. Again, this example
is more complicated than the simple semantics promised by transactional programming in
Chapter 1 of placing TX_BEGIN and TX_END around the section of code that needs to made
atomic (in this example, the function call insertIntoList). Instead the programmer in
this example is making low level optimizations similar to scalable locking algorithms for

linked list insert. The algorithm is very similar to the previous example, find the location

23

to insert in, and check if the insert can be made or abort and retry. In Example 2.2 no
compensation actions are required. But, as described in the work by McDonald et al. [82],
open nested transactions may require non-trivial compensation actions to repair program

state to a consistent before transaction execution state if the parent transaction aborts.

Example 2.2 Using open nesting to optimize out contention for sorted linked list insert.

1 voids* threadwork ()

2 {

3

4 TM_BEGIN;;

5 insertIntoList (5);

6 TM_END;

7

8}

9 // example is simplified not to show
10 // the corner cases of inserting at
11 // the head or tail of the list
12 void insertIntoList(int val)

13 {

14 TM_BEGIN_OPEN(compensationAction);
15 ptr = head;

16 while (ptr—>val < val) {

17 ptr = ptr—>next;

18 }

19 TM_END_OPEN ;

20 ptr = ptr—>prev;

21 next = sptr—>next;

22 if (xptr—val > val) TX_ABORT;
23 else {

24 node = newNode(val);

25 x=ptr—>next = node;

26 next—>prev = node;

27 }

28 }

29

30 void compensationAction ()

31 { return; }

The last technique to limit transaction size is to use early release as proposed by Skare
and Kozyrakis [101]. Early release uses a new instruction in HTM to signal the caches
to release from the RWSet the passed in address. This allows for dynamic trimming of
the transaction size in a similar fashion to open-nesting, except that early release is more
limited in that is does not assume the presence of compensation actions. The programmer

or compiler must know releasing the cache line early from the RWSet is safe. An exam-

24

ple of early release is shown in Example 2.3. As can be seen, this example algorithm is
slightly simpler to the previous two. As the transaction scans the list, it pulls two nodes
into the RWSet and releases the oldest third node. This eliminates the need for a TX_ABORT

instruction and check code before inserting as in the previous examples.

Example 2.3 Using early release to optimize out contention for a sorted linked list insert.

1 voidx threadwork ()

2 {

3

4 TM_BEGIN;

5 insertIntoList (5);

6 TM_END;

7

8 }

9 // example is simplified not to show
10 // the corner cases of inserting at
11 // the head or tail of the list

12 void insertIntoList(int val)

13 {

14 ptr = head;

15 prev = head;

16 oprev = head;

17 while (ptr—>val < val) {

18 oprev = prev;

19 prev = ptr;

20 ptr = ptr—>next;

21 TM_RELEASE(oprev); //free prev—>prev from RWSet
22 }

23 node = newNode(val);

24 prev—>next = node;

25 ptr—>prev = node;

26 }

As seen in the examples, requiring the programmer to manually tune transaction RWSets
can be complicated (building a compiler to understand how to apply these optimizations
would also be problematic for this example as it involves pointer chasing). Requiring such
optimizations would negate the main claim that transactional programming supported by
TM is easier to use. While having this support built into an HTM would be beneficial
for expert programmers and optimizing compilers, more transparent solutions that offer
acceptable performance should be pursued.

Programmer managed approaches do lead to low contention because it reduces the win-

dow of contention by relaxing the atomicity and isolation constraints of the HTM. It also

25

eliminates many of the advantages of transactional programming, specifically eliminating
the abstraction because the underlying HTM system must be tuned for. By requiring the
programmer to hand inspect transactions to avoid contention it makes transactional pro-
gramming no easier than traditional synchronization. Programmer independent methods

must be devised as it cannot be expected of programmers to tune their programs.

2.5.2 Contention Managers

Contention managers attempt to alleviate pathological conflicts in TM and ensure ac-
ceptable forward progress transparently to the programmer. In HTMs, contention managers
can be designed, depending on complexity, either in hardware or software. Such automatic
management is enabled because HTM exposes the transaction as a primitive to the archi-
tecture. This allows the architects to devise systems that can reason about critical section
behavior and implement strategies to alleviate contention and increase performance. Re-
search into transparent contention management has yielded three types of contention man-

agers: reactive, proactive and data forwarding/predicting.

2.5.2.1 Reactive Contention Managers

Reactive contention managers operate only when transactions conflict and need to be
serialized. They react to conflicts. Because reactive managers are only invoked when
conflicts are detected, they have zero overhead when no conflicts exist. Reactive managers
can still be arbitrarily complex in their conflict resolution scheme when invoked. The
main drawback of a reactive contention manager is that it assumes conflicts are rare events.
If conflicts keep repeating, performance can be degraded when using reactive contention
management because there is no memory of previous conflicts. Reactive managers usually
use some type of backoff to stall conflicting transactions to clear the conflict. An example
of reactive contention management is shown in Figure 2.3. As seen in the figure, the conflict
can happen repeatedly as the backoff based reactive manager makes guesses as to how long
to delay the conflicting transaction to clear the conflict. As seen in Figure 2.3, reactive
managers can waste execution time and resources doing backoff.

Reactive contention managers are the simplest type of contention manager, and the first
to be used and developed for HTMs. Early HTMs such as LogTM [84] and TCC [64] used
very simple reactive managers because their benchmarks indicated that contention was not
an issue. In STM research, contention was a problem as it exacerbated performance issues
due to high overheads of STM implementations. Therefore work by Scherer et al. [96, 97]

studied many reactive contention managers. Scherer et al. experimented with multiple

26

cPU 1 | ™ | |

CPU OI [e I)(] Ba?_koff [e N _B;ko_ff_ _| T*2 [

Abort Abort

\

Time

Figure 2.3: Reactive contention manager operation.

policies that tried to balance various heuristics to decide what transactions should abort
when a conflict was detected. These heuristics varied from simply always aborting the
requesting transaction, giving priority to the transaction that owns the memory location, to
complex managers that looked at how many times a transaction had aborted in the past,
how much work it had done, how long it had waited to execute successfully among others.
The major conclusion from both works was that no set of heuristics was the best. Scherer et
al. came to the conclusion that reactive managers must be tailored to the workload to arrive
at the best contention management scheme. Other reactive managers used stalling and
suspending of conflicting transactions to manage conflicting transactions such as work by
Zilles and Baugh [115]. This is similar to the ideas that will be presented in the following
chapters, but it is still a reactive management scheme.

2.5.2.2 Proactive Contention Management

Proactive contention managers are different from reactive managers in that they attempt
to avoid contention before it occurs. Because proactive managers try to avoid contention,
they approach contention management as a scheduling problem. Proactive contention man-
agers assume conflicts to be frequent and re-occurring. This is a valid assumption as future
transactional applications, written by non-expert programmers will be more likely to con-
tain less optimal transaction construction. Proactive managers do have drawbacks. The
proactive contention manager operates even in the presence of no contention, therefore it
incurs higher overheads over a reactive manager. This makes a proactive manager sub-
optimal in low contention situations. On the other hand, proactive managers typically
perform very well when contention is high. Figure 2.4 shows how a proactive manager
operates. It uses some execution time at the beginning of each transaction to determine
what transaction it should run next to keep contention low. This can increase performance
if the up-front cost of scheduling eliminates wasted work due to contention.

Proactive scheduling can find its roots in database research. Proactive scheduling solu-
tions, such as work by Victor et al. [79] were used to predict and schedule around contention

in small real time databases. Scaling to larger databases with large arbitrary transactions

27

cpu 1 | ™ | |

CPUO| [] @ [] ™ [

Schedulé Schedulé
Time

\

Figure 2.4: Proactive contention manager operation.

was prohibitive for the technique and such scheduling techniques remain limited in this do-
main. As transactional memory research has grown, researchers are looking down similar
paths originally investigated by database researchers, spawning work that has been both
empirical and theoretical.

The first proactive manager was proposed by Bai et al. [22]. In Bai et al.’s solution,
before every transaction begin, a look-up table was consulted for a key to determine if
the transaction should execute with the already executing transactions in the system. They
found this worked very well. The main draw-back to this work is the look-up table had
to be constructed a priori specifically for each benchmark. This meant that the technique
could not be used for arbitrary applications.

Dolev et al. [49] proposed a proactive technique called CAR-STM for Software Trans-
actional Memories that placed transactions on queues behind transactions it conflicted with
in the past. These conflict relations persisted throughout the program execution therefore
preventing pairs of transactions from ever conflicting again in the future. This lead to overly
pessimistic contention management. In some cases CAR-STM could completely serialize
execution of transactions in high contention applications. A solution proposed by Dolev et
al. to correct this pessimistic scheduling was to allow the programmer to provide hints to
the STM system about the chances of future conflicts between pairs of transactions. Like
the work by Bai et al. this requires knowledge by the programmer to be provided to the
system to increase performance. Therefore the technique is limited.

Ansari et al. proposed two proactive contention managers for STMs. The idea proposed
in [19] used commit rate to determine when to schedule more transactions concurrently. If
the commit rate dropped below a watermark, then the number of concurrent transactions
was reduced. When commit rate increased more threads were allowed to execute concur-
rently. Ansari et al. [20] also proposed an idea similar to Dolev et al. On conflict, the
transaction would queue behind the transaction that it conflicted with and remain there to
prevent repeated conflicts. As with CAR-STM it can also suffer overly pessimistic schedul-
ing.

Yoo and Lee [113] proposed a proactive scheduling technique called “Adaptive Trans-

28

action Scheduling” (ATS) that is similar to that proposed by Ansari et al. It uses abort rate
to devise a heuristic called conflict pressure which is a measure of instantaneous conflict
rate. Conflict pressure is used to throttle execution of concurrent transactions. When the
pressure is high, ATS throttles execution to be close to serial to guarantee forward progress.
When pressure is low ATS allows highly concurrent execution. Yoo and Lee’s proposal fits
well with HTMs as it is very low overhead, and therefore sees good performance. Still,
it does have the potential to schedule too pessimistically as well. As can be seen most of
the work presented so far dealing with proactive scheduling has been very simple. The
proposals have used simple techniques to affect schedules, or require programmer input to
devise of a suitable schedule.

Dragojevic¢ et al.’s [50] version of proactive scheduling uses prediction of future read
and write sets to determine whether transactions can proceed in parallel with other cur-
rently running transactions. Before every transaction begin, Dragojevié et al. predict the
read and write set of the transaction wishing to execute by using past history of mem-
ory accesses. They then check this prediction against the current RWSets of all running
transactions. This is very high overhead, and as such is only implementable in STM. The
technique does show performance gains using this method. This method is very similar to
the proposals presented in this thesis. I also use prediction to schedule transactions around
future conflicts, but do so in a lighter weight fashion.

Proactive scheduling has been receiving attention from many types of researchers, even
theoretical research into TM scheduling to prove algorithmic soundness is being conducted.
Work by Guerraoui et al. [61] was the first to approach the problem in this fashion. This has
led others to propose new contention managers that can be implemented and have provable
contention management characteristics, such as the proposal by Sharma et al. [98]. As can
be seen, research in contention managers that proactively schedule transactions to avoid
contention is a very active research area. This thesis makes multiple contributions to the

area of proactive contention management in Chapters 3 and 4.

2.5.2.3 Data Forwarding/Predicting Managers

Data forwarding/predicting techniques are a final transparent technique to alleviate con-
tention. Instead of determining which transaction to abort when a conflict occurs or pre-
dicting transaction execution schedules, these techniques allow the conflict to persist and
attempt to fix the conflict so both transactions can complete at commit. This is accom-
plished in the following ways: forwarding modified values from one transaction to the
conflicting transactions, or predict the value of the conflicting access to allow continued

execution. Commits of conflicted transactions are allowed to proceed if serializability can

29

CcPU 1| | T | |

Forward/Pred ict\
Data

CPU 0| [e [™ [] |
Detect "\ Check correctness
Conflict of data forwarding/prediction >
Time

Figure 2.5: Data forwarding/predicting contention manager operation.

be proven between conflicting transactions. This means values that are forwarded can not
be changed by the forwarding transaction after being forwarded and value predictions must
be correct. Figure 2.5 shows how a data forwarding mechanism would work. When a con-
flict is detected, the transaction continues with a forwarded or predicted value and checks at
commit whether the execution was valid. Approaching contention management by relaxing
the isolation constraints in this way reduces contention for a specific class of conflicts called
ancillary data conflicts as described by Click [46]. An example of such a conflict would
be an insert into a hash table, then incrementing a single common occupancy counter. This
type of conflict can cause a parallel operation to be serial among multiple threads because
of this single point of contention. Researchers have begun to look for programmer trans-
parent solutions to these types of HTM conflict patterns that cannot be solved in a scalable
manner by either reactive or proactive contention management.

The first proposal that attempts to solve these types of ancillary conflicts was proposed
by Ramadan et al. [91] called Dependence Aware Transactional Memory (DATM). DATM
used very complex cache coherence modifications along with multiple hardware struc-
tures to track when a transaction forwarded a data value it modified to another transaction
that is causing a potential conflict. Ramadan et al. found that by forwarding data among
transactions reduced conflicts sharply and allowed much greater throughput. Tracking this
forwarding could become complex as forwarding among transactions could be arbitrarily
deep, which made rollback complicated, because the hardware had to find all transactions
dependent on the aborting transaction and roll them back too. The cases that caused an
abort also became more complicated. If the forwarding transaction happened to modify the
forwarded line more than once it would cause dependent transactions to abort. Aborts were
also caused when dependency loops were formed, i.e. a transaction 77 could not forward
to 7> and then have T forward to 77. The authors did show that the technique worked well
for all benchmarks and that the worst case rollback was rare, but the hardware to handle

this case was still required. This was the main disadvantage to the DATM proposal, its

30

complicated hardware to track dependencies and major coherence changes.

A proposal by Blundell et al. [34] called RetCon also tackled the problem of ancillary
updates that cause what can be considered false conflicts. Instead of making large changes
to the coherence scheme and adding tracking data structures to the memory system to for-
ward data as in DATM, RetCon used additions to the processor to do fix-up operations on
data that was determined to have been in a conflict state and also predicted to be ancillary
data updates. It did this by first predicting which memory updates could be fixed up after
commit in case of conflict. In essence RetCon predicts locations that will not affect trans-
actional execution. It then used hardware structures to track operations done to the memory
location, such as adds, subtracts etc. It also recorded boundary conditions that need to be
enforced in case the memory was used to guide branching behavior. After commit the pro-
cessor would read the hardware structures to replay the operations on the data and fix it to
be the value it should be as if the conflict had never happened. If the fix-up cannot proceed
due to violating boundary conditions, then the transaction is ultimately aborted. Again the
main disadvantage to this work is the same as DATM, it requires very complicated hard-
ware to record memory accesses that need fix-up and the operations that need to be applied
on replay for fixing.

Others have proposed less aggressive methods to fixing the ancillary data update prob-
lem that causes many conflicts. These proposals from Tabba et al. [105] and Pant et
al. [87, 88] propose using value prediction instead of fix-up or data forwarding. When
a data location is detected to cause a conflict, its future value is predicted and used to allow
execution to continue. When the transaction finishes, it checks its prediction before allow-
ing the transaction to commit. These proposals have also shown to work at fixing these
types of conflicts, although they are not quite as effective as the more complicated propos-
als presented above. Overall, data-forwarding contention management is very powerful as
it allows the maximum amount of parallelism between transactions to be realized trans-
parently to the programmer. On the other hand, for HTMs it incurs a very high hardware

overhead in terms of complexity of implementation.

2.6 Asymmetric Multi-Processor Thread Scheduling

There has been recent interest in heterogenous architectures in industry and academia
as the problem of scalability bottlenecks have become more apparent. As discussed previ-
ously the main problem is locating threads on the appropriate cores to get the best possible
speedup. This has prompted architects to propose architectures that provide hooks to the

software to more accurately determine when to move threads in a fine-grained manner i.e.

31

many thread moves within an OS scheduling quantum. This has been deemed necessary
because programs showcase bottlenecks that may be too small to handle at the granularity
of OS scheduling, and input dependent in such a way that static scheduling is not possible.

A proposal by Suleman et al. [103] called Accelerated Critical Sections (ACS), presents
a CMP design that has one large out-of-order core for serial code with multiple small cores
used for the parallel sections. Suleman proposed using programmer annotated critical sec-
tions that should be considered for offloading to the large core to speed up execution and
reduce the window for scalability bottlenecks to form by offloading the critical section.
The results found in this work showed that accelerating scalability bottlenecks does help
increase the scaling of the overall system. One of the main problems with the ACS system
was the cost of migrating critical sections from the small cores to the large core. An-
other problem was determining the correct critical sections to offload and serializing on the
large core doing the acceleration as it was a limited resource. A later proposal Suleman
et al. [102] proposes a technique to push data to specialized cores to mitigate some of the
problems seen in the ACS proposal. Both these proposals are methods to develop efficient
techniques for using AMP systems. It should be noted these are primarily architecture tech-
niques that look to leveraging the AMP in a fine grained fashion. They assume fast thread
migration to get the maximum benefit from the AMP and prefer to limit involvement by
the OS.

Dreslinski [52] tackles the problems with the ACS proposal involving moving critical
sections that need accelerating to a remote core. Dreslinski proposes moving the powerful
core to the critical section with fast voltage switching. This allows a boost in performance
for a short period of time to reduce the runtime of the critical section and reduce the window
for an scalability bottleneck to form in a similar fashion to ACS. The fast voltage boosting
is enabled by further developments by Dreslinski in the area of near-threshold circuits [51]
and architecture designs that allow for the fast voltage boosting. Still there are problems
with determining which critical section being executed will form a bottleneck. But unlike
ACS, with this proposal there is no longer a problem with moving the critical section and
its data off to a remote core.

Interest in AMPs has also begun to be implemented by the industry. The main differ-
ence is the granularity of the industry implementations. Intel debuted their TurboBoost [47]
technique in 2008. It was designed to allow their multi-core chips to automatically over-
clock a busy core when the remaining cores were idle. This was possible because the cores
in most current Intel chips can run faster but they are clocked slower to meet worst case
thermal budgets when all components in the chip are active. The main draw to the Tur-

boBoost technique is to improve response time and overall user experience by improving

32

the performance of single threaded application for a short period. The individual core that
is being boosted in Intel’s technique can move around to improve performance. Marvell
has also released an AMP called the Armada [62]. It uses multiple cores designed for dif-
ference performance and energy points. The Armada processor has two high performance
cores to improve user experience and one low power, low performance core when perfor-
mance requirements are less. This is closer to the commonly accepted design for an AMP.
As industry and researchers move forward, it appears that AMPs are becoming more com-
mon. Research into techniques to leverage them are becoming more important to allow full
utilization of the unique characteristics of AMPs.

In this thesis I will present techniques that build off of HTM contention management to
determine the which transaction is the bottleneck to direct thread scheduling in an AMP. In
particular I use the proposals by Dreslinski et al. to avoid the need to develop a fast thread

migration facility.

2.7 Multi-Thread Fetch Policy

Related to the area of AMP thread scheduling is managing resource sharing within MT
processors and giving the threads access to the proper resources to get optimal throughput.
There has been appreciable work in MT processor fetch policies over the years. Most of
the work in fetch policies has concentrated primarily in the area of SMT fetch policy. The
original papers on SMT by Tullsen et al. [108, 107] concentrated first on describing the
hardware necessary to enable SMT and then on fetch policies to optimize utilization. The
most effective found in the work [107] was the ICOUNT policy. ICOUNT tracked the num-
ber of instructions from each hardware context in the pipeline and gave fetch priority to the
thread with the least amount of instructions present. This is turn gave priority to the most
efficient thread and generally provided maximum throughput. Work by Raasch and Rein-
hardt [89] looked at SMT fetch from the view of interactive applications and background
tasks where absolute throughput was not the main indicator of acceptable performance.
Latency was more important for their applications. Less efficient threads could be interact-
ing with a user where ICOUNT would result in unacceptable performance by penalizing
it, resulting in higher latencies being seen by the user. Raasch proposed priority schemes
to be implemented in the processor to combat the latency problem with the previously pro-
posed SMT fetch policies by giving a foreground thread elevated priority over all other
threads to minimize interference from background threads. Raasch found that the priority
scheme effectively reduced the latency penalty imposed on less efficient threads, but in turn

decreased the overall throughput realized. Later work by Everman and Eeckhout [55] pro-

33

posed SMT fetch policies that tried to maximize the number of outstanding long latency
load misses to increase overall performance by taking advantage of the high bandwidth
memory subsystems of modern processors.

More recent work in the area of MT fetch policies was done by Lakshminarayana and
Kim [75] in the context of Graphics Processing Units (GPUs). GPUs use large arrays
of simple one-way in-order processing cores, many of the SMT fetch policies devised by
Tullsen and others do not apply. Instead current GPUs use fine-grained MT with a Round-
Robin (RR) fetch policy. Lakshminarayana and Kim looked at fetch many different fetch
policies and found that a “Fair” policy was best for heavily threaded applications running
on a GPU. The “Fair” policy kept a count of instructions that had executed on each core, and
the fetch policy biased fetch to threads that had executed the least number of instructions.
This turned out to be the best policy because of the nature of the programs running—highly
independent threads executing until a barrie—and load balancing by tracking number of
instructions executed gave appreciable speedup for these types of applications. As can
be seen there has been multiple works in all the topics covered by this thesis with the
overarching goal of increasing profitable use of parallel systems. In this thesis I will cover
an MT fetch policy in Chapter 6 that shows unfair partitioning of resources among threads

is best.

2.8 Summary

This chapter presented the background and related work in the areas pertinent to this
thesis. The main theme running throughout this work is that managing CMPs running non-
optimal parallel programs with scalability bottlenecks is difficult. The traditional methods
required explicit programmer input to control this management and assumed the programs
were scalable by default. In the past this was a valid assumption due to the small niche
parallel programs used to fill. This is not an adequate solution for general purpose use of
CMPs as required by today’s programs. I propose that dynamic, at runtime management
of CMPs is a solution to better leverage future CMPs for these new types of parallel pro-
grams. The following chapters will present solutions for managing scalability bottlenecks
in general HTM systems, AMPs utilizing HTM, and MT cores with HTM support. In all of

them I propose dynamic runtime management to enable better more scalable performance.

34

CHAPTER 3

Proactive Transaction Scheduling

In this chapter I present and evaluate the “Proactive Transaction Scheduling” technique
for managing contention in HTMs. This chapter expands on the previously published work
from [27]. I present the motivation behind the technique and a more detailed description of
the implementation than from the previously published work. The evaluation section is also
more detailed than the previously published work, offering more analysis and sensitivity
studies. This chapter also provides clarifications to the previously published work on the

operation of the algorithm.

3.1 Motivation

Contention management design is an important consideration when building an HTM
as shown in Chapters 1 indicating contention is a real problem. The goal of an effective
contention manager is to maximize the concurrency of the system by ensuring forward
progress and preventing transactions from repeatedly aborting and restarting due to con-
flicting accesses. Contention is not a large problem in most cases at processor counts of
less than or equal to 8 as shown in Tables 1.1 and 1.2 from Chapter 1. But as systems scale
to higher processor counts (greater than or equal to 16), the problem of contention between
transactions is exacerbated. A common method to handle contention is randomized back-
off. It is an extremely simple and low-cost contention manager. While it works well at
low processor counts, as the number of processors and threads increase, the effectiveness
of randomized backoff rapidly decreases. Referring to Table 1.2, it can be seen that the
conflict rates steadily increase for the STAMP benchmark suite running on an Eager Com-
mit/Eager Conflict Detecting HTM, similar to LogTM [84] using randomized linear back-
off for contention management. For all but the Ssca2 benchmark, contention is a problem

and limits scaling over sequential code. Of particular interest is the Genome and Kmeans

35

benchmarks. For these two, contention becomes a large problem at 16 processors and in
both cases the performance scaling reverses and is worse than the performance at 8 proces-
sors. Likewise for the Intruder benchmark, at 8 processors its performance falls below that
of the 4 processor configuration and at 16 processors this trend continues with performance
dropping to 3x worse than serial performance. Illustrating the effects of contention on an
Eager/Eager HTM is important because Eager/Eager HTMs require less hardware support
than Lazy/Lazy HTMs and perform satisfactorily even though Lazy/Lazy HTMs perform
better in general as seen in work by Shriraman et al. [99]and Tomic et al. [106]. Requir-
ing less hardware is especially important for industry to adopt HTM. Industry will use the
techniques that require the least amount of modification to current architectures to limit the
extra validation effort. This is the most likely explanation behind choosing an Eager/Lazy
HTM implementation—which requires even less hardware support than Eager/Eager—for
the Sun Rock [48] and the AMD ASF proposal [44, 45] even though Eager/Lazy HTM ex-
periences the most contention of all flavors of HTM as seen by Bobba et al. [36]. Finding
more effective contention management schemes is very important as the STAMP bench-
marks are indicative of future transactional applications where the transactions are coarsely

placed more in line with a less than expert programmer.

3.1.1 Programmer Managed Contention Management

One method to reduce contention is to require the programmer (or compiler if available)
to inspect the program and make changes that reduce the size of and minimize potential
conflicting accesses inside a transaction. There are four common programming methods
that can be used to reduce conflicts: Minimizing transaction size, selective cache line mark-
ing, open-nesting and early release. As covered in Chapter 2 this requires the programmer
to inspect each transaction, including all function calls a transaction may contain and an-
alyze it to determine what optimization can be used to shrink the transaction safely. As
shown in Chapter 2, even for inserting into a linked list, these optimizations can be non-
trivial and even different for each type of optimization. If it is required for the programmer
to make such optimizations to get acceptable performance in transactional programs, then
transactional programming is no easier than locks and will become just another tool to use
in the appropriate situation. While having this support built into an HTM would be ben-
eficial for expert programmers and optimizing compilers, more transparent solutions that

offer acceptable performance should be pursued.

36

3.1.2 Reactive Contention Management and Theory

As covered in Chapter 2, automatic methods hidden to the programmer must be devel-
oped to attain acceptable performance in HTMs. One such method is contention managers.
One of the simplest shown in Chapter 2 was reactive contention management. But as seen
Tables 1.1 and 1.2 in Chapter 1, a reactive contention manager fails for the STAMP bench-
marks.

To understand why randomized backoff contention managers may perform poorly, stud-
ies from the network domain that deal with similar problems of contention for a network
link were investigated. In “Performance Analysis of Exponential Backoff” by Kwak et
al. [74], the authors derive a mathematical model of an ethernet system to understand how
it performs as the number of parallel transmitters contending for a shared ethernet wire is
increased. As contention to transmit on the network increases, they found that the probabil-
ity of successful transmission decreased to ~35%. Qualitatively, this is what is seen with
the STAMP benchmarks in Tables 1.1 and 1.2. As the number of parallel transactions in the
system increases, the probability of successfully completing becomes steadily smaller. The
final conclusion of Kwak’s et al. is that randomized backoff is the best solution for a system
that has no knowledge of what is trying to run on a contended resource even though it per-
forms poorly under high contention. However, in the case of transactions the system does
have knowledge of what is contending for shared resources. This opens the possibility for
a better solutions to be designed. The next section will empirically show the existence of
conflict patterns in benchmarks, which motivates the development of a predictor to manage

contention and improve upon randomized backoff.

3.1.3 Conflict Locality

The STAMP benchmark suite is growing in popularity among researchers in the trans-
actional memory field because of its long-term vision of how TM will likely be used in
future applications. Works from Ramadan et al. [91], Bobba et al. [35], Bludell et al. [34],
Dragojevic et al. [50] among others have turned to the STAMP suite to evaluate their sys-
tems. In early TM research, researchers used existing parallel programs from suites such
as SPLASH?2 [110], which were highly tuned parallel codes with very small transactions.
But these are not very representative of future parallel programs because of this high opti-
mization. In contrast, the STAMP suite uses large coarse grained transactions in relatively
poorly tuned parallel code, which is considered more representative of future uses of TM,
i.e. parallel programming for everybody else. This allows researchers to better predict and
solve future problems TMs may face. In particular, the STAMP benchmarks show rising

37

amounts of contention as the number of processors is increased when using a randomized
backoff technique.

In this chapter I propose using prediction of future conflicts between pairs of transac-
tions to avoid contention by scheduling around these predicted conflicts using a software
runtime. I base this proposal off the intuition that seeing conflicts in the past between
transactions is an indicator that the conflicts will continue to happen in the future. The
scheduling technique depends on the number of conflicts experienced by each transaction
to be relatively small and non-random. A unique conflict is a conflict between two critical
sections of separate threads. A non-random and small conflict set would mean the resul-
tant conflict graph seen should not be very dense indicating that scheduling can be done
to avoid pathological contention by disallowing pairs of transactions to run concurrently.
If conflict graph is dense, it could indicate that scheduling would be useless, as there are
too may have future conflicts, meaning the best case is to serialize. In this case, scheduling
would be a high cost backoff algorithm because of the extra overhead scheduling requires
to perform the scheduling decisions and therefore would be likely worse or equivalent to a
simple backoff scheme. To evaluate whether scheduling by using past conflicts to predict
future conflicts is feasible to a first degree, transactions were tagged in the program with a
transaction ID (TxID) that was a concatenation of thread ID and a number assigned to the
transaction in the code. The STAMP benchmarks were then run and all conflicting transac-
tion pairs were recorded. Table 3.1 shows the resulting conflict graph for all tested STAMP
benchmarks. It can be seen that the STAMP benchmarks show a wide range of conflict
patterns, from very sparse conflicts as seen in the Genome and Ssca2 benchmarks to very
dense conflict patterns as seen in Delaunay. This implies that scheduling may be good only
for a subset of benchmarks as it will work to prevent future conflicts by being more aggres-
sive in serializing transactions over randomized backoff managers. A point to note is that
Table 3.1 shows the cumulative conflict graph after a full execution of the benchmarks. It
does not capture the dynamic conflict graph as transactions may go through periods of high
contention and low contention where the conflict graph evolves. This behavior is demon-
strated in the “Adaptive Transaction Scheduling” paper by Yoo and Lee [113], and this
behavior makes the idea of scheduling more promising than the measured conflict graphs
indicate. In the next section I cover the implementation details required to build a Proactive
transaction scheduler that uses the dynamic conflict graph to make predictions about future

conflicts and therefore improve overall performance.

38

Benchmark

|

Tx ‘ Conflict Graph H Benchmark ‘ Tx ‘ Conflict Graph

Delaunay [72] | O: 012 Intruder 0: 0
1: 0123 1: 12
2: 0123 2: 12
3: 123
Genome 0: 0 Ssca2 0: 0
1: 1:
2: 23 2: 2
3: 2
4:
Kmeans 0: 0 Labyrinth 0: 0
1: 12 1: 12
2: 1 2: 12
Vacation 0: 0 Yada 0: 0o 2 4
1: 2
2: 012345
3: 2
4. 0 2 45
5: 2 45

Table 3.1: Conflict Group Set for the transactions in the STAMP Benchmarks.

3.1.4 Proactive Contention Management

As described in Section 3.1.2, the effectiveness of randomized backoff in managing
contention degrades rapidly as the number of cores increases. But, in a TM system we
can determine when there may be contention for resources, and therefore provide smarter
contention management than backoff. I propose scheduling transactions in place of ran-
domized backoff to manage contention in the previous section by looking at generated
conflict graphs of the STAMP applications. This idea leverages two key observations:
most applications that benefit from parallel programming have large problem set sizes and
are mostly throughput oriented, so there should always be another thread ready from the
current program to do other independent work that can be swapped in to allow better for-
ward progress. Another observation that we validate later is that transactions conflict in
predictable patterns and that there is extra parallelism to exploit by swapping threads in-
stead of simply stalling processors and wasting resources. These observations are used to
implement a technique called “Proactive Transaction Scheduling” (PTS) that can extract
better performance dynamically at runtime from an overcommitted CMP system and using
the dynamic conflict graph to make scheduling predictions by predicting conflicts between
transactions. An overcommitted system is key to the PTS technique. By having more

threads than processors, another thread can be swapped in to potentially do other inde-

39

Commit Tx

]
[

cPU 1| [| ™ |
Predict
Schedul
CTilu € Swap Tx Commit Tx Commit Tx
A A M
CPUO| LI =] v [
Predict /Igredict Predict.

Schedule Schedule Schedule
Tx2 T3 Tx2

Time

\

Figure 3.1: Proactive Transaction Scheduling contention management example operation.

pendent work. This in effect hides the latency of serializing transactions, which is a key
contribution of this thesis. Many researchers still assume the number threads will equal
the number of processors which is wasteful when serialization must take place. Figure 3.1
shows a simple example of how PTS will manage contention and improve performance by
adding some overhead at the start and end of each transaction. The example shows a two
processor system trying to execute three transactions. By using the past conflict history,
a scheduler can predict that it is likely that Tx2 and Tx1 will conflict. The scheduler can
suspend the thread trying to execute Tx2, and execute Tx3 (which runs within a different
thread) in its place. This improves performance by performing other useful work in place of
a transaction that is likely to conflict with another concurrently executing transaction. An-
other way to think of PTS is that it is dynamically creating blocking synchronization (locks)
or optimistic synchronization (transactions) when appropriate. Unlike backoff techniques
that stall transactions to avoid conflicts, this technique can bring in new work to maximize
useful computation instead of spending it stalling. Conflict history is also continuously up-
dated so blocking synchronization decisions do not immediately revert back to optimistic

synchronization that would allow conflicts to reoccur.

3.2 Implementation

The PTS contention manager is implemented as a user-space software runtime layer
built on top of an Eager/Eager Transactional Memory system implemented in the M5 sim-
ulator [26] as shown in Figure 3.2. The HTM works in conjunction with the software
runtime to implement PTS. The scheduler is a fully distributed algorithm that each proces-
sor runs in parallel whenever a transaction wishes to begin execution. First, each processor
looks at a snapshot of what transactions are currently executing on the system and gathers
information about conflicts from the global transaction conflict graph stored in memory.
Each processor then locally decides its probability of generating a conflict from informa-

tion derived by these lookups and decides the appropriate course of action: swap in a new

40

TM Application

Requires no input from TM
Software . .
TM Scheduling Logic application. Interacts with OS
™ Schedullng Data Records through pthread calls only
Operating System with Minimal TM support
Multicore SMP system with
Hardware LogTM-SE style HTM Support

Figure 3.2: Hardware/Software stack of our proposed system

thread, stall briefly or begin execution. None of the processors running the scheduling al-
gorithm explicitly communicate their intentions to each other, nor is the system snapshot
necessarily consistent when viewed by multiple processors because it is updated without
using any form of synchronization. While enabling communication or globally consis-
tent snapshots could be beneficial, the synchronization necessary to provide such facilities
would be overly costly. The following subsections describe the pieces that constitute this

system and how they fit and work together.

3.2.1 Hardware Additions

PTS is built assuming an Eager/Eager transactional memory model developed inside the
M5 Full System simulator. The design closely resembles the original LogTM [84] and also
uses signatures like LogTM-SE [111] and details of the base implementation can be found
in a workshop paper [30]. To enable logging the necessary data for the software runtime
additional functionality is added to the CPU, cache controllers and coherent interconnect.

The CPU and interconnect modifications are shown in Figure 3.3 and consist of ad-
ditional registers and an out-of-band data channel which are bolded in Figure 3.3. The
next set of registers are specific to the PTS contention manger, though they could be used
by other contention managers. The 7xID register holds the ID of the currently running
transaction. The TxSize register is updated on transaction commit with the total size of the
RWSet. The final set of registers hold RWSet summaries in the form of Bloom filters [32]
that can be accessed by the software scheduling runtime. To be effective the Bloom filters

have to be large and use efficient hashing functions like the H3 hash functions [39]. The

41

CPU

GP Register Checkpoint
+

TM Ctrl registers

GP
Registers

TxID Register
TxSize Register Required TM
Registers to
ReadSet Bloom Filter support PTS
WriteSet Bloom Filter
a N
Interconnect
»» Address
L1 |+ DCache »P> Data
»» Out of Band: Tx Info
_ W (Conflicting TxID info)

Figure 3.3: Additional registers and interconnect extensions to support proactive schedul-
ing. New additions are bolded.

experiments in this chapter show that sizes between 512bits and 8192bits are effective us-
ing only a single hash bit. Work by Cao Minh et al. [38] also found larger Bloom filters
were better. This thesis assumes that Bloom filters of this size can be built using similar
techniques developed by Yen et al. [112] and Sanchez et al. [95].

The second modification is to the coherent interconnect and the cache controllers.
When the cache has to notify a remote transaction it must abort due to a conflict, the cache
controller first gets the value of the TxID register from the CPU. Then it sends a response
back to the remote processor containing this 7xID over the interconnect as an out-of-band
data response. When the remote cache receives this response, it passes the conflicting 7xID
value back to the remote processor to use to update the conflict information. This conflict-
ing TxID is stored in one of the general purpose registers for direct use by the abort routine

which is immediately vectored to by the CPU when a conflict occurs.

3.2.2 Proactive Scheduling Runtime

The majority of PTS is implemented as a software runtime, as many of the operations
covered in this section would require large amounts of hardware to implement. The soft-
ware runtime is implemented as a user-space thread scheduler. This design was chosen so
the cost of calling into the scheduler at the start of every transaction is minimal. We use the
pthread_yeild () function from the pthreads library provided in Linux to suspend threads
and force the operating system scheduler to execute threads in an order determined by the

42

CPU Status Array

TXID | TXID | TxID | TxID | TxID | TxID | TxID | TxID

Transaction
Stats Table Conflict Tables
. TxID; | TxID, | TxIDs TxID; | TxIDs | TxIDg | TxID;
Txo Stats v X conf conf conf conf conf conf conf

Tx, Stats &——»

TxIDo X TxID, | TxID3 | TxID, | TxIDs | TxIDg | TxIDs
conf conf conf conf conf conf conf

Tx, Stats &——»

TxIDo | TxID, X TxID; | TxID, | TxIDs | TxIDg | TxID;
conf conf conf conf conf conf conf

Tx; Stats o TxIDo TxIDy TxID, X TXID4 TxIDs TxIDg TXID;

conf conf conf conf conf conf conf

TxIDg TXIDy TxID, TxIDs X TxIDs TxIDg TxID

Txs Stats ¢ ¢ conf conf conf conf conf conf
TX5 Stats -
AvgSize
Txe Stats Read_Bloom[]
. Write_Bloom([]
\ Tx_waiting_on
N = — TXIDy | TxID; | TxID,
Tx; Stats . ConflictTable* — > onf conf conf
\
\

Figure 3.4: Data structure representation for an example 8 CPU system.

proactive scheduler. The runtime uses three global data-structures and three main function

routines to implement the distributed PTS algorithm.

3.2.2.1 Data Structures

There are three global data structures used by PTS. These are the CPU Status Array,
Transaction Stats Table, and the Conflicts Table. These data-structures provide the snapshot
of the current transactions executing in the system and the conflict history in the form of a
graph along with other statistics useful for doing scheduling operations in PTS. An example
of the required data structures for an eight processor system is shown in Figure 3.4.

CPU Status Array: The CPU Status array is a globally accessible array that is sized to the
number of processors present in the system. As seen in Figure 3.4, for an eight processor

system the array is of size eight. The array contains the information of the transaction 1D

43

that is currently running on each processor by storing its TxID in that processor’s corre-
sponding entry.

Transaction Stats Table and Conflict Table: The next two data structures hold informa-
tion about each individual transaction and also maintain information about past conflicts
which is represented as a dependency graph using a full matrix representation. The Trans-
action Stats Table is a global table shared by all threads, and each entry in the Transaction
Stats Table has its own Conflict Table which is a row of the conflict graph matrix. Each
Conflict Table entry holds a saturating counter conf that represents the confidence of a con-
flict occurring in the future between a pair of transactions. A Transaction Stats Table entry
stores information such as the AvgSize variable, used to indicate the average historical run-
time of this transaction represented using the overall number of cache lines touched during
execution. The table entry also holds a Bloom filter representation of the most current suc-
cessful commit of the transaction’s RWSet. The purpose of these filters will be covered in
the next section. The Tx_waiting_on variable tracks the most recent remote transaction the
local transaction has serialized behind. Its use will also be covered in more detail later.

In our design, the CPU Status Array is implemented as a fixed sized array which is allo-
cated at program start since the maximum number of processors is known. The Transaction
Stats Table is also allocated at program startup along with the Conflict Tables because the
number of unique transactions that can exist in the system is set at compile time and the
maximum number of TxIDs is passed to the scheduling runtime library at program start.
This requires a rather large memory footprint, on the order of O(N?), but offers an O(1)
time to access any part of the table or conflict graph matrix, reducing the overhead for each
invocation of the scheduler. In our experiments our tables grew to a maximum of S0MB
for benchmarks with a large number of TxIDs. This means that PTS and its accompany-
ing data-structures could only be implemented in software. However, more space efficient
representations can be constructed as data-structures of this size could lead to bad cache

performance due to its shared nature and size.

3.2.2.2 Scheduler Algorithm Implementation

The scheduler has three main routines that form the main portion of the distributed
algorithm. These functions work to schedule transactions, update the conflict graph, update
the current snapshot of executing transactions, and update transaction statistics. The main
functions are scheduleTx (), txConflict () and commitTx () and are described below.
The scheduler is a parallel program in its own right, any of these three routines can be
executed by any or all of the processors concurrently.

scheduleTx(): The scheduleTx () function is called before the start of any transaction and

44

Example 3.1 Schedule Transaction Pseudo Code for the PTS algorithm

1 void scheduleTx (int TxID)

2 {

3 start_schedule_loop:

4 for(int i=0;i<sizeof(cpuStatusArray);i++)
5 4

6 if (i!=ourCPU)

7 A

8 remoteTxID=cpuStatusArray|[i];

9 if (confProb (TxID, remoteTxID) > confThreshold)
10 {

11 logTxWaitingOnVar (TxID, remoteTxID);
12 if (txSizeThreshold >= checkSize (remoteTxID))
13 {

14 doSmallRandomBackoff ();

15 break ;

16 }

17 else

18 {

19 pthread_yield ();

20 goto start_schedule_loop;

21 }

22 }

23 }

24}

25 cpuStatusArray [ourCPU]=TxID;

26 }

is shown in Example 3.1. It is rather simple and works by scanning the CPU Status Ar-
ray for TxIDs that could potentially conflict with the TxID wanting to execute. A conflict
is predicted by indexing into the conflict graph matrix, using TxID as the row index and
the remoteTxID as the column index to get a confidence value. If the confidence value is
below the confThreshold (in the presented experiments the confThreshold is set to 5
and the confidence ranged from O to 10), the algorithm continues scanning, otherwise it
decides how to serialize the transaction. This algorithm greedily picks the first transaction
executing predicted to conflict in an effort to reduce overhead instead of picking the max-
imum confidence value. If a conflict is predicted the function then decides if the predicted
conflicting remote transaction is “small” or “large” by indexing the Transaction Stats ta-
ble. If the transaction is large, which is done by looking at the AvgSize, then the scheduling
function calls pthread_yield () to force the currently running thread to the back of its run

queue in the Operating System (OS). The OS will then swap in a new thread that will try to

45

execute its transactions. Large transactions are set as greater than 10 cache lines in size in
the experiments presented later in this chapter. Upon return from pthread_yield(), the
function jumps to the beginning of the scheduling function and re-executes the scan of the
CPU Status Array. If the remote transaction is predicted to be small then a simple random
backoff is initiated to stall the current local transaction for a short while before letting it ex-
ecute without re-executing the scan of the CPU Status Array. This is done because calling
pthread_yield() is expensive and unnecessary when predicting it necessary to serialize
behind short remote transactions. This feature also makes the scheduler more optimistic
than if it stalled and then re-executed the scan of the CPU Status Array. When the local
transaction predicts it does not conflict with any other running remote transaction in the
system, it sets its TxID in the CPU Status Array and executes.

It is important to note that all the processors could begin running this routine at the
same time because it is a distributed algorithm. Because there is no explicit synchroniza-
tion or communication among processors i.e. locks or message passing, the scanning of the
CPU Status Array may yield stale information as the processors running the routines are in
a benign data race to complete their scans and update their respective entries in the CPU
Status Array. This may lead to unintended conflicts because each processor may schedule
conflicting transactions without realizing it due to inconsistent views of the CPU Status
Array caused by these data races. Still, this is desirable over inserting synchronization to
only allow one writer at a time to the CPU Status Array because the cost of such synchro-
nization is high and deadlock is not an issue. On the other hand, starvation could happen
if a pathological condition happened where all processors predicted no conflict, and kept
conflicting because they did not see updates to the CPU Status Array because of this race

condition. Throughout the experimentation no issues with starvation were experienced.

Example 3.2 Conflict Handling Pseudo Code for the PTS algorithm

oid txConflict(int TxID,int confTxID)

1

2

3 cpu_status_array [ourCPU] = NO.TX;

4 incConflictProb (TxID, confTxID);

5 incConflictProb (confTxID, TxID);

6 if (txSizeThreshold >= checkSize (confTxID))
7 doSmallRandomBackoff ();

8

}

txConflict(): When a transaction conflicts with another transaction, the transaction is first
rolled back. Then the txConflict () routine as shown in Example 3.2 is called to update

the conflict graph matrix of the transaction pair that conflicted. The routine accesses each

46

transaction’s Conflict Table and looks in the entries for the respective TxIDs. The conflict-
ing TxID is obtained as discussed in Section 3.2.1, the processor stores the ID in a general
purpose register that can be accessed by these routines easily. If the conflict has never been
seen before, the confidence is initialized to a default value (in the presented case the de-
fault value is set to 5, and the counter saturated at 10), otherwise the confidence counter is

incremented by one.

Example 3.3 Commit Transaction Pseudo Code for the PTS algorithm

1 void commitTx(int TxID)

2 {

3 updateBloom (TxID);

4 updateAvgSize (TxID);

5 cpu_status_array [ourCPU] = NO.TX;

6 int TxWaitingOn = checkWasSerialized (TxID);
7 if (TxWaitingOn! = NO_TX)

8 {

9 if (intersectBlooms (TxID, TxWaitingOn))
10 incConflictProb (TxID, TxWaitingOn);
11 else

12 decConflictProb (TxID, TxWaitingOn);
13 }

14 }

commitTx(): On commit, transactions call the commitTx () function which is shown in
Example 3.3. In this function statistics such as average size and the current bloom filter
are updated for the transaction in its entry in the Transaction Stats Table. First the thread
erases its entry in the CPU Status Array. Next the thread saves its current Bloom filters.
Finally the committed transaction checks to see if it had been waiting on another transac-
tion sometime in the past by checking the TxWaitingOn variable in its Transaction Stats
Table entry. If it was serialized behind another transaction, it obtains the most current
Bloom filters from the table entry pointed to by TxWaitingOn to compare against its own.
If the two Bloom filters intersect, the thread increments the confidence of conflict with that
transaction by one, otherwise it decrements the confidence by one. This last part using
Bloom filters to update confidence is vitally important as it is the method by which transac-
tions can be identified that have diverged and can predict that they will no longer conflict,
thereby allowing pairs of transactions to resume using optimistic synchronization instead
of pessimistic synchronization. This allows the conflict graph witnessed during execution
to evolve.

The commitTx () is an interesting function and exposes some properties of Bloom filters

47

that have to be discussed as the operation is fundamentally different than those traditionally
used with Bloom filters. Bloom filters are primarily used to test set inclusion, meaning that
an element is hashed to a value that is then intersected with the Bloom filter that represents
the entire set. The hash used usually sets multiple bits to reduce the chance of false positives
when testing set inclusion. In fact, the basic probability theory behind Bloom filters states
that setting more hash bits is better when testing set inclusion, this is also found by Sanchez
et al.’s [95] studies. On the other hand, the operation being conducted by the commitTx ()
function is a set intersection function, two fully populated Bloom filters are being bitwise
ANDed together instead of a single element hash bitwise ANDed to a Bloom filter. In
this case, setting more bits per entry into the filter is counter productive. As stated in
Section 3.2.1, the Bloom filters use only use 1 hash bit per entry to reduce false positives
for set intersection. This reduction in false positives is caused by the sparseness of a large
Bloom filter using only 1 bit per entry in the Bloom filter representation of a set. If more bits
were used per entry in the Bloom filter the likelihood of an intersection operation returning
common bits is more probable. Because the Bloom filter retains no information as to which
element each bit corresponds to, it cannot be determined if the returned intersected bits are
an actual entry in common between the two filters or a false positive composed of bits from
multiple entries. This can be explained mathematically in the following equations which
are derived originally in [32].

Equation 3.1 shows the approximate probability that any single bit in a Bloom filter is

still O after inserting n elements using k hash functions for a Bloom filter of size m.

Ph=em 3.1

This can be used to derive the probability of at least one common bit being set in two
Bloom filters that may or may not contain a common element. The probability of this is

shown in Equation 3.2.

—kmy
Pipitintersects = 1 — (e ")knz (3.2)

The above equation is also the probability of the Bloom filter intersection operation used
in the commitTx () returning true for a Bloom filter using just one hash function k = 1. This
equation can be generalized for any number of k£ by accounting for the situations where the
intersection operation returns less than k bits in common, signifying no intersection. This

is presented in Equation 3.3.

48

09 +

o
o
f

I
~
f
X
k.

o
=)

o4
o)

N
S

2
3

o
w

Probability Bloom filter Intersection returns positive

©
N

01 |47

0 } t } }
0 50 100 150 200 250 300
Number of Addresses hashed into Bloom filter

Figure 3.5: Probability of an intersection returning elements in common for a 8192bit
Bloom filter being intersected with another 8192bit Bloom filter that has 50
addresses hashed into it with number of hashes (k) set to 1, 2, 4, and 8.

—ent)i(en!

Pintersection = 1 — e ’” knz Z knz)(knz—j) 3.3)

Using Equation 3.3, Figure 3.5 is generated for intersecting two 8192bit large Bloom
filters with one having only n = 50 addresses hashed, and the other with a varying n entries
hashed into the filter. As shown in the figure, kK = 1 is the best number of hash functions

when performing an intersection operation between Bloom filters.

3.2.3 Proactive Scheduling Runtime Optimizations

During the development and testing of the PTS contention manager, various optimiza-
tions were made to further enhance performance. Two specific optimizations were found.
One optimizes the behavior of small transactions (transactions touching less than 10 cache
lines in their RWSet), and the other makes predictions more optimistic for specific transac-

tions in code that display random behavior.

49

3.2.3.1 Small Transaction Optimization

As described in the previous sections, the PTS algorithm is written completely in soft-
ware, and therefore adds overhead to the start and end of every transaction. If the transac-
tion is small, on the order of less than 10 cache lines, then it is advantageous to minimize
overhead as much as possible. Small transactions are unlikely to cause long lasting con-
flicts and should be able to be predicted more optimistically. Small transactions short-cut
the prediction mechanisms using a contention pressure variable in a similar fashion to the
ATS technique from Yoo et al. [113]. The contention pressure variable is stored in each
transaction’s entry in the Transaction Stats Table. When a conflict is detected, then the
contention pressure value for the transaction is incremented. When a small transaction
commits, it decrements the pressure value which in effect is predicting that conflicts are
becoming less likely. On transaction begin, the contention pressure value is checked for
small transactions and if the pressure value is below a threshold, the transaction is allowed
to immediately begin execution omitting the scan of the CPU Status Array. If the con-
tention pressure value is high, the transaction performs the normal scheduling operations

as covered in the previous sections.

3.2.3.2 Splitting Transaction IDs for Hard to Predict Large Transactions

In some benchmarks, certain transactions conflict in random patterns that are not as
predictable due to the data-structures that they perform operations on. These benchmarks
are the Delaunay, Vacation and Yada benchmarks. One of the common factors these bench-
marks have is a dense conflict graph as seen in Table 3.1, as well as working on large data
structures that exhibit random transient conflict patterns that should be predicted optimisti-
cally. The Delaunay benchmark works on a graph data-structure representing a large 2D
mesh of triangles that is refined by creating new triangles. Each iteration of the Delaunay
algorithm works in a random location of the data-structure. Even though conflicts are com-
mon during this benchmark they are primarily transient. For the Vacation benchmark, the
application builds a large Red-Black tree during execution. As the tree grows, operations on
it become more disjoint and less likely to conflict and should be treated more optimistically.
The Yada benchmark is very similar to the Delaunay benchmark. It also works on a large
graph data-structure representing a 2D mesh of triangles. Like the Delaunay benchmark,
operations in Yada experience many conflicts but they are transient in nature.

To counteract pessimistic over-serialization that can happen in PTS for transient conflict
patterns, I found that splitting transaction IDs can be used to make predictions more opti-

mistic. Splitting transaction IDs consisted of mapping a single transaction to more entries in

50

the Transaction Stats Table and Conflict Table. As the program executes transactions using
split IDs, PTS rotates through the extra entries using different prediction data for subse-
quent predictions. Doing so effectively causes resets of the confidence values periodically
to allow for more optimistic predictions when dealing with transient conflict patterns. I
show in section 3.3.4.2 that this technique works well for these particular benchmarks. The
main problem with this technique is it required familiarization with the algorithms studied
to determine that this optimization was applicable. Therefore it is not a general technique.
Chapter 4 formalizes methods to identify and take advantage of this type of transaction
behavior automatically. Originally the idea behind splitting transaction IDs was more ap-
plication specific. It involved using program specific data to construct transaction IDs that
would implicitly contain conflict information. An example would be the location in the 2D
mesh to be modified by a transaction in the Delaunay application. Transaction IDs that
were sufficiently far apart numerically would imply a conflict was not likely. This idea
was very similar to the Transaction Executor idea proposed by Bai et al. [22]. Similarly to
Bai’s work, this method is not portable even within the same applications if the input data

changes.

3.2.4 Hybrid Proactive Scheduling

A lightweight hybrid Backoff/PTS scheme was also developed to account for low con-
tention cases where the PTS algorithm could be too expensive. This is shown in Section 3.3
with the Ssca2 benchmark. The hybrid scheme starts using backoff as its contention man-
ager. During execution it keeps track of the global conflict rate by tracking two global
counters that are incremented atomically: number of transactions began and number of
conflicted transactions. If the conflict rate reaches a preset threshold (5% in the presented
tests), it switches to using PTS instead of backoff for the remainder of benchmark execu-
tion. This hybrid implementation contains no method to switch between backoff and PTS

dynamically, but in Chapter 4 I cover an algorithm that is capable of doing so.

3.3 Evaluation

3.3.1 Simulation Environment and Benchmarks

To evaluate the PTS contention management technique I used the M5 Full System sim-
ulator modified to implement a custom version of LogTM. PTS is evaluated using the
STAMP [37] suite modified to operate with MS5’s version of transactional memory. The

STAMP benchmarks, descriptions and input parameters are presented in Table 3.2. All

51

Benchmark Version | Description and Parameters
Delaunay [72] | v0.9.2 Refines a 2D mesh of triangles using Delaunay refinement. Input
“-1 inputs/large.2 -m30 -t64”

Genome v0.9.2 Genome sequencing benchmark. Input “-g4096 -s32 -n524288
-t64”

Kmeans v0.9.2 Kmeans clustering algorithms. Input “-m20 -n20 -t0.05 -i input-
s/random50000_12 -p64”

Vacation 0.9.2 Simulates a multi-user database, modeled as a Red-Black tree.
Input “-n8 -q10 -u80 -r65536 -t131072 -c64”

Intruder 0.9.10 Signature-based network intrusion detection benchmark that cap-

tures and reassembles packet streams for scanning. Input “-al0
-132 -n8192 -s1 -t64”

Ssca2 0.9.10 An efficient graph construction algorithm using adjacency arrays
and auxiliary arrays. Input “-s15 -11.0 -ul.0 -13 -p3 -t64”

Labyrinth 0.9.10 A transactional version Lee’s routing algorithm[78] through a
maze. Input “-i inputs/random-x96-y96-z3-n128.txt -t64”

Yada 0.9.10 "Yet Another Delaunay Algorithm’ for refinement of a 2D mesh

of triangles, uses a different algorithm from the other Delaunay
algorithm implementation. Input “-i inputs/large.2 -m30 -t64”
*The Bayes benchmark is not evaluated because of its non-deterministic finishing con-
ditions as noted in [37], which makes direct comparisons between contention managers
inconclusive

Table 3.2: STAMP Benchmark descriptions, version used, and input parameters.

STAMP benchmarks except the Bayes benchmark are tested. Bayes is not tested because
it has non-deterministic finishing conditions. The input sets used are not standard but are
between the recommended simulation input sets and the input sets recommended for na-
tive hardware execution. Also to note is that all the simulation input parameters specify
an over-committed system where there are more threads than processors. This is required
by the PTS technique as specified in the motivation and implementation sections. These
benchmarks stress the TM system, especially the contention manager as they can suffer
high contention. Statistics are collected only during the parallel phase of each benchmark.
For the Labyrinth benchmark, the code is modified to perform the grid copy outside of the
transaction as has been done by others. This allows some parallel scaling as unmodified it
operates serially.

The simulation parameters are presented in Table 3.3. The system used to evaluate the
PTS proposal assumes an aggressive 16-core CMP system with a large amount of cache.
As transistor budgets continue to grow, the proper balance between cores and cache space
is still an open question. As seen by the contention experienced in the STAMP bench-

marks, a large number of cores may not be the optimal solution as many of the applications

52

Feature Description

Processors 16 one IPC Alpha cores @ 2GHz

L1 Caches 64kB, 1 cycle latency, 2-way associative, 64-byte line size

L2 Cache 32MB, 32 cycle latency, 16-way associative, 64-byte line size

Interconnect Shared bus at 2GHz

Main Memory 2048MB, 100 cycles latency

Linux Kernel Modified v2.6.18

Contention Managers | Randomized Linear Backoff, PTS, PTS-Backoff Hybrid

Signature Size 512bit-8192bit for PTS commit routines, perfect signature used for
conflict detection.

Table 3.3: M5 Simulation Parameters.

have problems scaling to a modest system size of 16 cores. In this light, dedicating more
die area to cache would be more beneficial. This trade-off is one of the reasons the sys-
tem studied in M5 is designed the way it is. In this Chapter, I test a Randomized Linear
Backoff contention manager against the proposed PTS and PTS-Backoff Hybrid contention
management techniques.

Parallel programs can also show noticeable runtime variation due to interleavings of
synchronization operations that cause different executions paths to be followed as shown
by Alameldeen and Wood [16]. Therefore, the simulations are run multiple times using
small random perturbations to the memory system to get a stable runtime average.

As seen in the previous section, there are many parameters that could be potentially
investigated for sensitivity in the PTS technique. Because of the size of the search space,
multiple parameters remain fixed while others are varied. Here I list out the parameters and
specify which are fixed, and which will be studied in more depth by performing sensitivity
tests: 1) Minimum, Maximum confidence values and conflict threshold - fixed to 0, 10 and
5 respectively. 2) Confidence increment/decrement value - fixed to increment/decrement
by 1 when confidence is modified. 3) Small transaction threshold - fixed to 10 cache lines
(approximately double the size of queue/dequeue operations in STAMP benchmark suite).
4) Bloom filter size - variable between 512bit-8192bit, uses k=1 H3 [39] hash function.

3.3.2 Performance Analysis

This section presents a performance analysis of PTS and the PTS-Backoff Hybrid con-
tention managers as compared to a reactive randomized linear backoff contention man-
ager for an Eager/Eager LogTM like HTM. The performance results are presented in Fig-
ures 3.6, 3.7 and Table 3.4. Figure 3.6 presents the speedup seen for a 16 core system over

a 1 core system running the same benchmark. Figure 3.7 presents the percent difference

53

12
Backoff

HPTS
M PTS-Backoff Hybrid

T

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks

10

Speedup

Figure 3.6: Overall best attainable performance of PTS and PTS-Backoff Hybrid compared
to Backoft for a 16 processor system.

Backoff | PTS PTS-Backoff
Hybrid

Delaunay 73.4% | 26.6% 26.7%
Genome 49.7% 1.8% 1.7%
Kmeans 20.6% 3.7% 3.4%
Vacation 10.3% 8.5% 8.0%
Intruder 70.1% 7.5% 9.9%
Ssca2 <0.1% | <0.1% <0.1%
Labyrinth 182% | 21.5% 29.2%
Yada 54.6% | 27.8% 21.8%

Table 3.4: Contention experienced for each contention management technique: Backoff,
PTS, and PTS-Backoff Hybrid for a 16 processor system.

seen between Backoff and the PTS contention managers. Table 3.4 shows the percentage
of conflicts seen for each contention management scheme. All the results in this section
are presented using the best performing combination of Bloom filter size (512bit - 8192bit)
and applied optimizations (small transaction short circuiting from Section 3.2.3.1 and split
transaction ID optimizations from Section 3.2.3.2). Later sections will present sensitiv-
ity studies to provide a full picture as to the effects of these optimization and parameter
choices.

The Randomized Linear Backoff contention manager performs the worst out of all
the contention managers on average as seen in Figures 3.6 and 3.7. In the benchmarks

Genome and Intruder the performance at 16 processors has become worse than serial. The

54

1220 1360 293 288
250

uPTS

M PTS-Backoff Hybrid
200

=
w
o

Percent Improvement
=
o
S

w
o

. M-

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada AVG

T

-50

Benchmarks

Figure 3.7: Percent difference of PTS and PTS-Backoff Hybrid over Backoff for a 16 pro-
cessor system.

worse than serial performance highly correlates to large amounts of contention seen for the
Backoff contention in Table 3.4. The other benchmarks that experience high contention
such as the Delaunay and Yada benchmarks see very little scaling but the performance
is not pathologically bad by dropping below serial performance. Backoff is still a use-
ful contention management policy for very low contention benchmarks such as the Ssca2
benchmark which has very small transactions. For this case Backoff is the best policy as it
incurs almost no overhead except in the rare case of a conflict. Ssca2 shows poor scaling
not due to contention but instead due to poor memory layout and caching characteristics.
L1 data cache misses exceeded 10% in the case of Ssca2. This thesis does not address
such issues but numerous researchers are actively looking into efficient memory hierar-
chy management and program layout to solve problems such as what is seen in the Ssca2
benchmark. The Labyrinth benchmark also performs best using the Backoff policy. This is
due to Labyrinth having very random conflicts that are hard for PTS to predict properly.
The PTS contention manager performs very well compared to Backoff, attaining an
arithmetic average performance improvement of 209% over Backoff as seen in Figure 3.7.
The performance gains seen are highly correlated to the large reduction in contention as
shown in Table 3.4. PTS is able to reduce this contention by an order of magnitude for
benchmarks like Intruder that see very high contention when using a reactive backoft based
contention manager. In general PTS allows benchmarks that appear to have limited scal-
ability such as the Delaunay benchmark to almost double their performance to better use
a 16 processor CMP. PTS also shows that using scheduling and predicting conflicts pre-

vents pathological contention causing less than serial performance as in the Genome and

55

Intruder benchmarks. By eliminating the pathological contention case in Genome, this par-
ticular benchmark shows a decent amount of scalability. In the case of Intruder, PTS gets
some performance, but the benchmark appears to have limited scalability in general, but
PTS is able to deal with this and schedule accordingly to prevent worse than serial perfor-
mance. One of PTS’s main drawbacks is the overhead it incurs on every transaction. In the
case of benchmarks like Ssca2 which see limited amounts of contention this overhead is
unnecessary, and therefore performance is less than low overhead techniques like Backoff.
In the case of Labyrinth, PTS has a hard time making good decisions due to the benchmark
characteristics and the small number of transactions it runs, limiting the amount of time
the system gets to learn conflict patterns. In these cases where PTS loses, the amount of
performance lost is small.

The PTS-Backoff Hybrid contention manager attempts to solve the one main problem
PTS has and that is overhead on transaction begin by turning off PTS unless a high conflict
rate is detected, for these experiments a high contention rate was set as 5% as seen by all
transactions. This leads to an overall average improvement over backoff of 231%. For the
Ssca2 benchmark, this gains back some performance as seen in Figures 3.6 and 3.7. The
slight performance loss is due to PTS-Backoff Hybrid still having to do a small number of
operations every transaction begin to track a global contention rate while Backoftf does no
operations on transaction begin. In general PTS-Backoff Hybrid performs similar to PTS
for the rest of the benchmarks due to their contention rates being high from the beginning,
so PTS is on for the majority of execution time in the other benchmarks. In the Yada bench-
mark, PTS-Backoff Hybrid sees a sizeable performance gain. Examination of where time
is spent between PTS and PTS-Backoff Hybrid help to explain the performance differences

and is covered in the next section.

3.3.3 Execution Time Breakdown

This section provides analysis of where the PTS and PTS-Backoff Hybrid algorithms
spend execution time and a detailed accounting of the overheads incurred. Figure 3.8 shows
the overall runtime normalized to a single processor execution and how that time is spent.
Figure 3.9 shows the proportion of time spent in each type of execution time category.
These categories are the following: 1) Non-Trans - Time spent in user mode that is not
inside a transaction or related to scheduling a transaction, 2) Kernel - Time spent operating
in the Linux kernel, 3) Trans - Time spent executing in a transaction, this counts both
committed and aborted transactions, 4) Abort - Time spent rolling back a transaction’s
write set, 5) Escape - Time spent suspending a transaction to service PAL code operations,

like filling a TLB miss, 6) Sched Begin - Time spent executing the scheduleTx () function

56

PTS-Backoff Hybrid l_ B Non-Trans
: m Trans
P sackoft yorid |
M Abort
ers | = Escape
p1s-Backoff Hybrid [Sched Begin
s sehed Aor
Sched Commit
pTs-Backoff Hybrid [T
ers |
PTs-Backoff Hybrid [
ers [
p1s-Backoff Hybrid |
ers [N
pTs-Backoff Hybrid [
ers |
PTS-Backoff Hybrid ||
ers [

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized Execution Time

Delaunay| Genome | Kmeans Vacation Intruder | Ssca2 |Labyrinth Yada

Figure 3.8: Breakdown of where time is spent in the PTS and PTS-Backoff Hybrid predic-
tors normalized to single core performance.

of PTS, 7) Sched Abort - Time spent executing in the txConflict () function, 8) Sched
Commit - Time spent executing in the commitTx () function.

As can be seen in both Figures 3.8 and 3.9 all the benchmarks except for the Kmeans
and Ssca2 benchmarks spend a large portion of time executing in transactions as was the
original design goal of the STAMP benchmark suite. Both PTS and PTS-Backoff Hybrid
techniques spend a fair amount of time in “Sched Begin”, indicating that the runtime is
spending execution time predicting if execution can proceed. This implies that there is
room here for optimization of PTS operations to allow for more performance to be ex-
tracted. Hardware acceleration may be valuable for this operation. The Intruder bench-
mark in particular spends almost all of its execution time predicting if a transaction should
be scheduled to run. The “Sched Abort” and “Sched Commit” categories are smaller by
comparison, indicating that these are fairly well optimized. This trend holds except for in
the Kmeans benchmark. The reason this benchmark spends more time in “Sched Abort”
and “Sched Commit” is because the scheduling functions short circuit the scheduling be-
cause it has a large number of small transactions that do not need full scheduling support.

For all the benchmarks except Yada, Genome and the Ssca? benchmarks, PTS and
PTS-Backoff Hybrid are almost equivalent in performance. The Ssca2 benchmark makes
sense because there is almost no contention, and therefore PTS is turned off for the entire
benchmark, but the cache problems remain. This hurts the performance of Ssca2. There
is also some load imbalance caused by heavy use of barriers and the fact the system is

overcommitted. A non-overcommitted system solves the scaling problems for this partic-

57

PTS-Backoff Hybrid

PTS-Backoff Hybrid
PTS

PTS-Backoff Hybrid

: m Non-Trans

PTS-Backoff Hybrid

H Kernel
PTS M Trans

PTS-Backoff Hybrid W Abort

W Escape

PTS
1 Sched Begin

PTS-Backoff Hybrid m Sched Abort
PTS Sched Commit
PTS-Backoff Hybrid
PTS

PTS-Backoff Hybrid

©
3
g
=
£
2
‘=
s
2
2
]
~
3
i
2
3
-
(7}
o°
S
H
2
£
c
S
2
B
b}
>
"
2
5
3
£
~
Q
£
=}
=
Q
o
S
B
2
=1
E
°
o

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Execution Time Distribution

Figure 3.9: Distribution of where time is spent in the PTS and PTS-Backoff Hybrid predic-
tors, each benchmark is normalized to its own runtime.

ular benchmark which can be seen in Appendix A. The Genome benchmark gets a large
boost when using PTS-Backoff Hybrid over PTS due to spending less time in both “Sched
Begin” and “Sched Commit”. This is due to at the beginning of the Genome benchmark
it spends time inserting elements into a hash table. These operations are very parallel and
small transactions that do not need the overhead of the full PTS algorithm. During this
phase, PTS-Backoff Hybrid keeps PTS turned off until later, allowing better performance
from executing less code. The Yada benchmark also performs better using PTS-Backoff
Hybrid over using PTS. This appears to be happening due to spending less time in the ker-
nel. Because PTS uses pthread_yield() to enforce scheduling decisions, this requires
a switch into kernel mode to invoke the thread scheduling routines to swap threads. If
pthread_yield() is used many times, it will affect the amount of time spent in the ker-
nel, and it appears that PTS-Backoft Hybrid is calling pthread_yield() less, and is the
main cause for better performance along with a lower contention rate. Overall both tech-
niques perform almost the same, and spend time in roughly the same time categories. For a
PTS-Backoff Hybrid to be more effective, methods to turn it on and off dynamically during
runtime will be required.

Tables 3.5 and 3.6 shows the average number of cycles a transaction spends performing
scheduling operations and executing the transaction for PTS and PTS-Backoff Hybrid re-
spectively. The tables also provide the percent overhead PTS incurs per committed transac-

tion. The components that constitute scheduling overhead are the cycles spent in the kernel

58

Delaunay Genome Kmeans Vacation

Transactional 1237 361 12 701
Kernel 24 297 15 248
Sched Begin 808 308 7 201
Sched Abort 166 1 62 7
Sched Commit 305 64 19 57
Total 1303 670 103 513
(w/o Kernel) (1279) (373) 94) (265)
Percent Overhead 105% 186% 858% 73%
(w/o Kernel) (103%) (103%) (733%) (38%)
’ | Intruder Ssca2 Labyrinth Yada ‘
Transactional 79 12 775063 1466
Kernel 11 238 312659 178
Sched Begin 721 6 26525 747
Sched Abort 3 0 26 78
Sched Commit 55 14 71 66
Total 790 258 339281 1069
(w/o Kernel) (779) (20) (26622) (891)
Percent Overhead 1000% 2150% 44% 73%
(w/o Kernel) (986%) (167%) (3%) (61%)

Table 3.5: Amount of scheduling overhead experienced in cycles per transaction commit
for PTS.

due to calls to pthread_yield(), and cycles spent executing the PTS runtime functions.
Numbers are presented that include both cycles in the kernel and cycles of overhead with
the kernel cycles omitted because in the case of Ssca2 the kernel time is caused primarily by
load imbalance. For both PTS and PTS-Backoff Hybrid the amount of overhead incurred
is fairly high. In many cases the amount of time spent performing contention management
operations is greater than the average time spent executing a transaction. The highest seen
is in the Intruder benchmark where the benchmark spends 10x more time performing con-
tention management, but as seen this allows for the program to maintain better performance
than Backoff. Other benchmarks see the cost of scheduling to be between 50% and 200%
of the execution time of a transaction. This is still very high in terms of overhead cost, and

reducing the amount of time spent performing PTS operations is desirable.

3.3.4 Sensitivity Studies

To better understand the effect of the different optimizations and parameters available
to the PTS and PTS-Backoff Hybrid contention managers a series of sensitivity studies are

performed to better understand the effects. These studies include looking at the sensitivity

59

Delaunay Genome Kmeans Vacation

Transactional 1236 361 13 696
Kernel 23 278 14 220
Sched Begin 825 257 9 205
Sched Abort 170 3 65 11
Sched Commit 302 37 20 57
Total 1320 575 108 493
(w/o Kernel) (1279) 297) (94) (273)
Percent Overhead 107% 159% 831% 71%
(w/o Kernel) (105%) (82%) (723%) (39%)
’ | Intruder Ssca2 Labyrinth Yada ‘
Transactional 81 12 798475 1253
Kernel 13 233 273098 29
Sched Begin 677 11 23499 625
Sched Abort 41 0 491 76
Sched Commit 57 0 16 51
Total 788 244 297104 781
(w/o Kernel) (775) (11 (240006) (752)
Percent Overhead 973% 2033% 37% 62%
(w/o Kernel) (957%) (92%) (3%) (60%)

Table 3.6: Amount of scheduling overhead experienced in cycles per transaction commit
for PTS-Backoff Hybrid.

of the PTS managers to the “Small Transaction” short circuiting optimization, the “Split
Transaction ID” optimization for applicable benchmarks, Bloom filter size sensitivity and
finally how the benchmarks behave if perfect hardware could be constructed to determine

latency sensitivity of PTS.

3.3.4.1 Small Transaction Prediction Optimization

The small transaction prediction optimization was implemented to allow small transac-
tions to short circuit the scheduling algorithm to reduce overhead and allow more optimistic
predictions for small transactions. Figure 3.10 shows the performance differences in terms
of overall speedup for a 16 core system using PTS that has no such optimizations ap-
plied (neither the small tx optimization nor the split ID optimization). The Kmeans bench-
mark sees the biggest gain from using the small transaction optimization, improving from
a speedup of ~7x to close to a speedup of ~10x on a 16 processor CMP. The other bench-
marks see limited gain from this optimization. The Ssca2 benchmark does show some gain,
but the difference is not nearly as large as than seen by the Kmeans benchmark. Overall,

PTS is rather insensitive to this optimization unless the benchmark runtime is dominated

60

12

M PTS No Opt
M PTS Opt

PTS-Backoff Hybrid No Opt
M PTS-Backoff Hybrid Opt

10

Speedup
()]

0 T T T T

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks

Figure 3.10: Speedup of PTS and PTS-Backoff Hybrid using the Small Transaction Opti-
mization compared to No Optimization for a 16 processor system.

by small transactions that have some contention that would benefit from cutting down on

overhead as much as possible such as Kmeans.

3.3.4.2 Splitting Transaction ID

The second optimization that was covered in Section 3.2.3 was allowing a single trans-
action to use more IDs to approximate the act of resetting the confidence of conflict be-
tween other transactions in an effort to optimize in the case of transient conflicts. This
optimization was applied only to the Delaunay, Vacation and Yada benchmarks as they
were the only applications to show this tendency from experimentation and inspection of
the code. Figure 3.11 shows the sensitivity of these three benchmarks to this optimization
when compared to just PTS using the small transaction optimization. As can be seen this
gets gains on all three benchmarks, the most significant gains are seen for the Vacation and
Yada benchmarks. For the Vacation benchmark, this optimization almost doubles its perfor-
mance. This happens because using extra transaction IDs allows PTS to capture the conflict
patterns better as the Red-Black Tree evolves during the execution of the benchmark. Yada
sees an even greater improvement, improving from practically serial execution for both
PTS and PTS-Backoff Hybrid to speedups of ~5x and ~6x respectively. This shows that
the PTS technique is very sensitive to transactions that have transient conflicting behavior.
It can be overly pessimistic in these cases. Still, this method of splitting transaction IDs
is non-portable. In the next Chapter I present new methods that can deduce this behavior

automatically.

61

M PTS Small Tx Opt

M PTS Split Tx Opt
PTS-Backoff Hybrid Small Tx Opt

M PTS-Backoff Hybrid Split Tx Opt

Speedup

Delaunay Vacation Yada
Benchmarks

Figure 3.11: Speedup of PTS and PTS-Backoff Hybrid using the Split Transaction ID opti-
mization over Small Transaction Optimization for the Delaunay, Vacation and
Yada benchmarks.

3.3.4.3 Bloom Filter Size Sensitivity

Another test performed was to measure the sensitivity of prediction to the Bloom filter
sizes used. I measured sensitivity from a size of 512bit to 8192bit for the Bloom filters.
The results are presented in Figures 3.12 and 3.13 for the PTS and PTS-Backoff Hybrid
predictors respectively.

For PTS, it shows a very clear sensitivity to Bloom filter size. But, each benchmark
is affected differently depending on its characteristics. The Delaunay benchmark prefers
larger bloom filters, and performance steadily increases as larger filters are used. The De-
launay benchmark benefits from improved predictions and can amortize the cost of manip-
ulating a large 8192bit Bloom filter. For the Genome benchmark, it sees a gradual increase
in performance until a Bloom filter size of 2048bits and then performance declines as the
larger Bloom filters cost more in terms of execution time to manipulate. For the Kmeans,
Vacation, Intruder and Ssca2 the smallest Bloom filter size of 512bits performs the best.
This is because these benchmarks are very sensitive to scheduling overheads incurred by
PTS. The Labyrinth and Yada benchmarks appear to be mostly insensitive to Bloom filter
size and no one size appears to be the absolute best. Both of these benchmarks have large
transaction sizes that can amortize the cost of doing the Bloom filter manipulations.

For PTS-Backoff Hybrid the picture is a little different when the contention manage-
ment schemes are able to switch between Backoff and PTS. The Genome benchmark shows

a less than clear trend. The same happens with the Vacation benchmark. This is due to the

62

12 ,
m 512bit

m 1024bit
2048bit

10

M 4096bit
= 8192bit

Speedup

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks

Figure 3.12: Sensitivity to Bloom filter size for PTS for a 16 processor system for best
performing configuration.

effects of delaying switching to PTS, and the prediction confidence values are changing
slightly to affect performance. Other trends remain unchanged, the Delaunay benchmark
still prefers the largest Bloom filter that is available, the Kmeans and Intruder benchmarks
still want to use the smallest Bloom filter to reduce overhead as much as possible.

One of the concerns with this sensitivity test is the benchmarks disagree over the what
the optimal Bloom filter size is. Some applications prefer a large Bloom filter while some
want the smallest Bloom filter available. The performance difference can be quite large,
like in the Kmeans benchmark, performance goes from ~9.5x speedup with a 512bit Bloom
filter to a ~7x speedup if a 8192bit Bloom filter is used. This implies a Bloom filter needs
to ideally be variable in size. This should be possible, but a solution to this is not addressed

in this thesis and is assumed to be available throughout the rest of this document.

3.3.4.4 Sensitivity to Prediction Overhead

One of the shortcomings of PTS and PTS-Backoff Hybrid is that the technique is im-
plemented entirely in software. As seen in Section 3.3.3, the overhead imposed by PTS
can be very high on a per transaction basis, in some cases adding 2x-10x more cycles to
the execution time of the transaction. A final sensitivity experiment I ran was to test the
sensitivity of the benchmarks to prediction latency, e.g. the time it takes to make a decision
whether to suspend or execute and also the time it takes to manipulate the bloom filters on
commit. The execution time of doing a pthread_yield() still remains as well as time to

stall a transaction as there is no way to eliminate accounting for serialization operations.

63

m 512bit

m 1024bit
M 2048bit
M 4096bit
W 8192bit

Speedup
E~Y w (o)}

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks

Figure 3.13: Sensitivity to Bloom filter size for PTS-Backoff Hybrid for a 16 processor
system for best performing optimizations.

To perform these experiments, M5 was modified to perform all the scheduling oper-
ations in “magic” hardware that took a pre-specified amount of cycles to complete. The
experiments were then performed for scheduling operations to take between 1 and 10,000
cycles. The results for each STAMP benchmark are presented in Figure 3.14. For the
Kmeans, Ssca2 and Intruder benchmarks they are very sensitive to prediction latency and
prefer the fastest prediction latencies as shown by the monotonic decrease in performance
and latency increases. This makes sense as these three benchmarks had scheduling add
large amounts of overhead to the transactional execution as documented in Tables 3.5 and
3.6. The Vacation and Yada benchmarks show similar behavior, they want as fast a schedul-
ing prediction as possible, but the performance penalty is less on average. This shows for
these three benchmarks they are more tolerant to overhead incurred by scheduling. The last
two benchmarks Delaunay and Genome show interesting behavior. These benchmarks ex-
hibit non-monotonic behavior as the latency of performing PTS operations increases. The
performance at 1000 cycles latency is better than the performance at 1 cycle. At 10,000
cycles, the prediction overhead dominates and performance falls off as it does with the
other benchmarks. The reason for this non-monotonic behavior is observed is from over-
head induced by repeated calls to pthread_yield (), and the predictions being slightly
more optimistic due to the extra latency incurred. These two benchmarks have both high
contention and a fair amount of large transactions that force calls to pthread_yield(). In
the case where the prediction latency is fast, the calls to pthread_yield () happen rapidly.
This causes an increase in kernel time and therefore a drop in performance. When predic-

64

14

12

10

—e-Delaunay

8 ¥ - - -B-Genome
-A ——3 Kmeans
6 hal M —<Vacation

Qo
=]
e
(]
(]
Qo
w
\’ —#Intruder
4 . Ssca2
Labyrinth
2 <
T \'\ Yada
0 4
1 10 100 1000 10000

Prediction Latency in Cycles

Figure 3.14: Sensitivity to PTS scheduling latency for a 16 processor system.

tion latency is higher, there are less calls overall to pthread_yield() reducing overhead.
The predictions are also more optimistic at higher latencies because the prediction routines
are using slightly stale view of the system to make predictions. Both these factors work

together to cause the non-monotonic behavior seen in these benchmarks.

3.3.5 Measuring Prediction Accuracy

Prediction accuracy would be a very useful metric to derive and use in analyzing the
performance of the PTS algorithm. The prediction accuracy would involve first determining
the perfect ordering for transactions to execute in to serve as an oracle. This would require
running all possible interleavings of transactions to determine such an oracle schedule. For
benchmarks like Delaunay that have many patterns of contention, this would be impossible
to determine as the search space would be very large. This problem is similar to the Trav-
eling Salesman problem where transactions would be cities and one has to find the fastest
way to execute all transactions. There is no way to determine if a locally optimal schedule
of transactions is globally optimal, just as in the Traveling Salesman problem. The Travel-
ing Salesman problem is provably NP-Complete, and therefore so is the problem of finding
the best possible execution schedule of transactions. Ultimately it is not possible to truly
know how good the predictions are. It can be inferred from the performance and measured
contention how well predictions are being made relative to other contention management
techniques though.

It is possible to characterize qualitatively the prediction accuracy of PTS, as was done

in [27]. Table 3.7 shows the percentages of misspredictions as viewed from the point-

65

Percent Delaunay Genome Kmeans Vacation
Misspredict

Total 47.6% 37.8% 7.6% 29.4%
Parallel 25.0% 2.3% 3.5% 9.9%
Serial 22.6% 35.5% 4.2% 19.5%
Percent Intruder Ssca2 Labyrinth Yada
Misspredict

Total 32.4% 0.1% 12.3% 40.2%
Parallel 4.6% 0.1% 11.3% 29.2%
Serial 27.9% 0.0% 1.0% 11.0%

Table 3.7: The PTS technique’s prediction accuracy, as measured from the point-of-view
of the algorithm.

of-view of the predictor. What this means is Table 3.7 shows the breakdown of how the
predictor is evaluating its edge weightings from the dynamic conflict graph. This was
measured by letting the PTS algorithm run entirely as a zero latency module in M5, and
recording all predictions made for a transaction, and then evaluating those predictions when
the transaction conflicts or commits. For example, if Tx1 predicts it must serialize against
Tx2 and Tx3, on commit it will intersect its RWSet with those transaction’s saved RWSets
and determine if the serialization was predicted correctly from the point-of-view of the
algorithm. This would correspond to the Percent Misspredict Serial row in the Table. If a
transaction has a conflict, then it is a misspredicted parallel transaction and is classified in
the Percent Misspredict Parallel column. As can be seen in the table, transactions have a
large mix of predicting too parallel or too serial. For example, the Delaunay benchmark
misspredicts on the parallel side, whereas the Vacation benchmark misspredicts on the
serial side. In the next chapter, I will present techniques that aim to fix these problems as

well as eliminate all the application specific optimizations presented in this chapter.

3.4 Conclusions

This chapter presented the “Proactive Transaction Scheduling” (PTS) method for man-
aging contention in an Eager/Eager LogTM like HTM. It establishes that reactive con-
tention managers such as Randomized Linear Backoff do a poor job at managing high con-
tention situations through empirical studies. It then shows that transactions in the STAMP
benchmark suite exhibit “conflict locality”, and therefore future conflicts can be being pre-
dicted from the observation that conflicts seen in the past are likely to happen in the future.

This chapter then presented the implementation of a software runtime that implemented

66

PTS along with various optimizations that can be applied to solve bottlenecks such as over-
pessimistic predictions due to transient conflict behavior and high overhead of PTS as seen
by small transactions. The results presented show that PTS can attain on average a 2x

improvement over a backoff based contention manager.

67

CHAPTER 4

Bloom Filter Guided Transaction Scheduling

This chapter presents the published work “Bloom Filter Guided Transaction Schedul-
ing” (BFGTS) [28]. BFGTS is a generalized transaction scheduling contention manager
that better predicts future conflicts over the previously presented PTS technique from the
previous chapter. This chapter also presents hardware acceleration and ISA extensions that
can speed up prediction operations to further extract performance. This chapter differs
from the previously published work by offering a more detailed implementation section.
The evaluation is also more detailed over the published work, as well as presenting more

sensitivity studies to give further insight into the workings of the BFGTS algorithm.

4.1 Motivation

In Chapter 3 I presented the ‘“Proactive Transaction Scheduling” technique. In that
chapter I showed that it is a substantially better alternative (getting on average 2Xx per-
formance improvement) for reactive contention managers for an Eager/Eager HTM that
experiences high contention.

There were still multiple drawbacks to the PTS contention manager. One was its high
overhead due to being an all software technique. After analyzing PTS, it will be shown
that accelerating the operations for scheduling a transaction would be beneficial. This ac-
celeration would allow me to eliminate the need for short-circuiting predictions made for
small transactions. The other main drawback to PTS was its over pessimism in transient
conflict cases. PTS had no way to identify how transactions are acting that could affect how
optimistic or pessimistic one could be when predicting future conflicts. This led to the de-
velopment of the “Split Transaction” optimization to allow for more optimistic predictions
in the face of transient conflict behavior. Unfortunately this optimization is not portable

to other applications as it is application specific and required deep understanding of the

68

0x0 OXFFFF

Tx13

Figure 4.1: Example transaction executions that show similar execution behaviors over

time.
Pt iy £
4 \ [l £ A\
oo | | | Memory |] | OXFFFF
| gy T .
G G

Figure 4.2: Example transaction executions that show dissimilar execution behaviors over
time.

application’s behavior. PTS was the proof of concept to prove that transaction scheduling
could be accomplished efficiently and be effective over simpler techniques. This chapter
will present more advanced techniques that capture the above behavior automatically and

lead to an overall better performing generalized transaction scheduler.

4.1.1 Transaction Behavior and defining the Similarity Metric

The dynamic nature of code executed inside a transaction makes it hard to predict good
schedules that avoid conflicts. Just tracking conflict history or contention rate is not enough
to get a full picture of the program’s behavior. To form good scheduling decisions a proac-
tive scheduler needs to be able to identify the behavior of transactions and how they are
being affected by conflicts. This can help guide a scheduler to be more optimistic schedul-
ing some transactions while scheduling pessimistically for others.

Take the following synthetic example. Assume a group of transactions are modifying
locations in memory. Some transactions continually modify the same general locations in
memory each time they are executed, shown in Figure 4.1. This transaction exhibits a high
amount of memory locality on each consecutive execution. For the rest of this paper we will

term this locality property “Similarity”. Other transactions may jump around, working in

69

different regions of memory each time they execute, shown in Figure 4.2. This transaction
exhibits low similarity on consecutive executions. In terms of transaction conflicts, if two
transactions having low similarity conflict in the past, this conflict is likely to be transient,
e.g., inserting to a hash table. Conversely, if two transactions conflict and they have high
similarity, this conflict is likely to persist, e.g., enqueuing and dequeuing from a queue.
This property can help a scheduler identify such behaviors and treat conflicts accordingly.
As seen in the sensitivity studies presented in Chapter 3, application specific optimizations
were made by splitting transaction IDs that take advantage of low similarity behavior to
improve performance of PTS. Similarity is defined in this thesis as a value between 0 and

1 as follows:

SetSize(RW Set;_1 N RW Set;)
MAX (SetSize(RW Set;_1,SetSize(RW Set;)))

Similarity = “4.1)
SetSize counts the number of entries in a set, MAX (SetSize(RW Set;_1), SetSize(RW Set;))
takes the largest number of entries in either transaction’s read/write set, and RW Set is the
set of addresses touched by the transaction. Similarity in this case is calculated using the
just completed transaction from time ¢ and the previous execution f — 1 and using the max-
imum of the set sizes will always restrict the value to be between 0 and 1. The more entries
in common between two RW Set’s and if the two transactions have similar RW Set sizes, the
higher the similarity (closer to 1). Similarity not only captures the similarity in memory
regions touched by two transactions but also captures how the RWSet size changes. Look-
ing at Figure 4.1, the similarity for 7x1 would be close to 1 as each consecutive execution
touches similar memory and the ovals (representing RW Set size) are of similar size.

This type of behavior was measured in the STAMP benchmarks. Table 4.1 shows the
conflict graph for each transaction, and the measured value of each transaction’s similarity.
The Conflict Graph in Table 4.1 is a matrix representation of the conflict graph seen by
transactions during the execution of the STAMP benchmarks. Each number in the column
Conflict Graph represents a conflict that occurred at some point between the row transaction
ID and the transaction ID listed in column 7x. Each transaction ID represents a transaction
defined in the code. For the Delaunay benchmark, it has transactions that conflict with
every other transaction in the system. The transactions 0, 2 and 3 have a high similarity and
should be serialized, while the transaction 1 has a very low similarity and should be treated
by a scheduler as a transaction that has transient conflicts. A scheduler that can better
identify transaction behavior will be able to make more informed scheduling decisions. As
seen in Table 4.1 there is wide range of conflict behavior for the STAMP benchmark suite,

both in transactions conflict sets and the similarity observed by each transaction.

70

Benchmark

|

Tx ‘ Conflict Graph ‘ Sim H Benchmark ‘ Tx ‘ Conflict Graph ‘ Sim

Delaunay [72] | O: 012 0.64 || Intruder 0: 0 0.67
1: 0123 0.04 1: 12 0.40
2: 0123 0.56 2: 12 0.66
3: 123 0.90
Genome 0: 0 0.12 || Ssca2 0: 0 0.90
1: 0.25 1: 0.90
2: 2 0.65 2: 2 0.57
3: 2 0.74
4. 0.29
Kmeans 0: 0 0.38 || Labyrinth 0: 0 0.86
1: 1 0.67 1: 12 0.45
2: 1 0.68 2: 12 0.90
Vacation 0: 0 0.26 || Yada 0: 0o 2 4 0.57
1: 2 0.5
2: 012345 0.30
3: 2 0.5
4. 0 2 45 0.52
5: 2 45 1090

Table 4.1: Matrix representation of the conflict graph observed during the execution of each
STAMP benchmark and measured average similarity for each unique transac-
tion.

4.1.2 Bloom Filter Operations to Extract Similarity

As seen in the previous section, calculating similarity requires a set intersection, which
can be expensive if the sets are compared pairwise. This is not feasible in an HTM, so
Bloom Filters [32] are used to represent and manipulate transaction read/write sets effi-
ciently as was done in Chapter 3. As shown by Sanchez et al. [95] implementing bloom
filters can be done efficiently in hardware. A unique contribution of this work is to de-
velop Bloom filter manipulations to estimate similarity efficiently and apply this property
to a generalized transaction scheduler. The equations below delineate how similarity is
calculated and maintained in this work as there are many possible ways to do so.

Work by Michael et al. [83] is used to develop the Bloom filter operations to estimate
similarity. The Bloom filter manipulations were originally developed for fast join opera-
tions in large distributed databases. The main equations used for this work are the set size
estimations(denoted as S~!()) of encoded Bloom filters(denoted as S(t)). Equation 4.2

calculates the set size estimation of an encoded Bloom filter where ¢ is the number of bits

71

set, m is the total size in bits of the Bloom filter, and & is the number of hash functions used.

_l(l‘ ~ 11’1(1 - rl_n)

" kxIn(1— 1) (*2)

An estimation of set size of the intersection between two Bloom filters shown in Equa-
tion 4.3 is used to estimate how many entries are in common between the two Bloom
filters.

Sunp(1) =Sy (1)+571 (1) =S (S1(1) USa(1) (4.3)

Instead of using the MAX (SetSize(RW Set;_1, SetSize(RW Set;)) denominator to calculate
similarity as done in Equation 4.1, a the weighted average of RWSet sizes over time
was used. The weighted average is quick to calculate and is a good enough approxi-
mation for the purposes of the described implementation if the weights are picked prop-
erly (in this work, the weight is 0.5). Since the weighted average will be smaller than
the MAX (SetSize(RW Set;_1,SetSize(RW Set;)) it is biased towards higher similarity if the
RWSet sizes are fluctuating, otherwise the average will not be biased either way signifi-

cantly. Equation 4.4 defines how BFGTS defines average read/write set size.

AvgRW SetSize(Tx,) = weight x AvgRW Set Size(Tx,—1) + (1 — weight) x RW Set Size(T x,,)
(4.4)
Equation 4.3 derives the “Similarity” metric using Bloom filters to represent read/write

sets. »
Sawp(?)
AvgRW SetSize(Txy)

Similarity; ;1 = 4.5)

Equation 4.6 shows how average similarity is calculated as a weighted average to be stored
for use with the BFGTS algorithm.

AvgSimilarity, = (1 — weight) x AvgSimilarity,_| + weight x Similarity+t,t — 1 (4.6)

4.2 Implementation

This section describes the hardware and software implementation of BFGTS. The de-
sign uses fine-grained scheduling between transactions and borrows concepts from PTS
as presented in Chapter 3. BFGTS maintains a graph structure in software of nodes and
edges to represent conflict history and confidence in future conflicts to facilitate scheduling
decisions. The majority of BFGTS is implemented as a software runtime that sits between

the application and the Operating System. A small TLB like hardware accelerator is also

72

present that operates when it sees a TM_BEGIN instruction from the processor.

During the discussion of BEGTS there are two types of transaction IDs (TxID) that will
be used throughout this chapter: “Static Transaction ID”(sTxID) and “Dynamic Trans-
action ID”(dTxID). An sTxID is statically assigned in the program code. A dTxID is a

concatenation of thread ID and sTxID.

4.2.1 Scheduling Hardware Accelerator

In BFGTS, before a transaction begins execution it must scan a global array called the
CPU Table—a list of the transactions running on the processors in the system. At each
entry in the table, a confidence value representing the likelihood of a conflict between the
transaction to be scheduled and the running transaction is retrieved from a global graph
data structure which is represented as a 2D matrix in memory. If the confidence exceeds a
threshold value the transaction is serialized. Scanning the CPU Table at the start of every
transaction adds a large amount of overhead to each transaction as shown in the evaluation
section in Chapter 3.

BFGTS minimizes this overhead by using a hardware accelerator to scan the CPU Ta-
ble, look up confidence values, and compare them to a preset threshold. This is then used
to effect a scheduling decision in a few cycles. This accelerator is triggered upon seeing
a TX_BEGIN instruction. These operations are relatively simple, therefore the hardware is
small. The hardware implements the algorithm shown in Example 4.1.

The scheduling hardware is illustrated in Figure 4.3. It consists of a small cache, a
handful of control registers, and logic connected to the coherent interconnect. Each pro-
cessor gets an identical predictor unit so the predictions are fully distributed. The control
registers consist of a CPU Table that represents all the remote processors in the system and
the dTXID of its currently executing transaction. The other registers are as follows: a phys-
ical base address of the confidence value table to index into, the confidence threshold to
compare confidence values against, a shift register for truncating dTXIDs in the CPU Table
to sTxIDs, and a register to hold the dTxID of a transaction to serialize against for later
access by software.

The hardware predictor contains a small cache that is exclusively used for caching the
confidence table. The cache is necessary because the confidence tables can be pushed out
of the L1 caches, increasing the time it takes to make a prediction. The cache is also
modified to fetch cache lines evicted by an invalidate snoop. This is required to prevent
always taking a miss when accessing the cache because the main processor writes to the
confidence tables frequently, invalidating entries in the accelerator’s cache. The hardware

overhead of the small cache and accelerator is very small. This additional hardware is

73

Example 4.1 Lookup algorithm implemented by hardware accelerator for BFGTS algo-
rithm

1 bool scheduleTx(int sTxID)

2 {
3 for (i = 0; i < sizeof (CPUTable); i++){
4 confidx = CPUTable[i] >> shift_value;
5 conf=confidenceTable [sTxID][confidx];
6 if (conf > threshold) {
7 dTxID_wait_on = CPUTable[1i];
8 return true; //conflict predicted
9 3
10 }
11 return false; //no conflict predicted
12 }
D \
- |
CPU W/ LogTM -7 : I
/// | Conf | Conf | Wait :
- I || val |Thres.|OnTx Address |
/_/\/ | ——————— Generation |
N | CPU Table)) [Shitt | Base | |
™ Prediction | TrrnsaGton walker Value | Addr :
L L1Data | unit ! Il Confidence Cache CPUO | CPU1 | CPU2 | cPUB ||l
Instruction | "> | /' ! dTxID | dTxID | dTxID | dTxiD | I
Cache \|' Confidence |, | |
_Cache / !)
S e = _

~ s e e ————

3=

Coherent Interconnect

Figure 4.3: Hardware required to accelerate scheduling on TX_BEGIN for a 4 core system.

very similar to having an additional TLB added to the processor as it implements a small
hardware table walking engine and a cache to store entries.

To interface the software with the hardware prediction unit, the TX_BEGIN instruction is
modified to trigger the predictor to form a prediction. The TX_QUERY_PREDICTOR instruc-
tion is added to modify the control registers of the predictor. TX_BEGIN traditionally puts
the CPU into transactional mode, takes a register checkpoint, but takes no register argu-
ments. TX_BEGIN now takes a vector to a suspendTx () function for the processor to jump
to if the hardware predictor returns that a conflict is likely and the transaction should serial-
ize. TX_BEGIN triggers the hardware predictor to perform the algorithm in Example 4.1 and
waits for it to return either yes, a conflict is likely and jump to suspendTx () or continue
execution of the transaction. The TX_QUERY_PREDICTOR instruction acts like the ioct1l ()

74

system call for the accelerator engine. The instruction is used to communicate information
such as the physical address of the confidence table for the hardware predictor to use for
looking up confidences, query what dTxID to serialize against, set the confidence threshold
to use, and query if a dTxID is still executing in the system to allow busy waiting on small,
short running transactions.

BFGTS, like PTS presented in the previous chapter requires additional requests to be
added to the coherent interconnect to allow the predictors to update their arrays representing
the state of each remote CPU. When a transaction is allowed to execute, it broadcasts onto
the interconnect the dTXID of the starting transaction as well as the CPU ID. The other
predictors snoop this broadcast and update their arrays accordingly. This is similar to TLB
shootdown mechanisms when page table structures are updated on one CPU that need to be
updated to other CPU’s TLBs. On a transaction commit or abort, the CPU broadcasts the
CPU ID along with the transaction outcome for the other predictors to update their internal
state. The PTS out-of-band information is still present, specifically the returning of the

dTxID of the remote conflicting transaction that caused a local transaction to abort.

4.2.2 Software Implementation

The remainder of BFGTS is kept in a software runtime to do book keeping operations,
such as updating the confidences and calculating similarities of transactions. These book
keeping functions can be quite complicated. Therefore a hardware mechanism would be
infeasible as the amount of logic and storage required would be on the order of an additional
processor core. Properly optimized software with the necessary ISA support is sufficient to
implement this part of BFGTS and still get acceptable performance.

4.2.2.1 Data Structures

The data structures used in BFGTS are inspired by PTS, but modified to be more effi-
cient in both layout and space. An overview of the data structures are shown in Figure 4.4.

The first data structure is a set of confidence tables that are allocated per processor. This
allows easy caching in the private cache attached to the hardware accelerator. The confi-
dence tables hold the values that predict how likely a conflict is between two transactions
if they were to execute concurrently in the future. In PTS, the confidence table was one
global table that had a confidence entry for each dTXID. This table could grow to be 10’s
of MBs in size. Instead of tracking a confidence for every pair of dTxIDs, BFGTS com-
presses the table to only maintain confidence values between each pair of sTxIDs assigned

in the code as well as making private tables per processor. By tracking only sTxIDs, the

75

confidence table reduces to a maximum size of 800Bytes for the benchmarks tested. This
is substantially smaller as well as making it more easily cacheable per processor.

The second data structure required is an array of statistics kept for each dTxID that is
encountered during runtime. For each dTXID three items are stored: average transaction
size, similarity, and if a conflict was predicted, the dTXID of the predicted conflicting trans-
action. The final data structure is a table of the most recent Bloom filters for each dTxID.
The Bloom filters are used to calculate the average similarity of each dTxID, and to update
confidence of conflict between sTxIDs on commit.

These data structures grow in similar fashion to the data structures of PTS. The Confi-
dence Tables grow in memory in O(M?) where M is the number of transactions declared
statically in the code. The Tx Statistics Array grow in memory in O(NM) where N is the
number of threads and M is the number of transaction declared in the code. These struc-
tures can grow to be unbounded, and therefore may be infeasible for very large transac-
tional codes. A solution to this may be to allow aliasing in the prediction data structures—
multiple transactions mapping to the same Confidence Table and Tx Statistics Array loca-

tions. This is left as future work and not explored in this thesis.

4.2.2.2 Scheduling Sub-routines

The bulk of BFGTS exists as a software runtime. The software executes in user space,
and is fully distributed. Three scheduling operations are done in software: Transaction
Suspend, Transaction Abort, and Transaction Commit.

Before covering the scheduling operations, it is important to cover more in depth how
the software coordinates with the hardware accelerator presented in the previous section.
To keep the hardware accelerator as simple as possible, the software is used to set up the
hardware before each transaction. To do this the software performs the operations shown in
Example 4.2. These operations consist of pre-calculating the row in the Confidence Table
matrix the predictor will be indexing, as the predictor only has a simple address generation
unit that adds an offset (an sTXID in this case) to a base address. The base address is then
passed to the XACTION_QUERYPRED instruction which uses the passed in command along
with the base address and transforms it into a physical address for the predictor to use.

Transaction Suspend is the routine that the CPU vectors to when the TX_BEGIN instruc-
tion is informed by the hardware predictor a conflict is likely and the transaction needs to
serialize. Example 4.3 illustrates how predicted conflicts are serialized in BFGTS.

The dTXID of the transaction being serialized against is recorded for use later during
transaction commit. If a dTxID,; is predicted to conflict with another dTxID; that is histor-

ically small, then dTxID; stalls waiting for dTxID ; to commit or abort. If dTxID; is larger

76

Example 4.2 Predictor Hardware setup Pseudo Code for BEFGTS algorithm

1 void predictorSetup (int cpulD, int dTxID)

2 {

3 sTxID = dTxID >> shift_value;

4 confTableBase = &conf_table[cpulD][sTxID*num_txs];
5

6 XACTION_QUERYPRED(confTableBase ,

7 SETCONFTABLE_BASEADDR) ;
8 }
Per CPU Confidence Table Tx Statistics Arrays
| dTxID O Stats {
| STXIDO | sTxID 1 | sTXID 2 avg_size dTxID O:
ts'm"a.r:.ty Read/Write Set
[|sTxDO| 100 57 157 yond-en Bloom Filter
| | sTxID 1 99 200 220 :
] dTxID N-1 Stats {
- avg_size dTxID N-1:
| | | STXID 2 20 30 19 similarity Read/Write Set

tx_waiting_on
| | | | }
| | | |

Bloom Filter

Figure 4.4: Data-structures for the confidence tables, transaction statistics table and Bloom
filter tables kept in virtual memory.

Example 4.3 Suspend Transaction Handling Pseudo Code for BEFGTS algorithm

1 void suspendTx(int dTxID, int dTxIDSusp)

2 {

3 sim=0.5 * (simOf(dTxID) + simOf(dTxIDSusp));
4 decay=decayVal = (1 — sim);

5 decConfProb (sTxID, sTxIDSusp, decay);

6 statsTable [dTxID]. txWaitingOn = dTxIDSusp;
7 if(avgTxSize (dTxIDSusp) >= SMALL_TX SIZE){
8 pthread_yield ();

9 } else {

10 stallOnTx (dTxIDSusp);
11}

12 restore_checkpoint ();
13 }

than a small transaction threshold then it is suspended and another thread switched in. As

in PTS, BFGTS is taking advantage of an overcommitted system to attempt to hide serial-

77

Example 4.4 Conflict Handling Pseudo Code for BFGTS algorithm

void txConflict(int dTxId,int dTxIdConf)

{

sim = 0.5%(simOf(dTxId) + simOf(dTxIdConf));
inc = incVal%sim;

incConflictProb (dTxID, dTxIDConf, inc);
incConflictProb (dTxIDConf, dTxID, inc);

}

NN N R W~

ization latency by switching in a different thread to accomplish other non-conflicting work.
In BFGTS pthread_yield() is used to switch threads. Upon exiting suspendTx () the
transaction restores its register checkpoint and jumps to the PC to re-execute the TX_BEGIN
instruction. A problem noticed with PTS as seen in the previous chapter is that it could be
too pessimistic at times, due to the probability of Bloom filter intersection returning true is
relatively high with a moderate number of addresses hashed into the filter. This meant that
on transaction commit, the Bloom filter intersection used to either increment or decrement
confidence is more biased to incrementing confidence. This reduced how much paralleliza-
tion could be exposed. To allow transactions to return to scheduling optimistically, a decay
operation is used to slowly decrease the confidence that a conflict will occur between two
sTxIDs in BEGTS. Decay is weighted by the average similarity of the two dTxIDs that are
predicted to conflict to drive how quickly decay occurs. If a conflict is predicted between
two transactions and they are both very similar to themselves, then a predicted conflict is
likely to be accurate, and the decay is small. On the other hand, if the transactions are
dissimilar, the decay will be large, allowing the confidence to decay quickly to allow the
two transactions to be scheduled concurrently.

On Transaction Abort due to a conflict, first the transaction rolls back its speculatively
written state. Then it calls the txConflict () routine presented in Example 4.4 to incre-
ment confidence values of future conflict between the two dTxIDs. Again similarity is used
to guide how much the confidence is incremented.

When a transaction commits, various book keeping for that transaction needs to hap-
pen for accurate scheduling in the future. These operations are shown in pseudo-code in
Example 4.5. These items are the average transaction size, the confidence between dTxIDs
if one serialized against the other, and the average similarity of the committed transaction.
To update the confidence of a conflict occurring in the future between two transactions that
serialized the respective Bloom filters are intersected. If an intersection is not null then the
confidence is incremented, otherwise it is decremented weighted by similarity.

Updating similarity is the most expensive part of BEGTS. As seen in pseudo-code in

78

Example 4.5 Pseudo code for routines used during Transaction Commit for the BFGTS
algorithm.

1 void commitTx(int dTxID)

2 {

3 updateAvgSize (dTxID);

4 updateBloom (dTxID);

5 int waitingOn = checkWasSerialized (dTxID);

6

7 if (waitingOn != NO.TX){

8 sim = 0.5 % (simOf(dTxID) + simOf(waitingOn));
9 if (intersectBlooms (dTxID, waitingOn)) {

10 incConfProb (dTxID, waitingOn, incVal#sim);
11} else {

12 decConfProb (dTxID, waitingOn, decVal#(1—sim));
13 }

14 }

15 }

16

17 void updateBloom (int dTxID)

18 {

19 nBloom = readCPUBloomFilter ();

20 uBloom = UNION(nBloom, bloomFilterTable[dTxID]);

21 newSim calcSim (nBloom, bloomFilterTable [dTxID], uBloom);
22 newSim newSim/ txStats [dTxID].avgTxSize;

23 txStats[dTxID].sim = 0.5x(txStats[dTxID].sim+newSim);
24}

25

26 double calcSim (nBloom,oBloom,uBloom)

27 {

28 den = NUMHASHBITS:1n (1 — 1/NUMBLOOMBITS) ;

29 newSize = In(1—(bitCnt (nBloom)/NUMBLOOMBITS))/den;

30 oldSize = In(1—(bitCnt(oBloom)/NUMBLOOMBITS))/den;

31 unionSize = In(1—(bitCnt(uBloom)/NUMBLOOMBITS))/den;
32 return (newSize+oldSize—unionSize);

33 }

Example 4.5, calculating similarity requires two expensive functions: bitCnt (), and 1n ().
However, modern ISAs support both operations at the instruction level. A low latency 64-
bit wide population count instruction, and a floating point logarithm instruction exist in
modern ISAs such as x86. These instructions are: popcnt and fyl2x [4]. The latencies
of these instructions are 2-cycles and 13-cycles respectively for the AMD K10 architec-
ture [57] and these latencies are assumed for the modeled system in the evaluation section

of this chapter.

79

The transaction commit stage of the scheduling runtime can be particularly expensive,
especially for small transactions, adding 100’s of cycles of overhead to a transaction that
may only be a few 10’s of cycles in length. To reduce the overhead for small transactions
similarity is updated for these transactions once every n commits. Large transactions are
able to amortize the overhead of updating similarity on every commit, and usually benefit

from the added scheduling accuracy.

4.2.3 BFGTS-HW/Backoff Algorithm

Example 4.6 Predictor Hardware setup Pseudo Code for Hybrid BFGTS predictor

1 void predictorSetup (int cpulD, int dTxID)

2 {

3 sTxID = dTxID >> shift_value;

4 confTableBase = &conf_table[cpulD][sTxID*num_txs];
5

6 XACTION_QUERYPRED(confTableBase , SETCONFTABLE BASEADDR) ;
7

8 if (checkConflictPressure (sTxID)<=PRESSURE THRESHOLD) {

9 statsTable [dTxID].sched_mode = BACKOFF;
10 XACTION_QUERYPRED (DISABLE_PREDICTOR ,
11 SET_PREDICTOR_OPMODE) ;
12} else {
13 statsTable [dTxID].sched_mode = BFGTS;
14 XACTION_QUERYPRED (ENABLE_PREDICTOR,
15 SET_PREDICTOR_OPMODE) ;
16 }
17 }

To further reduce overhead, we present a hybrid BEFGTS predictor borrowing ideas from
Yoo and Lee’s [113] ATS to allow the runtime to switch between using randomized backoff
when contention is low and BEGTS using the hardware accelerator when contention is high.
To measure contention ATS’s metric conflict pressure is used to determine when to switch
between BFGTS and randomized backoff with the goal of saving execution overhead. To
implement the HW/Backoff predictor changes are made to the presented BFGTS algorithm
and described in the following paragraphs along with example pseudo-code which was
omitted from [28] due to space concerns.

Just before executing the TM_BEGIN instruction the runtime checks the conflict pressure
for the sTxID that wishes to execute, if it is over a set threshold then BFGTS is (by enabling
the hardware) enabled and a scheduling prediction is made to suspend or continue execu-

tion. Otherwise, no prediction is made (the hardware is disabled) and the transaction begins

80

Example 4.7 Suspend Transaction Handling Pseudo Code for Hybrid BFGTS predictor

1 void suspendTx(int dTxID, int dTxIDSusp)

2 {

3 sim = 0.5 % (simOf(dTxID) + simOf(dTxIDSusp));

4 decay = decayVal % (1 — sim);

5 decConfProb (sTxID, sTxIDSusp, decay);

6 statsTable [dTxID].txWaitingOn = dTxIDSusp;

7 statsTable[sTxID].conflictPressure =

8 statsTable [sTXID]. conflictPressure * ALPHA + (1.0 — ALPHA);
9 if(avgTxSize(dTxIDSusp) >= SMALL_TX SIZE){

10 pthread_yield ();

11} else {

12 stallOnTx (dTxIDSusp);
13 }

14 restore_checkpoint();
15 }

execution. This allows the BFGTS-HW/Backoff predictor to save overhead on transaction
begins by not always having to walk the CPU Table on TX_BEGIN. This operation is shown
in Example 4.6 when the predictor hardware is being setup with the proper address for
indexing the Confidence Table.

Example 4.8 Conflict Handling Pseudo Code for Hybrid BFGTS predictor

void txConflict(int dTxId,int dTxIdConf)
{
statsTable [sTxID]. conflictPressure =
statsTable [sTxID]. conflictPressure * ALPHA + (1.0 — ALPHA);

if (statsTable[sTxID]. conflictPressure >PRESSURE THRESHOLD) {
sim = 0.5 % (simOf(dTxId) + simOf(dTxIdConf));
inc = incVal % sim;

9 incConflictProb (dTxID, dTxIDConf, inc);

10 incConflictProb (dTxIDConf, dTxID, inc);

11 XACTION_QUERYPRED (ENABLE_PREDICTOR,

1
2
3
4
5
6
7
8

12 SET_PREDICTOR_OPMODE) ;
13} else {

14 doRandomizedLinearBackoff (dTxID);

15 }

16 }

To properly support switching between BFGTS and Backoff, modifications had to be
made to the functions that are called when transactions conflict or when a transaction

is suspended by BFGTS that involve updating the conflict pressure. To update conflict

81

pressure, the BEGTS-HW/Backoff algorithm increases pressure on aborts in the function
txConflict () shown in Example 4.8, and predicted conflicts in suspendTx () shown in
Example 4.7 in the same fashion as ATS. As shown in the examples, to update conflict
pressure and turn BFGTS on and off, there are two variables that are used: ALPHA and
PRESSURE_THRESHOLD. These are parameters that can be set in software for each bench-
mark. The PRESSURE_THRESHOLD is exactly like it sounds, it is a number between 0 and 1
that is used to switch between the two contention managers. The ALPHA value is the weight
given to past history. A high ALPHA tends to increase or decrease the conflict pressure

slowly, making the switching between BFGTS and backoff slow.

Example 4.9 Pseudo code for commit routine used during Transaction Commit for Hybrid
BFGTS predictor.

1 void commitTx(int dTxID)

2 {

3 if (statsTable[sTxID].conflictPressure > PRESSURE.THRESHOLD | |
4 statsTable [dTxID].schedMode == BFGTS) {

5 updateAvgSize (dTxID);

6 updateBloom (dTxID);

7 int waitingOn=

8 checkWasSerialized (dTxID);

9

10 if (waitingOn!=NO_TX){

11 sim=0.5%(simOf(dTxID)+simOf(waitingOn));

12 if (intersectBlooms (dTxID, waitingOn)){

13 incConfProb (dTxID, waitingOn ,incVals*sim);

14 } else {

15 decConfProb (dTxID, waitingOn ,decVal*(1—sim));
16 }

17 }

18 statsTable [sTXID]. conflictPressure =

19 statsTable [sTxID]. conflictPressure = ALPHA;

20

21 if (statsTable[sTxID]. conflictPressure <=PRESSURE THRESHOLD) {
22 zeroBloom (dTxID);

23 statsTable [dTxID].sched_mode = BACKOFF;

24 XACTION_QUERYPRED (DISABLE_PREDICTOR ,

25 SET_PREDICTOR_OPMODE)
26 }

27 } else {

28 statsTable [sTxID]. conflictPressure =

29 statsTable [sTXID]. conflictPressure = ALPHA;

30 }

31 }

82

When a transaction commits, it checks conflict pressure first in commitTx () shown
in Example 4.9 to determine if the transaction needs to perform the Bloom filter calcu-
lations and other book keeping operations such as updating the average transaction size.
When conflict pressure is low, commitTx () skips performing these calculations eliminat-
ing scheduling overhead. On commits, BEFGTS-HW/Backoff decreases conflict pressure as
seen in the pseudo-code. Also note that when a switch is made between BFGTS and Back-
off in commitTx (), that the Bloom filter for that dTXID is set to zero so conflict confidence
values are not incremented for this particular transaction if other transactions serialize on
it. Section 4.3 will show that being able to switch between BFGTS and randomized back-
off eliminates enough overhead to allow larger Bloom filters to be used and in some cases

increase performance.

4.3 Evaluation

4.3.1 Simulation Environment and Benchmarks

The M5 Full System Simulator [26] is again used to evaluate BEFGTS. Like in the PTS
chapter the baseline TM system is based on LogTM [84] and has Operating System (OS)
support. Three different scheduling based contention managers are evaluated in this chap-
ter: Adaptive Transaction Scheduling (ATS), Proactive Transaction Scheduling (PTS), and
Bloom Filter Guided Transaction Scheduling (BFGTS). The simulation parameters are de-
tailed in Table 4.3. The latencies for the popcnt and fyl2x instructions are modeled as
well. The hardware accelerator with accompanying Tx Confidence Cache size as described
in Table 4.3 has an area overhead of ~3% of one 64kB L1 data cache in the system mod-
eled and there is a hardware accelerator per processor core.

The experiments for ATS, PTS and the five BFGTS variants assume an overcommit-

ted system with 64 threads with four threads assigned per processor. This configuration

] Benchmark \ Input Parameters ‘
Delaunay [72] | -i large.2 -m30 -t64
Genome -g4096 -s32 -n524288 -t64
Kmeans -m20 -n20 -t0.05 -i random50000_12 -p64
Vacation -n8 -q10 -u80 -r65536 -t131072 -c64
Intruder -al0 -132 -n8192 -s1 -t64
Ssca2 -s15-i1.0 -ul.0 -13 -p3 -t64
Labyrinth -1 random-x96-y96-z3-n128.txt -t64
Yada -i large.2 -m30 -t64

Table 4.2: STAMP Benchmark input parameters.

83

Feature Description

Processors 16 one IPC Alpha cores @ 2GHz

Special popcent 2-cycle latency,

Instructions fyl2x 15-cycle latency

L1 Caches 64kB, 1 cycle latency, 2-way associative, 64-byte line size

Tx Confidence 2kB, 16-way associative

Cache 1 cycle latency, 64-byte line size

L2 Cache 32MB, 32 cycle latency, 16-way associative, 64-byte line size

Interconnect Shared bus at 2GHz

Main Memory 2048MB, 100 cycles latency

Linux Kernel Modified v2.6.18

Contention Managers | PTS, ATS, BFGTS-SW, BFGTS-HW, BFGTS-SW/Backoff, BFGTS-
HW/Backoff, BFGTS-NoOverhead

Signature Size 512bit-8192bit for BFGTS commit routines, perfect signature used
for conflict detection.

Table 4.3: M5 Simulation Parameters.

was chosen because an overcommitted system is typical for systems running an OS. The
advantage of such overcommitted systems is that when a thread blocks the OS can switch
in another thread. This avoids leaving a core idle, thus increasing throughput. The dy-
namically tuning software version of ATS developed by Yoo and Lee [113] is tested using
pthreads to suspend and wake threads when throttling. The full version of PTS using the
best performing variants from Chapter 3 is compared against. Five versions of BFGTS: The
hardware accelerated version presented in the previous sections BFGTS-HW, an all soft-
ware version called BFGTS-SW, two hybrid BFGTS algorithms from Section 4.2.3 com-
bining BFGTS-SW or BFGTS-HW with Backoff managers called BFGTS-SW/Backoff
and BEGTS-HW/Backoff respectively, and BFGTS-NoOverhead. BFGTS-NoOverhead,
as its name implies, implements BFGTS where all the software functions presented in Sec-
tion 4.2.2.2 complete in one cycle. This is done to evaluate how well BFGTS predicts
and schedules around conflicts when it does not have to amortize the cost of book keeping
operations. BEGTS-NoOverhead also uses perfect read/write set signatures.

The transaction schedulers in this chapter are evaluated with the STAMP benchmark
suite [37]. The benchmark parameters are shown in Table 4.2. And are identical to those
tested in the Chapter 3.

This chapter presents a similar analysis to chapter 3, but there are more parameters to
investigate as evident by the numerous sensitivity studies that will be presented. There-
fore at the start of a section presenting results, details of the parameter settings will be

included where applicable. The relevant parameters are the following: 1) Minimum, Max-

84

16 B Backoff o

mPTS

m ATS

W BFGTS-SW

W BFGTS-HW

m BFGTS-SW/Backoff

BFGTS-HW/Backoff
BFGTS-NO
6 -

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks

14

Speedup
o]

N

Figure 4.5: Speedup of Backoff, PTS, ATS, BFGTS-SW, BFGTS-HW, BFGTS-
SW/Backoff Hybrid, BFGTS-HW/Backoff Hybrid and BFGTS-NoOverhead
on a 16 processor system over 1 core

imum confidence values and conflict threshold - fixed to 0, 255 and 128 respectively. 2)
Confidence increment/decrement value - fixed to increment/decrement by 50 weighted by
similarity when confidence is modified. 3) Small transaction threshold - fixed to 10 cache
lines (approximately double the size of queue/dequeue operations in STAMP benchmark
suite). 4) Bloom filter size - variable between 512bit-8192bit, uses k=1 H3 [39] hash func-
tion. 5) Small Tx Update interval - variable. 6) Time Decay factor - variable. 7) Past
history weighting of conflict pressure (Alpha) - variable. 8) Conflict pressure threshold for
switching between backoff and BFGTS - variable.

4.3.2 Performance Analysis

This section presents a performance analysis of the five tested BFGTS variants: BFGTS-
SW, BEGTS-HW, BFGTS-SW/Backoff and BFGTS-HW/Backoff. Figure 4.5 shows the
overall speedup over one core for a 16 processor system for the BEGTS techniques as well
as speedups for Backoff, PTS and ATS. Figure 4.6 better shows the performance differences
of BFGTS over PTS as a baseline system. Table 4.4 shows a breakdown of the contention
experienced for each of the tested contention managers. In this section the Bloom filters
are variable, and the best performing Bloom filter is presented in the results as we assume a
hardware Bloom filter to allow variable size. The “Small Tx Update interval” is fixed to 20,
“Time Decay factor” is fixed to 7, “Alpha” is set to 90% and “Conflict Pressure Threshold”
is fixed to 25% for this section.

Backoff is presented here again to show all other tested proactive contention managers

85

tested in this chapter are better by a large margin. As can be seen in Figure 4.5, backoff
performs the worse on average across all the benchmarks, and in the case of Genome and
Intruder has performance worse than serial due to a high amount of contention. As seen
in Table 4.4, the backoff contention suffers from substantially more contention than all the
other tested contention managers. Again, as in chapter 3, backoff does perform the best for
the Ssca2 benchmark because of its extremely low contention and backoff’s low overhead.
Backoff also performs well for the Labyrinth benchmark.

The PTS configuration presented here is the best performing configuration as seen in
chapter 3 for each benchmark, using optimal sized Bloom filters and code optimizations.
As can be seen, PTS is competitive with both BEGTS and ATS, and is therefore the baseline
of comparison in Figure 4.6. For all the benchmarks, PTS is beaten by the BEFGTS variants.
As seen by Table 4.4, PTS does have a problem with being overly optimistic at times due to
its implementation. This leads to higher contention than all the other proactive contention
managers and in cases, lower performance.

ATS, as described in the previous sections is a very simple proactive contention man-
ager using only contention rate as the indication of when to schedule or not schedule.
Because of this coarse grained scheduling method, ATS suffers from being the most pes-
simistic of the schedulers presented here. For some benchmarks it over schedules and
degrades the performance towards serial execution prematurely. This is evident from the
speedups for the Delaunay, Kmeans and Yada benchmarks in Figure 4.5. Looking at the
contention experienced by ATS for these benchmarks in Table 4.4, it is seen that it is the
lowest for these benchmarks. Part of the reason for this is from the complex conflict pat-
terns seen by these benchmarks (see Table 4.1). For benchmarks with less complex conflict
patterns, but still high contention such as Genome and Intruder, ATS performs well and
conflict pressure is a surprisingly good metric for basing scheduling decisions upon. Still,
the overall design of ATS limits the maximum amount of parallelism that can be extracted
when contention is present. Overall, ATS is 15% worse than PTS in performance and any-
where from 17%-35% worse in performance to BEGTS (excluding BFGTS-NO) as seen in
Figure 4.6.

BFGTS-SW, as seen in Figures 4.5 and 4.6 has mixed performance when compared to
PTS and ATS. For benchmarks with high contention, and transactions that can tolerate an
all software implementation of BFGTS, it can improve performance by a fair amount as
seen in Figure 4.6, getting a maximum of 27% better performance than PTS in the Delau-
nay benchmark. In benchmarks like Kmeans and Ssca2 that have small transactions, the
overhead leads to worse performance than PTS as BFGTS does not use any application spe-

cific optimizations, and must rely on more complicated Bloom filter manipulations. These

86

80

ATS ®BFGTS-SW m® BFGTS-HW BFGTS-SW/Backoff BFGTS-HW/Backoff BFGTS-NO
60

40

T

Delaunay Genome eans Vacation [lIntruder]scaZ Labyrinth Yada AVG
-20

Percent Improvement

-40
-60

-80

Figure 4.6: Percent difference of ATS, BFGTS-SW, BFGTS-HW, BFGTS-SW/Backoff
Hybrid, BEFGTS-HW/Backoff Hybrid and BFGTS-NoOverhead over PTS on
a 16 processor system over 1 core

penalties lead to an only 2% performance improvement over PTS as seen in Figure 4.6.

BFGTS-HW, as seen in Figures 4.5 and 4.6 benefits greatly from the addition of the
hardware accelerator for performing the scheduling operations before a TX_BEGIN. This
leads to BEGTS-HW performing better than, or equivalent to PTS and ATS for all bench-
marks, including benchmarks like Kmeans and Ssca2 where overhead is extremely impor-
tant to minimize. Even so, overhead remains in BFGTS-HW as it still performs scheduling
operations and Bloom filter manipulations. Overall BFGTS-HW gets a 16% performance
improvement over PTS.

BFGTS-SW/Backoff combines BEGTS-SW with the ATS derived switching method
presented in Section 4.2.3. This helps eliminate many of the overheads present in the
BFGTS-SW, and boosts performance well above that achieved by BFGTS-SW as seen in
Figures 4.5 and 4.6. This is due to turning on BFGTS only when needed. The Ssca2, Vaca-
tion, Yada and Genome benchmarks see significant improvement by turning BFGTS on and
off. For Ssca2, due to the low contention and small transactions, BFGTS is always off and
only some overhead is paid for checking the contention pressure. For Vacation, large gains
are seen because the benchmark constructs a red-black tree during execution. As the tree
is constructed, eventually the transactions are operating in different parts of the tree and
BFGTS can be turned off and backoff can be used. The reason BFGTS-SW and BFGTS-
HW do not perform as well here is because as the tree grows, the transaction size increases.
This leads to the Bloom filters falsely indicating future conflicts, and the confidence does

not decrease quickly. For the Genome benchmark, the first part of the benchmark consists

87

Backoff | PTS ATS BFGTS- BFGTS- BFGTS-SW/ BFGTS-HW/
SW HW Backoff Backoff

Delaunay 73.4% | 26.6% 23.9% 22.2% 21.6% 23.4% 23.6%
Genome 49.7% 1.8% 1.0% 1.0% 1.1% 4.1% 3.2%
Kmeans 20.6% 3.7% 0.7% 1.1% 1.8% 6.4% 6.5%
Vacation 10.3% 8.5% 3.2% 4.6% 3.1% 4.2% 5.3%
Intruder 70.1% 7.5% 4.0% 5.4% 3.2% 12.3% 9.8%
Ssca2 <01% | <01% <0.1% <0.1% <0.1% <0.1% <0.1%
Labyrinth 182% | 21.5% 6.4% 12.1% 9.3% 10.4% 9.3%
Yada 54.6% | 27.8% 10.5% 13.7% 14.7% 16.6% 14.7%

Table 4.4: Contention experienced for each contention management technique: Backoff,
PTS, ATS, BEFGTS-SW, BFGTS-HW, BFGTS-SW/Backoff Hybrid and BEFGTS-
HW/Backoff Hybrid for a 16 processor system.

of small transactions that are inserting into a hash table with no contention. For the Yada
benchmark, it appears to benefit primarily from the increased optimism gained from turning
BFGTS on and off because it experiences more contention from Table 4.4, but gets better
performance as seen in Figure 4.5. For the remaining benchmarks, BFGTS-SW/Backoff
gets slightly worse performance than BEGTS-HW due to it increasing contention from cy-
cling between BFGTS and Backoff throughout the execution of the benchmark. Overall
BFGTS-SW/Backoff gets on average 18% better performance than PTS.

BFGTS-HW/Backoff adds the benefit of the hardware accelerator to reduce the over-
head as well as enabling switching between BFGTS and Backoff. As can be seen it ex-
tracts even more performance than BFGTS-SW/Backoff on average, getting 21% better
performance overall than PTS. It attains its performance advantages for the same reason
as BFGTS-SW/Backoff, and performs similarly for all benchmarks except for the Intruder
benchmark. For Intruder, the addition of the hardware accelerator eliminates overhead ex-
perienced by BFGTS-SW/Backoff, and is where the extra performance is coming from.
As with BFGTS-SW/Backoff, BEGTS-HW/Backoff performs slightly worse than BFGTS-
HW for some benchmarks due to the increased contention as seen in Table 4.4.

A No Overhead version of BFGTS called BEFEGTS-NO was also tested to demonstrate
the potential of the BFGTS scheduling algorithm. It performs all the BFGTS operations
instantaneously inside of M5 and uses perfect signatures that have no aliasing unlike Bloom
filters (this is not a realizable implementation). As can be seen from Figures 4.5 and 4.6, it
attains the best performance over all the contention managers tested. It gets on average 38%
better performance over PTS. The BFGTS variants tested with realistic implementations

get within 50% of the No Overhead versions performance, showing that there is more

88

performance left to be gained.

4.3.3 Execution Time Breakdown

This section provides analysis of where the PTS, ATS, BEGTS-SW, BFGTS-HW, BEGTS-
SW/Backoff and BFGTS-HW/Backoff algorithms spend execution time and a detailed ac-
counting of the overheads incurred. Figure 4.7 shows the overall runtime normalized to a
single processor execution and how that time is spent. Figure 4.8 shows the proportion of
time spent in each type of execution time category. These categories are the following: 1)
Non-Trans - Time spent in user mode that is not inside a transaction or related to scheduling
a transaction, 2) Kernel - Time spent operating in the Linux kernel, 3) Trans - Time spent
executing in a transaction, this counts both committed and aborted transactions, 4) Abort
- Time spent rolling back a transaction’s write set, 5) Escape - Time spent suspending a
transaction to service PAL code operations, like filling a TLB miss, 6) Sched Begin - Time
spent executing the scheduleTx () and suspendTx () function of BFGTS, 7) Sched Abort
- Time spent executing in the txConflict () function, 8) Sched Commit - Time spent
executing in the commitTx () function.

As can be seen in Figures 4.7 and 4.8, most of the benchmarks except for Kmeans and
Ssca?2 spend the majority of time executing transactional code, and because of the proactive
nature of the schedulers tested, very little time is spent in “Abort” and re-executing code as
seen by the small differences in the size of the “Transactional” sections of the bars, as well
as from the small differences in contention as shown in Table 4.4. The main differences
in the different contention managers is the time spent in scheduling operations that enact
serialization on the transactions executing in different threads.

For PTS, the main differences between this proactive manager and the BFGTS tech-
nique is the time spent in scheduling functions. For PTS on average it spends more time
in “Schedule Begin” than any of the BFGTS techniques as seen in Figures 4.7 and 4.8.
This means that it is spending a fair amount of time serializing execution and scanning
the CPU Array to determine if scheduling can proceed, lending support to the decision to
use hardware acceleration. This amount of time spent in “Sched Begin” is also from the
rudimentary Bloom filter operations, leading to more predictions of conflicts being likely.
This rudimentary Bloom filter use is supported by the small amount of time spent in “Sched
Commit”.

As seen in the previous section ATS suffers from over serialization due to its design
using a centralized wait queue to enact scheduling and using coarse grained information
about instantaneous contention. The over serialization shows up in the “Kernel” section of

the bars in Figures 4.7 and 4.8, where the OS is putting threads on wait queues and taking

89

them off when the threads are woken. This large amount of scheduling overhead is evident
in the Delaunay, Kmeans, Intruder and Yada benchmarks where the ATS scheduler spends
a large percentage of its time in the OS. For benchmarks where ATS performs well, such as
the Genome, Vacation and Ssca2, ATS has almost no overhead present in “Sched Begin”,
“Sched Abort”, or “Sched Commit” due to its very minimalist implementation.

For the BFGTS variants, they are spending less time in the scheduling subroutines on
average than PTS or ATS as seen in Figures 4.7 and 4.8. This is due to BFGTS finding more
parallelism by using the Bloom filter manipulations covered in the previous sections. These
Bloom filter manipulations are expensive though. For example, in the Genome benchmark,
BFGTS-HW decreases the amount of time spent in “Sched Begin” significantly compared
to PTS. This advantage is less than it could be because BFGTS-HW adds some overhead
back to the execution in the form of more “Sched Commit” operations compared to PTS
as seen by the larger bar. For the BFGTS-SW/Backoff and BFGTS-HW/Backoff tech-
niques, they eliminate much of this overhead by selectively turning BFGTS on and off,
and therefore see a large performance gain for the Genome benchmark. For the rest of the
benchmarks, this trend holds true, the BEGTS variants use on average less scheduling over-
head due to them finding more parallelism on average. For a benchmark like Ssca2 where
overhead incurs a large penalty due to its small amount time spent in transactions, all the
proactive techniques incur some overhead that is unavoidable as they still have to check if
scheduling is required.

Table 4.5 shows the overhead in cycles per transaction commit incurred by the BFGTS-
SW and BFGTS-HW techniques in the same fashion as the overhead tables presented in
Chapter 3. As can be seen in the table, BEFEGTS-SW and BFGTS-HW incur similar amounts
of overhead for benchmarks that have on average large transactions (>1000 cycles) and can
amortize the cost of scheduling by leveraging more parallelism. For benchmarks with small
transactions on average, BFGTS-SW and BFGTS-HW incur a large amount of overhead, in
some cases up to 25x the size of the transaction itself in the case of Ssca2 for BFGTS-SW.
The hardware accelerator used in BEGTS-HW does make a large difference for benchmarks
with small transactions. For example the Kmeans benchmark has a overhead of 12x for
BFGTS-SW, but the hardware accelerator in BEFGTS-HW cuts this down to 3.5x, which
while still high, is a large decrease in overhead. Overall, the range of overhead is from
45%-2523% for BFGTS-SW and BFGTS-HW. This range is almost identical to PTS from
chapter 3. But, there are significant differences between specific benchmarks. For example,
the Delaunay benchmarks sees a 105% overhead with PTS, with most of it in the “Sched
Begin” phase of scheduling. BFGTS, on the other hand only sees a 49% overhead for
BFGTS-HW with substantially less cycles spent in all phases of scheduling. This indicates

90

Delaunay Genome Kmeans Vacation

BFGTS BFGTS BFGTS BFGTS
-SW | -HW | -SW | -HW | -SW | HW | -SW | -HW
Transactional 1269 1262 353 353 12 12 683 672
Kernel 24 22 247 245 13 13 228 187
Sched Begin 537 452 180 140 96 11 240 161
Sched Abort 10 11 0 0 0 0 1 1
Sched Commit 143 137 134 126 41 28 172 156
Total 714 622 561 511 150 52 641 505
w/o Kernel 690 600 314 266 137 39 413 318
Pct Overhead 56% 49% 159% 145% 1250% 347% 94% 15%
w/o Kernel 54% 48% 89% 5% 1142% 260% 60% 47%

Intruder Ssca2 Labyrinth Yada

BFGTS BFGTS BFGTS BFGTS
-SW | -HW | -SW | -HW | -SW | -HW | -SW | -HW
Transactional 76 68 13 13 740562 747266 1028 1045
Kernel 16 11 265 240 295665 284831 21 19
Sched Begin 638 470 41 0 34558 34996 1126 1045
Sched Abort 1 1 0 0 12 3 5 6
Sched Commit 136 92 22 17 96 248 180 78
Total 791 574 328 257 330331 320078 1332 1148
w/o Kernel 775 563 63 17 34666 35247 1311 1129
Pct Overhead | 1041% 844% 2523% 1977% 45% 43% 130% 110%
w/o Kernel 1020% 828% 485% 131% 5% 5% 128% 108%

Table 4.5: Amount of scheduling overhead experienced in cycles per transaction commit
for BFGTS-SW, and BFGTS-HW.

BFGTS-HW is making better decisions overall than PTS, which is in turn leading to better
performance.

Table 4.6 shows the overhead in cycles per transaction for the BFGTS-SW/Backoff
and BFGTS-HW/Backoff schedulers. As seen in this table, the BEGTS/Backoff schedulers
can significantly reduce overhead and therefore lead to better performance. This is seen
especially in the Vacation benchmark, reducing overhead from 75% in BEGTS-HW to only
29% for BEGTS-HW/Backoff. Similar reductions with performance increases are seen for
the Genome, Yada and Ssca2 benchmarks as well. As seen in both overhead tables, the
Ssca2 benchmark has a large amount of kernel overhead, this is for the same reason as with
PTS, due to load imbalance and poor caching properties. While these overheads are still
high, there is a limit that the overhead can be reduced by, as these overheads account for
time spent serializing. For benchmarks like Intruder, this serialization overhead is required

to maintain forward progress and acceptable performance.

91

Delaunay Genome Kmeans Vacation
BFGTS- BFGTS- BFGTS- BFGTS-
SwW/ HW/ Sw/ HW/ SwW/ HW/ SW/ HW/
Back- | Back- | Back- | Back- | Back- Back- Back- | Back-
off off off off off off off off
Transactional 1271 1268 374 368 15 16 661 662
Kernel 26 36 227 195 14 14 80 110
Sched Begin 504 444 106 105 35 24 34 35
Sched Abort 15 15 2 2 2 2 2 2
Sched Commit 183 120 56 70 9 11 35 46
Total 728 615 391 372 60 51 151 193
w/o Kernel 702 579 164 177 46 37 71 83
Pct Overhead 57% 49% 105% 101% 400% 319% 23% 29%
w/o Kernel 55% 46% 44% 48% 307% 231% 11% 13%
Intruder Ssca2 Labyrinth Yada
BFGTS- BFGTS- BFGTS- BFGTS-
SW/ HW/ SwW/ HW/ SwW/ HW/ SW/ HW/
Back- | Back- | Back- | Back- | Back- Back- Back- | Back-
off off off off off off off off
Transactional 88 77 12 12 797531 790228 1154 1141
Kernel 10 10 234 235 200973 232360 27 27
Sched Begin 597 499 6 0 38134 37728 842 955
Sched Abort 5 4 0 0 58 41 8 7
Sched Commit 92 62 3 2 39 36 198 36
Total 702 575 243 237 239204 270165 1075 1025
w/o Kernel 692 565 9 2 38231 37805 1048 998
Pct Overhead 798% 7147% 2025% 1975% 30% 34% 93% 90%
w/o Kernel 786% 734% 75% 17% 5% 5% 91% 87%

Table 4.6: Amount of scheduling overhead experienced in cycles per transaction commit

for BEFGTS-SW/Backoff Hybrid, and BFGTS-HW/Backoff Hybrid.

4.3.4 BFGTS Sensitivity Tests

The BFGTS techniques have a larger number of variable parameters that need to be

tested for their affect on performance. These include sensitivity to Bloom filter size, Small

Tx Update interval, Time Decay size and ATS parameters for the BFGTS/Backoff sched-

ulers. The following sections will provide detailed sensitivity analysis.

4.3.4.1 Bloom Filter Sensitivity

The entire BFGTS technique heavily depends on the accuracy of the Bloom filters used

and the overhead they impose when involved in the Similarity calculations described in this

92

chapter. This section varies the Bloom filter size from 512bit-8192bit for the BFGTS-SW,
BFGTS-HW, BFGTS-SW/Backof and BFGTS-HW/Backoff schedulers. The other variable
parameters are set as follows: The “Small Tx Update interval” is fixed to 20, “Time Decay
factor” is fixed to 7, “Alpha” is set to 90% and “Conflict Pressure Threshold” is fixed to
25% for this section. All other parameters covered in Section 4.3.1 are fixed to the values
described there.

Figure 4.9 shows the speedup attained for each benchmark using different sized Bloom
filters for BEFEGTS-SW. As can be seen from the figure, the general trend is that there is
no best sized Bloom filter for all the benchmarks. Some prefer the smallest sized Bloom
filters to keep the overhead of calculating similarity to a minimum while other benchmarks
want a larger Bloom filter to attain better prediction accuracy as shown by an increase in
speedup. The Kmeans benchmark for example performs best when the Bloom filter is sized
to the smallest value of 512bits and increasing the Bloom filter size decreases the perfor-
mance greatly. On the other hand, the Vacation benchmark prefers a larger Bloom filter
of 2048bits. Vacation has very poor performance with a small Bloom filter due to aliasing
effects of inserting many addresses into the filter causing BFGTS to predict pessimisti-
cally due to Vacation’s large RWSet on average. Increasing the filter size beyond 2048bits
though shows the overhead of doing the similarity calculations dominates runtime eventu-
ally. This trend of preferring a slightly larger Bloom filter is evident for all the benchmarks
except for the Labyrinth benchmark that shows no clear trend. This is most likely due to
this benchmark having a small number of transactions and BEGTS has limited time to learn
the conflict pattern.

Figure 4.10 shows the speedup attained for the benchmarks using different Bloom filter
sizes for the BEGTS-HW scheduler. As can be seen, the trends are very similar for BEGTS-
SW, but the performance is better due to the overhead reduction from using the hardware
accelerator on transaction begins. Some benchmarks change their preference to Bloom
filter size slightly. The Intruder benchmark prefers a 1024bit Bloom filter for BEGTS-SW,
but favors a 512bit Bloom filter when BFGTS-HW is used. This is due to the slightly
more parallelism exposed by using a larger Bloom filter in BFGTS-SW that amortizes the
slight increase in overhead. While for BFGTS-HW, since the overhead of scheduling is
more dominant, and therefore leads to a smaller Bloom filter being optimal. As seen in
Figure 4.6 from Section 4.3.2, a no-overhead version of BFGTS with perfect filters can
almost double the performance realized for the Intruder benchmark. This is also true for
the Yada benchmark as seen in Figure 4.10.

Figures 4.11 and 4.12 show the Bloom filter size sensitivity for the BEGTS-SW/Backoff
and BEFGTS-HW/Backoff schedulers respectively. The behavior of the benchmarks to the

93

Bloom filter size is substantially different than to the behavior shown by BEFGTS-HW and
BFGTS-SW. For BEGTS-SW/Backoff and BEGTS-HW/Backoff the benchmarks are much
less sensitive to Bloom filter size than before. The Genome benchmark was sensitive
to Bloom filter size when run using either BFGTS-SW or BFGTS-HW. With BFGTS-
SW/Backoff and BFGTS-HW/Backoff, the bars are almost equal over the range of Bloom
filter sizes. This from the substantial reduction in overhead coming from switching be-
tween BFGTS and backoff effectively. Even the Kmeans benchmark shows less sensitivity
to Bloom filter size, being able to use Bloom filters up to 2048bit before experiencing a
drop-off in performance. The Vacation benchmark shows the most interesting sensitivity
for these schedulers. Its performance is relatively flat until a Bloom filter size of 8192bits
where performance increases significantly. This happens because the Vacation benchmark
has large RWSets as the Red-Black tree it builds grows in size as the benchmark executes,
and only when the Bloom filter is sized to 8192bits can the RWSet be represented accurately
to effect better predictions. The large reduction in overhead caused by switching between
BFGTS and backoff allows this size Bloom filter to be used effectively for this particular
benchmark. The rest of the benchmarks show relatively little sensitivity to Bloom filter size
for BEGTS-SW/Backoff and BFGTS-HW/Backoff.

As seen in this study, sizing the Bloom filter properly is affected by two key variables
that interact: overhead and prediction accuracy. Depending on how dominant either com-
ponent is in the execution of the benchmark affects what size of Bloom filter is optimal.
This raises several questions this thesis leaves as future work if a variable sized Bloom fil-
ter is assumed for the TM implementation: Can Bloom filter size be determined statically?
Should the Bloom filter be sized dynamically at runtime to balance overhead and prediction

accuracy?

4.3.4.2 Small Tx Update Interval

The “Small Tx Update Interval” is another parameter that warrants a sensitivity study
as it affects both the overhead incurred by BFGTS and also the prediction accuracy as it
eliminates similarity calculations done for small transactions (which are defined throughout
this thesis as transactions touching 10 cache lines or less). This section presents results
for only the BFGTS-SW and BFGTS-HW schedulers as they are the more sensitive to
overheads as seen in the previous sections. The other variable parameters are set as follows:
The “Bloom filter size” is the best performing size, “Time Decay factor” is fixed to 7,
“Alpha” is set to 90% and “Conflict Pressure Threshold” is fixed to 25% for this section.
All other parameters are fixed as described in Section 4.3.1.

Figures 4.13 and 4.14 show the sensitivity of each individual benchmark to only updat-

94

Avg % Improvement
Interval | BFGTS-SW BFGTS-HW
0 1.1% 12.3%
10 2.2% 15.0%
20 2.4% 15.9%
40 3.6% 15.2%
80 3.7% 15.4%
160 3.5% 15.2%

Table 4.7: Average percent improvement over PTS for BFGTS-SW and BFGTS-HW for
Small Transaction Update intervals of 0, 10, 20, 40, 80, and 160 for a 16 proces-
sor system.

ing similarity for small transactions every 0,10,20,40,80 and 160 executions of the trans-
action. As can be seen, the overhead of updating small transactions every execution incurs
very high overhead, and is the worst performer for all the benchmarks tested. As the up-
date interval grows, this affects prediction accuracy to a small degree for benchmarks like
Vacation and Intruder that show worse performance when the update interval is large for
BFGTS-HW. For BEFGTS-SW, the overhead is already large, so this parameter affects the
performance less for individual benchmarks.

Another way to look at the effect of this parameter is to look at how it affects the overall
performance gain across all the benchmarks tested. This is shown in Table 4.7 as percent-
age improvement over PTS. As can be seen, updating all transactions every execution has
the worst performance for both BEFEGTS-HW and BFGTS-SW. As the update interval is
increased, average performance improvement gradually increases. For BFGTS-SW the up-
date interval with the best performance is 80 commits before updating similarity for small
transactions at 3.7% better than PTS. After 80 the performance levels off, and gets slightly
worse. For BEGTS-HW, best interval is 20 commits before updating getting almost 16%
better performance on average, larger intervals see performance level off at a slightly worse
average improvement. This study shows once again that there is a balance between cutting

overhead and sacrificing prediction accuracy as seen in the Bloom filter sensitivity study.

4.3.4.3 Time Decay Factor

The “Time Decay Factor” as described in Section 4.2.2 is hysteresis applied to confi-
dence values indicating conflict between transactions. As a transaction predicts conflict, it
will slightly decrease confidence in future conflicts occurring to combat staleness in confi-
dence values leading to pessimistic predictions. In this section I vary the amount by which

decay can decrease confidence if there is zero similarity present in a transaction (com-

95

pletely disjoint accesses, indicating completely transient conflicts) from 0-50. The other
parameters are set the same as they were in Section 4.3.4.2.

Figure 4.15 shows the performance of each benchmark for the BFGTS-SW, BFGTS-
HW, BFGTS-SW/Backoff and BFGTS-SW/Backoff schedulers as the time decay is varied.
Except for Labyrinth and Ssca2, all the benchmarks are highly sensitive to varying the
decay applied to confidence values.

The Kmeans and Intruder show some sensitivity to decay. For small decay values
between 0 and 10 they showcase little variance in performance. This correlates with Ta-
ble 4.1 where the transactions show a relatively high degree of similarity for the transactions
present in these benchmarks. This means that decay has little affect on the confidence val-
ues when it is a small value, maintaining accurate predictions. When decay becomes large,
it has a large affect on confidence values and causes overly optimistic predictions, which in
turn degrade performance greatly for all the scheduling techniques.

The Genome and Vacation shown more interesting behavior. They also show a high
sensitivity to decay, but both when decay is small and when it is large. When decay is small,
the performance of the BFGTS technique on these benchmarks is poor because BFGTS
makes overly pessimistic predictions due to the connectivity of the their conflict graph
along with medium similarity showing some tendency towards transient conflicts. In these
cases a moderate amount of decay is best, between 5 and 10 as shown in Figure 4.15. When
decay becomes too large, these benchmarks also suffer from overly optimistic predictions
that severely degrade performance.

The final two benchmarks Delaunay and Yada show very different behavior. They show
poor performance when decay is small, but performance steadily increases as decay grows
large—the best performance is when decay is set to 50, by far the worst performing decay
value for all the other benchmarks. This is due to both of these benchmarks having highly
connected conflict graphs, where the transaction with the most conflicts also has a very
low similarity. This means conflicts, while frequent, are also very transient and confidence
needs to decay quickly to avoid stale confidence values.

As seen in this section, decay showcases very interesting properties in all the bench-
marks, and is a parameter that can greatly change the performance of all the BFGTS tech-
niques. From these results, decay is best set to a moderate value to get acceptable perfor-

mance for all benchmarks.

4.3.4.4 Switch Threshold and Past History Weighting

The BFGTS-SW/Backoff and BFGTS-HW/Backoft schedulers have two parameters
that can be varied that affects performance: Switch Threshold (Threshold), and Past His-

96

tory Weighting (Alpha). As described in Section 4.2.3 they control how quickly the sched-
uler switches between using BFGTS and backoff. As the threshold is increased, contention
can remain higher before causing a switch between the two managers. Alpha regulates
how quickly the system changes what it perceives as the contention currently present in
the system. For these sensitivity studies I vary the threshold between 10% and 50% con-
tention pressure and vary alpha between 50% (fast switching) and 95% (slow switching)
for weighting the past history. The other parameters are set the same as they were in Sec-
tion 4.3.4.2.

Figure 4.16 shows the results for the benchmarks as the two parameters are varied. The
solid blue line shows the varying of the threshold parameter while keeping Alpha constant.
The dotted red line shows the performance trend as the Alpha variable is varied.

The results are similar in nature to the sensitivity study looking at varying the decay pa-
rameter. Some applications are sensitive, and others not so sensitive. The Ssca2 benchmark
is expectedly insensitive to both parameters as its low contention keeps BFGTS switched
off for the entirety of the benchmark’s execution. The Labyrinth benchmark also appears
very insensitive to either of the parameters for the BFGTS/Backoff hybrid techniques. This
is likely due to the Labyrinth benchmark being extremely hard to predict a schedule for.
This pattern matches with the previous sections that showed Labyrinth to be insensitive
to “Decay” and even scheduler choice, all performed equally well, including randomized
backoff.

The Delaunay, Genome and Intruder benchmarks are mildly sensitive to varying the
Alpha parameter. Delaunay shows for BEGTS-HW/Backoff a small increase in perfor-
mance as the Alpha parameter grows, indicating it prefers to switch between BFGTS and
Backoff somewhat slowly (Alpha=75%). The same behavior is also seen for the Intruder
benchmark (Alpha=90%). Genome, on the other hand shows the opposite trend, it prefers
an Alpha that switches somewhat quickly between BFGTS and Backoff (Alpha=50%).
Conversely, these same benchmarks show high sensitivity to the threshold parameter. All
three of the benchmarks show degraded performance when the Threshold value is set high
at 50%. This makes sense due to these benchmarks normally having high contention when
using just randomized backoff, they benefit from having BFGTS switched on the majority
of the time and prefer a low Threshold value. The Genome benchmark does see some per-
formance degradation when the Threshold value is too low at 10% and the Alpha value is
set at >50% for some configurations. This is due to the fact that Genome has some trans-
actions that do not require BFGTS to be enabled for long periods of time due to the extra
overheads incurred by using BFGTS.

The Kmeans and Vacation benchmarks show a large sensitivity to varying the Alpha pa-

97

rameter. For the Kmeans benchmark, the max performance for both BFGTS-SW/Backoff
and BFGTS-HW/Backoff is attained using an Alpha value set to 75%. This makes sense
as the Kmeans benchmark is dominated by small transactions that are negatively affected
by overhead incurred when BFGTS is enabled. Still, Kmeans does have a large amount
of contention when using randomized backoff, and therefore using BFGTS during execu-
tion is required to attain high performance. The Vacation benchmark behaves similarly to
Kmeans in terms of the Alpha parameter. In this case, Vacation prefers a larger Alpha of
90% for BEFGTS-SW/Backoff and BFGTS-HW/Backoff sees the best performance with an
Alpha of 75% with a small performance decrease at 90%. Vacation has a large amount of
contention early in the benchmark, but as the execution progresses, it sees less and less con-
tention due to its central tree data structure getting larger. Having Alpha set larger allows
BFGTS-SW/Backoff to return to backoff based contention management after the tree has
grown sufficiently large. BFGTS-HW/Backoff prefers a lower Alpha due to it making more
predictions over BEFGTS-SW/Backoff because the overhead of transaction begin is much
lower with the accelerator and keeping the conflict pressure higher, longer. Sensitivity for
both benchmarks to the Threshold parameter is similar to the Delaunay, Genome, and In-
truder benchmarks. Setting Threshold to 50% shows a precipitous drop in performance for
both benchmarks due to allowing contention to get too high. Vacation does show different
behavior when Threshold is set low at 10%, and sees less performance as it prefers the
middle setting of 25% in most cases. This is due to the gains made by having less overhead
from turning BEGTS off earlier than when it is set to be more optimistic at a higher value.

The Yada benchmarks shows almost opposite behavior to the previous benchmarks. It
is insensitive to both Alpha and Threshold values when Alpha is set above 50%. It gets
the best performance when Alpha and Threshold are set to 50% for BFGTS-SW/Backoff
and BEGTS-HW/Backoff. This is the only benchmark to exhibit this behavior as all other
benchmarks see varying degrees of performance degradation when Alpha and Threshold
are set to their most optimistic settings tested in this chapter. This is behavior is due to
Yada’s complex and dense conflict graph, high contention and varying degrees of similarity
that tend to be low as seen in Table 4.1. This leads to Yada benefitting from optimistic, yet
controlled predictions using BFGTS as seen here.

As seen in this section, varying the parameters that govern how BEGTS-SW/Backoff
and BFGTS-HW/Backoff switch between the high overhead BFGTS and low overhead
Backoff have a sizable effect on performance. Again, each benchmark has its preferred set-
ting of these parameters. This strengthens the design decisions made that keep BFGTS and
other contention management techniques as primarily software constructs as the optimal

settings are benchmark and most likely input dependent. I leave as future work methods

98

Percent Delaunay Genome Kmeans Vacation
Misspredict

Total 42.1% 28.8% 7.3% 19.1%
Parallel 13.0% 2.6% 1.6% 5.4%
Serial 29.1% 26.1% 5.7% 13.7%
Percent Intruder Ssca2 Labyrinth Yada
Misspredict

Total 28.0% 0.2% 9.4% 38.1%
Parallel 5.2% 0.0% 1.2% 11.0%
Serial 22.9% 0.2% 8.2% 27.1%

Table 4.8: The BFGTS technique’s prediction accuracy, as measured from the point-of-
view of the algorithm.

that can potentially dynamically vary the Alpha and Threshold values to learn what the

optimal values should be per benchmark and input set.

4.3.5 BFGTS Predictor Compared to PTS Predictor

As seen in this chapter, the design of the BFGTS predictor appears to be substantially
better than its predecessor PTS when gauged by looking at performance over all the bench-
marks tested. Still, in this section I present a qualitative evaluation of the two algorithms
in terms of prediction accuracy from the point-of-view of the algorithm. These statistics
were collected in the same fashion as was done for doing this evaluation for PTS. BFGTS
was implemented as a zero-cycle overhead module for the M5 simulator and then statis-
tics were gathered to characterize how often BFGTS believed it was over-serializing or
predicting too optimistically.

Table 4.8 shows the inferred predictor accuracy of the BFGTS technique. The main
takeaway that can be gleaned from this table when compared to Table 3.7 from Chapter 3
is the improvement in predictor accuracy. Across all benchmarks the improvement is small
in most cases, but this small improvement does lead to the large improvements seen as even
a small decrease in serialization can lead to large gains in parallel utilization. In general
BFGTS is less likely to be overly optimistic. This is due to the fact it uses aliased TxIDs to
index into the confidence tables and does not use any application specific optimizations. All
these factors lead to less optimistic predictions, but the use of “Similarity” allows BFGTS
to make up for these design decisions. BFGTS also sees a small increase in predicting to
serialize when it should not, but it also has many benchmarks where the opposite is true
in the cases of Genome, Vacation and Intruder which is also due to using “Similarity” to

accurately separate the transient conflicts from the persistent conflicts. In total, BFGTS

99

is much better at predicting future transaction conflicts and picking a better schedule of

transactions over PTS as seen here.

4.3.6 Potential Corner Cases for BFGTS

As with any heuristic there are corner case conditions under which the hueristic could
theoretically perform poorly. The BEGTS hueristic is no different. This section covers the
potential corner case.

A corner case condition that may cause BFGTS to perform poorly is the following
condition: Two transactions touch varying locations in memory and are of varying size
over their execution history, leading to low historical similarity, but with a high probability
conflict on exactly one memory location that can be either fixed or move along with the
transaction. Because of the low similarity the BFGTS hueristic may tend to treat these
conflicts as transient when in fact they are not. While this would seem to be a major limiter,
such a condition was not seen in practice. Even if this case did exist, BEGTS would still
handle these transactions properly and not degenerate to a pathological reactive behavior

due to the following:

1. When a conflict is seen, the transactions will serialize due to knowledge that the

conflict exists with 100% confidence.

2. When the serializing transaction commits it will compare its RWSet to the other
transaction’s RWSet and find that the serializing was useful, causing confidence to

be increased.

3. If decay is set to a sane value, it will not decay the edge faster than increases to
confidence caused by subsequent commits recognizing the conflict still exists and

serialization is useful.

Therefore, because of these reasons, this type of behavior would perform sub-optimally
under BEGTS but not cause pathological behavior. This type of behavior could be found in
operations like inserts into hash tables where a size variable is incremented after the inserts
are completed. Similarity would be low due to the inherent randomness of hash table
inserts but a conflict would always be present. In this case BEGTS would not be optimal,
but orthogonal techniques meant to deal with these ancillary updates (e.g. RetCon [34])
could be applied.

100

4.4 Conclusions

This chapter presented the “Bloom Filter Guided Transaction Scheduler” (BFGTS)
method for managing contention in an Eager/Eager HTM. The main goal of this chap-
ter was to show the design and implementation of a better scheduling contention manager
that both improved the performance of the PTS scheduling manager presented in the pre-
vious chapter that did not require application specific optimizations for performance. Both
these goals were attained through the use of simple hardware to accelerate operations done
on transaction begin, and more importantly through the use of the “Similarity” metric.

Similarity is the key observation that makes the BFGTS contention manager achieve
better overall performance while using less resources and application knowledge than PTS.
By measuring a transactions “Similarity”, very specifically its self-similarity that gives a
characterization of a transaction’s historical RWSet, the BEGTS contention manager is
able to infer the degree to which conflicts can be transient or persistent. This can be used
to throttle confidence updates to get a better degree of optimism or pessimism to future
conflict predictions. Similarity is also used to allow for decay to be applied to confidence
to account for “staleness” in confidence values which could not be done accurately in PTS.

As shown by the evaluation section in this chapter, BFGTS can get up to 21% per-
formance improvement over PTS on average. Compared to a competing scheduler ATS,
BFGTS does even better, getting over 30% improvement even though BFGTS has higher
overhead than ATS.

101

60

Hwwoj paydsm
Hoqy payds m
uigag payds m

adedsim
Hoqvm
|euoindesuel] m
|ousa) m

|euondesues) UON m

80

Lo

awnuny pazijewioN

90 S0 0 €0 o T0

=)

Hoxe8/MH-S1949

Hoxoeg/MH-s1949

HoYoeg/MS-S1949
Hoxea/MH-S1949

10oeg/MS-51948
Hoxoeg/MH-S1949

HOX2e8/MS-51948

Sld

SV

MS-S1948
MH-S1948
H0%2eE/MS-S1948

Sld

S1v

MS-S1949
MH-S1948
H042R8/MS-S1948

Sld

SV

MS-S1944
MH-S1948
H0X2e8/MS-S1948
HoRea/MH-S1949
Sld

SV

MS-S1949
MH-S1949

H040e8/MS-S1948

HoRea/MH-S1949
Sld

Siv

MS-S1948
MH-S1948

Sld

S1Y

MS-51948
MH-SL948
40oeg/MS-51948
Hoxea/MH-S1949
SLd

SV

MS-S1944
MH-SLO4g

Sld
SV
MS-S1949
MH-S1948

Hoxe8/MH-S1949

YyiuuAge 7eIss Japnay| uonesep sueaws| awouan Aeunejag

epej

t for PTS, ATS, BFGTS-SW, BFGTS-HW,

ime is spen

Breakdown of where t

Figure 4.7

BFGTS-SW/Backoff Hybrid, and BEGTS-HW/Backoff Hybri
102

Hwwo) payds w
Hoqy payds m
uigag payds m

adedsym
Hoqy m
|euonoesuel) m
|ousay m

|euonoesuel] uoN |

awi] uoNNJAXJ JUIAd

%00T %06 %08 %0L %09 %05 %0v %0€ %0C %0T

%0

HON0RA/MS-S1948

Hoyoeg/MS-S1949

Sld
SV
MS-S1949
MH-S1948

Aeunejaq

HoRe8/MH-S1949
Sld

SV

MS-S1949
MH-S1948

awouan

HoRea/MH-S1949

HON2e8/MS-S1948

Sld
S1v
MS-S1949
MH-S1948

sueawy|

Hoxoeg/MH-S1949
Sld

S1Y

MS-51948
MH-SL948

uonesep

HOo40RA/MS-S1948

Hoyoegd/MS-S1949

Hoxea/MH-S1949
Sld

SV

MS-S1949
MH-S1948

Japnau|

HoRoea/MH-S1949

Sld
S1v
MS-S1949
MH-S1948

7eIss

H042eA/MS-S1948

HO42RA/MS-S1948

Hoxoeg/MH-51949
Sld

SIY

MS-51948
MH-SL948

YuuAqe

Hoxea/MH-S1949
Sld

SV

MS-S1949
MH-S1948

epes

Hoyoeg/MS-S1949
40%0eg/MH-SL949

Distribution of where time is spent in the PTS, ATS, BFGTS-SW, BFGTS-

HW, BFGTS-SW/Backoff Hybrid, and BFGTS-HW/Backoff predictors, each

benchmark is normalized to its own runtime.

Figure 4.8

103

14 m 512bit
B 1024bit

12
W 2048bit
10 B 4096bit
1 8192bit

Speedup

Labyrinth Yada

Genome Kmeans Vacation Intruder Ssca2

Delaunay
Benchmarks

Figure 4.9: Sensitivity of BFGTS-SW to Bloom filter sizes ranging from 512bit-8192bit.

14 m 512bit
m 1024bit

12
™ 2048bit
m 4096bit

10
™ 8192bit

Speedup

Ssca2 Labyrinth Yada

Delaunay Genome Kmeans Vacation Intruder
Benchmarks

Figure 4.10: Sensitivity of BFGTS-HW to Bloom filter sizes ranging from 512bit-8192bit.

104

14 m 512bit
B 1024bit

12

[2048bit
W 4096bit
m 8192bit

Speedup

Delaunay ~ Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks

Figure 4.11: Sensitivity of BEGTS-SW/Backoff to Bloom filter sizes ranging from 512bit-

81920bit.
14 m 512bit
B 1024bit
12
1 2048bit

M 4096bit
m 8192bit

Yada

Delaunay =~ Genome Kmeans Vacation Intruder Ssca2 Labyrinth
Benchmarks

Figure 4.12: Sensitivity of BFEGTS-HW/Backoff to Bloom filter sizes ranging from 512bit-
8192bit.

105

mo

14
m10
12 —
®20
10 m4a0
m 80
o
3
[
g
Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks
Figure 4.13: Sensitivity of BEFEGTS-SW to changing the frequency of updating small trans-
action similarity data every 0, 10, 20, 40, 80, 160 small transaction executions.
14
mO
12 10
Q.
3
b
g
Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Bencmarks
Figure 4.14: Sensitivity of BEFEGTS-HW to changing the frequency of updating small trans-

action similarity data every 0, 10, 20, 40, 80, and 160 small transaction exe-

cutions.

106

14
12
10

Speedup

o N B O

14
12
10

Speedup

o N B O

14

=

Speedup
o N B OO 0 O

14
12
10

Speedup

o N B O

Figure 4.15: Sensitivity of BEGTS-SW, BEFGTS-HW, BFGTS-SW/Backoff, and BFGTS-

Delaunay Genome
14
12
10
£ —_—
[[[4 HI SN\ N\ [\
2 6 /\\
[
/ / / / ./ N A
2
0
0‘2‘5‘7‘10%0‘ 0‘2‘5 7‘1450 0‘2‘5‘7‘10%0‘ 0‘2‘5 7‘1450 0‘2‘5‘7 1450‘ 0‘2‘5‘7 1450‘ 0‘2‘5‘7‘1450‘ ‘0‘2‘5‘7 1450
Sw Hw Swhy Hwhy Sw Hw Swhy ‘ Hwhy
Kmeans Vacation
14
12
\ N 1)
-3
— =] 8
\ T
Iz W W A W A
s\ /L
2 \ \ | \
\ | |
0
0‘2 5‘7‘1450 0‘2‘5‘7‘1450 0‘2‘5 7‘10%0‘ ‘0‘2‘5‘7‘10%0 0‘2‘5‘7‘1450 0‘2‘5‘7‘1450 0‘2‘5‘7‘1050‘ 0‘2‘5 7‘1450
Sw Hw Swhy ‘ Hwhy Sw Hw Swhy Hwhy
Intruder Ssca2
14
12
10
£y
s 8
b
a 6
© —
4
2
0
T Tl hobd ool Too ik TleloT] Toelo o] Tols ol Toleelo e
Sw Hw Swhy Hwhy Sw Hw Swhy Hwhy ‘
Labyrinth Yada
14
12
10
£
3 8
2 6
—_——— _ 3
Y S A S
, L/ / / /
/7 / / /
0
0’257‘10‘50’ 0’2 5‘7‘10’50’ ’0 2‘5‘7‘10’50’ ’0‘2‘5‘7’10’50‘ 0‘2‘5‘71050‘ 0‘2‘5‘7‘10‘50‘ 0‘2‘5 7‘10‘50‘ 0‘2‘5‘7‘10‘50
Sw Hw Swhy Hwhy ‘ Sw Hw Swhy Hwhy

HW/Backoff to the time decay factor parameter set to 2, 5, 7, 10, and 50.

107

Genome

14

Delaunay

14

Sensitivity of BFGTS-SW/Backoff and BFGTS-HW/Backoff Hybrids to the
108

switching threshold from backoff to BFGTS (solid line) and alpha value (dot-

ted line).

| 3 T o 0S
K 2 8 s 8 E st g
z ; gz g2 2 Lo T
4 £ 5 =
< E =< £ = E = Foe
] 1 o ' o] o
! &= A _ ! S & ' o ! st @ &
s S S ot S
8 8] —— 3
o @© [=2] @©
N w 3 o = ® o %
T ~ oz ~ oz s N~ T
ot
1 o5
0s
] | Q o o
; 3 3 H o 3
b | st
s e
2 N ©
g 3 g 8 3 & 8
3 J 3 >
> ., Lot
— | o & =R 0s o .
s > 3 @ 5 stc @ %
3 ~— 2 3 ot <
3 3 3 Lot R
o [=2] 2] 2]
< 2 2 2
z / w3 n 3 mw n 3
\. ot
I_
— [0S ! — | 0s 05
I o] pret o o o
< 7 __\\\\\\I < 3 o 3 3
ot ot ot
N o ©® © ¥ ~ O T 8N O © © ¥ ~ O < N 9 ® 6 v N O < N o ® 6 v N O
8 2 3 83 3 89 3 83
dnpaads dnpaads dnpaads dnpaads
' o | 0S ' o [0S © | 0s o | 0s
{12, =3 “ 32 s oy 3 sy 3 | sog
g = ot ; 5 = ot g = ot § =
i = o i s £ s = o
i £ S £ S £ = = s
F < ' F < F <
! s o i 05 o TT [0s o h 05 o
\ _ i Lse @ g ! H [IETANR H st ¥ ! [IETARR S
i ot 3 ot 3 Lo 3 3
! 2 3 3 3
| 0s $ 0s < 0s S <
n 0 0 0
_\ e R 2 — e R 2 o R Z RE
ot ot ot \
| Y
! — | 0s ! 05 05
““\\ s B m\\\\ a B 3]
ot E ot ot
[} - |m
05 £ , 05] 05 £ -
[s£ © £ st @ 2 sz @ B e 8
ot <) ot e ot ®
/ 8
0S5 o . H 05 o . 05 o . °
s © % "\ s ® % st % s %
ot S J ot S ot S S
< ' < < <
05 ., 2 L s, 2 05, 2 o 3
st ™ 4 st~ st~ ~
ot I\ ot ot
\
\
0s . 05 05
sz @ m\\\ sz B sz B B
ot ot ot
o~ o o0 -} < ~ o < o~ o 0 =] < o~ o < o~ o 0 © < ~ o < o~ o 0 L] < ~ o
82 383 3T 89 T 39
dnpaads dnpaads dnpaads dnpaads

Figure 4.16

CHAPTER 5

Voltage Boosting to Reduce Scalability Bottlenecks in

Transactional Applications

This chapter describes the technique for determining which transactions are holding
up other transactions (forming a scalability bottleneck) and the methods for boosting core
frequencies to accelerate predicted bottlenecks. The circuit techniques and original ar-
chitecture ideas originate from work done by Dreslinski et al. [52, 51]. This chapter is
organized by first motivating the problem and the intuition behind the solution. Next the
implementation details are described followed by an evaluation of the technique as it per-

tains to transactional applications.

5.1 Asymmetric Multi-Processors

The power and complexity walls have effectively stopped the aggressive search for ex-
traction of instruction level parallelism in single CPU cores. This stems from two problems,
one is power. Power is a limiting factor when attempting to increase frequency of a pro-
cessor, while designers can design the chip, the cooling requirements cannot be met. By
increasing frequency, this also leads to more complex cpu cores to extract ILP by trying
to find independent operations, speculate on branches that cannot be resolved immediately
and tolerating increasing memory latencies as memory frequency has long been lagging
the frequency of processor cores. This has met with diminishing returns in single threaded
processor design. As described in Chapter 1, these problems have led to a resurgence in
researching and development of parallel processor architectures. This research and devel-
opment has culminated in chip-multiprocessors. But, parallel systems have their own major
limitations, one serious limitation is described by Amdahl’s equation reproduced below in

Equation 5.1.

109

7 (5.1)

Speedup =
§ n

As seen in Amdahl’s equation, the limiting factor is the serial part s as it quickly dom-
inates the equation when the number of processors n is large. Even though CMPs and
parallel processing are considered “the” way to continue increasing performance, serial
performance is still important. Studies by both Eyerman et al. [56] and Hill and Marty [68]
show this to be true when analyzing the implications of Amdahl’s equation to parallel pro-
cessing and future architectures. They show that parallel processing gains quickly evapo-
rate when the serial fraction is even a small percentage (1% or less) of the execution time.
This serial fraction can be due to being just serial code, or contention on critical sections.
This has led to the advocation of heterogeneous CMPs. Heterogeneous CMPs for general
purpose computing combine many low performance cores for highly parallel sections of
work, yet consume some chip area to implement at least one (or more) high performance
cores to accelerate serial portions of code. Figure 5.1 shows a qualitative analysis of sym-
metric compared to heterogenous systems when the serial fraction is 0.1%, 2.5%, 10% and
50% of the execution time using » CPUs that use up chip area equivalent to 32 simple in-
order CPUs (termed BCE’s by Hill and Marty [68]) called “Core-Units” in this plot. As
can be seen, the symmetric system has trouble gaining much performance when any serial
code exists. One should note from the figure that as the amount of parallelizable code de-
creases, it is better to use fewer larger cores. The asymmetric system shows better scaling
when devoting chip area to one or more large cores, but still using many little cores. The
study by both Hill and Marty and Eyerman et al. are first order approximations that do not
account for other effects, such as memory system organization, core interconnection and
coherence policies. Regardless, these studies help motivate the necessary move to AMPs
as a way to continue getting the benefit of increased transistor counts and transparently
present programmers a way to get around scalability issues from serialization caused by
critical section contention or other factors.

The main challenges with AMPs is the proper management of the cores. Having one or
more cores that are more powerful than other cores pose problems with assigning threads
to the right cores to optimize performance. Placing threads sub-optimally can lead to worse
than expected performance. This chapter provides a potential solution to determining the
proper threads to schedule to the more powerful cores in the context of transactional ap-
plications and using the prediction methods from the previous two chapters to determine
that proper schedule. As seen in the previous chapters the benchmarks in the STAMP suite

have numerous points of serialization that lead to degraded performance. This degraded

110

SMP System using 32 Core-Units AMP System using 32 Core-Units

W w
S v o O«
NN W W
S v o «»

—0.5 —0.5

— 09 —0.9

v
-
«

0.975 0.975

Realizable Speedup
bR NN
Realizable Speedup

o
=
15}

—0.999 —0.999

[SIC
o un

1 2 4 8 16 32 1 2 4 8 16 32
Number of Core-Units used per Core Number of Core-Units used per High Performance Core

(a) Symmetric System (b) Asymmetric System

Figure 5.1: Speedup’s attainable on an area equivalent of 32 simple in-order cores (called
Core-Units) SMP and AMP systems core system with 99.9%, 97.5%, 90% and
50% parallelizable code(figures reproduced from equations in paper by Hill and
Marty [68]

performance can be partially gained back by using an AMP system. In this chapter I pro-
pose using the prediction techniques developed in the previous chapters along with a novel
AMP system proposed by Dreslinski et al. that uses voltage boosting to increase frequency
to effectively move the “Large Powerful” core to the code that needs accelerating. This
is substantially different from past works such the ACS work by Suleman et al [103] that
assumes a fixed system with one large core where code and data have to be migrated to be

accelerated.

5.2 Implementation

5.2.1 Voltage Boosting Architecture

There are three architecture designs that will be evaluated in this chapter to investi-
gate the concept of using voltage boosting of the bottle-necking core/thread to create a
dynamically configuring AMP system that can accelerate transactional applications with
high contention.

The main concept for these architectures is to design the architecture for low voltage
and frequency operation with the capability to boost to higher voltage and frequencies
when necessary. The reasoning behind this instead of the traditional designs that design
for performance first then include the capability to scale down the voltage is that future
parallel codes will be able to operate at lower frequencies because they can scale out to
numerous cores, and only need to occasionally use high frequency operation. This allows

for a more efficient design in terms of power and energy. Using voltage boosting for making

111

Core Core Core Core Core Core Core Core

IL1 | DL1 IL1 | DL1 IL1 | DL1 IL1 | DL1 IL1 | DL1 IL1 | DL1 IL1 | DL1 IL1 | DL1

Shared L2

Figure 5.2: Boosting one core (shown in red) while the remaining cores operate at less than
nominal voltage (light blue) to keep within TDP.

an AMP also has an advantage over previously proposed AMPs is the core being boosted
can move. This removes the need to move data around the chip to the more powerful core
when sequential execution is needed.

These boosting enabled architectures are assumed to be using two voltage rails to sup-
ply the CMP with a low voltage and a high voltage. Cores can then switch between the
two rails to operate at the low frequency or the high frequency. The dual rail architecture
can theoretically switch between frequencies in 10’s of cycles instead of the 10’s of thou-
sands of cycles it takes with traditional DVFS techniques. More information on the circuit
techniques used to create logic and SRAM that operates at low voltage and frequency and
fast switching between voltage rails can be found in work by Dreslinski et al. [52, 51, 114].
This section will describe the architectures and the trade-offs inherent in each.

Figure 5.2 shows a voltage boosting architecture that allows at most one core and its
L1 caches to boost to the higher frequency by switching the voltage rail being used. To
maintain the same power dissipation as a homogeneous CMP, the low frequency configu-
ration must run the rest of the cores at a slightly slower speed to allow for boosting one
core and keeping the other cores active. This allows potentially for the maximum amount
of parallelism to be maintained while boosting at most one core. The downside to this
configuration is the requirement to operate the cores at a lower frequency to accommo-
date the boosting core. This can potentially lead to less performance in the absence of any
scalability bottlenecks compared to a homogeneous design.

Figure 5.3 shows an alternate architecture called the “Cluster” boosting architecture.
In this architecture, all the cores run at the same nominal frequency as the homogeneous

architecture. To allow boosting, three out of every four cores must be shut down to allow

112

ST T T T T CsteriT T T N7 Cluster 2 A

I |V \I
: Core Core Core Core | Core Core Core Core |
| I

: ! |
| e | oL IL1 | DL1 IL1 | DL1 IL1 | DL1 : IL1 | DL1 IL1 | bL1 IL1 | bL1 IL1 | DLl :
'\ | I
N I S _ N b |/

Figure 5.3: Cluster Boosting architecture showing two clusters. One cluster runs at nominal
voltage (blue), while the other allows one boosting core (red) with the others
shut off (gray), caches remain active to serve coherence requests.

one core to boost to a higher frequency along with its .1 caches. The L1 caches of the
inactive cores remain powered to allow for cache coherence requests to be served. This
allows for this system to maintain performance when there are no scalability bottlenecks,
and allow more than one boosted core during execution. The drawback to this architecture
design is it may limit maximum attainable performance by having to disable cores to allow
boosting as well as not making use of the idle cache space left active when cores are shut
off.

The final design shown in Figure 5.4 and is called the “NTC” architecture. It takes
full advantage of the properties of near-threshold circuit design. When operating at lower
voltages, logic and SRAM have different optimal voltages. SRAM can operate faster than
logic as seen by Zhai et al. [114]. This allows one to design the system in Figure 5.4
where caches can be shared among clusters of cores. In this case the cache is running faster
than the cores and can therefore be effectively shared when running at low voltages. As
with the “Cluster” boosting architecture, only one core in a cluster can be boosted when
the other cores in the cluster are turned off. Unlike the “Cluster” architecture, the NTC
architecture gets full use of the cache space when in boosted mode. A potential problem is

cache pollution from the boosted core when it gets full access to the shared cache.

5.2.2 Identifying Problem Critical Sections

The key challenge in designing AMPs is categorizing and scheduling threads to the

correct cores to get the optimal runtime. This is a hard challenge and there has been lots

113

Core Core Core Core Core Core Core Core

IL1 DL1 IL1 DL1

—_————— <

Shared L2

Figure 5.4: NTC Boosting architecture showing two clusters of cores. Unboosted cores
(blue) share a large cache operating at high frequency (red). Boosted cores
(red) get access to the entire shared cache but the remaining cores in a cluster
must be shut off (gray).

of work in investigating thread scheduling for AMPs. Work in this area includes work
by Lakshminarayana et al. [76], Balakrishnan et al. [23] and Li et al. [80] that looks at
thread scheduling in AMPs from the OS and program perspective. Another main challenges
for AMPs is reducing the overhead of migrating threads as their execution can be phasic,
sometimes requiring a slow core, sometimes requiring the fast core. Using Dreslinski’s
voltage boosting technique, this is no longer a concern as the core can move to the thread
and its data. Still, the challenge remains with determining which core and its associated
thread needs to be boosted.

Transactional applications are an interesting group of applications to study in the AMP
context. As seen in the previous chapters, these applications can be susceptible to large
amounts of contention that slow down execution when programmed using large transac-
tions in a manner that less expert programmers may use. Chapter’s 3 and 4 presented
scheduling methods to reduce scalability bottlenecks to tolerate the latency imposed by
them. In this chapter I present using the techniques from those chapters to derive an algo-
rithm to determine the proper core to boost for three architecture design points that leverage
boosting to create an AMP. This helps to further reduce scalability bottlenecks.

5.2.2.1 Boosting One Core Algorithm

The algorithm for the “Boost One” architecture, is shown in Example 5.1. On every

Transaction Begin, Transaction Abort and Transaction Commit credits are modified. For

114

Transaction Abort and Transaction Commit, credits for the local CPU are reset to zero
to signify this particular core does not need to be boosted as it is not running within a
critical section. On Transaction Begin, the BEGTS algorithm is used to predict whether
if the transaction needs to serialize. If a serialization is predicted to be required, credits
are added to the transaction/core that is predicted to cause an abort. When the credits are
modified, the system evaluates whether a core needs to be boosted, or an already boosting
core needs to relinquish its boost and a different core should boost. This is determined by
looking for the oldest running transaction with the most credits assigned to it. Looking for
the oldest transaction allows for fair boosting. To determine which core should boost is a
centralized operation, and although not explored in this thesis could be implemented as a
central hardware structure. Unfortunately this will not scale to larger core counts, and may

be a limiting factor to future CMPs that are constrained to boosting only one core.

Example 5.1 TM Boosting Pseudo-code used to evaluate when to boost a core for the
“Boost One” architecture

1 void evaluateCoreToBoost ()

2 {

3 boost_cpu = —1

4 max_credit = 0

5 time_stamp = OxffffffffffffffffULL;

6

7 for (i=0; i < numCpus; i++) {

8 if (cpuArray[i].credits > max_credit
9 && cpuArray[i].time_stamp < time_stamp) {
10 boost_cpu = 1i;

11 max_credit = cpuArray[i].credits;

12 time_stamp = cpuArray[i].time_stamp;
13 }

14 }

15

16 if (max_credit > 0

17 && boost_cpu > —1) {

18 boostCPU (boost_cpu);

19 }

20 }

5.2.2.2 Cluster and NTC Boost Algorithm

Boosting decisions for the “Cluster” and “NTC” architectures requires a more compli-
cated algorithm to decide when to boost. As with the “Boost One” algorithm, cores are

given credits as other cores predict they have to serialize their transactions. As with the

115

“Boost One” architecture, determining when to boost is done on Transaction Begin, Trans-

action Abort and Transaction Commit. It is also done when a transaction is signaled it no

longer needs to serialize behind another transaction.

Example 5.2 TM Boosting Pseudo-code used to evaluate when to boost a core for the
“Cluster Boost” and “NTC” architectures when a core is beginning a transaction or stalling.

0O N kAW~
~ -

NS RN\ \S T \C T NS R N I SR O I S I\ e e e e e
O 01NN A WD~ OWOVWKIANWUN B WD~ ONO

30
31
32
33
34
35
36
37
38 }

oid evaluateCoreToBoost(int cpu, int num_stalled)
max _credits = 0;
boost_candidate = —1;

// Check for a boosting candidate via credits
for (i = 0; i < cluster_size; i++) {
if ((clusterArray[i].credits >= max_credits) &&
!'clusterArray[i].stalling) {
max_credits = clusterArray[i].credits;
boost_candidate = 1i;

}
}

// relinquish our opportunistic boost if we are stalling
if (clusterArray[cpu].stalling) {
if (clusterArray[cpu].boosting) {
clusterArray[cpu]. boosting = false;
unboost_clock (cpu);
}
if (num_stalled == (cluster_size —1)) {
clusterArray[boost_candidate]. boosting = true;
boost_clock (boost_candidate);
¥
} else if (num_stalled == (cluster_size —1) &&
!clusterArray[cpu]. boosting) {
// Opportunistically boost

clusterArray[cpu]. boosting = true;
boost_clock (cpu);
} else if (num_stalled == (cluster_size —2)

&& clusterArray[boost_candidate]. credits
>= boost_threshold) {
// predicted to not stall, but relinquish voluntarily.

clusterArray[boost_candidate]. boosting = true;
boost_clock(boost_candidate);
clusterArray[cpu]. stalling = true;

}

Example 5.2 shows the pseudo-code algorithm used to determine when to boost a core

116

when the local core is either predicted to have no conflict and execute or is going to stall.
As it can be seen, this pseudo-code is more complicated than the pseudo-code used in the
previous section. This is from the added complication of only being able to boost when all
the other cores in the cluster of CPUs are turned off. There are three conditions that this
algorithm boosts a core for: 1) A core is stalling to serialize behind a predicted conflict,
release its boost (if applicable) and try to boost another core if all but one remaining core
are active, 2) If the core is predicted to have no conflicts, then see if it can opportunistically
boost if the other cores in the cluster are inactive 3) The core is predicted to have no conflicts
but another core has a large number of credits greater than some threshold, then it will
stall sacrificially to allow the other core to boost. As can be seen from the code and the
conditions listed, there are potentially less opportunities to boost in this configuration as
having the most credits is no longer enough to get boosted. A core must either have many
credits to force a core to sacrifice itself as well as have other cores inactive in its cluster, or
all the cores are already inactive to allow for an opportunistic boost. Even though having
to shut down cores to allow boosting complicates matters, one benefit that could be taken
advantage of is that this algorithm can be distributed among clusters as cores only boost by
looking at information local to the cluster. This makes this architecture more scalable to
more cores.

Example 5.3 shows what happens when a core wakes up from stalling behind a pre-
dicted conflict. It first checks to see if it can opportunistically boost if the other cores
happen to be inactive in its cluster. If boosting is not possible, it takes away the boost of
another core if applicable as more than one core are becoming active in a cluster. Credits
are not checked here because the system is biased towards running in parallel instead of
keeping a boosted core running fast.

One thing to note from these two pieces of pseudo-code for the “Cluster” based boosting
algorithm is that cores are only allowed to determine when to start and end boosting along
the boundaries of a transaction. This guarantees that a processor is not in code protected by
a lock and then accidentally shut down if another core wants to boost potentially causing a
dead-lock. This may be pessimistic, but this chapter is showing just one implementation of

boosting. Optimizations to the boosting algorithms are left for future work.

5.3 Evaluation

5.3.1 Simulation Environment and Benchmarks

To test voltage-boosting for transactional applications I again use the STAMP suite

to evaluate. The benchmark parameters are shown in Table 5.1. The main difference to

117

Example 5.3 TM Boosting Pseudo-code used to evaluate when to boost a core for the
“Cluster Boost” and “NTC” when a core is waking up from being shut down.

1 void evaluateCoreToUnBoost(int cpu, int num_stalled)
2 {

3 boost_core = —1;

4

5 for (i = 0; i < cluster_size; i++) {

6 if (clusterArray[i].boosting) {

7 boost_core = i;

8}

9 }

10

11 // opportunistically boost

12 if (num_stalled == 3 &&

13 !clusterArray[cpu]. boosting) {

14 clusterArray[cpu]. boosting = true;

15 boost_clock (cpu);

16 } else if (num_stalled < 3 && boost_core != —1) {
17 // Else, unboost as more cores are coming online
18 clusterArray[boost_core]. boosting = false;

19 unboost_clock (boost_core);

20 }

21 return;

22 }

be noted is the benchmarks are configured to use the same number of cores as threads.
This was done for two reasons: 1) To investigate the maximum gain voltage boosting can
attain when cores have to idle when a conflict is predicted and 2) the “Cluster” and “NTC”
architectures need to turn off cores, and this can not easily be done when there are more
threads than cores. I will show results for the “Boost One” architecture using more threads
than cores to see the benefits of boosting in the overcommitted configuration where BEFGTS
can switch in another thread and also use boosting.

For these tests I again use the M5 Full System simulator with LogTM support. The con-
tention manager used in BFGTS-NoOverhead to measure the impact of voltage-boosting
only on performance. The frequency configurations are taken from Dreslinski et al. [52]
and are derived from SPICE simulations of ARM-Cortex M3 cores running at NTC volt-
ages. The relative frequency ratios are 4x, 2.7x, and 1.6x for the “Boost One” architecture.
For the “Cluster” and “NTC” boost architectures, they are tested with the base frequency
of 320MHz and boost frequencies of 7S50MHz (2.7x) and 1280MHz (4x). The “NTC” ar-
chitecture assumes you can build a 256kB L1 cache that can be accessed in one cycle. This

may be unrealistic, but it was decided to be unfair to penalize the “NTC” system by giving

118

Benchmark \ Input Parameters

Delaunay [72] | -ilarge.2 -m30 -t16

Genome -g4096 -s32 -n524288 -t16

Kmeans -m20 -n20 -t0.05 -i random50000_12 -p16
Vacation -n8 -q10 -u80 -r65536 -t131072 -c16
Intruder -a10 -132 -n8192 -s1 -t16

Ssca2 -s15-i1.0 -ul.0 -13 -p3 -t16

Labyrinth -1 random-x96-y96-z3-n128.txt -t16

Yada -i large.2 -m30 -t16

Table 5.1: STAMP Benchmark input parameters.

Feature | Description

Processors 16 one IPC Alpha cores @ 250MHz, 275MHz, 310MHz and 320MHz

Boost Frequencies 1000MHz, 750MHz, S00MHz, 1280MHz

L1 Caches 64kB or 256kB, 1 cycle latency, 2-way associative, 64-byte line size

L2 Cache 32MB, 6 cycle latency to unboosted core frequency, 16-way associa-
tive, 64-byte line size

Interconnect Shared bus @ 250MHz, 275MHz, 310MHz, and 320MHz

Main Memory 2048MB, 50ns latency

Linux Kernel Modified v2.6.18

Contention Managers | BEGTS-NoOverhead with Boosting Extensions

Signature Size Perfect signatures used for conflict detection and BFGTS-
NoOverhead.

Table 5.2: M5 Simulation Parameters.

it less cache space. The L1s can run at either the unboosted, or boosted frequencies with
a 1 cycle latency. The L2 speed is fixed at a 6 cycle latency to the unboosted frequency.
The baseline homogenous configuration runs at a speed of 320MHz, with the same cache
access latency ratios, but does not use voltage boosting. One thing to note here is that the
memory latencies are similar to the previous chapters, but the core frequencies are lower

resulting in a memory system that looks closer to the cores.

5.3.2 Performance Analysis

This section presents a performance analysis of the three boosting architectures and
organized as follows. I first present results for a non-overcommitted system using the
“Boost One” architecture. Then I will present results for the “Cluster” and “NTC” boosting
architectures.

Figure 5.5 shows the overall speedup of each frequency of the boost-one architecture for

16 processors over 1 core running at 320MHz. Figure 5.5 shows the performance attained

119

16

m 320MHz/320MHz
M 320MHz/1280MHz
250MHz/1000MHz

14

B 275MHz/750MHz
W 310MHz/500MHz

Speedup

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada

Figure 5.5: Speedup for a non-overcommitted 16 processor system for boosting one core
architecture.

for the homogeneous system (320MHz/320MHz), an ideal 4x boost (320MHz/1280MHz),
4x boost (250MHz/1000MHz), 2.7x boost (275MHz/750MHz) and a 1.6x boost configu-
ration (310MHz/500MHz). Figure 5.6 shows all the tested configurations normalized to
the homogeneous CMP configuration. As can be seen from Figures 5.5 and 5.6 the perfor-
mance of the “Boost One” architecture improves performance for 3 out of 8 benchmarks
when looking at the iso-power configurations, and decreases the performance for the re-
maining benchmarks. On average, this leads to overall performance being slightly worse
than a homogeneous system. The ideal 4x boost case shows equivalent or better perfor-
mance for all the benchmarks and can achieve a >20% performance improvement as it can
run parallel code as fast as the homogeneous system.

The “Boost One” configuration can be better understood by also looking at Table 5.3.
For the benchmarks where “Boost One” loses performance (Genome, Kmeans, Vacation,
Ssca2 and Labyrinth), it can be seen that boosting is used less than 20% of the time for
these benchmarks. This shows that there are not many scalability bottlenecks for boosting
to recover performance from. This fact immediately puts the “Boost One” architecture at a
disadvantage as the cores are running at a reduced frequency and therefore will not get as
good performance as the homogeneous system. For the three benchmarks where boosting
is advantageous (Delaunay, Intruder, and Yada), boosting can attain up to a 40% speedup
for the case of the Intruder benchmark. Looking at Table 5.3 clearly shows why. These
benchmarks see a greater than 50% of the time with one core in the boosted state. This is
not unexpected as these benchmarks have a large amount of contention as seen from the

previous chapters. Because these benchmarks have such a large number of bottlenecks that

120

100

B 320MHz/1280MHz
80 250MHz/1000MHz

M 275MHz/750MHz
60

m 310MHz/500MHz

) I I I— l
T -.
Delaunay Geno]l ;JI Intruder ?. Labyrl!l Yada

Percent Improvement

o

-20

-40

Figure 5.6: Percent difference in speedup for a non-overcommitted 16 processor system for
boosting one core architecture compared to a non-boosted architecture.

benefit from boosting, they also prefer the 4x boosting configuration with the 2.7x boosting
configuration loosing a small amount of performance. The 1.6x boosting configuration
performs the worst as it is not able to accelerate the bottlenecks enough to make up for
the reduced parallel performance. Overall the “Boost One” architecture requires too severe
a trade-off to efficiently accelerate scalability bottlenecks where parallel performance is
reduced to allow one core to boost up to 100% of the time. In practice no core stays
boosted for 100% of the time.

Figures 5.7 and 5.8 show speedup and percent difference over the homogeneous system
for the “Cluster” and “NTC” architectures. I experiment with two frequency configurations,
an iso-power configuration for the “Cluster” and “NTC” architectures (320MHz/750MHz)
and an ideal 4x boosting configuration where the “NTC” architecture sees its shared L1
cache running at a speed sufficient to feed all cores in one clock cycle when they are not
boosted.

As can be seen from the “Cluster” configuration gets slightly less performance on the
three benchmarks (Delaunay, Intruder and Yada) than the “Boost One” architecture, but is
able to get better or equivalent performance for the rest of the benchmarks where boosting
is less effective. This is because for mostly parallel benchmarks the “Cluster” architec-
ture can run the unboosted cores at the same frequency as the homogeneous system. For
the benchmarks showcasing scalability bottlenecks, the “Cluster” architecture cannot quite
extract the same amount of performance as the “Boost One” architecture due to the less op-
portunity to boost with the boosting algorithms presented that favor running parallel over

boosting. This can be seen Table 5.4. The amount of time spent boosting for the “Cluster”

121

16

320MHz/750MHz Cluster 320MHz/1280MHz Cluster
320MHz/750MHz NTC 320MHz/1280MHz NTC

14

bR —

10— —

Speedup
[oe]
\
\
\
\

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada

Figure 5.7: Speedup for a non-overcommitted 16 processor system for cluster and NTC
boosting architectures architecture.

architecture is substantially less than the “Boost One” architecture. Overall the “Cluster”
architecture strikes a better balance than the “Boost One” architecture. It can run the cores
at higher frequency when not voltage boosting to regain parallel performance yet still boost
effectively enough to accelerate bottlenecks. When the “Cluster” architecture is given an
ideal 4x boost, it can attain even higher performance as seen in the figures.

The “NTC” architecture is interesting to look at for a comparison point. When run at
an iso-power point of 320MHz/750MHz, only one benchmark gets improved performance,
the Intruder benchmark. The Intruder benchmark has many bottlenecks, as seen from
Table 5.3. This allows the “NTC” architecture to get better performance than the homo-
geneous architecture. Interestingly enough, it gets even more performance than the ideal
4x boost “Cluster” architecture. This is due to the large L1 cache available to the boosted
core running at boosted speed compared to the small boosted L1 available to the “Cluster”
architecture. On the other hand, because the L1 cache is running slower than 4x the fre-
quency of the cores, the “NTC” architecture does not run as fast due to being bandwidth
limited to the L1 cache and loses significant performance for all the other benchmarks. For
the “NTC” architecture to achieve good performance it must have an L1 cache with suf-
ficient bandwidth. When running with an ideal 4x boost, the “NTC” architecture gets the
best performance overall as seen in Figures 5.7 and 5.8. The Genome and Intruder both see
performance improvements due to the shared L1 cache architecture. The Yada and Vaca-
tion benchmarks see small performance losses over the “Cluster” architecture most likely
due to cache pollution affects.

As seen from this section boosting architectures can be profitably leveraged to acceler-

122

100

® 320MHz/750MHz Cluster
320MHz/1280MHz Cluster
320MHz/750MHz NTC
320MHz/1280MHz NTC

80

60

40

Percent Improvement

20 I
o .. ‘ : I .

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada AVG
-20

-40

Figure 5.8: Percent difference in speedup for a non-overcommitted 16 processor system
for cluster and NTC boosting architectures compared to a non-boosted archi-
tecture.

ate transactional applications when bottlenecks can be accurately identified. The “Cluster”
and “NTC” architectures are the clearly better design points as they do not have perfor-
mance degradations for largely parallel codes, yet can still boost effectively. Future al-
gorithm enhancements may be able to extract more performance from the “Cluster” and
“NTC” architectures.

5.3.3 Sensitivity Studies

To fully evaluate voltage-boosting for transactional applications, two sensitivity tests
were conducted. The first was varying how long it takes to switch voltage rails from low
to high voltages for the different architectures. The second takes a look at the effects of
boosting on an overcommitted system that can also take advantage of switching in different

threads to find additional parallel work.

5.3.3.1 Boosting Latency

The results presented in the previous section were taken assuming the latency to switch
from low to high voltage was zero. A zero latency switch is the most optimal switch latency
for all types of dynamic voltage and frequency scaling systems. A zero cycle latency is not
feasible. Therefore I look at how sensitive the presented voltage boosting architecture is
for the tested benchmarks.

Figure 5.9 shows the normalized average performance over all the benchmarks to a

123

Delaunay Genome Kmeans Vacation

250MHz/1000MHz 71.3% 14.8% 3.8% 15.2%
275MHz/750MHz 78.1% 16.9% 5.1% 15.8%
310MHz/500MHz 84.1% 19.5% 5.2% 20.5%
320MHz/1280MHz 71.3% 14.7% 3.7% 15.2%
320MHz/750MHz Cluster 31.6% 18.5% 3.9% 7.8%
320MHz/1280MHz Cluster 24.8% 15.7% 3.0% 5.9%
320MHz/750MHz NTC 29.1% 14.2% 0.1% 8.3%
320MHz/1280MHz NTC 26.1% 13.8% 0.0% 7.7%
Intruder Ssca2 Labyrinth Yada
250MHz/1000MHz 57.2% 0.0% 3.3% 65.2%
275MHz/750MHz 63.1% 0.0% 2.7% 71.8%
310MHz/500MHz 69.7% 0.0% 6.4% 78.4%
320MHz/1280MHz 56.8% 0.0% 3.0% 65.1%
320MHz/750MHz Cluster 78.6% 0.0% 2.3% 46.9%
320MHz/1280MHz Cluster 63.4% 0.0% 0.6% 38.4%
320MHz/750MHz NTC 76.4% 0.0% 4.4% 44.0%
320MHz/1280MHz NTC 68.4% 0.0% 2.9% 40.5%

Table 5.3: Percentage of execution time that a core was in a boosted state for a non-
overcommitted system with O cycle boosting latency

zero cycle latency for each architecture as boosting latency is varied. The boost latencies
tested were 5,10,25,50,100 and 1000 cycle boost latencies. Figure 5.9 shows that the boost-
ing architectures can tolerate boosting latencies of around 100 cycles of latency, seeing a
10% performance degradation. At 1000 cycles, over a 30% performance degradation is
observed. This makes sense as in the previous chapters the average length of a transaction
was between a few 10’s and 1000’s of cycles in length. If the boosting latency was greater
than 1000 cycles, a transaction that needed to be boosted could complete before the boost-
ing completed. Fortunately, as seen in Dreslinski’s thesis [52], 10’s of cycles of boosting

latency is feasible with the proper circuit design.

5.3.3.2 Overcommitted System

The final sensitivity test looks at how effective voltage boosting is when a transactional
system is using the full potential of its scheduling contention manager by allowing threads
to be switched in and out to find independent work and avoid stalling. Testing with equal
numbers of threads to cores allows the effect of bottlenecks to be exposed fully, but using
equal number of threads to cores is in fact not a common occurrence [29].

Figure 5.10 shows the speedup for a 16 processor overcommitted system using 64
threads for the STAMP benchmarks using BFGTS-NoOverhead and the “Boost One” sys-

124

1l p————p —“S—N\
0.9

. S~

0.6
0.5
0.4
0.3
0.2
0.1

—+—Boost One Core

-=-Cluster Boost
NTC Boost

Normalized Percent Improvement

1 10 100 1000
Boosting Latency in Cycles

Figure 5.9: Boost latency sensitivity for a non-overcommitted 16 processor system for the
three boosting architectures.

tem. Table 5.4 shows the percentage of time a core spends boosting. The “Cluster” and
“NTC” architectures are not tested because currently they need to shut down cores to be
able to boost and no algorithm has been designed yet to allow a boosting scheme for these
architectures that can guarantee deadlock freedom. As can be seen in the figure, an over-
committed system sees less benefit from a boosting system. This is because the effects
of scalability bottlenecks are less severe when a system can run other threads in place of a
blocked thread. This in effect hides the latency of the bottleneck much like an Out-of-Order
processor hides long latency operations by executing independent work. All but two of the
benchmarks run best on the homogenous system. The Intruder and Yada benchmarks still
see a benefit as the bottlenecks still exist because the scheduling of other threads is not
completely effective. In these cases the 4x boosting system gets the best performance be-
cause it can clear a bottleneck the fastest. If an ideal 4x boosting system is used then again
all benchmarks see a benefit from boosting. If an algorithm was designed for the “Cluster”
and “NTC” architectures to tolerate thread switching, then they may see better results than

the “Boost One” architecture as was seen in the previous sections.

5.4 Conclusions

This thesis offers a preliminary evaluation of using voltage boosting to accelerate trans-
actional applications that have scalability bottlenecks. As seen boosting can offer better
performance than a homogeneous system using the BFGTS scheduler, especially if the

system is not overcommitted. The best architecture was the “NTC” architecture when the

125

16 M 320MHz/320MHz
M 320MHz/1280MHz
™ 250MHz/1000MHz
W 275MHz/750MHz

14

W 310MHz/500MHz

Speedup

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada

Figure 5.10: Sensitivity of the boosting one core architecture for an overcommitted 16 pro-
cessor system.

| |Delaunay Genome Kmeans Vacation|

250MHz/1000MHz 86.4% 12.5% 2.7% 12.1%
275MHz/750MHz 90.2% 14.4% 3.8% 14.2%
310MHz/500MHz 93.3% 16.4% 4.1% 17.7%
320MHz/1280MHz 86.6% 12.5% 2.7% 12.5%

Intruder Ssca2 Labyrinth Yada

250MHz/1000MHz 48.7% 0.0% 12.9% 73.0%
275MHz/750MHz 55.2% 0.0% 13.1% 80.2%
310MHz/500MHz 62.1% 0.0% 11.9% 87.0%
320MHz/1280MHz 49.2% 0.0% 14.8% 74.3%

Table 5.4: Percentage of execution time that a core was in a boosted state for a overcom-
mitted system using a 0 cycle boost latency

shared caches could support the bandwidth demands of the connected cores. Otherwise
the “Cluster” architecture is the best balance point as it can run parallel benchmarks full
speed but still accelerate severe bottlenecks, whereas the “Boost One” architecture can
boost more but it sacrifices too much parallel performance to remain iso-power. Over-
all, at an iso-power operation point boosting can attain a 15% performance improvement
over a homogenous architecture on average. Ideally boosting can get greater than a 50%
improvement on average.

There is a more work that needs to be done in this area. The boosting algorithms need
more development, especially for the “Cluster” and “NTC” architectures to find the cor-

rect balance between boosting and parallel operation. These architectures also need to be

126

re-designed to accommodate an overcommitted system, as it achieves better performance
because it does not waste as many processor resources stalling. Currently these architec-

tures cannot support this type of operation without potentially causing deadlock.

127

CHAPTER 6

Multi-Threaded Fetch Throttling in Transactional
Applications

This chapter describes a technique for guiding fetch bandwidth allocation in MT pro-
cessors that have support for HTM. Scalability bottlenecks that exist in MT processors also
need to be accelerated, but it must be tackled differently than in the previous chapter. This
chapter is organized by first motivating the problem, discussing the implementation details
and evaluating the technique to guide fetch throttling to accelerate bottlenecks and increase
performance. This work is an evaluation of a proposal published in a patent application by
Blake et al. [31].

6.1 Motivation

On CMPs the effect of memory latency can decrease the efficiency of a single core
because multiple cores are accessing the memory sub-system concurrently. This is because
the memory sub-system has not scaled at the same rate as number of cores placed on die
in terms of access latency and available bandwidth per core. This effectively decreases
the available memory resources to each core, increasing memory access latency, leading
to the core stalling more often than it would otherwise. The architectural feature of multi-
threading is now used to increase efficiency of CMPs. MT allows greater throughput as a
core’s resources are better utilized by multiple thread’s instructions and helps to hide the
effects of memory latency. MT accomplishes this by allowing more threads to execute
concurrently than there are physical cores by sharing resources on a single core between
multiple threads. Several commercial architectures now use multi-threading to increase
throughput as there are more pipeline resources available to be filled with instructions than
memory bandwidth to fully satisfy a single thread’s request stream. Architectures such as
Sun’s Niagara 2 [70], Intel’s Core 17 [7] and NVIDIA’s Fermi Architecture [9] all use cores

128

that are multi-threaded in some fashion to increase throughput and better tolerate memory
access latency.

Because of the increased amount of sharing between threads in an MT core, it is impor-
tant to determine how to allocate the portion of available fetch bandwidth properly among
threads to make use of the pipeline and cache resources effectively. Especially in the realm
of transactional memory processors, which, if not managed properly can spend dispropor-
tionate amounts of resources executing useless code. Many researchers have looked at
sharing pipeline resources. Prior work focused primarily on throughput of the system, and
maximizing the number of instructions per cycle. This was the aim of Tullsen et al.’s work
with the ICOUNT policy [107]. Increasing throughput though can be a poor metric if an
application is latency sensitive and fairness is needed. Work by Raasch and Reinhardt [89]
looked at the problem of fetch bandwidth allocation when latency and fairness is more im-
portant and found different policies other than ICOUNT were best. More recent work, such
as work by Lakshminarayna and Kim [75] look at fetch policies for MT processors with the
goal of limiting load imbalance in a GPU. By limiting load imbalance and giving priority
to threads that need to complete work the most (but the thread may not be the most efficient
thread) helps parallel scaling by limiting the number of idle cores waiting at a barrier for a
slow thread, in turn increasing overall system throughput.

This chapter looks at parallel scaling and load imbalance in transactional applications
running on an MT enabled core that also has Eager/Eager HTM support per thread in the
MT core. As seen in past chapters the STAMP benchmarks have many bottlenecks that
lead to poor performance. For an MT processor, it is important to devise TM aware fetch
policies to avoid giving bandwidth to threads running code that is not providing forward
progress. I propose in this chapter an instruction fetch policy that uses contention prediction
to guide which threads to fetch for on a given cycle to maximize useful throughput. The
following sections will present the implementation details and provide evaluation of this

proposal.

6.2 Implementation

6.2.1 MT Architecture Model

The MT architecture modeled in this chapter is shown in Figure 6.1 and assumes a
single pipeline, heavily threaded architecture similar to the Sun Niagara [71] processor.
The architecture assumes the fetch unit is a shared piece of logic that picks which hardware
context to fetch from each cycle. It assumes all the registers and transaction checkpoints

are physically duplicated to support multiple hardware contexts. Other pieces of hardware

129

Shared Instruction Fetch Unit)

1 1
! 1 ! 1
Duplicated
Architected Duplicated
Registers and Register

TM Control Checkpoints
Registers

Shared Execution Units ‘

Virtualized
TM Prediction
L1 Data Unit
Cache

L1
Instruction
Cache

Confidence
Cache

Coherent Interconnect

Figure 6.1: The modeled MT Architecture in M5

are virtualized and shared instead of being duplicated, like the thread prediction unit. The
caches also need modification to allow each hardware thread to be executing a transaction
and provide conflict detection in the shared L1 data-cache. This is done by having the
cache perform checks for conflicting accesses in much the same way the coherence policy
for the transactional system does. A transactional cache access is now a two step process,
before the access to the cache array, the address must be compared to the signatures of the
other threads on the core to detect local conflicts, then if the access proceeds, the coherence
mechanism will perform conflict detection among the remote caches. As with any multi-
threaded processor, it will be larger than a single threaded core, but is still smaller than
duplicating cores to make a larger system.

The fetch unit on the MT-core uses a FAIR fetch policy similar to the fetch policy used
in the work by Lakshminarayna and Kim [75]. The fetch unit decides which thread to
pick for execution each cycle by picking the thread that has executed the least number of
instructions. To implement this, the fetch unit uses counters for each hardware context to
increment as instructions are fetched for the contexts. A comparator can be used to pick the
thread context having executed the fewest number of instructions. When all the threads are
getting roughly the same performance this fetch policy is approximately ROUND-ROBIN.
To prevent pathological fetch cases where one context blocks on a very long latency oper-
ation and stops fetching instructions and on return uses all the available fetch bandwidth to
catch up, the fetch unit uses defined epoch to determine when to zero the counters.

The primary reason the FAIR fetch policy was chosen is due to the ease in which it can

130

be modified to allow for bandwidth partitioning among threads. The intuition behind this
is that the FAIR policy fetches based on the thread that has fetched the fewest number of
instructions. To reallocate bandwidth among threads is simply a function of modifying by
how much each counter increments for each instruction fetched and executed. A thread
with more bandwidth allocated to it will count by incrementing the counters by 1, and
threads that have less bandwidth will increment their instructions counters with a number
>1. In this model, the cores perform bandwidth allocation in a distributed manner and it
is assumed they all start with an equal division of fetch bandwidth. When a thread detects
that it should not be using its full bandwidth allotment it signals the fetch unit to reduce its
bandwidth allotment to some fraction of its original bandwidth (one half, one fourth, one
eighth etc.). By extension this reduction in bandwidth for one thread is then equally redis-
tributed among the remaining threads. For example, take a processor with two threads and
each thread has half the bandwidth of the fetch unit (incrementing each counter by 1). If
thread 1 wants to reduce its bandwidth by half and give it the other half to thread 0 it would
start counting instructions by incrementing its counter by 2 instead. This gives thread 0 3/4
of the bandwidth and thread 1 !/4 of the fetch bandwidth. For the remainder of this chap-
ter this is known as a Bandwidth Modifier of 2. A Bandwidth Modifier of 4 would have
thread 1 increment its counter by 4 and have a resulting bandwidth of 1/s. For cores with
more threads, using the Bandwidth Modifier ends up splitting up bandwidth less effectively
across threads as it is spread evenly to the other threads. This use of Bandwidth Modifier
to modify the value of incrementing the instruction is a simple and implementable (needs
only modify a register value by using a shift) way to proportion bandwidth among threads.
Because bandwidth can be asymmetrically provisioned this can give useful threads a per-
formance boost because they can fetch and execute more instructions and by extension can
use more cache space implicitly. To decide when to re-provision bandwidth among threads
to provide acceleration, threads detect when they are less useful and give up bandwidth.
In the next section I will describe how this is easier to detect than detecting the candidate

thread to boost via voltage boosting as in Chapter 5 for transactional applications.

6.2.2 Identifying When to Throttle

As seen in Chapter 5, it is a difficult problem to determine which thread is causing
a scalability bottleneck and then boosting it to clear the bottleneck quickly. On top of
this only about half of the tested benchmarks saw a sizable performance gain. It was also
a hard problem due to the requirement of the boosting hardware. The hardware needed
global visibility of the entire system or cluster to make boosting decisions. This hardware

may or may not be realizable.

131

Benchmark \ Input Parameters

Delaunay [72] | -ilarge.2 -m30 -t64

Genome -g4096 -s32 -n524288 -t64

Kmeans -m20 -n20 -t0.05 -i random50000_12 -p64
Vacation -n8 -q10 -u80 -r65536 -t131072 -c64
Intruder -al10 -132 -n8192 -s1 -t64

Ssca2 -s15 -i1.0 -ul.0 -13 -p3 -t64

Labyrinth -1 random-x96-y96-z3-n128.txt -t64

Yada -i large.2 -m30 -t64

Table 6.1: STAMP Benchmark input parameters.

In the case of MT fetch throttling, it is an easier problem to detect when a thread is
not executing useful code and therefore be given limited fetch bandwidth in the scope of
transactional applications. The BFGTS scheduling algorithm makes a local decision about
the thread attempting to run and whether it is profitable or not. These scheduling decisions
made by the contention manager can be used to guide the fetch bandwidth provisioning.
When a thread needs to be stalled, the BFGTS hardware automatically stalls the thread
by assuming the thread being stalled behind has a short runtime. This automatically gives
bandwidth to the remaining hardware contexts. If BFGTS determines a thread must serial-
ize behind a large transaction it causes a pthread_yield () to occur to switch in another
thread. This pthread_yield() is not contributing to the overall execution of the program,
and can be safely slowed down by making the thread executing this function give up fetch
bandwidth as per its Bandwidth Modifier. When the slowed thread again begins to execute
transactions, its fetch bandwidth is restored. In the case of the STAMP benchmarks that
execute transactionally almost all the time, this is an adequate design. It would not be hard
to add additional hooks such as into the schedule () function of the Linux kernel to make
additional decisions about fetch bandwidth allocation. As it can be seen, it is much eas-
ier to determine when to throttle a thread down than it is to determine when to throttle a
thread up. In the next section I will provide evaluation of using fetch bandwidth to speed

up execution of transactional applications that are running on multi-threaded processors.

6.3 Evaluation

6.3.1 Simulation Environment and Benchmarks

As in the previous chapters, the STAMP benchmarks are used to evaluate the idea of
MT fetch throttling. The parameters used are listed above in Table 6.1. They are the same

inputs as used in the previous chapters, and use 64 threads as in chapters 3 and chapter 4.

132

Feature Description

Processors 2,4,8,16 one IPC Alpha cores @ 2GHz

Threads per Core 1,2,4,8 Threads per Alpha Core

Thread Fetch Policy Fair fetch policy

Fetch Bandwidth Modifier | 1, 2,4, 8

L1 Caches 64kB-512kB, 1 cycle latency, 2-way associative, 64-byte
line size

L2 Cache 32MB, 24 cycle latency, 16-way associative, 64-byte line
size

Interconnect Shared bus at 2GHz

Main Memory 2048MB, 100 cycles latency

Linux Kernel Modified v2.6.18

Contention Managers BFGTS-NoOverhead

Signature Size Perfect signatures used for conflict detection and BFGTS-
NoOverhead.

Table 6.2: M5 Simulation Parameters.

The M5 simulation parameters are listed in Table 6.2. I test using 2,4,8 and 16 cores
using the BFGTS-NoOverhead contention manager to test only the effects of fetch band-
width throttling. The number of hardware threads is kept constant at 16, so for a 4 core
system it is 4-way multi-threaded. Also note that the L1 cache sizes are varied to see what
the effects of limiting the cache has on the performance, from using only 64kB of cache
per core to using 64kB of cache per thread. The Bandwidth Modifiers tested range from
no bandwidth modification when detecting throttling is needed (value of 1) to a Bandwidth
Modifier of 8.

6.3.2 Performance and Sensitivity Analysis

In this evaluation I present each benchmark individually and provide analysis of its
overall performance as well as provide insight into its sensitivity to: cache size, bandwidth
modifier value, and core count. The plots that are presented in this benchmark are per
benchmark and are read as follows: The y-axis is speedup compared to one core execution.
The x-axis is divided into configuration groups. From right to left the configuration groups
are the following: 16 cores with one thread per core, 64kB of cache per core. 8 cores with
2 threads per core, bandwidth modifiers from 1-8 and cache varying from 32kB-64kB per
thread. 4 cores with 4 threads per core, bandwidth modifiers from 1-8 and cache varying
from 16kB-64kB per thread. Finally 2 cores with 8 threads per core, bandwidth modifiers
from 1-8 and cache varying from 8kB-64kB per thread. The lines show the trend of varying
the bandwidth modifiers.

133

10
Delaunay

9 e
8
———e
7
———
Q 6
=]
°
o 5
Q
2 ——
4 ot ”\
3
1
0 | | | | | | | | |
- — N < 0 — N 0 — N < 0 — N < 0 — N < 0 — N < 0 — N < 0 — N < 0 — N < 0
=2} oo oo 0o momnomom momnomom oo momnomom o omnomom momnomom
=3 X X X X M ¥ X X X X ¥ ¥ M ¥ X X X X ¥ ¥ M ¥ 7 ¥ ¥ ¥
< S h s 00 00 00 0 S h 00 00 00 0 [CRGRGRT] S h 00 00 00 0 [LRGRGRT] N AN NN
o O OV WO N AN NN O OV WOV N AN NN n O O WO N AN NN n W wn o
— NN NN ARl < < o < el e il NN NN 00 00 00 00 Al e il NN NN wnwnwnwn
© woww NNNN G TITITT FTIIY GO P00 00000000 0000000
— o O Vv w o o O Vv w o O Vv w o o O Vv Vv O Vv w o O Vv w o
o o o o o o
12
Genome
10
*
——o—o
8
———
Qo
3
o 6
Q
o V'
[——t

16 164KkB 1
16264kB1 |
16 2 64KB 2
16 2 64kB 4
16 2 64kB 8

162128kB1 |

162 128kB 2

162 128kB 4

162 128kB 8
16464kB1 |
16 4 64KB 2
16 4 64kB 4
16 4 64kB 8

164128kB1 |

16 4 128kB 2

164 128kB 4

16 4 128kB 8

164 256kB1 |

16 4 256kB 2

16 4 256kB 4

16 4 256kB 8
16864kB1 |
16 8 64KB 2
16 8 64kB 4
16 8 64KkB 8

168128kB1 |

16 8 128kB 2

16 8 128kB 4

16 8 128kB 8

168256kB1 |

16 8 256kB 2

16 8 256kB 4

16 8 256kB 8

168512kB1 |

16 8 512kB 2

16 8 512kB 4

16 8 512kB 8

Figure 6.2: Performance and sensitivity to number of threads, L1 cache size and bandwidth
allocation for the Delaunay and Genome STAMP Benchmarks.

6.3.2.1 Delaunay

Figure 6.2 shows the performance results of the Delaunay and Genome benchmarks
when using MT fetch throttling. For the Delaunay benchmark, the performance steadily
decreases as the number of physical cores decrease. The 16 core configuration gets the best
performance as it should. The Delaunay benchmark as shown in previous chapters has a fair
amount of contention and scalability bottlenecks to potentially be accelerated. Interestingly
enough, with the 4 and 8-way multi-threaded cores (4 and 2 physical cores respectively),
the system can actually get performance greater than the number of cores over the single
core baseline. This is because larger number of threads are able to execute during long
latency misses and some pre-fetching benefits are seen with the multi-threaded cores for

this application. As the cache is increased per thread, the 2 and 4-way threaded cores show

134

some sensitivity to cache size. The 2-way threaded version with 8 cores sees the most gain.
The sensitivity to the Bandwidth Modifier shows interesting behavior. For the 2-way multi-
threaded cores, reassigning bandwidth to different threads has little impact. This is due to
the small amount of contention for resources between 2 threads per core. When moving to
4-way multi-threading, the application shows some sensitivity as threads give up bandwidth
to accelerate others. Because there is more competition for cache bandwidth, this has an
affect on performance, gaining a few percent. The results for the 4-way configuration even
shows that giving up too much bandwidth can result in performance degradation as in the
case for the Bandwidth Modifiers 4 and 8 for one of the 4-way configurations. When the
system is 8-way multi-threaded there is a discernible advantage to using fetch throttling
to improve performance. In this case a Bandwidth Modifier of 8 is the best to reduce
contention on the scarce pipeline and cache resources in an 8-way multi-threaded processor.
In the 8-way multi-threaded configuration fetch throttling can get up to 17% performance

improvement using a Bandwidth Modification of greater than 1.

6.3.2.2 Genome

The Genome benchmark in Figure 6.2 shows different behavior from Delaunay bench-
mark presented above. As seen in the previous chapter, Genome has a greater amount of
parallelism and does not benefit from boosting techniques. As the number of cores de-
creases, performance steadily decreases as is seen in Delaunay. Again though, the perfor-
mance over one core is still higher than the number of physical cores as again we are seeing
the utilization and prefetching benefits of multi-threading. Increasing the amount of cache
per thread does not have as large of an impact as it did in the Delaunay benchmark. This
makes sense as the Genome benchmark has smaller transactions on average, and caching
performance is not quite as critical. Because Genome has fewer scalability bottlenecks than
Delaunay it sees less benefit from the Bandwidth Modifier. Still, there is a case again where
reducing bandwidth too much can lead to reduced performance for a modifier of 8 in the 4-
way multi-threaded configuration. Overall, reducing bandwidth can get up to a 7% increase

in performance for the most resource constrained 8-way multi-threaded configuration.

6.3.2.3 Kmeans

Figure 6.3 shows the performance and sensitivity to the different parameters for the
Kmeans and Vacation benchmarks. The Kmeans benchmark is a very parallel benchmark
that sees almost linear scaling for the 16 core configuration. As expected it too sees a

performance degradation as the number of physical cores is reduced and the number of

135

16

Kmeans
14
12

10

o —t—t—e ——o—e
S
°
o 8
o
-3
[
6
4
2
0 T T T T T T T T T
H HNS O HANT®O AN AN HANTO HANTO HANTO HANTO HANT
0 OO0 N COOE OOOE 0OOd OO0 OO0Q OO0 OO0d OO0
=3 XY ¥ ¥ ¢ XY ¥ ¥ ¢ XY ¥ ¥ XY ¥ ¥ M ¥ ¥ XY ¥ ¥ ¥ ¥ ¥ M ¥ ¥ MY ¥ ¥
S XYY 0000 STFTFTYL NNNN OOOO SFTILY VHN0H0 OLOOLOL NNNAN
O VOOV ANANN VOOYL NNANN NN VOOO NNANN MIWNW oo oo
a4 NNNN SHHHH gggg HHdTd NNANN g HHoo NNANN 0NN
© Vwoww NNNN oo ITITT FTIIYT Cooow P00 0000000 000000 00
— — 0w oo — O Vo ©0 v oo o 0w oY 0w oY 0w oY
o e e e e o
12
Vacation
.
10 o~ LN
8 ’—/ v\’ N
-
3
o 6
o
-3
@

16 1 64kB 1
16 2 64kB 1
16 2 64kB 2
16264kB4 |
16 2 64kB 8
162 128kB 1
16 2 128kB 2
162128kB4 |
162 128kB 8
16 4 64kB 1
16 4 64kB 2
164 64kB4 |
16 4 64kB 8
164 128kB 1
16 4 128kB 2
164 128kB4 |
16 4 128kB 8
16 4 256kB 1
16 4 256kB 2
164 256kB 4
16 4 256kB 8
16 8 64kB 1
16 8 64kB 2
16864kB4 |
16 8 64kB 8
16 8 128kB 1
16 8 128kB 2
168128kB4 |
16 8 128kB 8
16 8 256kB 1
16 8 256kB 2
16 8256kB 4 |
16 8 256kB 8
16 8 512kB 1
16 8 512kB 2
168512kB 4 |
16 8 512kB 8

Figure 6.3: Performance and sensitivity to number of threads, L1 cache size and bandwidth
allocation for the Kmeans and Vacation STAMP Benchmarks.

threads is increased per core. Again each multi-threaded configuration gets better speedup
than the physical number of cores available as expected. It is insensitive to cache per
thread as all the transactions executed by Kmeans are very small. Because the Kmeans
benchmark is very parallel with no real bottlenecks to be accelerated it is also insensitive

to the Bandwidth Modifier parameter, seeing no appreciable gain.

6.3.2.4 Vacation

The Vacation benchmark is another benchmark that has some bottlenecks that can be
accelerated by using the Bandwidth Modifier as well as other interesting properties. In
this case the 16 core configuration and the 8 core 2-way multi-threaded configuration with
64kB cache per thread achieve the same performance. The 4-core 4-way and 2-core 8-

way multi-threaded get very good performance as well, about 2x the performance to be

136

expected from the number of physical cores available. The Vacation benchmark works on
one large shared Red-Black tree data-structure during its execution. The performance seen
from the multi-threaded processors suggests that the Vacation benchmark is benefitting
from the utilization and pre-fetching effects seen from multi-threading and there is very
little cache pollution among the threads. In the case of cache sensitivity, the 2-way and
4-way multi-threaded cores are sensitive to cache space per thread, while the 8-way multi-
threaded core is less sensitive to cache per thread. All the multi-threaded configurations
are very sensitive to the Bandwidth Modifier parameter for fetch throttling. The 2-way
multi-threaded cores show a modifier between 2 and 4 as being the best, while 8 leads to a
performance degradation. For the 4 and 8-way multi-threaded cores, a Bandwidth Modifier
of 8 is the best overall. This is due to the restricted resources on these configurations and
the extra fetch bandwidth allowed by the high modifier to useful threads allows them to get
to use more cache space and complete transactions faster so serializing transactions get to
run sooner than they otherwise would. For Vacation an up to 17% performance can be seen
using fetch throttling for aggressive 8-way multi-threading. Up to 10% can be seen for
a less aggressive 4-way multi-threading configuration when using a Bandwidth Modifier

greater than 1.

6.3.2.5 Intruder

Figure 6.4 shows the performance and sensitivity to the test parameters for the Intruder
and Ssca2 benchmarks. The Intruder benchmark has a very high contention rate as seen
in the previous chapters and therefore has many scalability bottlenecks that could be ac-
celerated as seen in chapter 5. The Intruder benchmark saw the greatest benefit of all
benchmarks tested from voltage boosting. It also sees the greatest benefit to fetch throttling
for multi-threaded processors. Because of the high amount of contention limiting perfor-
mance for Intruder, the 16 processor configuration and 2 processor 8-way multi-threaded
configuration using fetch throttling can get almost equivalent performance. Overall this
benchmark can be considered insensitive to multi-threading as it has very little parallel po-
tential past a 2.5x speedup. Intruder does see sensitivity to cache space per thread for all
the multi-threaded configuration, seeing gains in performance as cache is increased with
the max performance being attained for 64kB of cache per thread. In terms of sensitivity
to fetch-throttling the Intruder benchmark is very sensitive. It sees the greatest gains for a
Bandwidth Modifier of 8 in all cases. This is due to the numerous bottlenecks experienced
by the Intruder benchmark and boosting performance of threads doing useful work sees
large gains. Overall using fetch throttling for multi-threaded processors can see up to a

213% percent performance improvement for the 8-way multi-threaded configuration over

137

Intruder
3.5

2.5

: D

0.5

Speedup
N

16 1 64kB 1
16 2 64kB 1
16 2 64kB 2
16 2 64kB 4
16 2 64kB 8
162128kB1 |
16 2 128kB 2
162 128kB 4
162128kB 8 |
16 4 64kB 1
16 4 64kB 2
16 4 64kB 4
16 4 64kB 8
164 128kB 1
164 128kB2 |
16 4 128kB 4
16 4 128kB 8
164256kB 1 |
16 4 256kB 2
16 4 256kB 4
16 4 256kB 8
16 8 64kB 1
16 8 64kB 2
16 8 64kB 4
16 8 64kB 8
16 8 128kB 1
168128kB2 |
16 8 128kB 4
16 8 128kB 8
168256kB 1 |
16 8 256kB 2
16 8 256kB 4
16 8 256kB 8
16 8 512kB 1
16 8 512kB 2
16 8 512kB 4
16 8 512kB 8

. Ssca2

Speedup
w

16 1 64kB 1
16 2 64kB 1
16 2 64kB 2
16264kB4 |
162 64kB 8
162128kB1 |
16 2 128kB 2
16 2 128kB 4
16 2 128kB 8
16 4 64kB 1
16 4 64kB 2
16 4 64kB 4
16 4 64kB 8
164128kB1 |
16 4 128kB 2
16 4 128kB 4
16 4 128kB 8
16 4 256kB 1
16 4 256kB 2
16 4 256kB 4
164 256kB 8 |
16 8 64kB 1
16864kB2 |
16 8 64kB 4
16 8 64kB 8
16 8 128kB 1
16 8 128kB 2
16 8 128kB 4
16 8 128kB 8
168256kB 1 |
16 8 256kB 2
16 8 256kB 4
16 8 256kB 8
16 8 512kB 1
16 8 512kB 2
16 8 512kB 4
16 8 512kB 8

Figure 6.4: Performance and sensitivity to number of threads, L1 cache size and bandwidth
allocation for the Intruder and Ssca2 STAMP Benchmarks.

using no fetch throttling and giving all threads equal bandwidth. For the 2-way and 4-way
multi-threaded configurations the gains are less but still significant getting a maximum of

17% and 57% performance gains respectively over a bandwidth modification of 1.

6.3.2.6 Ssca2

As seen in Figure 6.4 the Ssca2 benchmark exhibits almost identical behavior to the
Kmeans benchmark as seen in Figure 6.3. Because of poor caching behavior Ssca2, it does
not scale linearly, but it should due to its very low (<1%) contention as seen in previous
chapters. Because of this there are no bottlenecks to be accelerated and the 16 processor
configuration gets the best performance. The multi-threaded configurations get slightly
better performance than the number of physical cores due to the utilization and pre-fetching

effects as seen with the previously analyzed benchmarks. Because of Ssca2’s poor caching

138

Labyrinth

Speedup
w

161 64kB 1
16 2 64kB 1
16 2 64kB 2
16 2 64kB 4
162 64kB 8
162128kB1 |
16 2 128kB 2
162128kB4 |
16 2 128kB 8
16 4 64kB 1
16 4 64kB 2
16 4 64kB 4
16 4 64kB 8
16 4 128kB 1
164128kB2 |
16 4 128kB 4
16 4 128KkB 8
16 4 256kB 1
16 4 256kB 2
16 4 256kB 4
16 4 256kB 8
16 8 64kB 1
16864kB2 |
16 8 64kB 4
16864kB8 |
16 8 128kB 1
16 8 128kB 2
16 8 128kB 4
16 8 128kB 8
16 8 256kB 1
16 8 256kB 2
168 256kB 4 |
16 8 256kB 8
16 8 512kB 1
16 8 512kB 2
16 8 512kB 4
16 8 512kB 8

)
o
Y

Speedup
S

)
\
R

161 64kB 1
16 2 64kB 1
16 2 64kB 2
16 2 64kB 4
162 64kB 8
162128kB1 |
16 2 128kB 2
162128kB4 |
16 2 128kB 8
16 4 64kB 1
16 4 64kB 2
16 4 64kB 4
16 4 64kB 8
164128kB1 |
164 128kB2 |
16 4 128kB 4
16 4 128kB 8
16 4 256kB 1
16 4 256kB 2
16 4 256kB 4
16 4 256kB 8
16 8 64kB 1
16864kB2 |
16 8 64kB 4
16 8 64kB 8
16 8 128kB 1
16 8 128kB 2
16 8 128kB 4
16 8 128kB 8
168256kB 1 |
16 8 256kB 2
16 8 256kB 4 |
16 8 256kB 8
16 8 512kB 1
16 8 512kB 2
16 8 512kB 4
16 8 512kB 8

Figure 6.5: Performance and sensitivity to number of threads, L1 cache size and bandwidth
allocation for the Labyrinth and Yada STAMP Benchmarks.

characteristics it does have sensitivity to cache per thread. Ssca2 sees definite improvement
in performance as cache per thread is increased. As mentioned before, the lack of any
bottlenecks means that fetch throttling attains no performance gains for this benchmark as

shown in the results.

6.3.2.7 Labyrinth

Figure 6.5 shows the performance and sensitivity of the Labyrinth and Yada bench-
marks. The Labyrinth benchmark exhibits behavior similar to what has been seen in the
previous chapters, namely random behavior as it is a very hard benchmark to apply schedul-
ing and boosting predictions to it effectively. It does not show much scaling and multi-
threading actually degrades performance as the physical cores decrease and threads are

added. It does show some sensitivity to cache size per thread as seen in Figure 6.5, this is

139

due to the Labyrinth benchmark having long transactions with large read/write sets. The
Bandwidth Modifier parameter shows some sensitivity but there is no clear trend exhibited
as to which setting of Bandwidth Modifier is the best. These results are expected due to

Labyrinth’s random behavior seen in previous chapters.

6.3.2.8 Yada

The Yada benchmark on the other hand as seen in Figure 6.5 has clear performance
trends and sensitivities. As the number of physical cores decrease the performance also
decreases as would be expected. In the case of Yada it does not benefit from any pre-
fetching or increased utilization effects of a multi-threading core as seen by the lower than
physical core count speedups. Yada does on the other hand see some benefit to increasing
the amount of cache per thread for the 2-way multi-threaded configuration. For the 4-way
and 8-way multi-threaded configurations extra cache space per thread appears to have little
effect. Throttling fetch bandwidth via the Bandwidth Modifier has a large effect on the
Yada benchmark. For all the configurations, a Bandwidth Modifier of 8 has a large effect
on performance, getting up to a 39% performance increase over using no fetch throttling
when using an 8-way multi-threaded core. For 2-way and 4-way, a Bandwidth Modifier of
8 sees a 5% and 18% performance increase which is significant given these configurations

lower contention for shared resources.

6.4 Conclusions

The results presented in this chapter show BFGTS scheduling decisions can be used
to guide fetch policy decisions for multi-threaded cores. This opens up many future av-
enues of research that could be investigated. One is to look into methods to change which
bandwidth modifier to use for each benchmark. As shown in the results, no one bandwidth
modifier value performed best overall. Another area to research would be to find different
methods for assigning bandwidth to threads and enforcing the bandwidth limitations. The
current method is very simple, and appears to work well, but may not be optimal. Finally
it may be informative to use of a more detailed CPU model and evaluate if the fetch policy
still works as seen here for simple 1 IPC cpu models.

As with voltage boosting, throttling fetch bandwidth in a multi-threaded core can im-
prove performance overall in a multi-threaded architecture when running applications that
exhibit scalability bottlenecks. As shown here the task of identifying when to relinquish
fetch bandwidth from one thread to other threads to allow faster execution is a substantially

easier a problem than determining when to boost a core by looking for potential bottle-

140

necks. Its other advantage is this bandwidth throttling is completely distributed and the
decision can be made locally, negating the need for centralized hardware like in Chapter 5.
Because of these reasons, almost all benchmarks saw an improvement in execution time for
sufficiently resource constrained multi-threaded architectures (4 and 8-way multi-threaded
cores) when using fetch throttling except for two benchmarks that exhibited few or no bot-
tlenecks. Overall this technique of fetch throttling saw upwards of a 200% performance
improvement over FAIR scheduling of instructions for transactional applications using a

scheduling contention manager to guide fetch bandwidth throttling decisions.

141

CHAPTER 7

Conclusions

The power and complexity limitations placed on architects for designing single-threaded
cores has led to shifting focus from the traditional powerful single-core processor to the
chip multi-processor (CMP). Because of this shift to CMPs, many areas of parallel pro-
gramming need to be made tractable to all programmers and not just a small group of
experts. One area that has received a large amount of attention is making synchronization
on shared memory CMPs accessible to programmers other than experts. Transactional Pro-
gramming through the use of Hardware Transactional Memory has been proposed to make
synchronization of critical sections more tractable.

But, Hardware Transactional Memories (HTMs) experience problems with scalability
bottlenecks caused by less than optimal construction of parallel programs using transac-
tions. Transactional programs written in a fashion that emulate synchronization patterns
that would be used by less experienced programmers—a small number of large critical
sections—experience scalability bottlenecks that can cause severe performance degradation
(performance can be less than serial exection) when executed on HTMs. This performance
problem is unacceptable for these systems as it can not be expected of the programmer
to tune transactional programs to increase performance. If tuning was required, all the
programmability benefits of transactional programming would be lost. Therefore the un-
derlying HTM that promises fast execution must provide facilities to automatically resolve
these scalability bottlenecks.

In this thesis I developed and evaluated a hardware/software approach that specifically
leverages the properties of HTM to eliminate scalability bottlenecks without programmer
intervention for transactional programs. HTM specifically allows dynamic profiling of crit-
ical section dependencies because the HTM system exposes critical sections to the hard-
ware. This is not easily achievable with locks as they are not associated with critical sec-

tions in a way that is exposed to the system to use and reason about effectively. Multiple

142

techniques were developed to dynamically, at run-time, tune the execution of an HTM
system to alleviate scalability bottlenecks.

First I proposed that proper contention management design can eliminate scalability
bottlenecks by using a technique called "Proactive Transaction Scheduling” (PTS). PTS
constructs a dynamic conflict graph and predicts future conflicts to avoid future contention
and increase performance. PTS also made the observation that an over-committed system
(more threads than cores) could be leveraged to hide serialization latency between critical
sections by forcing the operating system to schedule different threads that could contain
independent work, making better use of the multi-core system. PTS attained a 2x greater
performance on average over a reactive backoff based contention manager, and was accom-
plished completely as a software runtime.

Enhancements to the PTS contention manager called "Bloom Filter Guided Transaction
Scheduling” (BFGTS) was then developed. BEFGTS made the observation that Bloom fil-
ters could be used to better infer transaction behavior and better guide scheduling decisions.
Specifically Bloom filters were used to measure “Similarity”, a metric that characterized a
transaction’s historical read/write set behavior in terms of randomness. “Similarity” was
then used to guide when to treat a transaction optimistically (schedule to run concurrently)
or pessimistically (serialize behind other transactions) more accurately than could be at-
tained with PTS. BFGTS attained a 21% average performance improvement over PTS and
did not need special application specific optimizations as were required in PTS. BFGTS
also attained a 31% average performance improvement over an outside competing tech-
nique called “Adaptive Transaction Scheduling” (ATS). BFGTS used a combination of
software runtime and small hardware additions to attain these improvements.

I then applied the insights gained from developing PTS and BFGTS to dynamically
profile and re-order execution of transactions in regards to Asymmetric Multi-processing
(AMP). AMPs allocate processing resources asymmetrically among cores to allow some
threads access to high single thread performance if needed. One of the main problems with
AMPs is assigning threads to the correct cores to attain optimal runtime. Using work by
Dreslinski et al. [S51, 52] that establishes voltage boosting can be used effectively to make
an AMP, I applied the transaction scheduling techniques developed previously to determine
the transaction causing scalability bottlenecks and directing the hardware to voltage boost
that thread. This led to a 15% average performance improvement.

Finally I showed that transaction scheduling could also be applied to Multi-Threaded
(MT) processor fetch policy. The main problem in this domain is to identify when threads
were needlessly consuming fetch bandwidth and execution resources. These wasteful

threads were characterized by executing code that was not contributing to the overall pro-

143

gram execution (i.e. spinning on a lock, context switching etc). I showed that transaction
scheduling could be used to identify threads that were not contributing to the completion
of the program. By identifying these threads, fetch bandwidth could be repartitioned to
threads that were making useful progress. I show that on heavily multi-threaded architec-
tures properly throttling fetch bandwidth among threads could lead up to a 2x improvement

in overall performance.

7.1 Future Work

This thesis has shown that transactional memory allows for interesting solutions to
scalability bottlenecks. In particular it allows for dynamic profiling at runtime that can be
leveraged to arrive at better schedules of execution for threads and make effective use of
AMPs. TM allows this because it exposes the concept of a critical section to the underlying
system in a fashion that allows the system to see the interactions among critical sections
and how they evolve. The exposure of critical section behavior allowed the development of
the transaction scheduling runtimes presented, exposing other program behavior properties
will need to be researched to allow development of better runtimes to leverage larger future
CMPs.

As systems continue to get larger in terms of processing cores, and heterogeneity in-
creases due to power and performance concerns, online profiling and targeted system man-
agement will become more critical. This is especially important in the area of scheduling
on AMP systems. In the context of this thesis, it was guiding when and which core to
voltage boost to gain single-threaded performance. Work will need to be continued in this
area to properly leverage these future systems.

There are also outside uses for the “Similarity” metric developed in this thesis that could
be investigated in the future. One could be applying it to cache sharing among processes
in a CMP to maximize throughput by using it to identify the working sets of a thread in a
more compact manner. Another could be to potentially apply “Similarity” to the memory
stream to provide quality of service on the memory interconnect.

Lastly, the concept of transaction scheduling is still receiving attention in the TM com-
munity. Future work could be done to further improve the PTS and BFGTS schedulers.
As seen in Chapters 3 and 4 there is still a fair amount of predictions that are predicting
to serialize or parallelize incorrectly. Improving the predictions further will allowed for
increased performance.

Overall this thesis provides techniques and insights that can be applied to future re-

search in the area of runtimes for dynamic tuning to improve performance and utilization

144

of large CMPs. This research can be in both the areas of the runtime itself as well as
what aspects of program behavior should explicitly be exposed to the architecture to allow

runtimes to tune execution better.

145

APPENDIX

146

APPENDIX A

Additional Experiments

This thesis presented many techniques related to transaction and thread scheduling. In
all but Chapter 35, all the configurations evaluated were over-committed with more threads
than cores. This allowed the scheduling algorithms to hide serialization latency and there-
fore gain performance. This appendix presents experiments conducted in Chapters 3 and
4 using the same number of threads as cores using the STAMP benchmarks instead of

overcommitting the system.

A.1 Backoff Non-Overcommitted System Results

As seen in Tables 1.1 and 1.2, the STAMP benchmarks suffer from high contention
when the processor count reaches 16 cores and in turn sees limited performance scaling.
That table was for an over-committed system using 64 threads. Tables A.1 and A.2 show
the same experiments for a randomized backoff contention manager when the system is not
over-committed—threads equal to cores.

Tables A.1 and A.2 show the results are very similar. In all cases except Ssca2 the
STAMP benchmarks behave almost identically whether the number of threads is greater
than or equal to the number of cores. Speedups and contention values are very similar.
Genome and Intruder still see pathological contention that leads to less than sequential
performance. Delaunay and Yada still see limited scaling due to their large amount of
measured contention. Ssca2’s performance sees a marked improvement. This is due to
its data-structures being better aligned in the cache from having less threads allocated.
Still Ssca?2 has less than linear speedup, suggesting that its cache performance is still not

particularly good.

147

] \Delaunay Genome Kmeans Vacation

2 1.3 1.9 1.9 1.9
4 2.0 3.4 3.9 3.8
8 3.0 43 6.7 4.8
16 35 0.9 6.7 6.2
|| Intruder SSCA2 Labyrinth Yada
2 1.5 1.9 1.6 1.3
4 1.4 3.6 2.6 2.0
8 0.8 6.5 3.5 2.8
16 0.3 10.5 5.1 3.4

Table A.1: Speedup observed for STAMP Benchmarks with simple Randomized Backoff
contention manager for a 2-16 processor system using a LogTM type Transac-
tional Memory with threads equal to processors.

’ ‘Delaunay Genome Kmeans Vacation

2 29.8% 0.3% 0.1% 0.1%
4 45.6% 1.8% 0.1% 0.5%
8 57.8% 8.8% 3.8% 4.0%
16 73.3% 65.1% 20.5% 13.2%

’ ‘ Intruder SSCA2 Labyrinth Yada

2 25% <0.1% <0.1% 19.2%
4 128% <0.1% <0.1% 35.5%
8 39.0% <0.1% 1.3% 42.9%
16 69.8% <0.1% 15.5% 55.5%

Table A.2: Contention observed for STAMP Benchmarks with simple Randomized Back-
off contention manager for a 2-16 processor system using a LogTM type Trans-
actional Memory with threads equal to processors.

A.2 Reactive Thread-Yield Contention Manager Experiments

One of the base ideas of this thesis is: using an over-committed system is beneficial
because other threads can be executed in place of threads that need to serialize in trans-
actional memory applications. To apply this idea I created two rather complex transaction
scheduling contention managers to take advantage of this insight. In this section I present
experiments for a very simple reactive contention manager that tries to take advantage of
an overcommitted system better than linear randomized backoff.

I designed a reactive contention manager that tries to backoff for a pre-defined period
of time, and if the backoff cannot clear the conflict it initiates a pthread_yield() to try

executing another thread. This contention manager is called the “Reactive Thread-Yield”

148

Benchmark | Speedup Contention

Delaunay 1.2 92.6%
Genome N/A >99.9%
Kmeans 5.5 27.5%
Vacation 1.4 81.8%
Intruder N/A >99.9%
Ssca2 5.7 <0.1%
Labyrinth 5.3 10.7%
Yada 6.0 40.9%

Table A.3: Speedup and Contention observed for a Reactive Thread-Yield contention man-
ager for a 16 processor LogTM type system using 64 threads.

contention manager. It was evaluated at 16 processors using my base LogTM implemen-
tation in the M5 Full System simulator using the setup parameters seen in Table 3.3 and
evaluated on STAMP using the parameters from Table 3.2.

Table A.3 shows the speedup and contention results of the “Reactive Thread-Yield”
contention manager. As seen in the table, the results are substantially worse than even the
linear randomized backoff contention manger. Contention is much higher for the Delau-
nay, Genome, Kmeans, Vacation and Intruder benchmarks and performance is substantially
worse. In the case of Genome and Intruder the benchmarks never finished due to patholog-
ical live-lock that the contention manager could not resolve with either backoff or thread
yielding. Ssca2 performs the same as backoff due to its low contention. Labyrinth also
performs the same as backoff, as seen throughout this thesis the Labyrinth benchmark is
contention manager insensitive. Yada is the only benchmark that sees a performance im-
provement. This improvement comes from the optimistic predictions of a reactive manager,
and also gains benefit from switching in new threads to perform independent work. Overall
though, the “Reactive Thread-Yield” contention manager is the worst performing manager
of all those tested in this thesis and again shows that reactive managers are not effective

when contention is high.

A.3 PTS Non-Overcommitted System Results

Chapter 3 presented all of its results using an overcommitted system. This section
provides the results of applying PTS and PTS-Backoff to a non-overcommitted system. The
STAMP benchmarks were run with the same parameters, except that threads are equal to
the number of cores (16), and stalling is used in place of pthread_yield (). The analysis

provided in this appendix is not as detailed as provided elsewhere due to these experiments

149

12
| PTS

10 ® PTS-Backoff Hybrid

Speedup

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks

Figure A.1: Overall best speedup for PTS and PTS-Backoff for a 16 processor system using
16 threads.

Benchmark ‘ PTS PTS-Backoff ‘

Delaunay 35.1% 35.3%
Genome 1.5% 1.1%
Kmeans 3.9% 3.2%
Vacation 4.5% 5.2%
Intruder 65.9% 65.3%
Ssca2 <0.1% <0.1%
Labyrinth 21.8% 29.6%
Yada 13.6% 21.9%

Table A.4: Contention for PTS and PTS-Backoff for a 16 processor system with 16 threads.

being an additional data point for interested readers to compare to.

Figure A.1 and Table A.4 show the overall best performance and resulting measured
contention for the STAMP benchmarks when number of threads is equal to cores. The main
takeaway that should be noted is that the system slows significantly in all cases except for
Ssca2. This slowdown is due to the system not being able to hide serialization latency any
longer and bring in independent work. Resources are forced to go idle when a conflict is
predicted. It should also be noted that contention also goes up when the system has equal
number of threads to cores. In the case of Intruder, the contention goes up, and performance
degrades, though not quite to the pathological nature of backoff based systems. On the other
hand, Yada sees a decrease in contention along with large decrease in performance. This
is due to PTS being overly pessimistic and serializing more than needed. This data shows

that an overcommitted system is beneficial towards getting better performance in general.

150

PTS-Backoff Hybrid I I ® Non-Trans

u Kernel
prs [
Trans

PTS-Backoff Hybrid . ‘ W Abort
PTS . ‘ Escape
PTS-Backoff Hybrid - Sched Begin
Sched Abort
Sched Commit

prs-saciortvyerid |
s I

PTS-Backoff Hybrid [l

r1s [
PTS-Backoff Hybrid [l

rrs D
p1s-Backoff Hybrid |

ers [

PTS-Backoff Hybrid [N

Delaunay Genome Kmeans Vacation | Intruder Ssca2 Labyrinth Yada

P1s | |

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8
Normalized Execution Time

Figure A.2: Time breakdown of where PTS and PTS-Backoff spend time executing each
benchmark normalized to the runtime of 1 core for each benchmark using a 16
processor system using 16 threads.

In the case of Ssca2, it gets better performance due to fewer threads taking up less memory
and improving caching properties.

Figures A.2 and A.3 show the time breakdown and time distribution of where time
is spent in PTS: Non-transactional, kernel, transactional, abort, escape, schedule begin,
schedule abort and schedule commit. Compared to the overcommitted system results, more
time is being spent in the “Sched Begin” and “Sched Abort” execution modes. For example,
the Yada benchmark spends a large amount of time in “Sched Begin” because it is over
serializing by making transactions wait in spin loops. Less time is spent in “Sched Commit”
because while there are more serializations happening, less predictions are being made
due to the lack of threads, meaning less Bloom filter compares are happening. This re-
distribution of time spent in “Sched Begin” and “Sched Commit” help explain why the
benchmarks are running slower, the predictions are not as good because less feedback is
being provided from fewer predictions.

In the case of Vacation and Genome a fair amount of time is being spent in the kernel.
While there are no calls to pthread_yield() to force entry into the kernel scheduler,
load imbalance is possible where threads are hitting their barrier points much earlier than
other threads leading to a large amount of time being spent in the kernel idle loop. Again
this shows that an overcommitted system is also potentially easier to load balance, as the
experiments in chapter 3 did not show large amounts of time being spent in the kernel.

Figure A.4 shows the sensitivity of PTS and PTS-Backoff to the “Small Transaction”

151

PTS-Backoff Hybrid /|
PTS

PTS-Backoff Hybrid

PTS

Labyrinth| Yada

PTS-Backoff Hybrid

Ssca2

PTS

I N S | N A m Non-Trans
PTS-Backoff Hybrid
I A S | I = Kernel

PTS - m Trans

PTS-Backoff Hybrid m Abort
oTs S A m Escape

Vacation | Intruder

e O S = Sched Begin
= Sched Abort

Sched Commit

PTS-Backoff Hybrid

Kmeans

PTS

PTS-Backoff Hybrid
PTS
PTS-Backoff Hybrid

PTS

Delaunay| Genome

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Execution Time Distribution

Figure A.3: Time distribution of PTS and PTS-Backoff executing each benchmark using a
16 processor system using 16 threads.

optimization when the system is not overcommitted. As can be seen from the figure, trends
are almost identical to the results presented in chapter 3.

Figure A.5 shows the sensitivity of PTS and PTS-Backoft to the “Split Transaction” op-
timization when the system in not overcommitted. For the Delaunay and Vacation bench-
marks, the trends are the same, there are improvements in performance. For the Yada
benchmark, the trend does not hold as there is no improvement using or not using the
“Split Transaction” optimization. The Yada benchmark has very pessimistic predictions
regardless of optimizations made.

Figures A.6 and A.7 shows the sensitivity of PTS and PTS-Backoff to Bloom filter size
for a non-overcommitted system. Again the trends are very similar to the results presented
in chapter 3.

The major difference between running the system overcommitted or non-overcommitted
is the benefit gained from having more threads than cores to load balance, and increase sys-
tem throughput by scheduling independent work. When taking away this option, schedul-
ing does have some benefit as seen by most benchmarks gaining performance over backoff,

but the benefit is not as substantial.

152

12 B PTS No Opt

10 W PTS Opt
™ PTS-Backoff
8 Hybrid No Opt
a M PTS-Backoff
3 Hybrid Opt
o 6
(]
Q.
wv
4 -
2 -
O .
Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks
Figure A.4: Sensitivity of PTS and PTS-Backoff to the Small Transaction Optimization for
a 16 processor system using 16 threads.
8
M PTS Small Tx Opt
7 M PTS Split Tx Opt
[PTS-Backoff Hybrid Small Tx Opt
6 M PTS-Backoff Hybrid Split Tx Opt
5
Qo
=]
-
[}
Q.
wv
3
2
1
0
Delaunay Vacation Yada
Benchmarks
Figure A.5: Sensitivity of PTS and PTS-Backoff to the Split Transaction Optimization for

a 16 processor system using 16 threads.

153

12
B 512bit
H 1024bit

10 1 2048bit
W 4096bit
m 8192bit

Speedup

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada

Benchmarks

Figure A.6: Sensitivity of PTS to the Bloom filter size for a 16 processor system using 16

threads.
12 m 512bit
H 1024bit
10 1 2048bit

W 4096bit
W 8192bit

Speedup

Labyrinth Yada

Kmeans Vacation Intruder Ssca2
Benchmarks

Delaunay Genome

Figure A.7: Sensitivity of PTS-Backoff to the Bloom filter size for a 16 processor system
using 16 threads.

154

A.4 BFGTS and ATS Non-Overcommitted System Results

This section presents non-overcommitted system results for BEFGTS and ATS. BFGTS,
as with the non-overcommitted PTS experiments stalls alls transactions to serialize them
behind a predicted conflict as pthread_yield () cannot be used in this configuration. Be-
cause the system is non-overcommitted I also show an optimized version of ATS that uses
spinlocks instead of pthread mutexes and condition variables to save on overhead. Spin-
locks can only be used when the system is not overcommitted because there is no chance
of a thread being pre-empted by the OS for an extended period of time. In any realistic
system, there are always more threads than cores and spinlocks are not a viable option be-
cause if a thread is pre-empted while holding the spinlock all over threads will block while
busy waiting. This section presents results for the optimal ATS configuration compared to
BFGTS.

Figure A.8 and Tables A.5 and A.6 show the best overall speedup attained by BFGTS
and ATS for a non-overcommitted system as well as the contention for both techniques.
One should note that BFGTS attains on average much better performance than PTS when
comparing Figure A.1 to Figure A.8 due to its better prediction methodology. As seen
in chapter 4, both ATS versions still have trouble on benchmarks with high contention,
scheduling very pessimistically in the case of Delaunay, Intruder and Yada. Still, when
the system is non-overcommitted the low overhead of ATS—both the pthread and spin-
lock versions—allows it to be very competitive with BFGTS for benchmarks that have
simple conflict patterns that also benefit from low overhead like Genome, Kmeans and Va-
cation. In the case of Vacation, BEGTS/Backoff can attain better performance due to its
usage of “Similarity” to better detect transient conflicts. Overall we see the same trends as

the non-overcommitted PTS results. BFGTS, being unable to hide serialization latency in

Benchmark ‘ ATS-Pthread ATS-Spinlock

Delaunay 27.1% 26.8%
Genome 1.2% 1.7%
Kmeans 1.5% 4.2%
Vacation 2.0% 5.2%
Intruder 5.1% 19.8%
Ssca2 <0.1% <0.1%
Labyrinth 2.9% 7.9%
Yada 11.7% 10.1%

Table A.5: Contention for ATS-Pthread and ATS-Spinlock for a 16 processor LogTM sys-
tem with 16 threads.

155

Speedup

Figure A.8:

14
M ATS Pthread

12 - m ATS Spinlock

B BFGTS-SW

10
B BFGTS-HW

m BFGTS-SW/Backoff

W BFGTS-HW/Backoff

Yada

nl

Ssca2 Labyrinth

Intruder
Benchmarks

Delaunay Genome Kmeans Vacation

Best Overall performance attained for ATS-Pthread, ATS-Spinlock, BFGTS-
SW, BFGTS-HW, BFGTS-SW/Backoff and BFGTS-HW/Backoff compared
to 1 core for a 16 processor system using 16 threads.

Benchmark | BFGTS-SW BFGTS-HW BFGTS- BFGTS-

SW/Backoff HW/Backoff
Delaunay 23.1% 21.0% 28.0% 24.5%
Genome 1.3% 1.1% 4.7% 3.6%
Kmeans 0.9% 1.9% 5.7% 6.6%
Vacation 2.6% 2.0% 3.7% 3.2%
Intruder 31.3% 5.3% 45.1% 10.7%
Ssca2 <0.1% <0.1% <0.1% <0.1%
Labyrinth 11.4% 3.9% 8.7% 4.7%
Yada 18.7% 6.7% 19.8% 7.3%

Table A.6:

Contention for BFGTS-SW, BFGTS-HW, BFGTS-SW/Backoff and BFGTS-
HW/Backoff for a 16 processor LogTM system with 16 threads.

this case sees degraded performance due to its more complicated contention management
scheme when compared to the very low overhead and simple ATS-Spinlock contention

manager. Comparison to ATS-Pthread is in general more favorable as it works for both an

overcommitted and non-overcommitted system. The more limited number of predictions
also affects the prediction accuracy of BFGTS. This can be seen in the Yada benchmark
where the BEGTS-HW and BFGTS-HW/Backoft variants get worse performance than the
BFGTS-SW and BFGTS-SW/Backoff variants. This is due to the HW variants schedul-
ing more pessimistically because they can make a prediction faster. The SW variants have

more race

conditions when scheduling and can tend to schedule more optimistically. As

seen in this thesis Yada performs best with optimistic scheduling. The more limited number

156

of predictions made with a non-overcommitted system leads to less profiling data using the
Bloom filter operations which in turn lead to worse predictions.

Figures A.9 and A.10 show the time breakdowns of execution for the various contention
managers tested. As can seen the BFGTS techniques spend more time in “Sched Begin”
than the overcommitted system from chapter 4 because it is spinning to stall the transac-
tion when a conflict is predicted. ATS still sees reduced performance for high contention
benchmarks like Delaunay where it spends most of its time in the kernel waiting for a
thread to wake up threads waiting on the condition variable, or spending time in “Sched
Begin” actively spinning on a lock. It should be noted for benchmarks like Kmeans, where
ATS-Pthread has trouble with overhead in the kernel and “Sched Begin”, ATS-Spinlock
eliminates most of that overhead by using much simpler spinlocks over the pthread mu-
texes used in ATS-Pthread and a substantial performance gain is seen.

Figures A.11, A.12, A.13 and A.14 show the sensitivity of BFGTS to the Bloom fil-
ter size for the non-overcommitted system. As with the non-overcommitted PTS results,
BFGTS follows the same Bloom filter sensitivity trends as the overcommitted experiments
conducted in chapter 4.

As seen in Section A.3, the main factor in the large difference in performance is the
lack of being able to hide serialization latency by switching in different threads using
pthread_yield (). These additional experiments also help expose the differences in the
PTS and BFGTS algorithms and isolate the benefit gained from using “Similarity” to guide
updates to confidence. By using “Similarity” BFGTS outperforms PTS by a wide margin

while not requiring any application specific optimizations which is a significant result.

157

T

HWWOD paYds m
Hoqy payds =
uidag payos m

adessym

uoqy m
|euonoesuel) m
|ousey m
|euonoesuel] UON |

80

awnuny pazijewioN

90

0

o

peaiyid S1v
Hpojulds Sy
MS-S1948
MH-S1948
HONoeg/MS-51949
Hooeg/MH-S1949
peaiyid S1v
$ojuids s1v
MS-SL948
MH-51948
HOYRE/MS-S1949
HONRE/MH-S1948
peaiyid S1v
ojuids sy
MS-SLO48
MH-S1948
HOA0RE/MS-51948
10088/ MH-S1948
peaiyid S1v
pojuids s1v
MS-S1948
MH-S1948
HOeE/MS-51948
HO0e8/MH-S1948
peaiyid S1v
>Pojuds s1y
MS-SL948
MH-51948
HONeF/MS-51949
HoNeE/MH-S1948
peaiyid S1v
$ojuids s1v
MS-S1948
MH-S1948
HOYRE/MS-S1949
HoNoeg/MH-S1949
peaiyid S1v
ojuds s1v
MS-SL948
MH-S1948
1008/ MS-51948
1008/ MH-S1948
peaiyid S1v
ojuids Sy
MS-SL948
MH-S1948
HOA0RE/MS-51938
1008/ MH-S1948

YuuAge 7ess Japnau| uonesep sueaw awouan Aeunejag

epes

Figure A.9: Time breakdown of where ATS-Pthread, ATS-Spinlock, BFGTS-SW, BFGTS-

HW, BFGTS-SW/Backoff and BFGTS-HW/Backoff spend time executing for

a 16 processor system using 16 threads normalized to a 1 core system for each

benchmark.

158

HWwo) payds m
1oqy payds m
uigag payds m

adeas3m

Hoqy m
|euonoesuel] m
oy m
|euonoesuell UON m

peaiyid s1v
Fojuids 51y
MS-S1948
MH-51948
Hoxea/MS-S1944
HoNoeg/MH-S1948
peaiyid s1y
HPojuids s1v
MS-S1948
MH-51948
HONeF/MS-51944
Hoxeg/MH-S1948
peaiyid s1v
#Pojuids s1v
MS-S1948
MH-51948
HONRF/MS-51949
HO¥oeg/MH-S1948
peaiyid s1v
#0juids s1v
MS-S1948
MH-51948
HOXeE/MS-51948
Hoxoea/MH-S1948
peaiyid s1v
Pojuids s1v
MS-S1948
MH-S1948
HONRF/MS-51949
HoNoeg/MH-S1948
peaiyid s1v
Fojuids 51y
MS-S1948
MH-51948
10X/ MS-51948
Hoxoeg/MH-S1948
peaiyid s1v
¥ojuids s1v
MS-S1948
MH-51948
HONORF/MS-5194d
HoNoed/MH-S1948
peaiyid s1v
#0juids s1v
MS-S1948
MH-51948
10X/ MS-51948
HoNoeg/MH-S1948

sueawy awouan Aeunejaq

uonesep

yuuAge] zeIss Japnaul

epes

Time distribution of ATS-Pthread, ATS-Spinlock, BFGTS-SW, BFGTS-HW,

BFGTS-SW/Backoff and BEFEGTS-HW/Backoff for a 16 processor system us-

Figure A.10

16 threads

ing

159

= 512bit

14
W 1024bit
12
m 2048bit
10 M 4096bit
m 8192bit
o
=]
el
(]
[
Q
v
Intruder Ssca2 Labyrinth Yada

Delaunay Genome Kmeans Vacation
Benchmarks

Figure A.11: Bloom filter sensitivity of BEFEGTS-SW for 16 processor using 16 threads.

14 m 512bit
H 1024bit
12
[2048bit
10 M 4096bit
H 8192bit
Q
=]
-l
ﬂl
2
wv
Delaunay = Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks
Figure A.12: Bloom filter sensitivity of BEFEGTS-HW for 16 processor using 16 threads.

160

14 m 512bit

W 1024bit
12
[2048bit
10 M 4096bit
m 8192bit
g 8
T
[
2
@ 6
4
2
0
Delaunay = Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks

Figure A.13: Bloom filter sensitivity of BFGTS-SW/Backoff for 16 processor using 16

threads.
14 W 512bit
W 1024bit
12
W 2048bit

W 4096bit
m 8192bit

Speedup

Delaunay Genome Kmeans Vacation Intruder Ssca2 Labyrinth Yada
Benchmarks

Figure A.14: Bloom filter sensitivity of BEFEGTS-HW/Backoff for 16 processor using 16
threads.

161

BIBLIOGRAPHY

162

BIBLIOGRAPHY

[1] Powerd system microarchitecture. http://www-03.ibm.com/systems/p/-
hardware/whitepapers/power4.html, 2001.

[2] AMD Announces World’s First 64-Bit, x86 Multi-Core Processors For Servers
And Workstations At Second-Anniversary Celebration Of AMD Opteron Processor.
AMD News Room, 2005.

[3] Intel Has Double Vision: First Multi-Core Silicon Production Begins. [Intel Press
Room, 2005.

[4] Intel 64 and IA-32 Architectures Software Developer’s Manual. [Intel Developer
Manuals, 2, Nov 2008.

[5] Tilepro64 processor. Tilera Product Brief, 2008.

[6] AMD Displays Llano Die: 4 x86 Cores, 480 Stream
Processors. http://www.xbitlabs.com/news/cpu/display/
20091111143547_AMD Displays_Llano_Die_4_x86_Cores
_480_Stream_Processors.html, 2009.

[7] Intel Core 17 Processor. http://www.intel.com/products/ processor/-
corei7/specifications.htm, 2009.

[8] Intel Previews Intel Xeon ’Nehalem-EX’ Processor. Intel Press Room, 2009.

[9] NVIDIAs Next Generation CUDA Compute Architecture: Fermi. NVIDIA Devel-
opment Whitepapers and Presentations, 2009.

[10] OMAP 4: Mobile applications platform. Texas Instruments Product Bullentin, 2009.

[11] AMD Sets the New Standard for Price, Performance, and Power for the Datacenter.
AMD Newsroom, 2010.

[12] Intel Spotlights New Extreme Edition Processor, Software Developer Resources at
Game Conference. Intel Press Room, 2010.

[13] OCTEON II CN68XX Multi-Core MIPS64 Processors. Cavium Networks Product
Brief, 2010.

163

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. April: A processor archi-
tecture for multiprocessing. In Proceedings of the 17th Annual International Sym-
posium on Computer Architecture, ISCA 90, pages 104—114, New York, NY, USA,
1990. ACM.

K. Agrawal, J. T. Fineman, and J. Sukha. Nested parallelism in transactional mem-
ory. In TRANSACT °07: 2nd Workshop on Transactional Computing, aug 2007. A
later version appeared at PPoPP 08.

A. Alamedldeen and D. Wood. Variability in architectural simulations of multi-
threaded workloads. In The Ninth International Symposium on High-Performance
Computer Architecture. Feb 2003.

R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith.
The tera computer system. In Proceedings of the 4th International Conference on
Supercomputing, ICS *90, pages 1-6, New York, NY, USA, 1990. ACM.

C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Un-
bounded transactional memory. In Proceedings of the Eleventh International Sym-
posium on High-Performance Computer Architecture, pages 316-327. Feb 2005.

M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, C. Kirkham, and I. Watson. Ad-
vanced concurrency control for transactional memory using transaction commit rate.
In EUROPAR ’08: Proc. 14th European Conference on Parallel Processing, pages
719-728, Aug 2008. Springer-Verlag Lecture Notes in Computer Science volume
5168.

M. Ansari, M. Lujan, C. Kotselidis, K. Jarvis, C. Kirkham, and I. Watson. Steal-
on-abort: Improving transactional memory performance through dynamic trans-
action reordering. In HIPEAC ’09: Proc. 4th International Conference on High
Performance and Embedded Architectures and Compilers, pages 4—18, Jan 2009.
Springer-Verlag Lecture Notes in Computer Science volume 5409.

W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evaluating
nested parallel transactions in software transactional memory. In Proceedings of the
22nd ACM symposium on Parallelism in algorithms and architectures, SPAA 10,
pages 253-262, New York, NY, USA, 2010. ACM.

T. Bai, X. Shen, C. Zhang, W. N. Scherer III, C. Ding, and M. L. Scott. A key-based
adaptive transactional memory executor. In Proceedings of the NSF Next Generation
Software Program Workshop. Mar 2007. Invited paper. Also available as TR 909,
Department of Computer Science, University of Rochester, Dec 2006.

S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of performance
asymmetry in emerging multicore architectures. In Proceedings of the 32nd an-
nual international symposium on Computer Architecture, ISCA 05, pages 506-517,
Washington, DC, USA, 2005. IEEE Computer Society.

164

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. a. Barreto, A. Dragojevic, P. Ferreira, R. Guerraoui, and M. Kapalka. Leveraging
parallel nesting in transactional memory. In Proceedings of the 15th ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP ’10, pages
91-100, New York, NY, USA, 2010. ACM.

L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, and B. Verghese. Piranha: a scalable architecture based on single-
chip multiprocessing. In ISCA ’00: Proceedings of the 27th annual international
symposium on Computer architecture, pages 282-293, New York, NY, USA, 2000.
ACM.

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Rein-
hardt. The m5 simulator: Modeling networked systems. IEEE Micro, 26(4):52—60,
2006.

G. Blake, R. G. Dreslinski, and T. Mudge. Proactive transaction scheduling for con-
tention management. In Micro-42: Proceedings of the 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pages 156—167, New York, NY, USA,
2009. ACM.

G. Blake, R. G. Dreslinski, and T. Mudge. Bloom filter guided transaction schedul-
ing. In The 17th IEEE International Symposium on High Performance Computer
Architecture, Feb 2011.

G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evolution of thread-level
parallelism in desktop applications. In Proceedings of the 37th Annual International
Symposium on Computer Architecture, pages 302-313, New York, NY, USA, 2010.
ACM.

G. Blake and T. Mudge. Duplicating and verifying logtm with os support in the m5
simulator. Workshop on Duplicating, Deconstructing and Debunking, 2007.

G. Blake, T. Mudge, S. Biles, N. Chong, E. Ozer, and R. G. Dreslinski. Con-
tention management for a hardware transactional memory. USA Patent Application
#20090138890, Nov. 2008.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422-426, 1970.

C. Blundell, E. C. Lewis, and M. M. K. Martin. Unrestricted transactional memory:
Supporting i/0 and system calls within transactions. Technical Report CIS-06-09,
Department of Computer and Information Science, University of Pennsylvania, Apr
2006.

C. Blundell, A. Raghavan, and M. M. Martin. Retcon: Transactional repair without
replay. In Proceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA *10, pages 258-269, New York, NY, USA, 2010. ACM.

165

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A. Wood. Tokentm: Efficient
execution of large transactions with hardware transactional memory. In Proceedings
of the 35th Annual International Symposium on Computer Architecture. Jun 2008.

J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill, M. M. Swift, and D. A. Wood.
Performance pathologies in hardware transactional memory. In Proceedings of the
34th Annual International Symposium on Computer Architecture. Jun 2007.

C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford trans-
actional applications for multi-processing. In IISWC ’08: Proceedings of The IEEE
International Symposium on Workload Characterization, Sep 2008.

C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,
C. Kozyrakis, and K. Olukotun. An effective hybrid transactional memory system
with strong isolation guarantees. In Proceedings of the 34th Annual International
Symposium on Computer Architecture. Jun 2007.

J. L. Carter and M. N. Wegman. Universal classes of hash functions (extended
abstract). In STOC ’77: Proceedings of the ninth annual ACM symposium on Theory
of computing, pages 106—112, New York, NY, USA, 1977. ACM.

C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chat-
terjee. Software transactional memory: Why is it only a research toy? Queue,
6(5):46-58, 2008.

L. Ceze, P. Montesinos, C. von Praun, and J. Torrellas. Colorama: Architectural
support for data-centric synchronization. In Proceedings of the 13th International
Symposium on High-Performance Computer Architecture. Feb 2007.

L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk disambiguation of specula-
tive threads in multiprocessors. In Proceedings of the 33rd Annual International
Symposium on Computer Architecture. Jun 2006.

H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao Minh, W. Baek,
C. Kozyrakis, and K. Olukotun. A scalable, non-blocking approach to transactional
memory. In /3th International Symposium on High Performance Computer Archi-
tecture (HPCA). Feb 2007.

D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack, C. Fetzer,
M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riviere. Evaluation of AMD’s
advanced synchronization facility within a complete transactional memory stack. In

EuroSys ’10: Proceedings of the 5th European conference on Computer systems,
pages 27-40, New York, NY, USA, 2010. ACM.

J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth, D. Christie, and
D. Grossman. Asf: Amd64 extension for lock-free data structures and transac-

tional memory. Microarchitecture, IEEE/ACM International Symposium on, 0:39—
50, 2010.

166

[46] C. Click. Azuls experiences with hardware transactional memory. In In HP Labs -
Bay Area Workshop on Transactional Memory, 2009.

[47] 1. Corporation. Intel turbo boost technology in intel core microarchitecture (ne-
halem) based processors. Intel White Papers, 2008.

[48] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial
hardware transactional memory implementation. pages 157-168, mar 2009.

[49] S. Dolev, D. Hendler, and A. Suissa. Car-stm: scheduling-based collision avoidance
and resolution for software transactional memory. In Proceedings of the Twenty-
Seventh Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 125-134. Aug 2008.

[50] A. Dragojevi¢, R. Guerraoui, A. V. Singh, and V. Singh. Preventing versus cur-
ing: Avoiding conflicts in transactional memories. In PODC ’09: Proc. 28th ACM
Symposium on Principles of Distributed Computing, Aug 2009.

[51] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge. Near-
threshold computing: Reclaiming moore’s law through energy efficient integrated
circuits. Proceedings of the IEEE, 98(2):253-266, Feb 2010.

[52] R. G. Dreslinski. Something about NTC circuits and architecture. TODO Change
this. PhD thesis, The University of Michigan, Ann Arbor, 2011.

[53] C. Ellis. Concurrent search and insertion in avl trees. Computers, IEEE Transac-
tions on, C-29(9):811 —817, Sept 1980.

[54] P. Enslow, Jr. Multiprocessor organization—a survey. ACM Comput. Surv., 9:103—
129, March 1977.

[55] S. Everman and L. Eeckhout. A memory-level parallelism aware fetch policy for
smt processors. In Proceedings of the 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, pages 240-249, Washington, DC, USA,
2007. IEEE Computer Society.

[56] S. Eyerman and L. Eeckhout. Modeling critical sections in amdahl’s law and its
implications for multicore design. In Proceedings of the 37th Annual International
Symposium on Computer Architecture, pages 362-370. ACM, Jun 2010.

[57] A. Fog. Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs, 2010.

[58] P. Glaskowsky. Prescott pushes pipelining limits. Microprocessor Report, February
2004.

[59] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

167

[60] D. Grossman. Software transactions are to concurrency as garbage collection is
to memory management. Technical Report 2006-04-01, University of Washington
Department of Computer Science & Engineering, Apr 2006.

[61] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional con-
tention managers. In PODC ’05: Proceedings of the twenty-fourth annual ACM
SIGACT-SIGOPS symposium on Principles of distributed computing, pages 258—
264, New York, NY, USA, Jul 2005. ACM Press.

[62] L. Gwennap. Armada 628 Sails Into Mobile Lead. Microprocessor Report, October
2010.

[63] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and K. Olukotun.
The stanford hydra cmp. IEEE Micro, 20(2):71-84, 2000.

[64] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.
Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory coher-
ence and consistency. In Proceedings of the 31st Annual International Symposium
on Computer Architecture, page 102. IEEE Computer Society, Jun 2004.

[65] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan & Claypool,
2nd edition, 2010.

[66] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: double-
ended queues as an example. In Distributed Computing Systems, 2003. Proceedings.
23rd International Conference on, pages 522 — 529, May 2003.

[67] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the 20th Annual International Sympo-
sium on Computer Architecture, pages 289-300. May 1993.

[68] M. D. Hill and M. R. Marty. Amdahls law in the multicore era. I[EEE COMPUTER,
2008.

[69] O. S. Hofmann, C. J. Rossbach, and E. Witchel. Maximum benefit from a minimal
HTM. In ASPLOS ’09: Proceeding of the 14th international conference on Archi-

tectural support for programming languages and operating systems, pages 145-156.
ACM, mar 20009.

[70] T. Johnson and U. Nawathe. An 8-core, 64-thread, 64-bit power efficient sparc
soc (niagara2). In ISPD ’07: Proceedings of the 2007 international symposium on
Physical design, pages 2-2, New York, NY, USA, 2007. ACM.

[71] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded
sparc processor. IEEE Micro, 25:21-29, 2005.

[72] M. Kulkarni, L. P. Chew, and P. Keshav. Using transactions in delaunay mesh gen-
eration. Workshop on Transactional Memory Workloads, 2006.

168

[73] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen. Single-isa
heterogeneous multi-core architectures: The potential for processor power reduc-
tion. In Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 81-92, Dec 2003.

[74] B.-J. Kwak, N.-O. Song, and L. Miller. Performance analysis of exponential backoff.
Networking, IEEE/ACM Transactions on, 13(2):343-355, April 2005.

[75] N. B. Lakshminarayana and H. Kim. Effect of instruction fetch and memory
scheduling on gpu performance. In Workshop on Language, Compiler, and Archi-
tecture Support for GPGPU, in conjunction with HPCA/PPoPP 2010, 2010.

[76] N. B. Lakshminarayana, J. Lee, and H. Kim. Age based scheduling for asymmetric
multiprocessors. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, pages 25:1-25:12, New York, NY, USA,
2009. ACM.

[77] J. R. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool, 1st edition,
2006.

[78] C. Lee. An algorithm for path connections and its applications. In IRE Transactions
on Electronic Computers, 1961.

[79] V.C.S. Lee and K.-W. Lam. Conflict free transaction scheduling using serialization
graph for real-time databases. J. Syst. Softw., 55(1):57-65, 2000.

[80] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient operating system
scheduling for performance-asymmetric multi-core architectures. In Proceedings
of the 2007 ACM/IEEE conference on Supercomputing, SC 07, pages 53:1-53:11,
New York, NY, USA, 2007. ACM.

[81] D. B. Lomet. Process structuring, synchronization, and recovery using atomic ac-
tions. In Proceedings of an ACM conference on Language design for reliable soft-
ware, pages 128—137, New York, NY, USA, 1977. ACM.

[82] A. McDonald, J. Chung, D. C. Brian, C. Cao Minh, H. Chafi, C. Kozyrakis, and
K. Olukotun. Architectural semantics for practical transactional memory. pages
53-65. Jun 2006.

[83] L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski. Improving distributed join
efficiency with extended bloom filter operations. Advanced Information Networking
and Applications, International Conference on, 0:187-194, 2007.

[84] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. Logtm: Log-
based transactional memory. In Proceedings of the 12th International Symposium
on High-Performance Computer Architecture, pages 254-265. Feb 2006.

169

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit, M. M. Swift,
and D. A. Wood. Supporting nested transactional memory in logtm. In ASPLOS-
XII: Proceedings of the 12th international conference on Architectural support for
programming languages and operating systems, pages 359-370. ACM Press, New
York, NY, USA, Oct 2006.

E. B. Nightingale, O. Hodson, R. Mcllroy, C. Hawblitzel, and G. Hunt. Helios: Het-
erogeneous multiprocessing with satellite kernels. Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, pages 221-234, 2009.

S. Pant and G. Byrd. A case for using value prediction to improve performance of
transactional memory. In TRANSACT ’09: 4th Workshop on Transactional Comput-
ing, Feb 2009.

S. Pant and G. Byrd. Extending concurrency of transactional memory programs
by using value prediction. In CF ’09: Proc. 6th ACM conference on Computing
frontiers, pages 11-20, May 2009.

S. E. Raasch and S. K. Reinhardt. Applications of thread prioritization in smt pro-
cessors. In In Proceedings of the 1999 Multithreaded Execution, Architecture, and
Compilation Workshop, 1999.

R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. In Proceed-

ings of the 32nd Annual International Symposium on Computer Architecture, pages
494-505. IEEE Computer Society, Jun 2005.

H. E. Ramadan, C. J. Rossbach, O. S. Hofmann, and E. Witchel. Dependence-aware
transactional memory. In The 41st Annual International Symposium on Microarchi-
tecture. Nov 2008.

H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann, A. Bhandari,
and E. Witchel. Metatm/txlinux: transactional memory for an operating system.
SIGARCH Comput. Archit. News, 35(2):92—-103, 2007.

C. Rossbach, O. Hofmann, and E. Witchel. Is transactional memory programming
actually easier? In WDDD ’09: Proc. 8th Workshop on Duplicating, Deconstruct-
ing, and Debunking, Jun 2009.

C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, B. Aditya, and
E. Witchel. Txlinux: using and managing hardware transactional memory in an
operating system. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS sympo-
sium on Operating systems principles, pages 87-102, New York, NY, USA, 2007.
ACM.

D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam. Implementing signatures for
transactional memory. In MICRO ’07: Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 123—133. IEEE Computer So-
ciety, 2007.

170

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

W. N. Scherer III and M. L. Scott. Contention management in dynamic software
transactional memory. In Proceedings of the ACM PODC Workshop on Concurrency
and Synchronization in Java Programs, St. John’s, NL, Canada, Jul 2004.

W. N. Scherer III and M. L. Scott. Advanced contention management for dynamic
software transactional memory. In Proceedings of the 24th ACM Symposium on
Principles of Distributed Computing, Las Vegas, NV, Jul 2005.

G. Sharma, B. Estrade, and C. Busch. Window-based greedy contention manage-
ment for transactional memory. In DISC’10: Proceedings of the 24th International
Symposium on Distributed Computing, volume 6343 of Lecture Notes in Computer
Science, pages 64-78. Springer Berlin / Heidelberg, September 2010.

A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible decoupled transactional
memory support. In Proceedings of the 35th Annual International Symposium on
Computer Architecture. Jun 2008.

A. Shriraman, M. F. Spear, H. Hossain, V. Marathe, S. Dwarkadas, and M. L. Scott.
An integrated hardware-software approach to flexible transactional memory. In Pro-

ceedings of the 34rd Annual International Symposium on Computer Architecture.
Jun 2007.

T. Skare and C. Kozyrakis. Early release: Friend or foe? In Workshop on Transac-
tional Memory Workloads. Jun 2006.

M. A. Suleman, O. Mutlu, J. A. Joao, Khubaib, and Y. N. Patt. Data marshaling for
multi-core architectures. In Proceedings of the 37th Annual International Sympo-
sium on Computer Architecture, ISCA ’10, pages 441-450, New York, NY, USA,
2010. ACM.

M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating critical
section execution with asymmetric multi-core architectures. In Proceeding of the
14th international conference on Architectural support for programming languages
and operating systems, ASPLOS 09, pages 253-264, New York, NY, USA, 2009.
ACM.

H. Sutter. The free lunch is over: A fundamental turn toward concurrency in soft-
ware. Dr. Dobb’s Journal, 30(3), 2005.

F. Tabba, A. W. Hay, and J. R. Goodman. Transactional value prediction. In TRANS-
ACT °09: 4th Workshop on Transactional Computing, Feb 2009.

S. Tomic, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Harris, and
M. Valero. EazyHTM: Eager-lazy hardware transactional memory. In MICRO ’09:
Proceedings of the 2009 42nd IEEE/ACM International Symposium on Microarchi-
tecture, 20009.

171

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm.
Exploiting choice: Instruction fetch and issue on an implementable simultaneous
multithreading processor. In Proceedings of the 23rd Annual International Sympo-
sium on Computer Architecture, ISCA ’96, pages 191-202, New York, NY, USA,
1996. ACM.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maxi-
mizing on-chip parallelism. In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture, ISCA ’95, pages 392-403, New York, NY, USA,
1995. ACM.

I. Watson, C. Kirkham, and M. Lujan. A study of a transactional parallel routing
algorithm. In PACT ’07: Proceedings of the 16th International Conference on Par-
allel Architecture and Compilation Techniques, pages 388—398, Washington, DC,
USA, 2007. IEEE Computer Society.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2 programs:
characterization and methodological considerations. In ISCA ’95: Proceedings of

the 22nd annual international symposium on Computer architecture, pages 24-36,
New York, NY, USA, 1995. ACM.

L. Yen, J. Bobba, M. M. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift, and
D. A. Wood. Logtm-se: Decoupling hardware transactional memory from caches.

In Proceedings of the 13th International Symposium on High-Performance Com-
puter Architecture(HPCA). Feb 2007.

L. Yen, S. Draper, and M. Hill. Notary: Hardware techniques to enhance signatures.
pages 234-245, Nov. 2008.

R.M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling for transactional mem-
ory systems. In SPAA "08: Proceedings of the twentieth annual symposium on Paral-
lelism in algorithms and architectures, pages 169—178, New York, NY, USA, 2008.
ACM.

B. Zhai, R. G. Dreslinski, D. Blaauw, T. Mudge, and D. Sylvester. Energy efficient
near-threshold chip multi-processing. In Proceedings of the 2007 international sym-

posium on Low power electronics and design, ISLPED ’07, pages 32-37, New York,
NY, USA, 2007. ACM.

C. Zilles and L. Baugh. Extending hardware transactional memory to support non-
busy waiting and nontransactional actions. In Proceedings of the First ACM SIG-
PLAN Workshop on Languages, Compilers, and Hardware Support for Transac-
tional Computing. Jun 2006.

172

