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ABSTRACT        
 

 

This thesis is concerned with hardware approaches for maximizing the number of 

independent instructions in the execution core and thereby maximizing the processing 

efficiency for a given amount of compute bandwidth.  Compute bandwidth is the number 

of parallel execution units multiplied by the pipelining of those units in the processor.  

Keeping those computing elements busy is key to maximize processing efficiency and 

therefore power efficiency. 

 

While some applications have many independent instructions that can be issued in 

parallel without inefficiencies due to branch behavior, cache behavior, or instruction 

dependencies, most applications have limited parallelism and plenty of stalling 

conditions. 

 

This thesis presents two approaches to this problem, which in combination greatly 

increases the efficiency of the processor utilization of resources.  The first approach 

addresses the problem of small basic blocks that arise when code has frequent branches.  

We introduce algorithms and mechanisms to predict multiple branches simultaneously 

and to fetch multiple non-continuous basic blocks every cycle along a predicted branch 

path.  This makes what was previously an inherently serial process into a parallelized 

instruction fetch approach.  For integer applications, the result is an increase in useful 

instruction fetch capacity of 40% when two basic blocks are fetched per cycle and 63% 

for three blocks per cycle.  For floating point benchmarks, the associated improvement is 

27% and 59%. 

 



 xv 

The second approach addresses increasing the number of independent instructions to the 

execution core through simultaneous multi-threading (SMT).  We compare to another 

multithreading approach, Switch-on-Event multithreading, and show that SMT is far 

superior. Intel Pentium 4 SMT microarchitecture algorithms are analyzed, and we look at 

the impact of SMT on power efficiency of the Pentium 4 Processor.  A new metric, the 

SMT Energy Benefit is defined.  Not only do we show that the SMT Energy Benefit for a 

given workload with SMT can be quite significant, we also generalize the results and 

build a model for what other future processors’ SMT Energy Benefit would be.  We 

conclude that while SMT will continue to be an energy-efficient feature, as processors get 

more energy-efficient in general the relative SMT Energy Benefit may be reduced. 
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  CHAPTER 1  

INTRODUCTION 

 

This thesis is concerned with the optimization of processor resource utilization.  At its 

most basic level, a processor consists of arithmetic, logic, and branch processing 

capability, i.e., execution units.  The maximum rate at which execution units are 

capable of executing instructions is the maximum execution throughput that the 

processor can achieve.  The role of everything else - instruction fetch capacity, branch 

predictors, caches, memory, I/O - is to feed the execution units as efficiently as 

possible.  Let us call “everything else” the support hardware.  If the execution units 

are 100% busy doing useful work, then the support hardware is doing its job and no 

further improvement is possible.  At that point, the way to increase performance is to 

add raw execution capability, a task which, on balance, is a rather simple thing to do.  

Indeed, every generation of processor generally adds some execution capacity, some 

of it general execution capacity and some of it specialized capacity (e.g., Intel’s 

MMX, SSE, SSE2, etc.). 

 

The ideal workload consists of an easily predictable instruction stream, easily 

predictable data, and long flows of instructions that exactly match the capacity of the 

execution units.  However, this type of workload is unusual outside of some 

application-specific domains.  In such cases, it is often possible to design special 

purpose processors where the execution units are chosen to fit the workload, while 

support hardware is designed with sufficient capability to keep those execution units 

as close to100% operating efficiency as possible. 
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However, the general-purpose processor must be designed to execute well on a wide 

range of different types of workloads.  A sufficient array of execution units is 

assembled and circuit designers are employed to make them as fast as possible.  Then 

the architect focuses most of his/her time on the support hardware.  Although it is a 

challenge, a well-known list of general techniques is available:  out-of-order 

execution, complex branch predictors, caches, TLBs, memory address predictors, etc.  

If the execution units are to be efficiently fed, the appropriate combination must be 

selected based on the technology and trends in application profiles.  The key points 

are:  how can we provide a continuous stream of ready instructions to feed the 

voracious appetites of those execution units, and how can we provide data to the 

instructions?  It is rather like feeding heat, fuel, and oxygen to a fire.  All three are 

needed to keep the fire going.  Similarly, instructions and data must both be there to 

keep the execution units busy. 

 

This thesis focuses on the processor resource utilization efficiency problem:  how to 

keep all those execution units busy.  Better resource utilization leads to better power 

utilization and less waste.  In particular, this thesis will discuss the delivery problem:  

how to get more instructions per cycle to the execution units so that they are not idle, 

waiting for instructions.  Then we will discuss how to improve the mix of instructions 

such that there is more parallelism.  Finally, we will measure and show the energy 

efficiency of using resources more effectively. 

 

The first basic problem of instruction delivery is overcome the basic block limit for 

fetching instructions. A basic block is the sequence of instructions following a branch 

instruction up to and including the next branch instruction in the sequence.  The 

number of instructions that can be accurately and efficiently fetched is a key metric 

for keeping the execution units busy. One approach is to enlarge the basic blocks into 

traces [1] or into superblocks [2].  Forming instructions into traces and storing those 

traces assumes that the trace will be used enough to justify the area of the trace cache, 

and that the branch predictions made while making the traces will be accurate in 
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future executions of the trace.  Also, in the first execution of the instructions, the fetch 

delivery rate will be limited by the branch prediction bandwidth.  Another approach is 

to exploit predicated execution to schedule instruction execution along multiple 

execution paths [3].  The disadvantage of predicated execution is that execution 

bandwidth is wasted on instructions whose results are discarded and instruction fetch 

bandwidth is wasted on instructions which will not be executed. 

 

In this thesis we analyze a different approach which allows us to fully utilize the fetch 

and execution bandwidth with useful instructions from a dynamically predicted path.  

This approach also takes advantage of the latest branch predictor information on 

every instruction fetch. Our highly accurate branch prediction algorithm is capable of 

making predictions for multiple branches in a single cycle.  We also include a branch 

address cache to provide the addresses of the basic blocks to which the branches 

direct the instruction flow, and an instruction cache configuration with a suitably high 

bandwidth.  If we can correctly predict two to three branch paths every cycle and if 

the average basic block size is five instructions, then potentially the average fetch size 

can be doubled or tripled.  Our analysis shows that this capability increases the useful 

instruction fetch capacity by 40% and 63% when 2 or 3 basic blocks can be fetched 

each cycle, respectively, for integer benchmarks.  For floating point benchmarks the 

improvement is 27% and 59%.  

 

The Intel Pentium 4 Processor uses a trace cache to provide similar instruction fetch 

capability.  A trace is a concatenation of multiple basic blocks that together represents 

a likely path of execution.   Since the trace cache is located after the branch predictor 

and instruction decoder, the branch predictions are effectively recorded in the trace.  

Also, since each trace starts at the beginning of a trace cache line and the instructions 

are already decoded, instruction fetch from the trace cache is very efficient.  The trace 

cache in the Pentium 4 implementation can deliver 8 useful instructions each cycle.  

Those instructions originally may have spanned up to 3 non-consecutive basic blocks 

and may have been split across several cache lines.  A trace cache is an alternative 

way to deliver performance similar to multiple branch prediction. 
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Once instruction delivery to the processor core is sufficient, we turn our attention to 

how the instruction mix can be efficiently executed.  A major bottleneck to this is the 

number of independent instructions that can be executed simultaneously in the mix.  

A way of delivering more independent instructions into the processor is to implement 

SMT.  It potentially doubles the number of independent instructions in the processor 

by fetching instructions from two (or more) software threads.  This thesis discusses 

the implementation in the Pentium 4 processor and presents analysis of SMT on 

modern high-performance out-of-order processors.  The analysis uses a wide variety 

of commercial software as well as common benchmarks to evaluate microarchitecture 

choices and tradeoffs.  The workloads include applications from desktop, 

workstation, high-performance computing, server, and the SPEC suite of benchmarks.  

Detailed execution-driven simulators that were used in the development of the 

Pentium 4 microarchitecture, and real system measurements will be the tools for 

evaluating the microarchitecture optimizations. 

 

More instructions in the processor that are independent means better processor 

resource utilization.  Improvements in processor resource utilization also benefit 

energy efficiency.  Energy efficiency is becoming an increasingly important aspect of 

design due to mobility requirements, sustainability, and cost.  This thesis analyzes the 

energy efficiency of a processor with both a trace cache and simultaneous 

multithreading.  We find that indeed the energy efficiency is improved.  We show that 

although SMT power is typically ~5-15% higher than single-thread (ST) power, the 

energy efficiency can be quite substantial when the SMT speedup is > 1.1.  A new 

metric, the SMT Energy Benefit, is defined and used to show that for a given 

increment of SMT speedup, approximately 80% of that directly lowers energy usage, 

while 20% is spent to obtain that speedup on the Intel Pentium 4 Processor.  We then 

generalize the results and build a model for what future processors’ SMT Energy 

Benefit might be. We conclude that SMT will continue to be an energy-efficient 

feature, however as processors get more energy efficient, the relative SMT Energy 

Benefit will be reduced. 



 5 

1.1 Contributions 

 

This thesis makes the following contributions: 

 Introduce novel algorithms to predict and fetch multiple basic blocks, a key to 

improving execution efficiency.  We introduce the multiple branch predictor 

and its companion instruction fetch mechanism.  Combined, these new 

algorithms get around the basic block limitation, which previously forced 

instruction fetch to be an inherently serial process.  We also use the best and 

most up-to-date branch prediction history to make those predictions. 

 Develop an in-depth understanding of how simultaneous multithreading 

(SMT) and switch-on-event multithreading (SOEMT) can provide more 

varied instructions to the execution units and improve execution efficiency.  

We show that SMT gives better utilization and therefore better performance 

on a wider variety of applications than SOEMT. 

 Examine the SMT implementation of the Intel Pentium 4 and Xeon family, 

and analyze the resource utilization choices made.  We show why resources 

have different utilization patterns, and how those utilization patterns 

necessitate different approaches to sharing the resource.  We consider how 

SMT changes the fundamentals of key algorithms and tradeoffs.  We also 

discuss how SMT introduces new deadlock conditions and fairness 

requirements which impact the choice of implementation algorithms. 

 Provide first measurements and analysis of a real SMT system, on 

microbenchmarks and a wide variety of real applications. 

 Define and a new metric, the SMT energy benefit.  We show that on the 

Pentium 4 Processor, for a given increment of SMT speedup, approximately 

80% of that directly lowers energy usage, while 20% is spent on additional 

power to enable the speedup.  We show that leakage power is proportional to 

SMT area growth, while dynamic power depends on SMT speedup. 

 Create a simple power model to estimate the expected SMT Energy Benefit of 

future, possibly more power-efficient, processors. 
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1.2 Organization 

 

Chapter 2 introduces the multiple branch predictor and instruction fetch mechanism 

that vastly improves instruction fetch rate.  Increasing the number of instructions sent 

to the execution resources improves processor resource utilization.  Chapter 3 

discusses a variety of threading methods, including simultaneous multithreading, and 

shows that simultaneous multithreading can provide more and better resource 

utilization and performance than the alternative switch on event multithreading.   

Chapter 4 discusses the Intel Pentium 4 Processor microarchitecture and the 

microarchitecture decisions, tradeoffs, and challenges.  Chapter 5 is an in-depth study 

that shows why three different resource sharing protocols were critically important 

and were the right choices for different parts of the microarchitecture.  Chapter 6 

looks at the power and energy efficiency of a processor with simultaneous 

multithreading.  Finally Chapter 7 presents some concluding remarks. 
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  CHAPTER 2  
INCREASING INSTRUCTION FETCH RATE VIA 

MULTIPLE BRANCH PREDICTION 
 

 

As architectures become increasingly parallel, it is important to fetch more and more 

instructions each cycle.  This can be done either by increasing basic block size and 

fetching the entire block in a single cycle, or by fetching multiple basic blocks per 

cycle.  The optimal solution may be to combine both.  The first approach is being 

researched and implemented in today’s advanced compilers.  One approach is to 

enlarge the basic block into traces [1] or into superblocks [2].  Another approach is to 

exploit accurate predicated execution to schedule instruction execution along multiple 

execution paths [3].  The disadvantage of predicated execution is that execution 

bandwidth is wasted on instructions whose results are discarded, and instruction fetch 

bandwidth is wasted on instructions which will not be executed. 

 

Here we propose a scheme which allows us to more fully utilize the fetch and 

execution bandwidth with useful instructions from a dynamically predicted path.  We 

published this work in [4].    

 

There are three essential components to providing the ability to fetch multiple basic 

blocks each cycle: 

 

 Predicting the branch paths of multiple branches each cycle. 

 Generating fetch addresses for multiple and possibly non-consecutive basic 

blocks each cycle. 
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 Designing an instruction cache with enough bandwidth to supply a large 

number of instructions from multiple, possibly non-consecutive basic blocks. 

 

This chapter discusses an integrated solution for these problems.  We introduce a 

highly accurate branch prediction algorithm capable of making predictions for 

multiple branches in a single cycle, a branch address cache to provide the addresses 

of the basic blocks to which the branches direct the instruction flow, and an 

instruction cache configuration with a suitably high bandwidth.  Although hardware 

intensive, these solutions are not excessively so for today’s modern processor 

implementations. 

 

If we can correctly predict two to three branch paths every cycle and if the average 

basic block size is five instructions, then the average fetch size will be 10 to 15 

instructions.  Many non-numeric applications today have an average basic block size 

of 5 instructions, and floating point applications tend to be much larger.  The ability 

to fetch multiple basic blocks per cycle coupled with compiler technology to increase 

basic block size can result in significant performance gains.  This chapter shows that 

simply providing the ability to fetch multiple instructions without specific compiler 

optimizations already increases the useful instruction fetch capacity of a machine by 

40% when 2 basic blocks can be fetched each cycle, or 63% for 3 basic blocks, in the 

case of integer benchmarks.  For floating point benchmarks, the improvement is 27% 

and 59%, respectively. 

 

In Section 2.1 we provide an overview of the branch prediction work that this work 

builds on.  Our multiple branch prediction algorithm is based on the Two-level 

Adaptive Branch Predictor [5-7].  The Two-level Adaptive Branch Predictor achieves 

an average of 97% accuracy.  An instruction supply mechanism [8] to do back-to-

back branch predictions and supply up to one basic block per instruction cache fetch 

is also briefly reviewed.   

 



 9 

Section 2.2 describes the multiple basic block supply mechanism, the multiple branch 

prediction algorithms, and the structure and operation of the branch address cache, 

and the instruction cache design issues.  Section 2.3 describes the simulation model 

and the benchmarks used, and Section 2.4 our simulation results.   

 

Section 2.5 discusses other related research on multiple branch prediction or 

alternative methods of increasing instruction delivery, and finally Section 2.6 

summarizes the benefits and trade-offs of multiple branch prediction. 

 

2.1 Branch Prediction Previous Work 

2.1.1 Two-level Adaptive Branch Predictor 

Yeh and Patt [5-7] introduced several implementations of the Two-level Adaptive 

Branch Predictor, each with somewhat different cost vs. prediction accuracies.  The 

average prediction accuracy on the SPEC89 benchmarks was shown to be 97%.  One 

important result was that each of the different Two-level Adaptive Branch Prediction 

schemes can achieve the same accuracy by varying its configuration.  The following 

is a brief overview of the schemes.  The interested reader is referred to the original 

papers for more details.  

 

The Two-level Adaptive Branch Predictor uses two structures, a Branch History 

Register (BHR), and a Pattern History Table (PHT).  The BHR is used to record the 

history of taken and not taken branches.  For example, if the recent history of the 

branch behavior is:  taken twice, not taken, and taken again, then the BHR would 

contain the pattern 1101, where 1 indicates taken, and 0 indicates not taken. 

 

In addition, for each possible pattern in the BHR, a pattern history is recorded in the 

PHT.  If the BHR contains k bits to record the history of the last k branches, then 

there are 2
k
 entries, each entry containing a 2-bit up-down saturating counter to record 

the execution history of the last several times the corresponding pattern occurred in 
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the BHR.  Yeh and Patt showed that the 2-bit up-down saturating counter was 

sufficient in keeping pattern history to give highly accurate branch predictions.  

Prediction decision logic interprets the two pattern history bits to make a branch 

prediction.  If the 2-bit up-down saturating counter is used, the prediction is usually 

based on the high-order bit of the counter value. 
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Figure 1.   Example of 4-bit Global Two-level Adaptive Branch Predictor making a branch 

prediction.  In this example, since the branch history register (BHR) is 4 bits, the pattern history 

table (PHT) must have 2
4
 = 16 entries. 

 

For example, as shown in Figure 1, if the BHR were 4 bits wide, the PHT would have 

2
4
 = 16 entries.  Suppose that each entry in the PHT contains 2 bits with initial value 

of 01, and that the last two times the pattern 1101 showed up in the BHR, the branch 

was taken.  Then the 11012-th entry of the PHT will contain 11 and the next 

prediction when the BHR has the pattern 1101 will be predicted taken. 

 

The BHR and PHT are updated with the predicted branch direction to make the next 

branch prediction, as shown in Figure 2.  The 2-bit counter associated with the 
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prediction is incremented (if the prediction was “not taken” then the counter would be 

decremented).  The global branch history register is updated by shifting the entries to 

the left, and adding the most recent branch’s predicted behavior on the right in order 

to be ready to make the next branch prediction immediately.  The high accuracy of 

the branch predictor means that it is far better to update the tables with the predicted 

branch behaviors.  However, this policy means that on mispredictions the BHR and 

PHT entries need to be recovered. 
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Figure 2.  Example of a 4-bit Global Two-level Adaptive Branch Predictor updating the branch 

history register (BHR) and pattern history table (PHT). 
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Based on the source of the first-level branch history, Two-level Adaptive Branch 

Prediction has three classes of variations:  global history schemes (as described in the 

previous example), per-address history schemes, and per-set history schemes. 

1. Global history schemes (also called Correlation Branch Prediction [9]) use a 

single BHR, called the Global BHR, to record the history of all branches.  The 

pattern in this Global BHR is used to look up the PHT prediction.  The 

prediction of a conditional branch is influenced by the history of other 

branches.   

2. Per-address history schemes use one BHR per static branch; therefore, 

multiple BHRs are used in the scheme.  The prediction of a conditional branch 

is influenced by the history of the branch itself.   

3. Per-set history schemes use one BHR to record the history of a set of adjacent 

static branches.  The prediction of a conditional branch is influenced by the 

history of the branches in the same set, not just the branch itself. 

 

2.1.2 Instruction Supply 

In Yeh and Patt [8] an instruction supply mechanism was introduced where up to one 

basic block per cycle can be fetched by predicting branch targets in back-to-back 

cycles.  We summarize a few details of the mechanism in this section, but the 

interested reader is referred to the original paper for more details.  We will use the 

term “fetch address” to be the address used to fetch a sequence of instructions from 

the instruction cache.  Three things are done at the same time:  the instruction cache 

access, the branch address cache access, and the branch path prediction.  The fetch 

address is used for both the instruction cache access and the branch address cache 

access from which a fall-through address, target address, and branch type are 

retrieved (conditional, unconditional, or call/return). 

 

If the instructions fetched include a branch, those instructions up to and including the 

branch instruction comprise one basic block.  Instructions after the branch are not 

issued to the processor until the next branch prediction is made. 
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If the fetch address misses in the branch address cache, then either there is no branch 

in the sequence of instructions fetched, or the sequence is being fetched for the first 

time.  In either case, the fetch address is incremented by the fetch size, and the 

hardware continues fetching the next sequential block of instructions.  In the event 

that a branch instruction is discovered after the instructions are decoded, the fall-

through address, target address, basic block size, type of branch, and branch path are 

recorded in the branch address cache. 

 

If the fetch address hits in the branch address cache, then we know that there is a 

branch somewhere in the sequence of instructions just fetched.  Since the information 

from the branch address cache is available at the same time that the instructions are 

fetched from the instruction cache, a new fetch address (either the fall-through 

address or the taken address) can be determined immediately.  The next instruction 

cache and branch address cache accesses begin on the next cycle. 

 

2.2 Fetching Multiple Basic Blocks Each Cycle 

 

The performance of the mechanism described Section 2.1.2 limited the fetch capacity 

to one basic block per cycle.  Since only one branch path prediction and only one set 

of consecutive instructions could be fetched from the instruction cache per cycle, 

instruction fetch stopped when a branch was encountered.  This was due to the 

limitation of a single prediction per cycle and limitations in the instruction cache 

configuration.  

 

Fetching multiple basic blocks each cycle requires more than a multiple branch 

prediction algorithm.  At the same time that multiple branch paths are being 

predicted, the addresses of the basic blocks following those branches must be 

determined.  In addition, the instruction cache must be able to supply multiple non-

consecutive blocks of instructions in a single cycle.  Our solutions to these issues are: 
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 The Multiple Branch Two-level Adaptive Branch Predictor which provides 

highly accurate predictions for multiple branch paths. 

 The Branch Address Cache (BAC) which is a hardware structure to provide 

multiple fetch addresses of the basic blocks following each branch. 

 An instruction cache with enough bandwidth to supply a large number of 

instructions from non-consecutive basic blocks. 

 

In this chapter we will describe the mechanisms for fetching two and three basic 

blocks each cycle.  The mechanisms described can be easily extended to more than 

three branches, but the hardware cost increases exponentially with each additional 

basic block. 

 

2.2.1 The Multiple Branch Two-Level Adaptive Branch Predictor 

The prediction algorithm for a single branch per cycle described in Section 2.1.1 can 

be extended to two branch predictions per cycle.  We will henceforth identify the first 

branch as the primary branch, the second branch as the secondary branch, and the 

third branch as the tertiary branch. 

 

The primary basic block is the basic block dynamically following the primary branch, 

i.e., the basic block containing a secondary branch.  There are two possibilities for the 

primary basic block:  The target and the fall-through basic blocks of the primary 

branch.  These will be denoted as T or N, depending on whether the primary branch 

was taken or not taken.  The secondary basic block is the basic block following the 

secondary branch.  The secondary basic block can be one of up to four different 

blocks depending on the direction of the primary and the secondary branches.  These 

will be denoted as TT, TN, NT, or NN, depending on whether the primary and 

secondary branches were taken-taken, taken-not taken, not-taken-taken, or not taken-

not taken, respectively.  Finally, the tertiary basic block is the one following the 

tertiary branch.  The tertiary basic block can be one of up to 8 different blocks 
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depending on the outcome of the primary, secondary, and tertiary branch paths, and 

its denotations are TTT, TTN, TNT, etc. 

 

 

 

Figure 3.  Identification of the primary and secondary branches, and the primary and secondary 

basic blocks for a two-branch-per-cycle predictor. 

 

 

Figure 3 shows the primary and secondary branches and the primary and secondary 

basic blocks for the case when two predictions are made per cycle.  If the darker 

branch paths are predicted, the darker basic blocks are fetched. 

 

Figure 4 adds the tertiary branches and the tertiary basic blocks.   When three branch 

paths are predicted, then the address used for the next prediction would be in a 
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tertiary basic block.  The circled branches are the branches for which predictions were 

made in this example. 

 

 

Figure 4.  Identification of the tertiary branches and tertiary basic blocks for a three-branch-

per-cycle predictor. 
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[7] and summarized in Section 2.1.1.  The modified global history schemes not only 

make the prediction of the immediately-following branch, but predict subsequent 

branches.  The per-address history and per-set history schemes of Two-Level 

Adaptive Branch Prediction, on the other hand, require more complicated BHT access 

logic for making multiple branch predictions in each cycle, because they may require 

many different branch histories to make predictions for different branches.  In order 

to simplify the BHT design, we consider only the global history schemes in this 

chapter. 

 

 

Figure 5.  Algorithm to make 2 branch predictions from a single branch history register. 

 

 

The first multiple branch prediction variation is called Multiple Branch Global Two-
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As shown in Figure 5, all k bits in the history register are used to index into the 

pattern history table to make a primary branch prediction.  The 2-bit counter value 

read from the pattern history table entry is used to make the prediction, just as in the 

single branch Adaptive Two-level Branch Predictor.   

 

To predict the secondary branch, the right-most k-1 branch history bits are used to 

index into the pattern history table.  Note that since we are missing one binary digit, 

k-1 bits would address two adjacent entries in the PHT, which are resolved by using 

the primary branch prediction.  In other words, the primary branch prediction is used 

to select one of the two entries to make the secondary branch prediction. 

 

 

Figure 6.  Algorithm to make 3 branch predictions from a single branch history register. 
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path predictions to take full advantage of the k bits of branch history.  Longer history 

registers increase the prediction accuracy, and as multiple branches are predicted, the 

accuracy becomes increasingly important. 

 

The second multiple branch prediction variation is called Multiple Branch Global 

Two-Level Adaptive Branch Prediction using Per-set Pattern History Tables (MGAs).  

It differs from the previous scheme in that there are multiple pattern history tables.  

The pattern history tables are associated with the primary branches.  Similar to 

MGAg, all k bits are used to index into a pattern history table to make a prediction for 

the primary branch.  The pattern history table is selected based on the fetch address 

corresponding to the primary branch.  The second prediction is made from the same 

pattern table since the address of the secondary branch is not known at the time of the 

prediction.  This scheme attempts to limit the amount of pollution in the pattern 

history tables by different branches, but may result in less accurate secondary and 

tertiary branch predictions. 

 

The extreme case of the MGAs scheme is when there is a separate pattern history 

table associated with each branch.  This scheme is called Multiple Branch Global 

Two-level Adaptive Branch Prediction using Per-address Pattern History Tables 

(MGAp).  

 

The pattern table entries are updated after the branch instructions are resolved, which 

could take several cycles.  Therefore the pattern table entries are always somewhat 

out-of-date.  This is likely to degrade the accuracy of the multiple branch prediction 

algorithm more than the accuracy of a single branch prediction algorithm.  The reason 

the branch may take several cycles to resolve is that it may have to wait for a 

condition to be evaluated or an address to be computed which may take several cycles 

due to data dependencies. 

 

Since the branch predictions are done at the same time the instructions are fetched, 

the determination of whether there is a branch in a fetch sequence is done through the 
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Branch Address Cache which is described in detail in the next section.  If the fetch 

address hits in the Branch Address Cache, then there is a branch in the sequence 

being fetched.  Otherwise no branch is assumed and the instruction fetch mechanism 

fetches down the sequential stream. 

 

The branch path predictions made with the Multiple Branch Two-level Adaptive 

Branch Predictor are done at the same time the Branch Address Cache and instruction 

cache are accessed.  These branch path prediction bits are used to select the fetch 

addresses that are needed for the next cycle from the possible fetch addresses 

provided by the Branch Address Cache.  For now, we will merely state that if two 

predictions are made, then two fetch addresses are selected.  If three predictions are 

made, then three fetch addresses are selected. 

 

Multiple predictions might not be made every cycle for several reasons.  The first 

case is when a basic block is very large, so the entire instruction cache bandwidth 

may be devoted to fetching the basic block.  Fetching the primary basic block has 

higher priority than fetching secondary or tertiary basic blocks.  Therefore if we 

cannot fetch one basic block in its entirety with its instruction cache bandwidth quota, 

then we allow it to usurp the bandwidth quota from a subsequent block.  

 

If a secondary or tertiary basic block’s bandwidth is usurped, the prediction of the 

branch in that basic block is delayed until the cycle when it is actually being fetched.  

At that point it becomes the primary branch and a (different) secondary and tertiary 

branch may be predicted along with it. 

 

The other case when multiple branch path predictions are not made is when the 

branch is a return instruction.  The return instruction’s predicted target address is 

obtained from the return address stack.  The next branch is difficult to predict because 

the return may direct the instruction stream to any number of locations. 
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2.2.2 The Branch Address Cache (BAC) Design 

 

With each of the MGAg, MGAs, and MGAp algorithms, we use a Branch Address 

Cache (BAC) to store the addresses to which the branches may direct the instruction 

flow.  Recall that with the single basic block instruction supply algorithm 

summarized in Section 2.2 the branch address cache is indexed by the fetch address, 

from which two potential fetch addresses are obtained (one for the target block and 

one for the fall-through block).  The branch prediction chooses between the two 

addresses. 

 

The multiple basic block supply algorithms use a similar BAC.  The fetch address is 

used to access the BAC.  This is done in parallel to the instruction cache access.  

Although there may be two or three fetch addresses accessing the instruction cache 

simultaneously, only a single fetch address is used to access the BAC.  If only one 

basic block is being fetched, that fetch address is used.  If two basic blocks are being 

fetched simultaneously, the second fetch address is used to access the BAC.  If three 

basic blocks are fetched, the third fetch address is used. 

 

If the fetch address hits in the BAC, there is a branch in the sequence of instructions 

just fetched.  The BAC entry records the branch type (conditional, unconditional, or 

return) and the target and fall-through basic block starting addresses of the primary 

branch.  The same entry also contains the branch type and fetch addresses of basic 

blocks for each of the expected number of branches for which we will make 

predictions, and all the known potential fetch addresses of their targets.  If the number 

of basic blocks predicted and fetched per cycle is limited to 2, we get 6 fetch 

addresses: 2 for the two primary basic block addresses, and 4 for the four possible 

secondary basic blocks.  If the basic block prediction and fetch limit is 3, we get 14 

possible fetch addresses: 2 for the primary basic blocks, 4 for the secondary, and 8 for 

the tertiary basic blocks. 
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Each entry in a 512-entry, 4-way set associative Branch Address Cache which 

supports two branch predictions per cycle has the following fields:  TAG, P_valid, 

P_type, Taddr, Naddr, ST_valid, ST_type, TTaddr, TNaddr, SN_valid, SN_type, 

NTaddr, NNaddr, where each field contains: 

 

 TAG field – The 23 high-order bits of the primary fetch address.  A “BAC 

hit” occurs if the tag matches with the upper address bits of the current fetch 

address and the primary branch is valid. 

 

 Valid bits – The valid bits for the corresponding branch entries.  P refers to the 

primary branch, ST refers to the secondary branch if the primary branch is 

taken, and SN is the secondary branch if the primary branch is not taken. 

 

 Type fields – The branch type of the corresponding branch.  The type can be 

conditional, unconditional, or return.  Each type field consists of 2 bits. 

 

 Addr fields – The address of the corresponding basic block.  Each address 

field consists of 30 bits. 

 

A BAC supporting two branch predictions per cycle would have a total of 212 bits 

per entry.  A BAC supporting three branches would have an additional eight address 

fields and four additional valid bits for the four possible tertiary branches, making 

each entry 464 bits wide. 

 

When a fetch address misses in the BAC, a large basic block is assumed and the 

entire instruction cache bandwidth is devoted to fetching sequential instructions.  If a 

branch is discovered once the instructions are decoded and the branch is predicted 

taken or is an unconditional branch, the prefetched instructions after the branch are 

discarded.  The address of the fall-through and target addresses are calculated in the 

cycle after decode.  The branch is then allocated a primary branch entry in the BAC.  

The higher order bits of the fetch address are entered in the tag field, the primary 
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branch valid bit is set, the secondary (and tertiary) branch valid bits are cleared, and 

primary fall-through and target addresses are entered.  If the branch is an indirect 

branch, however, the target address is not calculated until the operands are ready, and 

the valid bit is not set until that time. 

 

The branch will also be entered as a secondary branch in the BAC entry of the 

previous branch if: 

 

 the previous fetch address had a valid primary branch entry in the BAC but 

did not predict a secondary branch and 

 the basic block of the previous fetch address was not oversized (i.e., there was 

enough instruction cache bandwidth for another basic block fetch) and 

 the previous branch was not a return. 

 

2.2.3 The Instruction Cache 

The ability of the instruction cache to provide enough instructions becomes critical 

when multiple possibly non-consecutive basic blocks are fetched each cycle.  The 

instruction cache must have high bandwidth, low miss rate, and the ability to fetch 

from multiple addresses in parallel. 

 

To satisfy the high bandwidth requirement, the cache must either have a large number 

of banks, or have wide banks.  Also, due to off-chip bandwidth and pin limitations, 

the instruction cache should be on-chip. 

 

The ability to fetch from multiple addresses in parallel implies a cache with either 

interleaved or multi-ported banks, or both.  With interleaved banks, each 

independently addressable, multiple fetch addresses can access the instruction cache 

simultaneously provided that their accesses are not to the same bank.  If there is a 

bank conflict, priority is given to the earlier (relative to the dynamic instruction 
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stream) fetch address.  Therefore it is important to have enough banks to make the 

probability of bank conflicts low. 

 

A multi-ported cache eliminates the bank conflict problem.  For example, a dual-

ported cache allows the simultaneous access of two fetch addresses, and a tri-ported 

cache allows the simultaneous access of three fetch addresses.  Unfortunately, multi-

ported memories are expensive in silicon chip area.  

 

It is critical for the instruction cache miss rate to be low.  Each instruction cache miss 

stalls the fetch sequence.  Since multiple basic blocks can be fetched each cycle, the 

opportunity cost can be (up to) the number of cycles it takes to service the miss 

multiplied  by the number of instructions that could have been fetched during those 

idle fetch cycles.  Also, since more instructions are fetched each cycle, there are 

fewer cycles between instruction cache misses.  Therefore more time is spent waiting 

for instruction cache misses to be satisfied.  Commonly used ways to minimize 

instruction cache miss rates are to increase the associativity, to increase the size of the 

cache, and to prefetch instructions. 

 

We chose several cache configurations which gave us reasonably high bandwidth, the 

ability to fetch multiple addresses in parallel, and a relatively low miss rate.  Most of 

our simulations were done with a 32K cache which was 2-way set associative with 8 

interleaved single-ported banks, each bank having a line size of 16 bytes.  Each fetch 

address can access two banks so that we guarantee between 5 and 8 instructions per 

fetch address (due to basic block alignment).  This configuration and several others 

are compared in Section 2.4. 

 



 25 

2.3 Simulation Methodology 

2.3.1 Simulation Environment 

We used a trace-driven simulator to evaluate the performance of a machine front-end 

which implements the Multiple Branch Two-level Adaptive Branch Predictor, a 512-

entry 4-way set associative Branch Address Cache (BAC), and a high-bandwidth 

instruction cache.  Unless otherwise specified, the instruction cache configuration 

used was 32K bytes, 2-way set associative, 8-way interleaved, single-ported, and with 

a line size of 16 bytes (4 instructions). 

 

For the multiple basic block mechanisms, we can fetch two cache lines (a maximum 

of 8 instructions) per basic block fetch address because most basic blocks contain 4 to 

8 instructions.  In order to do a fair comparison, we allow the single basic block 

prediction and fetch algorithm to fetch up to 4 cache lines.  The maximum number of 

instructions issued, passed to the back-end of the machine, is limited to 16 

instructions per cycle. 

 

The benchmarks written in C were compiled with the Motorola Apogee C compiler 

for the Motorola 88100 instruction set and the ones written in Fortran were compiled 

with the Green Hill Fortran compiler.  A Motorola 88100 instruction level simulator 

generated the instruction traces.  The first 50 million instructions from each trace 

were used rather than the entire trace due to simulation time constraints. 

 

Nine benchmarks were selected from the SPEC89 benchmark suite.  These included 4 

integer and 5 floating point benchmarks.  The integer benchmarks were li, gcc, 

eqntott, and espresso.  The floating point benchmarks were doduc, fpppp, matrix300, 

spice2g6, and tomcatv.  The figures included in the result section have the 

abbreviations listed in Table 1 for the various benchmarks.  Table 1 also shows the 

average basic block size of the first 50 million instructions of each benchmark. 
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 Benchmark Abbreviation Average Basic 

Block Size 

(instructions) 

Integer eqntott Eq 4.76 

espresso Es 3.41 

gcc Gc 4.94 

li Li 4.14 

Floating Point doduc Dd 10.46 

fpppp Fp 57.01 

matrix300 Mt 28.20 

spice2g6 Sp 5.36 

tomcatv Tc 26.33 

 

Table 1.  Benchmark list and average basic block size. 

 

 

The MGAg, MGAs, and MGAp are parameterized according to the history register 

length and the number of Pattern History Tables.  These parameters will be given as:  

HhPp, where h is the number of bits in the Global History Register, and p is the 

number of pattern history tables. 

 

2.3.2 Performance Metric 

 

Since the simulator only models the front end of a machine, we use a new metric, 

IPC_f (instructions per cycle fetched) to evaluate the performance of an instruction 

fetch mechanism.  IPC_f measures the effective number of instructions fetched per 

cycle by an instruction fetch mechanism.  To derive IPC_f, we assume the machine 

stalls or wastes cycles for various reasons from the instruction fetch mechanism but 

not from the rest of the machine, so the instructions issued can be executed without 

stalling the machine front end.  Moreover, only effective instructions are counted; 
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instructions fetched down the incorrectly predicted paths are not counted.  The 

machine front end could waste cycles due to the following reasons: 

 Instruction cache misses 

 Incorrect branch predictions which include incorrect branch path predictions 

and incorrect fetch address predictions 

 Branch Address Cache misses on taken branches 

 

Since we do not simulate the rest of the machine, the exact mispredicted branch 

penalty is approximated.  A 6 cycle mispredicted branch penalty is assumed; 

therefore, the instructions following an incorrectly predicted branch will not be 

fetched until 6 cycles after the branch is fetched.  The I-cache miss penalty is 

assumed to be 10 cycles.  We also show how the machine performance changes as the 

branch misprediction penalty and I-cache miss penalty are varied. 

 

2.4 Simulation Results 

2.4.1 Effect on Prediction Accuracy and IPC_f of History Register 

Length 

 

Figure 7 shows how the prediction accuracy changes as we increase the number of 

bits in the global history register of the MGAg scheme for two branch predictions per 

cycle.  The prediction accuracy is the number of correctly predicted branches over the 

total number of branches in the dynamic instruction stream.  Longer branch histories 

give better prediction accuracy which is reflected in the rising curves.  The hardware 

cost goes up exponentially with the number of history bits due to the number of 

pattern history table (PHT) entries required. 
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Figure 7.  Variation of the size of the global branch history register. 

 

 

 

The prediction accuracies varied between 91.5 and 98.4% for a branch history register 

(BHR) length of 14 bits, and between 93.5 and 98.7% for a history register length of 

16 bits.  The knees of the curves for most benchmarks are reached at a BHR length of 

14 bits.  We used a 14-bit BHR length for the other experiments reported in this 

chapter.  A 14-bit BHR length means that a PHT has 2
14

 X 2 bits, or 32K bits. 

 

2.4.2 Tradeoff Between the Number of Pattern History Tables and 

History Register Length 

 

We simulated several MGAg, MGAs, and MGAp configurations to determine how 

the performance accuracy changes with the number of PHTs for two branch 

predictions per cycle.   Figure 8 for integer benchmarks and Figure 9 for floating 
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point benchmarks show the branch prediction accuracy for 1 to 512 PHTs.  Each 

configuration shown has the same hardware cost, which was achieved by decreasing 

the number of entries in each PHT as the number of PHTs is increased.  Since the 

entries in the PHTs are addressed by the BHR, the BHR length is reduced when we 

decrease the number of entries in each PHT. 

 

Figure 8.  Variation of the number of the PHTs with the hardware cost held constant, for integer 

benchmarks. 

 

 

The PHT used to make the predictions is determined by the primary branch address.  

The experiments shown in Figure 8 and Figure 9 used the branch address starting at 

bit 10 to select a PHT.  This allows branches within the same 256-instruction block in 

the static code to map to the same PHT. 
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Figure 9.  Variation of the number of the PHTs with the hardware cost held constant, for 

floating point benchmarks. 

 

 

The prediction accuracies shown in Figure 8 and Figure 9 tend to be higher for 

configurations with one to eight pattern history tables, then decreases when the 

number of pattern history tables is increased beyond 8.  Longer branch history helps 

to increase the prediction accuracy.  Increasing the number of PHTs reduces the 

interference between branches, but since the second branch is predicted using the 

PHT of the first branch, the probability of mapping two branches predicted together 

into different PHTs is higher when more PHTs are used. 

 

2.4.3 Number of Branch Predictions per Cycle 

Figure 10 shows the IPC_f increase with the number of branch predictions per cycle.  

The number of opportunities for multiple branch prediction is quite high despite the 
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greater likelihood of bank conflicts in the instruction cache when three basic blocks 

are fetched. 

 

 

Figure 10.  Instructions per cycle when 1, 2, and 3 branches are predicted each cycle. 

 

The average IPC_f when one basic block is predicted per cycle is 3.0 and 5.6, for 

integer and floating point benchmarks, respectively.  Two predictions per cycle 

increase this to 4.2 for integer and 7.1 for floating point.  Three predictions per cycle 

increases IPC_f further to 4.9 for integer and 8.9 for floating point. 

 

For the one and two predictions per cycle experiments we allowed a maximum of 16 

instructions to be fetched from the instruction cache per cycle.  For the three 

predictions per cycle experiments we increased the instruction cache bandwidth to 24 

instructions in order to accommodate the 3 fetch addresses.  To cap the number of 

instructions issued, we constrained the issue width to 16 instructions for all three 

cases.  The larger instruction cache bandwidth allows more instructions to be fetched 
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per cycle, which affects the performance of floating point programs more than integer 

programs because of the high branch prediction accuracy and large basic block size of 

floating point benchmarks.  This effect results in the significant floating point 

performance increase when going from two to three predictions per cycle. 

 

The application fpppp (abbreviated fp in the graph) does not show significant 

performance increase when going from one to two to three predictions per cycle due 

to the repeated execution of an extremely long sequential code segment which causes 

the instruction cache to thrash.  The instruction cache miss penalty dominates its 

performance. 

 

Integer programs show noticeable performance increase except for gcc which is 

dominated by incorrect branch predictions. 

 

 

Figure 11.  Instructions per fetch when 1, 2, and 3 branches are predicted each cycle. 
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Figure 11 shows the IPF, instructions per fetch, for the benchmarks as the number of 

branch predictions and basic block fetches of 1, 2, and 3 per cycle.  An efficient 

instruction fetch mechanism should attain an IPC_f as close to the IPF as possible.  

The discrepancy between IPF and IPC_f is due to the branch misprediction penalty, 

BAC misses, and instruction cache miss penalty. 

 

2.4.4 Branch Prediction Efficiency 

Now we look at how often we use the unique ability of our multiple branch predictor 

to actually predict multiple branches per cycle.  We call this the multiple branch 

prediction utilization.  Table 2 shows the data for the case where 2 basic blocks can 

be predicted and fetched each cycle.  We count the percentage of cycles when zero, 

one, and two branches were predicted.  Zero branches are predicted if we are fetching 

a long sequential segment of code, or if the fetch address misses in the Branch 

Address Cache, and a branch is found in the sequence of instructions after the 

instructions are decoded.  The application fpppp has a high percentage of cycles with 

no predictions due to the extremely long sequential code segment which is repeatedly 

executed.  The percentage of cycles when zero predictions were done per cycle is 

10% per cycle for integer and 44% for floating point. 

 

Only a single branch is predicted when the primary branch is a return, or the primary 

basic block is large (oversized) in which case the instruction fetch bandwidth of the 

secondary basic block is usurped.  About 24% of the single basic block fetches are 

due to oversized basic blocks, and about 5% are due to the primary branch being a 

return.  Two branch predictions are made and two basic blocks are fetched 62% of the 

time for integer and 24% of the time for floating point benchmarks. 
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Table 2.  Branch prediction utilization of an instruction fetch mechanism which is able to 

provide fetch addresses of two basic blocks in each cycle. 

 

Benchmark No Prediction One Prediction Two 

Predictions Oversized Return 

Eq 0.0839 0.1231 0.0272 0.7528 

Es 0.0364 0.1125 0.0145 0.8317 

Gc 0.1843 0.3634 0.0522 0.3844 

Li 0.0939 0.2518 0.1213 0.5244 

Dd 0.3335 0.2580 0.0602 0.3364 

Fp 0.7415 0.1909 0.0120 0.0550 

Mt 0.3386 0.3335 0.0042 0.3236 

Sp 0.2145 0.2142 0.1613 0.4081 

Tc 0.5893 0.3337 0.0006 0.0751 

 

 

 

Table 3.  Percentage of fetches causing the instruction fetch mechanism to stall. 

 

Benchmark No Delay Decode 

Delay 

Incorrect 

Branch 

Prediction 

I-cache 

Miss 

Bank 

Conflict 

Eq 0.8924 0.0004 0.0679 0.0001 0.0392 

Es 0.9207 0.0063 0.0565 0.0001 0.0164 

Gc 0.7674 0.0708 0.0980 0.0288 0.0351 

Li 0.8753 0.0202 0.0645 0.0060 0.0340 

Dd 0.8678 0.0110 0.0452 0.0632 0.0128 

Fp 0.6357 0.0003 0.0091 0.3508 0.0041 

Mt 0.6805 0.0000 0.0065 0.0001 0.3129 

Sp 0.9706 0.0068 0.0150 0.0034 0.0042 

Tc 0.9905 0.0006 0.0085 0.0001 0.0003 
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Table 3 shows the percentage of fetches that cause the machine front-end to stall.  

The machine front-end stalls only due to instruction cache misses, mispredicted 

branches, and branch decode penalties. 

 

No_Delay cause no stalls in instruction fetching.  Bank_Conflicts to the same cache 

line do not stall instruction fetch, but conflicts to different cache lines within the same 

bank do stall instruction fetch.  Therefore 84 to 90% of the fetches do not cause any 

instruction fetch stall.  If a taken branch is not detected in a fetched instruction 

sequence (via a Branch Address Cache miss), a branch decode penalty is taken.  

Branch Decode penalties occur in approximately 2.4% and 0.4% of the fetch cycles 

for integer and floating point benchmarks, respectively.  An incorrect branch path 

prediction requires a full branch penalty to be incurred.  This happens about 7.2% and 

1.7% of the time for integer and floating point. 

 

2.4.5 Instruction Cache Configuration 

 

Table 4.  Instruction Cache Configurations 

 

Configuration 

Number 

Number of 

Interleaved 

Banks 

Number of 

Read Ports 

Set 

Associativity 

Line Size Fetch Size 

0 8 1 2 16 2 

1 8 1 1 16 2 

2 4 1 2 16 2 

3 8 1 4 16 2 

4 8 1 2 32 1 

5 8 2 2 16 2 

 

 

 

We simulated six instruction cache configurations with various numbers of read ports, 

degrees of interleaving, set associativity, and line sizes.  These configurations are 
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listed in Table 4.  Configuration 0 was used for most of our experiments.  Fetch size 

refers to the number of cache lines each fetch address can access. 

 

Figure 12 and Figure 13 show the performance with the various instruction cache 

configurations.  The applications gcc and fpppp were chosen because they have more 

significant instruction cache miss rates.  Each curve represents a different cache size.  

More read ports and more banks reduce bank conflicts but result in only a minimal 

performance increase.  Higher set associativity significantly improves performance.  

However, fpppp actually has better performance with either direct-mapped or 4-way 

set associative caches due to the large sequential code segment.  32-byte line size 

degrades the performance a little because some bandwidth is wasted due to basic 

block alignment. 

 

Figure 12.  Machine performance of various instruction cache configurations on gcc. 
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Figure 13.  Machine performance of various instruction cache configurations on fpppp. 

 

2.4.6 Effect of Branch Misprediction Penalty 

To investigate the effect of branch misprediction penalty on machine performance, 

we varied the time to resolve a branch from 4 cycles to 12 cycles, as shown in Figure 

14.  Floating point programs have flatter curves because they contain fewer branches 

and the prediction accuracy of those branches is higher.  The performance 

degradation when the branch resolution time is increased from 4 cycles to 12 cycles is 

less than 10%.  Integer programs have about 20% to 30% performance degradation. 
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Figure 14.  Effect of branch misprediction penalty on machine performance. 

 

2.4.7 Effect of Instruction Cache Miss Penalty 

We varied the instruction cache miss penalty from 4 cycles to 12 cycles.  

Configuration 0 of Table 4 is used.  Among the nine benchmarks, fpppp, doduc, and 

gcc have lower cache hit rates, as listed in the legend of Figure 15.  When the 

instruction cache miss penalty is increased from 4 cycles to 12 cycles, doduc’s 

performance degrades by about 20%.  The application fpppp’s performance degrades 

by about 50%.  The other benchmarks showed minimal performance degradation due 

to their low instruction cache miss rates. 
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Figure 15.  Effect of instruction cache miss penalty on machine performance. 

 

 

2.5 Related Work 

The research described in this chapter was the first in the area of multiple branch 

prediction, and is considered to be the seminal piece of work in this field and which 

kicked off a large body of other research which builds on this work.  Therefore there 

is an extensive body of related work.  We categorize the related work into three 

categories.  The first is research that builds directly on the ideas and algorithms we 

presented in this chapter.  The second category is other multiple branch prediction 

research which are not modifications of our algorithms.  The third category is the area 

of trace caches, an alternative way of increasing fetch bandwidth by creating traces of 

execution paths and storing multiple, possibly non-contiguous, basic blocks into 

contiguous storage, or special caches, called trace caches.  
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While there are many papers which build on our algorithms, we will call out a few of 

the more notable improvements to our algorithms here.  Calder et al. [10] proposed a 

modification of our multiple branch prediction algorithms to use cache indices instead 

of the full instruction fetch addresses.  The advantage of this idea is lower storage 

area and costs, and the possible expense of accuracy.  Conte et al. [11] improved on 

our multiple branch prediction algorithms by introducing the collapsing buffer for 

grouping non-contiguous basic blocks.  Wallace et al. [12] improved on our multiple 

branch prediction algorithm by using an array of two-bit predictors for each 

instruction in the fetch block to predict multiple branches per fetch block.  They also 

used a BTB with targets for each instruction in the fetch block which was used for 

near-block encoding to reduce the space needed to store target addresses.  The 

limitation to their approach is that they can only handle one taken branch per cycle.  

In Lee et al. [13], instead of using the global history register they used the per-address 

history register to reduce interference.  Both predictions come from the same history 

register of the primary address.  Finally, Koppelman [14] published some interesting 

system simulations comparing our multiple branch prediction algorithms to a 

superblock predictor and showed that our multiple branch predictor gave superior 

performance of 10% over the superblock predictor which gave 8%. 

 

The next category of related work is other multiple branch prediction algorithms, 

published after our work, inspired by our work, but not building directly on our 

algorithms.  We list some of the more interesting research here.  Seznec et al. [15] 

proposed an algorithm where the current instruction fetch address is not used for 

predicting the address of the next instruction block, but rather for predicting the block 

following the next instruction.  This effectively pipelines the branch prediction loop 

to achieve higher clock rate, as opposed to wider instruction fetch (similar to the 

difference between superpipelining vs. superscalar).  Rakvic et al. [16] proposed a 

tree-based multiple branch predictor which employs a three-level design with two 

levels of Pattern History Tables.  It maintains a tree structure of individual single 

branch predictors, and based on their predictions, a path in the tree is identified as the 

candidate trace.  Pnevmatikatos et al. [17] relied on compilers to partition the control 
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flow graph (CFG) into tree-like subgraphs of depth 3.  All parameters required to 

describe a subgraph are stored in a Subgraph History Table.  Finally, in Reinman et 

al. [18] they propose decoupling the branch predictor and instruction fetch.  The 

branch predictor is allowed to run far ahead of instruction fetch by storing many fetch 

addresses in a Fetch Target Queue.  This allows optimizations such as a multi-level 

branch predictor design, and fetch-directed prefetching. 

 

The last category of related work described here will be that of the Trace Cache.  The 

instructions stored in the trace cache represent a dynamic trace of execution, and 

therefore takes multiple possibly non-contiguous blocks of instructions and stores 

them together to be easily fetched.  The earliest publication was in the form of a U.S. 

Patent filed by Peleg and Weiser of Intel [19].  The earliest academic publication of 

the trace cache was by Rotenberg et al. [20], this publication gave the idea its current 

commonly known name, the Trace Cache.  Patel et al. [21] published several more 

practical implementation options for the trace cache.  And Intel’s Pentium 4 

Processor was the first commercial processor to implement a trace cache to support 

its aggressive out-of-order and simultaneous multithreading microarchitecture [22].   

 

2.6 Conclusion 

The trend towards increasingly complex and parallel hardware mechanisms to extract 

instruction level parallelism from sequential code is advancing at an accelerated rate.  

Much research has gone into compiler technology to increase basic block size in 

order to fetch more and more instructions at a time.  Increasing basic block size is not 

enough, however.  We propose in this chapter a hardware mechanism to fetch 

multiple basic blocks simultaneously. 

 

We demonstrate in this chapter the viability of such schemes by identifying the three 

essential problems and presenting solutions to each of these.  The Multiple Branch 

Two-level Adaptive Branch Predictor provides the capability of predicting multiple 

branches each cycle, the Branch Address Cache supplies the starting addresses of 
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basic blocks following the multiple predicted branches, and an instruction cache with 

interleaved banks provides sufficient bandwidth for fetching multiple non-

consecutive basic blocks without the hardware cost of multiple read ports. 

 

In addition, we have presented simulation results indicating that significant 

performance improvements can be achieved even without specific compiler 

optimizations.  When going from one to two to three branch predictions and basic 

block fetches per cycle, we saw the IPC_f (effective instructions fetched per cycle for 

a machine front-end) improve from 3.0 to 4.2, and 4.9, respectively for integer 

benchmarks.  For floating point benchmarks, the IPC_f went from 5.6 to 7.1 and 8.9.    

These improvements were achieved by providing the hardware mechanisms to predict 

and fetch multiple basic blocks without specific compiler optimizations. 
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  CHAPTER 3  
SIMULTANEOUS MULTITHREADING 

 

 

3.1 Motivation 

Processor speeds have increased dramatically over the past decades, much faster than 

the speed of memory, so memory latency tolerance has become a major focus of 

attention.  Even more importantly, power consumption has been increasing at a 

greater rate than processing speeds [23-25].  In the past, shrinking process technology 

producing smaller and smaller devices has alleviated the power requirements to some 

extent.  However, process devices are now so small that current leakage is becoming 

a major concern. 

 

Power-efficient computing for memory latency tolerance has led Intel, IBM, and 

others to embrace simultaneous multithreading (SMT) as a solution.  Intel and IBM 

have introduced the first commercially available processors with SMT in recent years. 

 

SMT builds on the dynamic-issue superscalar processing technology of modern high-

performance processors to increase the pool of instructions available to the processing 

units.  This helps keep the processor busy in the face of long memory latencies due to 

cache misses, as well as for code with low to medium instruction-level parallelism.  

Since leakage power is typically about 40% of total power for today’s processors 

[23], and is expected to grow as a percentage of total power [24, 25], reusing the 

same processor’s resources more efficiently can result in much more power-efficient 

computing.  It is better to use existing physical processing resources to their full 

extent in order to amortize the leakage current. 
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An SMT processor from the hardware perspective looks like one physical processor.  

However from a software (operating system or application) perspective it looks like 

multiple processors.  The operating system can schedule a runable software thread for 

every “logical processor”, and there may be many logical processors for each 

physical processor.  The SMT processor will fetch the instructions for all the software 

threads scheduled on it, to increase the pool of independent instructions available to 

the execution units.  Since there are no data dependencies between instructions from 

different software threads, the number of independent instructions can be 

dramatically greater than in a non-SMT processor.  In addition, the variety of 

instructions could potentially be greater and thus make more efficient use of hardware 

resources that otherwise might remain idle. 

 

Each logical processor has its own set of registers, instruction pointer, and a few other 

resources, such as interrupt handling mechanisms.  In general, SMT processor 

execution units are unaware of what instructions belong to which software thread.  

Completed instructions are sorted out to the independent software threads to which 

they belong so that each architectural state can be updated correctly. 

 

SMT provides higher overall system throughput and therefore performance.  

However, there are important considerations that must be carefully addressed when 

designing an SMT processor.  Since SMT logical processors share the physical 

processor’s resources, the overall throughput depends on the mix of software threads 

and their characteristics that happened to be scheduled simultaneously.  Predicting 

performance and throughput can be challenging.  Ensuring fairness can be even more 

difficult.  Some threads may thrash the cache, some threads may have aliased 

addresses with other threads, some threads may compete for the same resources, and 

some threads may be so highly optimized to run on the implementation alone, that 

any interference can result in poor performance.  Some real-time applications may 

require a minimum bandwidth from physical resources.  These and other 

considerations are only beginning to be understood. 
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If the SMT processor were targeted at a specific market, such as the network 

processor market where every threads is handling packet processing, the choices and 

tradeoffs for microarchitecting the processor may be easier.  Or if the processor is 

targeted at a specific database processing market where the application and operating 

system are aware and optimized for the SMT implementation, the design choices and 

tradeoffs could also be made in a relatively straight-forward manner. 

 

It can be an entirely different matter for a processor that must contend with any 

operating system, and a wide variety of applications.  This is the environment for 

which the Pentium 4 processor was targeted, and the focus of this work. 

 

3.2 Terms 

 

For clarity, we will avoid using the generic terms “thread” or “threads” due to 

confusion between hardware contexts and software threads.  Accordingly, we define 

the following terms for use in the rest of this thesis: 

 

 Software threads:  Software may be written with one or more threads that 

can be schedulable separately by the operating system onto logical processors 

for execution. 

 Logical processor:  What the software/operating system views as a 

schedulable processor entity.  Distinct logical processors may or may not 

share a physical processor’s resources. 

 Physical processor or Package:  The physical implementation of a processor 

entity, typically consisting of a full pipeline from instruction fetch to 

execution and then to retirement. 

 IA-32:  The Intel 32-bit instruction set architecture. 
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3.3 Background 

In this section I will describe some of the history of SMT research as well as other 

hardware multithreading approaches.  A concise survey of a variety of other hardware 

multithreaded processors, including their general characteristics, is presented in a 

paper by Ungerer et al. [26].  In general, there are three categories of hardware 

multithreading techniques: Simultaneous multithreading (SMT), interleaved 

multithreading (IMT), and switch-on-event multithreading (SOEMT). 

 

3.3.1 Simultaneous Multithreading 

Early work on SMT was done at both Intel, and at universities.  At Intel, early 

research resulted in a proposal to add SMT (internally it was called shared resource 

multiprocessing) to the P6 microarchitecture was done in 1991.  At the time, it was 

decided not to add this to the P6 for market reasons.  After adding SMT to their 

Pentium 4 and Xeon products, Intel announced their SMT work in the Fall of 2001 at 

the Intel Developers’ Forum where an entire track was devoted to introducing and 

optimizing for their SMT design [27]. 

 

Mario Nemirovsky did early research work published in his Ph.D. dissertation [28] on 

SMT in the late 1980s, which he called multistreaming.  He later proposed to 

implement SMT in the Clearwater network processor [29, 30], but this project was 

never completed. 

 

The most commonly cited research work was done at the University of Washington 

by Dean Tullsen [31], where he evaluated an SMT design and compared it with a 

superscalar non-SMT design and an interleaved multithreaded design (IMT).  He 

found that SMT was a clear performance win.  His later work showed that adding 

SMT to an out-of-order superscalar design would involve only a relatively small cost 

[32-34].  

 



 47 

Another team, Loikkanen and Bagherzadeh, was also working on a fine-grain 

multithreading processor which had many similar characteristics to SMT, including a 

shared but partitioned register file and dynamically shared execution units [35]. 

 

3.3.2 Interleaved Multithreading 

 

Interleaved multithreading refers to processors that hold the context of a number of 

software threads while alternating execution of the instructions in the threads on a 

cycle-by-cycle basis.  Examples of supercomputing products which use interleaved 

hardware multithreaded architectures include the Heterogeneous Element Processor 

(HEP)[36], the Horizon[37, 38], the Tera (based on the Horizon)[39], and the Cray 

Multi-Threaded Architecture (MTA-2)[40].  Other proposals included the Multilisp 

Architecture for Symbolic Applications (MASA)[41], MIT’s M-Machine[42], 

MicroUnity’s Media Processor[43], and the SB-PRAM/HPP[44, 45].  An example of 

a network processor is the Lextra LX4580, which could have up to five threads.  In 

principle, the interleaved multithreading technique can be combined with superscalar 

out-of-order execution techniques, but Eggers et al., show that SMT is more efficient 

[33]. 

 

3.3.3 Switch-on-Event Multithreading 

SOEMT refers to processors that context switch to a different software thread on 

certain long-latency events, such as a cache miss, to a different software thread.  This 

type of multithreading is coarser grained than SMT or interleaved multithreading.  

Examples of SOEMT include the MIT Sparcle [46] and the Msparc [47, 48] 

processors which switch on cache miss.  The Columbia Homogeneous Parallel 

Processor (ChoPP) 1 [49] uses switch-on-cache-miss and switch-on-use.  The 

Decoupled Multithreaded Processor Rhama [50, 51] uses several static and dynamic 

events.  The EVENTS scheduler [48, 52] uses an external scheduler to trigger context 

switches.  The Komodo microcontroller [53-55] detects real-time events requiring 
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fast response and uses those events to trigger context switches.  Commercial 

processors include the IBM RS64 IV [56] and the Sun MAJC [57].  Network 

processors include the Intel IXP [58], IBM Power NP [59], Vitesse IQ2x00 [60], and 

AMCC nP [60].  Finally, the MIT Jellybean Machine (J-Machine) [61] falls into this 

category. 

 

3.4 Performance of SMT vs. SOEMT 

 

Much has been said about the benefits of SOEMT compared to SMT.  In the 

following sections, we will quantify the performance benefits. 

 

Since we do not have any real systems that can be used to readily compare switch-on-

multi-threading vs. simultaneous multi-threading, we use our Pentium 4 simulator.  

The simulations were done for the Pentium 4 “Prescott” configuration (31-stage 

pipeline, 16KB L1 cache, 1MB L2 cache, SSE3).  

 

The switch-on-event configuration was as follows: 

1.  Only one software thread’s uops are active in the pipeline at a time. 

2.  There are two instruction pointers in the trace cache, microcode ROM, and pre-

decoder.  There are instruction prefetch buffers for both threads so that both logical 

processors will have prefetched instruction bytes ready-to-decode. 

3.  The switching to executing uops from the other thread happens in a single cycle.  

We clear the pipeline and start reading bytes from the prefetch buffers for the other 

thread simultaneously. 

4.  The “events” that we switch on are cache and TLB misses that must go to DRAM 

(i.e., misses the last-level on-chip cache), and IN and OUT instructions that stall the 

pipeline.  An out-of-order pipeline can often mitigate short-latency delays, but has 

trouble with long delays, such as those required for DRAM accesses and IN/OUT 

instructions. 



 49 

5.  Data loads that miss the cache are allowed to become the oldest uop in the pipeline 

before we clear the pipeline and switch to the other thread.  This allows as many as 

possible simultaneous load misses to get started to DRAM before we switch to the 

other thread. 

 

For workloads, we used a wide variety of traces grouped into “classes” to compare 

the performance.  The classes of traces are:  SPEC2000, Internet, Multimedia, 

Productivity, Workstation, and Server.  Table 5 lists the applications in each trace 

class.  

 

Table 5.  Table of trace categories, the applications in those trace categories, and the number of 

traces of each application that were used for simulations. 

 

Trace Category Applications # of 

Traces 

SPEC2000: Gzip 3 

 Wupwise 3 

 Swim 3 

 Mgrid 3 

 applu 3 

 Vpr 3 

 Gcc 3 

 Mesa 3 

 Mcf 3 

 Equake 3 

 Crafty 3 

 Facerec 3 

 Ammp 3 

 Lucas 3 

 Fma3d 3 

 Parser 3 

 Sixtrack 3 

 Perlbmk 3 

 Gap 3 

 Vortex 3 

 Bzip2 3 

 Twolf 3 

 Apsi 3 

Internet Webmark2001 b-autoconcepts 3 

 Webmark2001 b2b-ecommodity 3 
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 Webmark2001 b2b-ehousebuilder 3 

 Webmark2001 b2b-electronics 3 

 Webmark2001 b2b-emedinsure 3 

 Webmark2001 b2b-myfoyer 3 

 Webmark2001 b2b-superetailer 3 

 I-bench Quicktime 1 

 I-bench Shockwave 1 

 I-bench VRML 1 

Multimedia 3dwb2k 1 

 Dragon-Naturally-Speaking 3 

 EjayMP3Encoder 2 

 Flask-MPEG4-Encoder 4 

 Photoshop 1 

 QuakeIII Arena 2 

 Virtual-ray Scene5 1 

Productivity Winstone2001_Business 10 

 Winstone2001_ContentCreation 10 

 Wintune_Test2 1 

 CPUmark99 1 

 Hammerhead 2 

 Officebench11 2 

 Sysmark2K 23 

Workstation Ansys55 5 

 Nastran 4 

 Oasis 3 

 FPUmark99 1 

 Verilog 3 

 Catlym 1 

 Viewperf 1 

Server SQLServer 15 

 

 

We ran the simulations in two ways.  The first we referred to as “domain 

decomposition”, where we follow the software threading practice of taking a single 

computation loop and multi-threading each iteration of the loop.  Since we don’t have 

any traces of true multi-threaded applications, we approximated the behavior by 

running the same trace on both threads, but offsetting the physical addresses of the 

memory accesses.  The second we referred to as “functional decomposition”, where 

we follow the software threading practice of using different threads to implement 

different functions (e.g. grammar checking, printing, rendering different objects) or 

multi-tasking.  Again, we don’t have any traces of a true multi-threaded applications 



 51 

or multi-tasking workloads, so we approximated the behavior by running different 

combinations of traces.  The trace combinations were established randomly. 
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Figure 16.  Simultaneous Multithreading vs. Switch-on-Event Multithreading performance 

comparison on different application classes. 

 

 

Figure 16 shows the results of the simulation.  With the exception of the database 

class of workloads, much of the performance benefit of SMT comes from taking 

advantage of both inefficient pipeline use and cache latency tolerance, while SOEMT 

only takes advantage of cache latency tolerance .  The database class of workload is 

dominated by cache misses and I/O, so it is only in that area that SOEMT benefits are 

close to that of SMT. 

 

Specifically, applications where SOEMT exceeded 20% included:  database server 

application running a warehouse transaction application, SPECjbb, SPECweb, 

Verilog, trade2, facerec, mcf, msvc, equake, art, and vpr.  Applications where 
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SOEMT gave a 10-20% benefit included Media Encoder, Ansys, Nastran, Dragon 

Naturally Speaking, and an MPEG1 encoder. 

 

In conclusion, SOEMT might provide significant benefit in some application spaces, 

especially server application spaces which run a lot of applications similar to 

transaction processing, SPECweb, and SPECjbb.   It can also significantly boost a 

few other applications.  However, SMT benefits a much wider classes of applications. 
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  CHAPTER 4  

SIMULTANEOUS MULTITHREADING 

IMPLEMENTATION 

 

 

This chapter presents our work in designing the Intel Pentium 4 Processor’s SMT 

implementation, and compares our implementation with those of other commercial 

implementations.  Section 4.1 describes the Pentium 4 microarchitecture.  Sections 

4.2 through 4.4 describe the implementations of commercial processors such as the 

IBM Power5, Alpha EV8, and the Clearwater CNP810SP, as well as comparing their 

features with the Pentium 4 processor SMT implementation.  Only the Intel and IBM 

Power5 implementations were completed; the Alpha and Clearwater processor 

designs were cancelled before they could be completed. 

 

Several goals were at the heart of the microarchitecture choices and tradeoffs of the 

Pentium 4 implementation of simultaneous multithreading (SMT).  One goal was to 

minimize the implementation cost in terms of die area.  Since the logical processors 

share the vast majority of microarchitecture resources, only a few small structures 

were replicated.  The cost was less than 5% of the total die area.   Figure 17 shows 

some of the larger structures contributing to this die area increase. 

 

Since the die area allotted to the Pentium 4 processor’s SMT implementation was 

limited, there were some interesting trade-offs that were made to maximize the 

usefulness of the limited resources for best performance.  There were also interesting 

opportunities that were left on the table since they were either too expensive or too 

complex for a first implementation of a risky technology. 
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Figure 17. The Intel Pentium 4 processor and the visible processor resources duplicated or added 

to support SMT.  There are also scattered miscellaneous pointers and control logic that were too 

small to highlight in this figure.  The APIC is the advanced programmable interrupt controller. 

 

 

A second goal was to ensure that when one logical processor was stalled the other 

logical processor could continue to make progress.  A logical processor can be stalled 

for a variety of reasons, including servicing cache misses, handling branch 

mispredictions, or waiting for the results of previous instructions.  Independent 

progress was ensured by managing buffering queues such that no logical processor 

could use all the entries when two active software threads were executing. Raasch and 

Reinhardt reinforced the Pentium resource partitioning decisions by showing that 

simple partitioning schemes were the fairest, while more complex dynamic 

partitioning schemes did not significantly improve overall throughput [62]. 

 

A third goal was to ensure that an SMT processor running a single software thread 

could run at the same speed as a processor without SMT capability.  This implies that 

partitioned resources should be able to be recombined when only one software thread 

is active to give the single software thread the full resources of the physical processor. 
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4.1 Intel Pentium 4 and Xeon Processor Family  SMT 

Microarchitecture  

 

The Pentium 4 processor [22] and Xeon processor family share a common 

microarchitecture.  The microarchitecture was designed as a general-purpose 

microprocessor aimed at running a wide variety of computing applications well.  The 

Pentium 4 and Xeon family can vary in the maximum number of processors 

supported and in cache size and hierarchy.  The SMT features were implemented at 

minimum cost to allow two logical processors [63] to share the resources of a single 

physical processor. The general flow of the pipeline is shown in Figure 18.  Buffering 

queues separate major pipeline logic blocks.  These buffering queues are either 

partitioned or duplicated to ensure independent forward progress through each logic 

block. 
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Figure 18.  Intel Pentium 4 Processor Pipeline.  APIC is the advanced programmable interrupt 

controller.  TC is the trace cache.  MS-ROM is the micro-sequencer read-only-memory which 

stores and sequences microcode. 

 

In the following sections we will walk through the pipeline and discuss the 

implementation of the major function blocks. 
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4.1.1 Front End 
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Figure 19.  Details of the Front-end Pipeline for (a) Trace Cache Hit and (b) Trace Cache Miss. 

 

 

 

The front-end of the pipeline is responsible for fetching, decoding, and delivering 

micro-operations (“uops”) to the later stages of the pipeline.   

 



 57 

Instructions generally come from the Execution Trace Cache (TC), which is the 

primary instruction cache, as shown in Figure 19(a).  Figure 19(b) shows that only 

when there is a TC miss does the machine fetch and decode instructions from the 

unified Level 2 (L2) cache (unified because it is a shared cache for both instructions 

and data).  Not shown, but in the same functional block as the TC is the Microcode 

ROM (MS-ROM), which stores decoded instructions for the longer and more 

complex IA-32 instructions. 

 

Execution Trace Cache (TC).  The TC stores decoded instructions, or uops as 

described above.  Most instructions are fetched and executed from the TC.  Two sets 

of next-instruction-pointers (one for each logical processor) track the progress of the 

two software threads running on two logical processors.  The two logical processors 

arbitrate access to the TC every clock cycle.  All TC entries are tagged with logical 

processor ID such that a single entry cannot be used by both logical processors.  The 

TC is 8-way set-associative; entries are replaced based on a least-recently-used 

(LRU) algorithm. 

 

Microcode ROM (uROM).  The uROM stores uops for either less-commonly used 

or more complex Intel Architecture instructions.  When one of these instructions are 

encountered, the TC sends a pointer to the uROM which then fetches the sequences 

of uops needed and returns control to the TC.  Two microcode instruction pointers are 

used to control the flows independently if both logical processors are executing uops 

from the uROM; however, both logical processors share the uROM entries. 

 

ITLB.  When there is a TC miss, the ITLB receives the request from the TC to 

deliver new instructions, and translates the next-instruction-pointer address to a 

physical address.  The request is sent to the L2 unified cache, and instruction bytes 

are returned.  These bytes are placed into streaming buffers which hold the bytes until 

they can be decoded.  Each logical processor has its own ITLB and its own set of 

instruction pointers to track progress of instruction fetch and its own set of streaming 

buffers to enable independent progress for instruction fetch. 
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Branch prediction.  The return stack buffer is duplicated for better call/return 

prediction.  The large global branch history array is a shared structure with entries 

tagged with a logical processor ID.  The branch history register used to look up the 

global history array is duplicated to track the branch history of the two logical 

processors independently. 

 

Instruction Decode.  The decode logic takes instruction bytes from the streaming 

buffers and decodes them into uops.  In general, if both logical processors need access 

to the decoder, the decode logic will decode several instructions for one before 

switching to decode several for the other logical processor.  This allows the 

implementation to share all of the complex logic and buffering required to decode IA-

32 instructions.  These decode uops are then placed into the TC. 

  

Uop Queue.  After uops are fetched from the TC or the uROM, or forwarded from 

the decode logic, they are placed in the uop queue.  This queue decouples the Front 

End from the Out-of-order Execution Engine in the pipeline flow.  The uop queue is 

partitioned such that each logical processor has half the entries. 

 

4.1.2 Out-of-order Execution Engine 

The out-of-order execution engine consists of the allocation, register renaming, 

scheduling, and execution functions, as shown in Figure 20.  This part of the machine 

re-orders instructions and executes them as soon as their inputs are ready, without 

regard to the original program order. 
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Figure 20.  Details of the Out of order Execution Engine Pipeline. 

 

 

Allocator.  The allocator allocates many of the key machine buffers for each uop, 

including the 126 re-order buffer entries, 128 integer and 128 floating point physical 

registers, 48 load and 24 store buffer entries.  If there are uops for both logical 

processors in the uop queue, the allocator will alternate selecting uops from the 

logical processors every other cycle to assign resources.  Each logical processor can 

use at most half of the resources allocated at this stage. 

 

Register rename.  The register rename logic renames the architectural IA-32 

registers onto the machine’s physical registers.  The renaming logic uses a Register 

Alias Table (RAT) to track the latest version of each architectural register to tell the 

next instruction(s) where to get its operands.  There are two RATs, one for each 

logical processor.  Register renaming is done in parallel with the allocator logic 

described above.  Once uops have completed the allocate and register rename 

processes, they are placed into two sets of queues, one for memory operations and 

another for all other operations, called the memory instruction queue and the general 

instruction queue, respectively. 
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Instruction scheduling.  Five uop schedulers are used to schedule different types of 

uops for the various execution units.  Collectively, they can dispatch up to six uops 

each clock cycle.  The memory instruction queue and the general instruction queue 

send uops to the five scheduler queues as fast as they can, alternating between uops 

for the two logical processors every clock cycle, as needed.  The schedulers are 

oblivious to logical processor distinctions; they simply evaluate whether to dispatch 

uops based on dependent inputs and availability of execution resources.  To avoid 

deadlock and ensure fairness, there is a limit on the number of active entries that a 

logical processor can have in each scheduler’s queue. 

 

Execution units.  The execution core and memory hierarchy are largely oblivious to 

the logical processors.  Uops merely access the physical register file to get their 

destinations and then write results back to the physical register file.  By simply 

comparing physical register numbers, the forwarding logic sends results to other 

executing uops without having to understand logical processors.  After execution, 

uops are placed in the reorder buffer. 

 

Retirement.  The retirement logic tracks when uops from the two logical processors 

are ready to be retired, then retires the uops in program order.  Retirement will retire 

uops for one logical processor, then the other, alternating back and forth.  For stores, 

once retired, the store uop needs to write its data into the data cache.  Selection logic 

alternates between the two logical processors to commit store data to the cache. 

 

4.1.3 Memory Subsystem 

The memory subsystem includes the DTLB, the level 1 data cache, the level 2 unified 

cache, and an optional level 3 unified cache.  The memory subsystem is largely 

oblivious to logical processors.  The schedulers send load or store uops to the 

memory subsystem without regard to logical processors, and the memory subsystem 

handles them as they come. 
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DTLB.  Although the DTLB is a shared structure, each entry includes a logical 

processor ID tag.  Each logical processor also has a reservation register to ensure 

fairness and forward progress in processing DTLB misses. 

 

L1 data cache, L2 unified cache, (and optional L3 unified cache).  The L1 data 

cache is virtually addressed and physically tagged.  Each entry includes a context 

identifier [64] which is dynamically set or reset based on whether the page-directory 

base addresses (stored in a control register) are the same or different for the two 

logical processors.  If the page-directory base addresses are the same, then the two 

logical processors are likely to be sharing the same data and therefore can read/write 

each others’ cache entries in an optimal way.  If different then the two logical 

processors are unlikely to be sharing the same data and we can prevent partial-address 

aliasing conflicts by giving them two different context identifiers. 

 

Bus.  From a service perspective, cache miss requests and other bus requests from the 

logical processors are processed on a first-come-first-served basis, with queue and 

buffering space shared.  Priority is not given to one logical processor over another at 

any time.  For debug purposes, the logical processor ID of the request that generated 

the transaction is visibly sent onto the bus in the request phase. 

 

Interrupts.  Requests to the local APIC (advanced programmable interrupt 

controller) and interrupt delivery resources are unique and separate per logical 

processors. 

 

4.1.4 Single-task and Multi-task Modes 

To optimize performance when there is one software thread to execute, there are two 

modes of operation, called single-task (ST) and multi-task (MT).  In MT-mode, there 

are two active logical processors and some of the resources are partitioned as 

described earlier.  In ST-mode, only one logical processor is active and resources that 

were partitioned in MT-mode are re-combined to give the single active logical 
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processor full use of all the resources.  The two flavors of ST-mode are ST0-mode 

and ST1-mode, depending on which logical processor is active. 

 

4.2 IBM Power5 

 

The IBM Power5 is a dual-core microarchitecture.  It has two identical processor 

cores, each supporting two logical processors (or threads in IBM terminology).  The 

two cores share a 1.875-Mbyte L2 cache.  There is also an integrated directory for an 

off-chip 36MB L3 cache, and an integrated memory controller. 

 

The key differences between the IBM Power5 [65] and the Intel Pentium 4 processor 

are due to different goals for the SMT implementations.  Intel intended for their 

processors to run with shrink-wrapped off-the-shelf operating systems and any variety 

and combination of standard off-the-shelf software applications.  Intel therefore went 

out of the way to balance fairness and throughput aspects throughout the 

microarchitecture.   

 

The IBM Power5 assumes a special operating system to dynamically detect whether 

software threads run well together and only schedule threads if they run well.  The 

applications themselves also must be aware of the SMT implementation in order to 

run.  Therefore, while IBM includes deadlock detection and resolution mechanisms, 

they did not go to the same effort to balance throughput and fairness in the 

microarchitecture, since only applications that are known to benefit and to run 

“fairly” on the SMT-enabled system would share the SMT feature.  In fact, the major 

drawback of the IBM approach is lack of backward compatibility and the requirement 

that applications and operating systems be aware of the SMT feature.  This is an 

onerous restriction, and puts huge responsibility on application writers who may not 

want to worry about coding to specific hardware resource sharing on specific 

implementations.  This is likely to limit the number of applications that can take 

advantage of IBM’s SMT implementation, and those applications that do take 
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advantage of it may be limited in performance on future implementations due to 

different tradeoffs in terms of resource utilization and balance. 

 

4.2.1 Front-end 

 

The Power5 front-end operation is similar to the Pentium 4 processor.  Instruction 

fetches alternate between the two logical processors, they share the instruction 

translation facilities, and they share the instruction cache. 

 

For branch prediction, the IBM Power5 uses separate return stack buffers, but entirely 

shares the branch prediction state.  The Pentium 4 processor shared most of the large 

structures, but had separate branch history buffers and return stack buffers.  A 

drawback of the IBM implementation, where even the branch history buffers are 

shared, is increased likelihood of incompatible branch histories resulting in poorer 

branch performance. 

 

The logical processors have separate instruction fetch queues to place instruction 

bytes after fetch, similar to the Pentium 4 processor. 

 

Decode is done for one logical processor at a time, the logical processor selection is 

based on logical processor priority, which can be set by software or by hardware if 

unfairness is detected.  Instructions are decoded in groups of up to 5 instructions per 

cycle, and each group is allocated an entry in the global completion table (GCT).  

Unlike the Pentium 4 Processor’s reorder buffer which allows each logical processor 

to occupy only half the entries, the Power5’s GCT entries can be entirely occupied by 

a single thread.  This can be a potential source of deadlock or fairness issue. 
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4.2.2 Out-of-order Execution Engine 

Like the Pentium 4 processor, the Power5’s logical processors dynamically share the 

physical register files.  After renaming, the instructions are placed into shared issue 

queues.  Instructions are scheduled and issued to execution units with no regard to 

logical processors. 

 

The GCT, which tracks instructions through the pipeline, groups instructions for 

tracking.  Each group takes an entry in the global completion table.  There are 20 

entries in the GCT, which can each hold up to 5 instructions in a group.  While each 

entry can only contain instructions from one logical processor and are allocated in 

program order, successive entries may belong to different logical processors.  When 

all instructions in a group have executed and the group is the oldest for the given 

logical processor, it can commit (or retire in Intel terminology).  Up to two groups 

can commit per cycle, one group from each logical processor. 

 

4.2.3 Memory Subsystem 

The L1 instruction and data caches are 64KB 2-way set-associative and 32KB 4-way 

set-associative, respectively. The first-level data translation table is 128 entries, which 

is the same as the Power 4, but it was made fully associative for better SMT 

performance. 

 

The non-core levels of cache hierarchy (1.875 MB L2 cache, the optional L3 cache, 

and bus/memory access) is assumed to be competitively shared. 

 

Overall, since the L1 cache sizes are larger on the Power5 than the Pentium 4 

processor, the Power5 may have better average cache hit rates on many applications.  

However, the lower set associativity increases the likelihood of cache interference 

(thrashing) resulting in less predictable performance benefits from the SMT 

capability. 
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4.2.4 Single-task and Multi-task Modes 

The IBM Power5 supports the same set of single-task and multi-task modes as Intel’s 

Pentium 4 processor: two flavors of the ST-mode, and the MT-mode.   

 

4.2.5 SMT Performance Enhancing Features 

The Power5 depends on software, including operating system, middleware, and 

applications, to appropriately set the priority levels in order to run optimally.  They 

call this feature “adjustable thread priority”.  Software is responsible for choosing the 

correct balance of priority.  Some of the reasons listed by IBM [65] for changing 

thread priority include:  

 

 Spin loops.  Software would give the software thread lower priority because 

it’s not doing useful work. 

 Idle loops.  If there is no immediate work for the OS to schedule to a logical 

processor, the OS would run an idle loop which is similar to a spin loop.  The 

idle loop is not doing useful work and the OS should move the idle thread to a 

lower priority. 

 One application is more important than another.  For example, real-time tasks 

may be given higher priority.  Or foreground tasks may be given higher 

priority than background tasks. 

 

Ensuring that all software would use thread priority appropriately without abusing it 

is a challenge.  IBM feels that this is reasonable since they own the entire software 

stack for their server systems. 

 

In addition to software-controlled priority levels, Power5 also has a feature they call 

“dynamic resource balancing” which is needed to ensure that instructions from two 

logical processors flow smoothly through the processor.  This is needed because a 

single L2 cache miss can cause dependent instructions to quickly backup the issue 

queues, slowing down groups of instructions from the other logical processor.  Or one 
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logical processor may be running a software thread that has higher CPI (and is 

therefore slower) than the other due to the mix of dependencies and instruction types.  

The slower thread would eventually use more and more of the GCT entries and slow 

down the faster thread.  The Power5 microarchitecture monitors the number of L2 

cache misses and the number of GCT entries that each thread is using and then takes 

one or more of the following actions: 

 

 Reduce the logical processor priority.  This is the primary mechanism for 

cases where a thread uses more than a predetermined number of GCT entries. 

 Inhibit the logical processor’s instruction decoding until the congestion clears.  

This is the primary mechanism for cases where a logical processor has greater 

than a prescribed number of L2 cache misses. 

 Flush all instructions waiting for dispatch and halt decoding instructions for 

one logical processor.  This is the primary mechanism for throttling in the case 

of a long-executing instruction such as a synch instruction. 

 

The problem with the first two mechanisms is that application behavior tends to be 

very bursty.  Some instruction segments will be slower for a while, due to 

dependencies and cache misses, after which the instructions may execute quickly for 

a while.  Putting throttling mechanisms at the front-end of the machine is generally 

too late to react to most conditions, such as L2 cache misses and slow segments of 

code.  As for the third mechanism, flushing instructions is expensive and wastes 

power, and therefore is not suitable for frequently encountered conditions. 

 

4.3 Alpha EV8  

The Alpha EV8 processor was cancelled before it was completed.  However, its 

microarchitecture included a proposed 4-way SMT implementation [66] [67] [68].  

The EV8 was intended to be an 8-wide out-of-order superscalar microarchitecture.  

The additional silicon area to implement 4-way SMT was estimated to be less than 
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10%.  Few details are publicly available describing the SMT implementation in the 

microarchitecture. 

 

The EV8 was much more aggressive in trying to achieve 4-way SMT performance 

than the Pentium 4’s modest 2-way SMT.  However, going to 4-way SMT adds a 

disproportionate amount of complexity to the microarchitecture.  With 4 logical 

processors, and many structure sizes are limited by access latency, which means that 

complex sharing algorithms and even more complex fairness algorithms are required.  

This is in contrast to the simple approach of dividing a few key resources in half as 

done in the Pentium 4. 

 

The overly complex nature of having to support 4 logical processors may have 

contributed to the design time and ultimate failure of the EV8 processor becoming a 

real product.  While this does not mean that a 4-way SMT cannot be done, the 

performance predictability and complexities of efficiently sharing resources are 

extremely difficult problems to solve.  Complex sharing mechanisms are required to 

prevent structures from severely limiting the overall frequency of the processor.  The 

problem is very similar to that encountered in trying to design thread priority 

mechanisms that improve overall throughput without compromising fairness and 

predictability. Thus far no mechanisms have been shown to be effective and tractable 

in dynamically sharing resources. 

 

4.3.1 Front-end 

 

The instruction fetch logic attempts to assemble 8 valid instructions each cycle.  To 

do this, they fetch 16 instructions from two separate cache blocks, each 8 instructions 

wide.  A collapsing block removes instructions not on the predicted path.  In each 

clock cycle instructions are fetched for only one logical processor.  The instruction 

cache is a shared structure.  There are four separate program counters to track fetch 

progress for the four logical processors independently.  During register renaming, 
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there are four independent register alias tables.  With 32 integer and 32 floating point 

architectural registers for each logical processor a total of 256 total architectural 

registers are required.  The implementation has 512 physical registers to 

accommodate a total of 256 in-flight instructions.  The register file takes 3 cycles to 

access due to transit delays and its size, so smaller register caches for the integer and 

floating point units were added to reduce the penalty of this latency.  The register 

caches store copies of 8 cycles’ worth of results.  The renamed instructions are placed 

in a shared instruction queue, possibly allocated based on an I-count algorithm as 

described in [33].   

 

4.3.2 Out-of-order Execution Engine 

Presumably the instructions are issued to execution units and access the memory 

pipeline based on instruction dependencies.  Instructions are retired in blocks of 

instructions in program order [67]. 

 

4.3.3 Memory Subsystem 

The first and second level caches, and the translation buffers are shared by all logical 

processors [67]. 

 

4.4 Clearwater Networks CNP810SP Processor 

The Clearwater Networks CNP810SP processor was another processor that spent 

years in the design but never taped out.  It was also intended to be an SMT processor, 

but targeted specifically at the network processing market.  The intention was to have 

eight logical processors executing simultaneously on a superscalar core capable of a 

executing a maximum of ten instructions per cycle [69].  Very little detail is publicly 

known about the Clearwater processor’s microarchitecture implementation. 
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Again, supporting a large number of logical processors involved complexity and huge 

wiring challenges that may have contributed to its demise.  However, since the 

Clearwater processor was narrowly targeted at a specific application class and market, 

it did not need to have the same level of fairness vs. throughput guarantees that the 

Pentium 4 required. 

 

4.4.1 Front-end 

A shared dual-ported instruction cache can supply up to eight instructions for each of 

two logical processors per cycle, for a maximum of sixteen instructions per cycle.  

The instructions are placed in separate instruction queues for each logical processor, 

so there are eight instruction queues, each can hold up to 16 instructions.  Two logical 

processors are selected each cycle to access the instruction cache.  The selection is 

based on which logical processors have the fewest number of instructions in their 

instruction queue. 

 

Each logical processor has its own 31-entry register file.  There is no sharing of 

registers between the logical processors. 

 

4.4.2 Out-of-order Execution Engine 

The logical processors are divided into two groups of four for scheduling and 

dispatch.  The dispatch logic is therefore split into two groups, or “clusters”.  Each 

cluster consists of the dispatch logic, and four functional units.  There are also two 

ports to the data cache that are shared by both clusters.  Each cluster dispatch logic 

can send up to six instructions from the four different logical processors, where zero 

to three instructions can be executed from each logical processor depending on 

instruction dependencies and availability of resources.  A maximum of ten 

instructions can be dispatched per cycle.  The functional units are fully bypassed so 

that dependent instructions can be dispatched in successive cycles. 
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  CHAPTER 5  

SIMULTANEOUS MULTITHREADING 

MICROARCHITECTURE CHOICES AND TRADEOFFS 

 

 

This chapter presents the results of our research on the sharing policies of key 

structures in the Pentium 4 microarchitecture. 

 

The Intel Pentium 4 processor implementation of SMT required microarchitecture 

choices and tradeoffs with respect to the resource sharing policy for each shared 

resource[70] [71].  This chapter analyzes how the choice of sharing policy can impact 

performance dramatically.  The policies discussed in this chapter included: 

 Partition - dedicating equal resources to each logical processor; 

 Threshold - flexible resource sharing with a limit on the maximum resource 

usage; and 

 Full sharing - flexible resource sharing with no limit on the maximum 

resource usage. 

 

The analysis and discussion covers evaluation of performance, throughput vs. 

fairness, potential livelock scenarios, as well as die size and complexity. 

 

5.1 Partition 

In a partitioned resource, each logical processor can use only half the entries.  

Clearly, resource partitioning has the advantage of simplicity and low complexity.  It 
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is a good choice for resources when you expect the structure’s utilization to be 

generally high and somewhat unpredictable.  For example, partitioning is a good 

choice for the major pipeline queues, which provide buffering to avoid pipeline stalls 

and, ideally, remain full most of the time.  However, because software thread 

execution speeds can differ at any instant in time, the rate at which the queues fill and 

empty is unpredictable.  By partitioning these queues, we can allow slippage between 

a fast and a slow thread, preventing a slow thread from blocking or slowing down the 

faster thread and thereby making the best use of each pipeline stage. 

 

Figure 21 illustrates how this works.  At the start, Figure 21(a), both the shared queue 

(on the left) and the partitioned queue (on the right) have two light-shaded and two 

dark-shaded micro-ops.  The light-shaded micro-ops belong to Thread 0, and the 

dark-shaded micro-ops belong to Thread 1.  Both the light micro-ops and the dark 

micro-ops are labeled 0 and 1, representing the per-thread micro-op ID.  Every micro-

op is given a unique micro-op ID assigned in sequential order to distinguish it from 

other dynamic micro-ops in the pipeline.  In Cycle 1, Figure 21(b), both the shared 

and partitioned queues send light micro-op 0 down to the next pipeline stage.  In the 

shared queue, the previous pipeline stage sends dark micro-op 2, but in the partitioned 

queue, because the dark thread is already occupying its maximum number of entries, 

the previous pipeline stage sends a light micro-op instead (light micro-op 2).  At the 

end of Cycle 1, the shared queue has one light micro-op and three dark micro-ops.  

The partitioned queue has two micro-ops of each shade. 

 

In Cycle 2, Figure 21(c), both the shared and the partitioned queues send a light 

micro-op to the next pipeline stage, and the previous pipeline stage delivers a light 

micro-op in both cases.  The shared queue gets a light micro-op in this cycle because 

in the previous cycle it sent a dark micro-op.  In general, in-order pipeline stages will 

alternate between light and dark micro-ops unless the staging queue after the pipeline 

stage is full or the previous staging queue has no micro-ops available to work on. 
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Figure 21.  Comparison of a shared and a partitioned queue.  The light-shaded micro-ops belong 

to Thread 0, and the dark-shaded micro-ops belong to Thread 1. The numbers in the boxes are 

the micro-op ID which are assigned sequentially to each thread’s micro-ops. Thread 0 has a 

downstream stall, such as a data cache miss.  In this situation, the queues will not send any 

slower micro-ops to the next pipeline stage.  The figure shows how the queues will progress 

through cycles 0 (a), 1 (b), 2 (c), 3 (d), and 4 (e), where the shared queue lets the slower thread 

block the progress of the faster (light) thread. 
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In Cycle 3, Figure 21(d), both queues again send a light micro-op to the next pipeline 

stage.  The previous pipeline stage sends a dark micro-op in the case of the shared 

queue and a light micro-op in the case of the partitioned queue.  At the end of Cycle 

3, the shared queue has four dark micro-ops and no light micro-ops, while the 

partitioned queue still has two of each. 

 

In Figure 21(e), the shared queue is now blocked because it has no light micro-ops, 

and the dark thread has a downstream stall.  The partitioned queue is thus a simple 

mechanism that can continue to issue light micro-ops.  The partitioned queue prevents 

the pipeline from stalling. 

  

In Section 4.1, Figure 18 showed a basic execution pipeline of the Pentium 4 

microarchitecture.  It is especially important to guarantee fairness and progress for the 

pipeline’s in-order parts.  Therefore, a partitioned scheme works best for the major 

pipeline queues in the in-order pipeline: the Instruction Fetch pipeline and 

Retirement.  If there is a front-end stall (say, because of a trace-cache miss), the back-

end can continue to take micro-ops from the micro-ops queue.  If there is a back-end 

stall (say, because of a data cache miss), the front end can continue to fill the queue.  

Large queues can keep both the front end and the back end mostly busy when one end 

is temporarily stalled for one logical processor. 

 

As illustrated in Figure 21, if the two logical processors fully shared these queues, a 

slow thread could gain an unfair share of the resources and prevent a fast thread from 

making progress.  Because the slow thread is often stalled, its micro-ops start to pile 

up in the queues.  In time, the slow thread will collect more and more entries, because 

it competitively shares entries with the fast thread.  Eventually, the slow thread will 

get most, if not all, of the queue, thereby slowing the fast thread’s progress.  A 

partitioned queue, however, lets the fast thread always have half of the entries and 

advance at its own pace. 
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The use of partitioned resources is simple, entails little implementation complexity, 

and ensures fairness and progress for both logical processors. 

 

5.2 Threshold 

Another way of sharing resources is to limit the maximum resource usage that a 

logical processor can have.  This approach is ideally suited for small structures where 

the resource utilization is bursty, and the length of time a micro-op stays in the 

structure is short, fairly uniform, and predictable.  Processor schedulers provide an 

example of where threshold sharing is a good choice.  Scheduler throughput on the 

Pentium 4 is high because they assume that load instructions will hit in the cache, so 

micro-ops don’t linger in the schedulers (a separate re-issue mechanism resubmits 

micro-ops to execution units in the event of a cache miss).  Also, the schedulers are 

very small, to enable speed.  They run at twice the clock frequency, so a 3 GHz 

processor has schedulers running at 6 GHz. 

 

The allocation of micro-ops to these schedulers is round-robin until a logical 

processor reaches its threshold number of entries.  At that point, it cannot allocate 

more micro-ops until it dispatches some of its current entries. 
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Figure 22.  Snapshot of scheduler occupancy on a transaction processing workload over a short 

period of time.  Each data point is the instantaneous scheduler occupancy for its respective 

logical processor, measured by the number of entries occupied by each thread. 

 

 

Figure 22 shows scheduler occupancy over a number of processor clock cycles.  

Although average scheduler utilization is low, the activity can be bursty.  A threshold 

limiting the maximum number of entries for each logical processor prevents one 

logical processor from blocking the other’s access to the scheduler.  The threshold 

lets the scheduler look for maximum parallelism among micro-ops across both 

threads, thereby improving execution resource utilization. 

 

5.3 Full sharing 

Fully shared resources, the most flexible mechanism for resource sharing, does not 

limit the maximum resource usage for a logical processor.  In general, fully shared 

resources is a good mechanism for large structures in which working set sizes are 

variable, and one logical processor cannot starve the other. 
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Figure 23.  Cache hit rate and overall performance impact for a fully shared cache normalized 

against values for a partitioned cache.  On average, the shared cache had a 40-percent better 

cache hit rate and 12-percent better performance.  Notice that no single application workload 

lost performance because of the shared cache. 

 

 

Processor caches are a good example of structures best suited to the full sharing 

policy.  In the Pentium 4 microarchitecture, all processor caches are shared. This has 

several advantages.  First, it allows for better overall performance than with a 

partitioned or threshold cache because cache interference is usually modest.  Second, 

some applications benefit from a shared cache because they share code and data, 

minimizing redundant data in the caches.  Finally, high set-associativity minimizes 

conflict misses between logical processors.  The second- and third-level caches (if 

present) are eight-way set associative.  Because SMT technology was a new 

architectural field, we implemented multiple resource management algorithms in 

some areas of the processor.  This included the cache sharing policy.  This feature lets 

us experiment with various cache management policies on real systems.  Figure 23 

shows results for some of those experiments and the advantage of using a shared 
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cache.  The figure compares the results of running multiple workloads on two cache 

configurations: fully shared and partitioned.  For each workload, the figure shows the 

cache hit rate and performance impact of a fully shared cache normalized to those of 

a partitioned cache.  We collected cache miss statistics using the Intel Pentium 4 

event-monitoring counters [72], specifically the second-level cache’s load-miss-

retired event.  The workload consisted of running two copies of the same application.  

This study highlights the modest cache interference in a shared cache. 

 

5.4 Conclusions 

With a resource sharing policy matched to the traffic and performance requirements 

of each resource, SMT can significantly increase resource utilization and improve 

performance.  This research and development has also resulted in a number of related 

patents [73-82].  Continued research in academia [83] and industry [84, 85] has also 

continued to make progress in continuously improving the algorithms for sharing 

resources in a simultaneous multithreaded processor.  Brayton [84] demonstrated 

Intel’s latest SMT technology on the Nehalem processor, to start shipping in 2008, 

and Singhal [85] described it in more detail. 
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  CHAPTER 6  

POWER AND ENERGY ANALYSIS OF  

SIMULTANEOUS MULTI-THREADING 

 

 

SMT is an energy-efficient method to get performance.  In this chapter we analyze 

the additional power needed for a processor with SMT, and how much less energy 

SMT systems can use doing the same amount of work. 

 

Power and energy [86] are frequently confused.  Power is a measure of the rate of 

doing work or using energy.  The common way of measuring electrical power is in 

watts.  One watt is equal to one joule (J) of energy per second.  Computer system and 

processor manufacturers and designers are often concerned about peak power and 

average power.  In a computer system, peak power will determine the power supply 

and heat dissipation requirements for the processor.  For a computer lab, the 

combined peak power for all components in the lab (computers, instruments, lights, 

fans, air conditioning, etc.) determines the peak power supply requirements for the 

room. 

 

Energy is the capacity to do work.  Energy can be stored, in a battery for example.  A 

common electrical energy metric for batteries is the watt-hour.  The standard MKS 

metric for energy is the joule (J), equal to one watt-second.  One watt-hour is equal to 

3600 joules.  We can compute the energy requirement for a specific task.  A battery 

that stores 200 watt-hours can keep a system that draws on average 50 watts of 

power, up and running for 4 hours.  Energy requirements determine the battery life 
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for battery-powered systems, or the energy cost to buy power from power companies.  

Laptop designers need to know the average power of a system to specify the battery 

requirements.  This is of increasing importance as computers and handheld devices 

become more powerful and ever smaller. 

 

We show that, although SMT power is typically ~5-15% higher than ST power, SMT 

can do the same amount of work using less energy.  The higher the SMT speedup is, 

the more energy efficient it is.  The SMT energy efficiency can be quite compelling 

when speedup is > 1.1. 

 

6.1 Methodology 

 

Our power and energy measurements were done on real systems.  For the same 

amount of work, we compared the power and energy used with SMT on and SMT off.  

Every workload had at least two software threads/processes.  When SMT is off, the 

operating system will context-switch the workload’s threads/processes to share the 

single logical CPU.  When SMT is on, the operating system will schedule the two 

threads to run simultaneously on the two logical CPUs. 

 

The system used for these experiments was as follows: 

 Hardware configuration 

o CPU: Intel® Pentium® 4 CPU 661 3.60 GHz (ES)  2MB L2 cache. 

o Bus speed:  800 MHz 

o Memory:  1.0 GB DDR2 

o Motherboard:  Lakeport/ICH7 

o Chipset: Intel i975x Rev. c0 

o Southbridge:  Intel 82801GB (ICH7) 

o BIOS:  American Megatrends Inc. (AMI) version VVPLI763.86P 

 

 Software configuration 
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o Operating System:  Windows XP Professional x64 Edition Version 

5.2, Service Pack1 

 

For SPEC2000, the libraries and compilers used are as follows: 

 

 Intel C++ and Fortran Compiler 9.1 for 32-bit applications 

 Microsoft Visual Studio 2005 for libraries 

 SmartHeap Library version 8.0. 

 

To measure power accurately, we made modifications to the motherboard to access 

the voltage and current drawn by the CPU.   

 

A National Instruments Model SC-2345 with National Instruments Measurement and 

Automation Explorer Software was used to log the data at a rate of 1000 

measurements/second.  For our purposes, this is sufficient granularity. 

 

A chiller (USTC Thermal Tool Quick Disconnect System Model # USTC-5502MX 

with USTC Thermal Tool PreChiller System Model # USTC-LC10MC050) was used 

to keep the CPU package temperature at a constant 25C because of the super-linear 

impact of temperature on leakage power.  The actual leakage and its dependence on 

temperature varies widely depending on the size and type of circuit as well as many 

other design and process technology factors [87]. 

 

SMT was enabled/disabled through the BIOS.  Enabling and disabling SMT through 

the BIOS ensures that the ITLB are usable by the single thread in single-thread mode.  

 



 81 

6.1.1 Motherboard modifications to measure CPU power 
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Figure 24.  Three-phase voltage regulator on the Lakeport/ICH7 motherboard. 

 

 

This section describes the modifications made to the motherboard voltage regulator 

for power measurements.  To measure power at the CPU, we need the current and 

voltage delivered to the CPU silicon.  We were fortunate to have available a system 

designed and built by Jim Hunt, of Intel Corporation [88]. 

 

Modifications were made to the voltage regulator to add a current sensor.  Figure 24 

shows the unmodified three-phase voltage regulator for the Pentium 4 processor.  A 

three-phase voltage regulator has three identical interleaved cells connected such that 

their output is a summation of all individual voltage regulator cells.  Each cell uses a 
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synchronous rectifier consisting of two MOSFETs to convert the 12V input voltage to 

the Vcc voltage requested by the CPU via the encoded voltage identifier (VID) signal.  

The Pulse Width Modulator Controller sends pulses of a given width to each of the 

three phases in turn.  The width of the pulses determines the output voltage.  The 

“voltage sense” signal allows the Pulse Width Modulator Controller to fine-tune the 

pulse width for an accurate Vcc output. 
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Figure 25.  Voltage Regulator modifications to measure power at the CPU core.   

 

 

Figure 25 shows the modifications to the voltage regulator that were done.  The IHA-

150 current sensor was chosen because of its accuracy and because it is a Hall effect 

[89] current sensor which provides electrical isolation of the current being sensed and 

the voltage output.  The output wires of the three regulator cells are run through the 
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hole in the IHA-150.  The total electric current flowing through the wires creates a 

magnetic field which produces a voltage, the Hall voltage, which is proportional to 

the amount of current flowing through the wires.  This voltage, Vi, is sent to our data 

logger system.  The data logger logs the changes to Vi over time to tell us how much 

current is being drawn by the CPU at any point in time.  The Vcc that the voltage 

regulator produces goes to the CPU package, then to the CPU silicon itself. By the 

time the Vcc gets to the actual CPU silicon, it has experienced some voltage droop so 

it is important to get an actual Vcc measurement from the CPU silicon itself.  

Fortunately, we have two test outputs to tell us effective Vcc and ground levels that 

the CPU is actually seeing.  We route the difference between these two test signals to 

our data logger to get an accurate reading of effective Vcc.  

 

Another important modification involved the load line.  Because of the additional 

wires that were soldered to the voltage regulator cells, care had to be taken to make 

sure the lengths of those wires were all the same.  The wire lengths were determined 

by the longest wire to get the signals through the IHA-150 and back.  Because these 

wires put additional load on the Vcc lines, the resistors on the three voltage sense 

signals had to be swapped out and replaced with different size resistors to compensate 

for the additional load. 

 

6.1.2 SMT Energy Benefit Metric 

 

We need a metric to understand the energy benefit when SMT is enabled similar to 

the speedup metric for measuring performance benefit.  Let us review the definition 

of speedup [90].  Speedup is defined as the execution time for the workload on a 

single processor divided by the execution time for the workload on multiple 

processors: 

 Speedup = T1 / TP  

where T1 is the execution time on a single processor, and TP is the execution time on 

P processors. 
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In the case of SMT speedup, this means: 

 SMT Speedup = TST / TSMT 

Where TST is the execution time in single-thread mode, and TSMT is the execution 

time in SMT-mode.  If the execution time in SMT-mode is half the execution time in 

ST-mode, then the speedup would be 2.0. 

 

Similarly, we define a metric called SMT Energy Benefit as follows: 

 SMT Energy Benefit = EST / ESMT 

Where EST is the total energy used to execute the workload in ST-mode, and ESMT is 

the total energy used to execute the workload in SMT-mode.  SMT Energy Benefit = 

1 means that the same energy is required to do the work in ST mode as SMT mode.  

If SMT-mode takes half the energy compared to ST-mode, then the SMT Energy 

Benefit would be 2.0, i.e., we can do twice the amount of work on the same battery, 

or we doubled the battery life. 

 

Since energy is equal to power multiplied by execution time, SMT Energy Benefit 

can also be calculated as follows: 

 SMT Energy Benefit = (PST * TST) / (PSMT * TSMT) 

Where PST and TST are the average power and total execution time in ST-mode, 

respectively, and PSMT and TSMT are the average power and total execution time in 

SMT-mode. 

 

With the SMT Energy Benefit metric, a value >1 means that the total energy with 

SMT enabled improves battery life.   A value of 2.0 means that we can expect to 

double the battery life needed for that workload. 
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6.2 Micros Study Results 

 

SMT power efficiency is excellent on the Pentium 4 processor.  To test the extent of 

this efficiency, we wrote and ran several micro-benchmarks, or micros.  Micros are 

small simple programs, often written in assembly language, designed to exercise 

and/or isolate a specific feature of the CPU for better understanding of processor 

behavior. 

 

We wrote and ran two types of micros: throughput and latency micros.  Throughput 

micros use a particular resource at or near 100%.  When both logical processors are 

attempting to saturate the resource, we expect SMT speedup to be around 1.0.  On the 

other hand, latency micros measure the latency of a particular type of resource.  Since 

some resources are pipelined, those resources are <=50% busy in latency micros.  In 

these cases, we can expect an SMT speedup of about 2.0 when both logical 

processors are simultaneously testing the latency of that resource.  Micros with SMT 

speedups around 1 (no performance benefit) and 2 (performance doubles with SMT) 

are particularly interesting for our analysis because they lead to an intuitive 

understanding of the relationship between performance, power, and energy. 

 

The micros used in the following experiments have 2 threads.  Both threads are doing 

the same thing.  When run in ST-only mode, the operating system context-switches 

the threads.  In SMT-enabled mode, the operating system schedules the two threads to 

run on the two logical processors simultaneously. 

 

Table 6 shows the results of several throughput micros whose SMT speedup is ~1.0.   

The expectation is that the SMT power increase would be approximately the area 

growth for enabling SMT.  Looking at the measured results, although there is no 

performance benefit for these micros, enabling SMT results in a small increase in 

power of 3-5%, or 1-2 Watts.  This is precisely as expected!  The increase in power is 

due to (1) enabling additional structures required for SMT such as architectural 
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resources, a second set of rename tables, queues in the front-end, etc., and (2) logic 

that monitors each thread’s forward progress and controls thread switching at the 

various pipestages. 

 

Table 6.  Throughput Micro SMT speedup measurements.  

 

 

fmul 
through-

put 
if-then 
loop 

L0 cache 
load hit 
through-

put 
noop 
loop 

padd 
through-

put 

fadd 
through-

put 

SMT Speedup 1.00 0.96 0.95 0.92 1.01 1.00 

ST Power 
(Watts) 28.3 34.4 36.7 30.4 28.4 28.6 

SMT Power 
(Watts) 29.4 35.8 38.3 32.2 29.9 30.2 

Power Difference 
(Watts) 1.0 1.4 1.6 1.8 1.5 1.6 

Power Difference 
% 3% 4% 4% 5% 5% 5% 

SMT Energy 
Benefit  (ST 
Energy/SMT 
Energy) 0.966 0.923 0.910 0.871 0.957 0.953 

ST CPI 1.87 0.56 0.47 0.38 0.95 0.93 

SMT CPI 1.87 0.55 0.50 0.41 0.94 0.94 

 

  

Some of the very low-CPI throughput micros have a small performance loss due to 

too-small buffers between major pipestages.  On the Pentium 4 processor the buffers 

were sized for ST performance and therefore when half the buffers are allocated to 

each logical processor they are too small for SMT performance.  The inefficiencies 

are due to the latency of signaling “buffer full” and “buffer not full” to prior 

pipestages that are feeding the buffers.  “Buffer full” must be signaled early enough 

to accommodate all potentially in-flight uops coming from previous pipestages.  This 

results in times when the buffer is not actually full when we signal “buffer full”.  If 

later pipestages start to empty the buffer at maximum rate, in some cases the buffers 

can be empty before the “buffer not full” signal to the previous pipestage can restart 

and deliver new uops.  While the size of the buffers are appropriate in ST-only mode 

to hide these inefficiencies, in MT-enabled mode where each logical processor may 
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have only half the entries, the size of the buffers may be insufficient.  Fortunately, 

while these inefficiencies tend to show up on micros with very low CPIs, they rarely 

impact real applications. 

 

The SMT Energy Benefit row in Table 6 is as defined in Section 6.1.2, the ratio of 

energy expended in ST-mode divided by the energy expended in SMT-mode. A value 

>1 means that the total energy with SMT enabled improves battery life.  For the 

throughput micros, the ratios are all <1 meaning that it is better not to enable SMT for 

these workloads.  This is intuitively correct since we have no performance benefit. 

 

Table 7 shows several micros whose SMT speedup is ~2.0.  These are the latency 

micros.  In these micros, the performance doubles with SMT enabled. The power 

increase ranges from 7-18%, or 2-6 Watts.  The L1 cache latency micro has the 

largest increase in power because accessing the 2MB L1 cache is high power due to 

powering up and enabling the large cache banks. 

 

Table 7.  Latency Micro SMT speedup measurements. 

 

 
fmul 

latency 

L1 cache 
load hit 
latency 

padd 
latency 

fadd 
latency 

imul 
latency 

SMT Speedup 2.00 1.99 2.00 2.00 2.00 

ST Power (Watts) 26.7 31.7 28.7 27.1 26.6 

SMT Power (Watts) 28.6 37.5 31.8 29.4 28.5 

Power Difference 
(Watts) 1.9 5.8 3.1 2.3 1.9 

Power Difference % 7% 18% 11% 8% 7% 

SMT Energy Benefit  
(ST Energy/SMT 
Energy) 

1.866 1.679 1.804 1.845 1.868 

ST CPI 7.25 1.97 1.87 5.42 8.84 

SMT CPI 3.65 0.99 0.94 2.74 4.47 

 

 

The expectation would be that the dynamic power increase should be proportional to 

the increase in activity due to SMT.  To see if this is true, we need to graph the slope 
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of the increase in power difference vs. ST power increase, and see if the slope of the 

latency micros is approximately equal to one. 

 

Figure 26 plots the data from the two tables.  The graph shows that indeed the latency 

micros have a slope of one!  It also shows visually that the throughput micros (where 

the SMT speedup ~ 1) are 3-5% higher as expected.  Also note that the latency 

micros, where SMT speedup = 2, tend to be lower-power due to lower utilization of 

CPU resources, but there is more increase in power from SMT due to doubling the 

dynamic usage of resources. 
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Figure 26.  Throughput Micros and Latency Micro measured SMT speedups on an Intel 

Pentium 4 Processor System. 
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Another important metric to look at is the SMT Energy Benefit, which tells us 

whether batter life improves with SMT.  The dramatic performance improvement but 

small power increase means that it is much better to enable SMT.  We get up to 1.9x 

energy improvement, or 1.9x improvement in battery life! 

Figure 27 shows the SMT Energy Benefit, and graphs this vs. ST Power for all the 

micros.  Here, we see in graph form the huge potential SMT Energy Benefit for the 

latency micros are ranging from 1.7 to 1.9 when SMT speedup is close to 2.0.  We 

can do 70-90% more work on the same battery!  For the throughput micros whose 

speedup is ~1.0, the SMT energy benefit is <1 due to the power increase of 3-5% for 

the same execution time, so we can do less work on the battery. 
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Figure 27.  Throughput Micros and Latency Micros measured SMT Energy benefit on an Intel 

Pentium 4 Processor System.  SMT Energy Benefit is extremely compelling for the latency 

micros. 
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The important take-away from this analysis is that the increase in power from SMT is 

low compared to the potential speedup.  The conclusion is that the potential SMT 

power efficiency of the Pentium 4 processor is excellent.  Finally, we would like to 

plot the SMT Energy Benefit vs. SMT Speedup for the micros.  This is shown in 

Figure 28.  The better the SMT speedup of the workload, the higher the SMT energy 

benefit, or the longer the battery life. 

 

 

Figure 28.  SMT Energy Benefit vs. SMT Speedup shows a slope  

 

 

 In the next few sections, we will look at the SMT Energy Benefit of real workloads, 

and see how they compare to the microbenchmark data. 
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6.3 SPEC 2000 Integer 

 

Armed with the intuition from the micros analysis, we would like to now see what the 

performance vs. power and energy of other applications look like.   

 

Table 8.  SPECint_rate performance measured on an Intel Pentium 4 system.  

 

Base Base Base Peak Peak Peak 

Benchmarks    # Copies 
Run 
Time Rate 

# 
Copies 

Run 
Time Rate 

SMT Off:           

164.gzip             2 232 14 2 228 14.2 

175.vpr              2 233 13.9 2 232 14 

176.gcc              2 108 23.7 2 108 23.7 

181.mcf              2 174 24 2 174 24 

186.crafty           2 150 15.5 2 151 15.4 

197.parser           2 259 16.1 2 258 16.2 

252.eon              2 107 28.3 2 108 28 

253.perlbmk          2 168 24.8 2 169 24.7 

254.gap              2 110 23.2 2 110 23.2 

255.vortex           2 122 36.1 2 122 36.1 

256.bzip2            2 226 15.4 2 226 15.4 

300.twolf            2 329 21.2 2 329 21.2 

SPECint_rate_base2000  20.4     

SPECint_rate2000         20.5 

SMT on:           

164.gzip             2 176 18.4 2 195 16.7 

175.vpr              2 228 14.3 2 228 14.2 

176.gcc              2 93.2 27.4 2 93.2 27.4 

181.mcf              2 190 22 2 190 22 

186.crafty           2 147 15.8 2 156 14.9 

197.parser           2 217 19.3 2 236 17.7 

252.eon              2 100 30.1 2 107 28.2 

253.perlbmk          2 182 23 2 185 22.6 

254.gap              2 99.6 25.6 2 99.6 25.6 

255.vortex           2 127 34.7 2 127 34.7 

256.bzip2            2 175 19.8 2 174 20 

300.twolf            2 274 25.4 2 276 25.3 

SPECint_rate_base2000  22.3     

SPECint_rate2000         21.7 

 

 

Before we started collecting our power measurements, we did an “official” SPECrate 

2000 run to make sure that the overall system performance matches that of the 
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published numbers on the official SPEC website.  Table 8 shows the results.  These 

SPEC numbers are as expected, within 1% of the published numbers of equivalent 

systems. 

 

For the power and energy measurements, we combined the SPEC 2000 applications 

in two ways.  The first was the way SPECrate is measured, where two copies of the 

same application are run at the same time.  The second way was to combine different 

applications, for example gap and gcc.  To minimize idle time (where one logical 

processor is active and the other is idle) one thread would run gap followed by gcc, 

and the other thread would run them in reverse order, gcc followed by gap.  Since the 

applications have different run times, this means that there is some overlap time when 

the same application is running on both threads, one near the end and the other just 

beginning.  We then compared the performance, power, and energy with SMT on and 

off. 

 

Table 9 shows the data.  SMT speedup is ST time / SMT time.  The speedup ranges 

from 0.92 (performance loss) to 1.36.  The lower speedup numbers tend to be 

SPECrate data because the same workload is run twice and an optimized workload 

should use 100% of some critical resource.  So if the workload is highly optimized we 

wouldn’t expect any speedup, but would expect some performance loss due to 

conflicts in the cache/TLB/branch predictors.  In general, running combinations of 

applications would give better speedups because two different applications are more 

likely to stress different physical resources. 

 



 

 

9
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Table 9.  SPECint SMT Power measurements for two copies of the same application and combinations of different applications. 

 

 

 

 

SMT 

speedup 

(ST 

time/SMT 

time)

ST Time 

(sec)

SMT Time 

(sec)

ST Power 

(Watts)

SMT 

Power 

(Watts)

Power 

Difference

Power Diff 

%

ST Energy 

(Watt-Hrs)

SMT 

Energy 

(Watt-Hrs)

Relative 

Energy 

Benefit 

(ST 

Energy / 

SMT 

Energy)

mcf 0.92 176 191 34.7 35.3 0.5 1% 1.69 1.87 0.91

perlbmk 0.97 170 176 39.0 41.1 2.2 6% 1.84 2.01 0.92

vortex 0.97 123 127 36.7 39.5 2.8 7% 1.26 1.39 0.90

crafty 1.02 150 146 37.1 40.8 3.7 10% 1.54 1.66 0.93

vpr 1.05 235 224 36.4 38.1 1.7 5% 2.37 2.37 1.00

eon 1.06 106 101 36.2 41.0 4.7 13% 1.07 1.15 0.94

gap 1.11 110 99 38.5 41.6 3.1 8% 1.18 1.15 1.03

gcc 1.15 108 93 36.8 40.1 3.4 9% 1.10 1.04 1.05

parser 1.18 259 219 38.1 41.0 2.9 8% 2.74 2.49 1.10

twolf 1.20 328 275 36.5 40.5 4.0 11% 3.33 3.09 1.08

gzip 1.32 233 177 38.6 42.0 3.4 9% 2.49 2.06 1.21

bzip2 1.32 231 175 37.8 40.2 2.3 6% 2.43 1.96 1.24

crafty_perlbmk 1.11 321 288 38.0 41.9 3.9 10% 3.39 3.36 1.01

eon_vortex 1.14 231 204 36.4 41.0 4.5 12% 2.34 2.32 1.01

perlbmk_eon_gap 1.16 390 337 38.0 42.0 4.0 11% 4.12 3.93 1.05

vortex_bzip_twolf 1.22 684 562 36.8 40.2 3.4 9% 7.00 6.28 1.11

mcf_crafty_parser 1.24 585 470 36.7 40.1 3.3 9% 5.97 5.23 1.14

bzip_vpr 1.25 473 380 37.0 39.5 2.5 7% 4.86 4.16 1.17

parser_gcc_twolf 1.26 714 568 37.0 40.9 4.0 11% 7.34 6.46 1.14

gap_gcc 1.26 240 190 37.4 41.1 3.7 10% 2.49 2.18 1.14

mcf_perlbmk 1.26 347 275 36.7 40.0 3.3 9% 3.54 3.06 1.16

gzip_vpr 1.30 477 368 37.4 40.8 3.5 9% 4.96 4.17 1.19

gzip_vpr_gcc 1.30 610 468 37.2 40.7 3.6 10% 6.30 5.30 1.19

bzip_gzip 1.36 462 340 38.0 41.6 3.6 9% 4.88 3.93 1.24

SPEC 

Rate 

Integer

SPEC 

Integer 

Combos
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Figure 29.  SPEC2000 Integer SMT-ST Power Difference vs. ST Power 

  

 

We were interested in how much more power was consumed when running the 

workload with SMT on vs. off.  

 

Figure 29 shows the increase in power when run in SMT-enabled mode.  The power 

increase ranges from 0.5-5 watts, and is in the range expected based on our previous 

experiments on micros. 

 

The next questions to ask are whether the power increase or energy efficiency of 

these workloads is impacted by SMT speedup? 

 

Figure 30 shows the relative SMT power increase (SMT power / ST power) vs. SMT 

speedup (ST execution time / SMT execution time).  At first glance, it looks like 

SMT power is on average 7-8% higher than ST.  This makes sense because when 
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SMT is enabled, we have twice the number of key structures active (e.g. register alias 

tables), and conflicts between the threads are likely to cause additional work due (e.g. 

cache misses). 
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Figure 30.  SMT Power Increase vs. SMT Speedup for SPECint 
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SMT Energy Benefit vs. SMT Speedup
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Figure 31.  SMT Energy Benefit vs. SMT Speedup for SPECint 

  

Finally, we calculated the SMT Energy Benefit, a metric related to battery life, as 

defined in section 6.1.2.  Figure 31 shows the SMT Energy benefit of the SPEC 2000.  

As shown, there is a very strong correlation between SMT speedup and the energy 

efficiency.  This is because the SMT power increase has very little increase with SMT 

speedup. 

 

Energy efficiency is defined as a value between 0 and 1 estimating how well the SMT 

performance speedup is translated into SMT energy benefit.  To find the energy 

efficiency of SMT for the SPEC2000 workloads, we can do a linear fit to the points in 

Figure 31.  The slope is the energy efficiency, and as shown is 0.86.  As the SMT 

speedup improves, 0.86 of that speedup transfers directly to improved energy 

savings!  And 0.14 (1 – 0.86) of the SMT speedup is wasted due to inefficiencies such 

as additional cache misses, extra hardware, and other things.  SMT is extremely 

energy efficient! 
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6.4 SPEC2000 Floating Point 

Next, we ran the SPEC 2000 floating point applications.   

 

Table 10.  Performance of SPEC2000_fp_rate with and without SMT enabled on an Intel 

Pentium 4 Processor System. 

 

Base Base Base Peak Peak Peak 

Benchmarks    # Copies 
Run 
Time Rate 

# 
Copies 

Run 
Time Rate 

SMT Off:           

168.wupwise          2 83.3 44.6 2 83.2 44.6 

171.swim             2 252 28.5 2 252 28.5 

172.mgrid            2 230 18.1 2 230 18.1 

173.applu            2 241 20.2 2 241 20.2 

177.mesa             2 187 17.4 2 187 17.4 

178.galgel           2 155 43.3 2 162 41.5 

179.art              2 110 54.9 2 110 54.9 

183.equake           2 87.3 34.5 2 91.3 33 

187.facerec          2 182 24.2 2 190 23.2 

188.ammp             2 346 14.7 2 355 14.4 

189.lucas            2 185 25 2 193 24.1 

191.fma3d            2 269 18.1 2 269 18.1 

200.sixtrack         2 309 8.26 2 324 7.87 

301.apsi             2 379 15.9 2 399 15.1 

SPECfp_rate_base2000  23.3     

SPECfp_rate2000         22.8 

SMT on:           

168.wupwise          2 78 47.6 2 77.8 47.7 

171.swim             2 247 29.1 2 247 29.1 

172.mgrid            2 203 20.5 2 203 20.5 

173.applu            2 238 20.4 2 238 20.4 

177.mesa             2 179 18.1 2 179 18.1 

178.galgel           2 177 37.9 2 178 37.8 

179.art              2 146 41.2 2 146 41.2 

183.equake           2 79 38.2 2 80.4 37.5 

187.facerec          2 162 27.3 2 160 27.5 

188.ammp             2 333 15.3 2 325 15.7 

189.lucas            2 177 26.3 2 177 26.3 

191.fma3d            2 250 19.5 2 250 19.5 

200.sixtrack         2 250 10.2 2 246 10.4 

301.apsi             2 327 18.5 2 337 17.9 

SPECfp_rate_base2000  24.3     

SPECfp_rate2000         24.3 
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Table 11.  Power measurements of SPEC2000_rate_fp on an Intel Pentium 4 Processor System.  

  

 

SMT 

speedup 

(ST 

time/SMT 

time)

ST Time 

(sec)

SMT Time 

(sec)

ST Power 

(Watts)

SMT 

Power 

(Watts)

Power 

Difference

Power Diff 

%

ST Energy 

(Watt-Hrs)

SMT 

Energy 

(Watt-Hrs)

Relative 

Energy 

Benefit 

(ST 

Energy / 

SMT 

Energy)

art 0.73 107 146 36.1 35.9 -0.2 -1% 1.07 1.45 0.74

galgel 0.91 156 172 38.4 39.8 1.4 4% 1.67 1.90 0.88

applu 0.98 232 236 36.1 38.0 2.0 5% 2.32 2.50 0.93

swim 1.02 252 248 34.0 34.5 0.5 1% 2.38 2.38 1.00

mesa 1.03 190 184 36.7 40.6 3.8 10% 1.94 2.07 0.94

fma3d 1.05 257 245 35.9 39.0 3.1 9% 2.56 2.65 0.97

lucas 1.05 186 177 36.3 38.5 2.2 6% 1.87 1.89 0.99

ammp 1.09 352 324 35.5 37.3 1.7 5% 3.47 3.36 1.04

equake 1.10 88 80 36.4 38.6 2.2 6% 0.89 0.86 1.03

mgrid 1.12 229 204 37.7 40.8 3.1 8% 2.40 2.32 1.04

facerec 1.15 182 158 36.4 39.7 3.2 9% 1.84 1.74 1.06

wupwise 1.16 84 73 36.4 39.2 2.8 8% 0.85 0.79 1.07

apsi 1.17 381 327 35.7 39.4 3.7 10% 3.78 3.58 1.06

sixtrack 1.20 301 251 36.7 41.1 4.4 12% 3.07 2.86 1.07

galgel_art 0.86 263 306 37.5 38.5 1.0 3% 2.74 3.27 0.84

art_equake_facerec 1.11 378 340 36.3 39.1 2.9 8% 3.81 3.70 1.03

mgrid_applu 1.12 464 414 36.8 40.0 3.2 9% 4.74 4.60 1.03

applu_mesa_galgel 1.13 589 523 36.9 40.2 3.3 9% 6.04 5.84 1.03

swim_wupwise_mgrid 1.14 569 499 35.9 37.9 2.0 6% 5.67 5.25 1.08

wupwise_equake 1.15 172 150 36.4 39.2 2.7 8% 1.74 1.63 1.07

lucas_fma3d_ammp 1.17 790 674 35.8 38.3 2.5 7% 7.86 7.16 1.10

facerec_lucas 1.18 368 312 36.3 39.7 3.3 9% 3.71 3.44 1.08

mesa_lucas 1.19 376 317 36.5 40.4 3.9 11% 3.81 3.56 1.07

facerec_mesa 1.19 376 315 36.6 40.3 3.7 10% 3.82 3.53 1.08

swim_fma3d 1.20 510 426 35.0 37.4 2.4 7% 4.97 4.42 1.12

ammp_apsi 1.27 725 571 35.6 39.1 3.4 10% 7.17 6.20 1.16

sixtrack_mgrid_equake 1.29 629 486 36.9 41.7 4.8 13% 6.45 5.63 1.15

sixtrack_apsi_wupwise 1.30 772 596 36.2 41.3 5.1 14% 7.76 6.83 1.14

SPEC 

Rate 

Floating 

Point

SPEC 

Floating 

Point 

Combos
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Again, to ensure that the performance of our system is consistent with equivalent 

systems, we compared the SPECrate for floating point applications with published 

results.  Table 10 shows the results of our runs.  These are comparable (within 1%) 

with published results. 

 

Just as we did for the integer applications, for our power measurements we ran the 

floating point applications two different ways.  The way Specrate is run, where we 

run the same application on both threads, and in combination..  Table 11 shows the 

results. 
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Figure 32.  SMT-ST Power Difference vs. ST Power for applications in SPEC2000_fp. 

  

 

Figure 32 plots the power increase from SMT vs. ST power.  Like the integer 

applications, most points are in the 1-5 watt range.  There is one outlier where the 

SMT energy was actually better than the ST energy.  This was for the application art, 

when it was running on both threads. 
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Figure 34 plots the power increase vs. SMT speedup, and this is interesting because 

we see that there is a correlation between the power increase due to SMT vs. the SMT 

speedup.  There was no such correlation for the integer applications.  The reason for 

this in the floating point applications is because the Pentium 4 processor does not 

issue floating point uops on a speculative data cache miss. In other words floating 

point uops will wait in the scheduler until it knows that any load operations that it 

depends on are available (either L0 data cache hit or ready to be forwarded).  This is 

not the case for integer operations which are scheduled speculatively assuming a L0 

data cache hit.  If it turns out to be a cache miss, the dependent integer uops will need 

to be reissued and re-executed, wasting power.  Since we have less of that going on, 

the floating point uops see increasing SMT power with SMT speedup. 
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Figure 33.  SMT Power Increase vs. SMT Speedup for SPECfp 
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SMT Energy Benefit vs. SMT Speedup
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Figure 34.  SMT Energy Benefit vs. SMT Speedup for applications in SPEC200_fp on an Intel 

Pentium 4 Processor System. 

 

 

Figure 34 shows the SMT energy efficiency vs. SMT speedup, and again we see that 

there is a strong correlation between SMT energy efficiency and SMT speedup.   

 

SMT energy efficiency would be the slope of the line of Figure 34.  The slope for 

SPECfp is 0.73, somewhat lower than SPECint.   As SMT speedup increases, 0.73 of 

that translates directly into battery life savings, and 0.27 is “wasted”.  In this case, the 

inefficiencies include the energy spent on execution resources. 
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6.5 Multimedia Applications 

Finally we look at a number of multimedia applications.  Unlike the SPEC workloads 

where we arranged the workloads so that both logical processors were active 

simultaneously for nearly 100% of the workload, when we run individual multimedia 

applications, the parallelism varies due to sequential sections of code.  Therefore we 

looked at a number of multimedia applications and selected those that were at least 

50% multi-threaded.  The way we determined this was to start Windows Task 

Manager, click the performance tab, and look for applications where the CPU 

utilization was   75%.  When the CPU utilization shows 75%, it means that the 

application is 50% threaded because half the time one logical processor was 100% 

busy, and half the time the second logical processor was 50% busy, giving a total of 

75% overall CPU utilization. 

 

The following is a list of the applications selected for use in this study, including a 

description of the application, and the test workload description. 

 

Autodesk* 3ds Max* 9 

This is a popular animation modeling and rendering solution for film, television, 

games, and design visualization.  It contains the essential high-productivity tools 

required for creating eye-catching film and television animation, cutting-edge games, 

and distinct design visualizations.  

 

Test workload description:  The workload used in our analysis is called 

Dragon_Character_Rig.max.  The workload consists of a scene of a 

Dragon_Character_Rig.max rendered at 1920x1080.  One frame is rendered.  The 

render options set are:  Atmospherics, Effects and Displacement.  The advanced 

lighting options are also set. 
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Apple* iTunes* 7.0.2 

 iTunes is the industry leading application used to convert, save, and manage digital 

music.  iTunes allows the user to record, organize, and play songs on a PC or use the 

high quality encoder to convert music to MP3 or other formats. 

 

Test workload description:  The tested workload for iTunes 7.0.2 measures the time 

needed to convert a 634.746KB .wav file to an mp3 with 160kbps bitrate. 

 

MainConcept* H.264 Encoder v2.1 

The H.264 Encoder v2 with v2.1 codec for Microsoft* Windows* offers video 

encoding and decoding of the highest quality.  H.264/AVC (Advanced Video 

Coding), also known as MPEG-4 Part 10, is poised to be a major video standard 

because it can replace several popular formats while offering significant advantages 

over them. 

 

Test workload description:  The input file is a 24 second 1920x1080 HD (high-

definition) MPEG2 video clip with a bitrate of about 18000kbps.  The output is an 

H.264 format video clip encoded at 6000kbps. 

 

POV-Ray* 3.7 

POV-Ray, aka the Persistence of Vision Ray-Tracer*, is a free high-quality ray tracer 

tool for creating stunning three-dimensional graphics.  Many scenes are included with 

POV-Ray, which can be modified so you do not have to start from scratch.  In 

addition to pre-defined scenes, a large library of pre-defined shapes and materials is 

provided. 

 

Test workload description:  The POV-Ray 3.7 includes a built-in benchmark test 

developed by the creators of POV-Ray for evaluating system performance. 
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Apple* Quicktime* Pro 7.1.3 

Quicktime Pro allows users to create video using the H.264 video codec, record audio 

for producing podcasts, create movies for iPod, convert media to more than a dozen 

formats, and playback a wide variety of video formats. 

 

Test workload description:  The input file is a 2 minute 1 second 416MB DV file with 

720x480 resolution and 29.97 fps (frames per second).  The output movie file is 

created using the Quicktime Broadband-High profile with H.264 compression, 

672kbps video bitrate, multi-pass encoding, 480x360 resolution, AAC audio, and a 

128kbps audio bitrate. 

 

Microsoft* Windows Media* Encoder 9.0 

Windows Media Encoder 9.0 with Advanced Profile is a powerful tool for content 

producers. It features high-quality multi-channel sound, high-definition video quality, 

support for mixed-mode voice and music content, advanced capture abilities, power 

server integration for live broadcasts, and optimized compression for a wide range of 

delivery scenarios including multiple bit rate streaming and delivery on CD or DVD. 

 

Test workload description:  The workload is the creation of a streaming video file for 

Windows Media Servers from a raw DV video file.  Windows Media Encoder 9 

encodes a 416MB DV file with 720x480 resolution to a streaming WMV9 file.  The 

input DV file is a 2 minutes and 1 second video of kite-surfing.  The encode rate is 

282kbps, 320x240 resolution, and 29.97fps (frames per second). 

 

XMPEG* 5.03 with DivX* 6.4 

XMPEG is a multipurpose video encoding application which takes MPEG-1 and 

MPEG-2 streams, or DVD-IFO video format, and converts them to AVI or bbMPEG 

Encoder format, changing video parameters, frame rate, and audio frequency.  One of 

the most popular uses of XMPEG is to convert unencrypted DVD VOB files to either 

MPEG-1 (compatible with most Panasonic/LSX Encoders) or to an AVI file 

(compatible with most codecs). 
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DivX* is a format for digital video, much like MP3 is a format for digital music.  The 

DivX codec is based on the MPEG-4 compression standard and can reduce an 

MPEG-2 video (same format used for DVD) to ten percent of its original size.  The 

DivX technology provides excellent compression and the resulting visual quality is 

virtually indistinguishable from a DVD. 

 

Test workload description:  The input file is a 24 second 1920x1080 HD mpeg2 video 

clip with a bitrate of about 18000kbps.  The output is a HD (high-definition) DivX 

format video clip encoded at 7800kbps. 

 

Table 12 shows the results of the SMP Power tests that we ran.  The applications 

ranged in thread parallelism from 56% to 100%.  Thread parallelism is the % of time 

when both logical processors are active.  

 

Figure 35, Figure 36, and Figure 37 show the same data in graph form.  The data 

shows the same trends as SPECint and SPECfp.  In SMT-mode, the power is 2.5-4.5 

watts higher than in ST-mode.  Figure 37 is the important figure.  It shows the SMT 

energy benefit.  We see that the slope of the line is about 0.79 for multimedia 

applications.  This means that as we get increasingly better SMT speedup, 0.79 of that 

is also transferred to energy savings, and 0.21 is wasted on the additional energy 

required for SMT execution.  Again, the energy efficiency is compelling. 



 

 

1
0
6
 

 

 

 

 

 

 

 

 

 

Table 12.  Multimedia Applications SMT power measurements. 
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SMT - ST Power Difference vs. ST Power
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Figure 35.  Multimedia applications SMT-ST Power Difference vs. ST Power 
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Figure 36.  SMT Power Increase vs. SMT Speedup for Multimedia Applications 
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SMT Energy Benefit vs. SMT Speedup

Multimedia Applications
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Figure 37.  SMT Energy Benefit vs. SMT Speedup for multimedia applications. 

 

 

6.6 Analytic Model of SMT Energy Benefit 

Thus far in this chapter, we have achieved a good understanding of the SMT energy 

benefit of the Intel Pentium 4 Processor on a number of workloads and 

microbenchmarks.  The next step would be to offer a model to predict the expected 

SMT energy benefit of other applications. 

 

To do this, let us take all of the results of the previous sections and plot all of the 

points on the same graph.  Figure 38 and Figure 39 plot all the points without and 

with the microbenchmarks respectively.  Note that the slopes of the linear fit in the 

two figures are 0.79 and 0.86 which are not radically different.  This gives us a 

reassuring feeling that we should be able to reasonably predict SMT energy benefit of 

other applications.  
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SMT Energy Benefit vs. SMT Speedup
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Figure 38.  SMT energy benefit for all workloads measured, except the micros. 
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Figure 39.  SMT energy benefit for all workloads measured, including micros. 
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Let us discuss briefly the accuracy of the linear regression to the data set (how close 

the data points are to the best-fit line).  The R
2
 value is a measure of the goodness-of-

fit of the linear regression.  The value R
2
 is a fraction between 0.0 and 1.0, and has no 

units. An R
2
 value of 0.0 means that knowing X does not help you predict Y; there is 

no linear relationship between X and Y.  When R
2
 equals 1.0, all points lie exactly on 

a straight line with no scatter. Knowing X lets you predict Y perfectly.  The closer the 

R
2
 value is to 1, the more precise the linear regression, or best-fit line is. 

 

Figure 38 and Figure 39 show R
2 

values of 0.96 and 0.98, respectively, meaning that 

the linear regression line is a very good fit.  It is interesting that the micros and the 

real applications all fall on a fairly nice linear line!  This means that as we get better 

SMT speedup, we get better battery life.  SMT on Pentium 4 is indeed an extremely 

power-efficient feature. 

 

 

Figure 40.  SMT Power Ratio vs. SMT Speedup 
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Now let’s take a more detailed look, and plot the SMT Power Ratio, which is the 

SMT Power / ST Power, as shown in Figure 40.  

 

Conceptually, we would expect the following equation to hold: 

    SMT Power Ratio = 1+ SMT Fixed Overhead + (SMT Speedup-1) * % Dynamic 

 

Where the SMT Fixed Overhead is defined by how much additional power is needed 

simply to have an SMT-enabled part, e.g., the area and power overhead for tracking a 

full set of logical registers.  The % Dynamic is defined as the additional dynamic 

execution overhead due to executing in SMT mode because we are executing more 

instructions through the pipeline and increasing throughput.  

 

The % Dynamic is approximately due to offsetting factors such as: 

 We have effectively smaller caches and TLBs due to two software threads 

simultaneously sharing the resources, resulting in additional cache misses, and 

other activity. 

 Our speculative execution is only half as deep, and therefore we have fewer 

instructions on the mispredicted path taking (and wasting) execution 

resources.  

 

Doing a curve fit of the data in Figure 40, and solving for SMT Fixed Overhead and 

% Dynamic gives us: 

 SMT Fixed Overhead = 6% 

 % Dynamic = 15% 

 

The key question here is what is the significance of these numbers?  An extremely 

efficient base microarchitecture would have a high % Dynamic power component.  

15% is quite low.  This means that the Pentium 4 processor actually is not a power-

efficient base microarchitecture.  Some of the reasons include data speculation and 
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replay, the special ½ cycle ALUs which use power-hungry circuits to attain incredible 

speeds, and the double-speed clocking at execution and the first-level cache. 

 

We believe that with the emphasis on power-efficiency, future microarchitectures will 

be implementing more power-efficient circuits, more clock gating, more power-

efficient microarchitecture features.  However, at the same time process technology is 

reported to have more leakage in the future.  Therefore there is a wide range of 

possible SMT Energy Benefit vs. SMT Speedup possibilities, depending on the % 

Dynamic power of the processors of the future. 

 

Let us now project the SMT Energy Benefit for a variety of future processor 

scenarios.  The SMT Energy Benefit can be written as follows: 

 

SMT Energy Benefit = SMT Speedup / (1+ SMT_fixed_overhead + ((SMT_Speedup 

– 1) * % Dynamic)) 

 

Plotting this for various values of % Dynamic, we get the results in Figure 41.  As the 

% Dynamic increases, as would be expected for future power-efficient 

microarchitectures, we would expect that the SMT Energy Benefit to be reduced.  

SMT is most power-efficient on high-powered processors by amortizing that high 

power fixed cost over more performance.  But on more efficient processors there is 

less overhead to amortize and power becomes more and more proportional to 

performance gain. 
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Figure 41.  Projections of SMT Energy Benefit of Future Processors, for a variety of assumptions 

for % Dynamic power. 

 

 

6.7 Related Work 

There is a significant body of work comparing SMT and CMP energy efficiency, and 

there is also some work comparing SMT with single-thread superscalar.  While 

clearly CMP gives higher overall performance and throughput, SMT usually has 

better power efficiency except when applications are compute-bound, or have bad 

cache thrashing behavior. 

 

Li et al. [91] used a power simulator, PowerTimer, to analyze the power and energy 

efficiency of SMT.  They used ten SPEC2000 integer benchmarks to make 16 pairs of 

workloads.  Ten of the workloads were the same single thread benchmark paired with 

itself.  Then they selected six other pairings (gzip+perlbmk, gcc+gap, twolf+mcf, 

parser+bzip2, bzip2+twolf, gcc+mcf), and used the average performance of these 16 
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pairs.  They concluded that on a POWER4-like microarchitecture, designers can 

expect SMT performance gains of nearly 20% with an increase in power of 24% 

resulting in a significant improvement in energy efficiency as measured by the 

Energy-Delay
2
 metric.  Their simulations show an improvement in ED2 of nearly 

30%, assuming an energy leakage of 10%.  The SMT energy efficiency gets even 

better for higher leakage because as leakage power is fixed and SMT’s increase in 

resource utilization and therefore active power becomes a smaller proportion of the 

total power.  

 

Seng and Tullsen [92] used SMTSIM, which models an out-of-order SMT 

microarchitecture, and paired it with an high-level power model [93] based on silicon 

area, transistor density, and activity level.  As the authors note, this model is only a 

rough estimate power of the processor.  It is primarily intended to provide intuition 

for the power impact of a variety of optimizations to a fixed-resource SMT processor. 

 

Cong et al. [94] use a power estimation tool similar to the wattch [95] approach to 

show how clustered microarchitectures might impact the SMT vs. CMP power and 

performance decision.  They show that clustering can reduce the difference in energy 

consumption between SMT and CMP by reducing the number of buses and ports.  

CMP actually comes out ahead when leakage current is low, but SMT in a clustered 

microarchitecture is better when leakage current is high.  For these studies they used 

6 integer and 6 floating point applications from the SPEC2000 suite to create 12 pairs 

of traces.  

 

Li and Martinez [96] look at the power and performance of a CMP running parallel 

applications from scientific application domains.  For their analysis they use the 

wattch [95] power analytical model and a performance simulator to model an Alpha 

21264-like processor in a CMP configuration.  They show that while a CMP can give 

good power performance scalability, there is a complex dependency on a variety of 

factors including process technology, the application’s parallel efficiency, the power 
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budget, the performance requirements, the chip’s voltage/frequency scaling 

properties, and the number of available processor cores. 

 

Sasanka et al. [97] looked at comparing SMT and CMP performance for multimedia 

workloads.  They also used the wattch [95] simulator and a microarchitecture 

performance simulator.  In contrast to other studies, however, they concluded that 

CMP was more energy efficient than SMT for multimedia workloads.  While no other 

studies focused on multimedia workloads, there are at least a few issues with their 

studies.  First, they compared the SMT and CMP configuration at the same 

performance.  Since their CMP configuration had much higher area because each 

core had double the area and therefore double the resources, to get the CMP 

configuration to have low enough performance they had to drastically scale back the 

frequency which dramatically decreases power.  Other studies compared CMP and 

SMT for the same work, and some for the same die size, which I believe is a more 

reasonable comparison.  Second, they assumed leakage of only 2%, which is far too 

low for any modern high-performance processor silicon technology.  Third, they 

assumed that 90% of the circuitry is not only clock gated, but also that the clock 

gating turned off power to those circuits such that they used absolutely no power 

when not active.  With these assumptions it is understandable how they came to their 

conclusions, but the assumptions are unreasonable.  While multimedia workloads 

may still prefer CMP over SMT, I don’t believe the results would be so dramatic, and 

quite possibly several or more of the workloads would favor SMT. 

 

Y. Li et al. [98] also studied the performance, energy, and thermal properties of SMT 

and CMP in the context of a fixed die size.  They show that CMP offer significantly 

more throughput than SMT.  As far as energy efficiency CMP could also be superior 

for CPU-bound benchmarks, while SMT was better on a variety of workloads but 

especially so on some memory-bound benchmarks due to larger L2 cache size.  SMT 

will offer better power efficiency as leakage increases in future process technologies.  

Their studies were done using a power model called PowerTimer [99] together with a 
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microarchitecture performance simulator, and used 15 SPEC2000 benchmarks, 

pairing each with itself, and forming 18 other pairs. 

 

Kaxiras et al. [100] studies the problem of energy efficiency of SMT and CMP for a 

VLIW embedded processor for a mobile phone.  They show that for mobile 

workloads using VLIW cores, SMT is more efficient.  They used their own 

simulators and analytic power models. 

 

Isci et al. [101] measured power on an Intel Pentium™ 4 Processor and developed a 

model to correlate performance counter and power measurements.  However, even 

though SMT was available on the Pentium 4 processor, they did not enable it.  

Therefore all of their measurements and analysis were done on a single-threaded 

CPU.  Due to the complexity of the Pentium 4 Processor, the models that Isci et. al. 

developed were often off by 10-20% on average in either direction.  Sometimes the 

estimated power was too high and sometimes too low.  We speculate that this 

inaccuracy led them to use their model to identify power phases rather than to 

estimate power. 

 

Contreras et al. followed the Isci methodology and did something similar for the Intel 

Xscale® processor [102, 103].  They measured the power of the processor and used 

performance counters to develop a power model. Because the Intel Xscale® 

processor has a much simpler microarchitecture, it lends itself much better to 

modeling with performance counter values.  They were able to get the average 

estimation error down to 4% on average across tested benchmarks.  But again, this 

work was for a single-threaded CPU. 

 

Bellosa [104] proposed using performance counters to analyze software thread power 

requirements of an energy-aware OS scheduler.  He showed that the use of 

performance events can give a good correlation to energy use.  The processor used 

was the Intel Pentium II processor, a single-thread CPU. 
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Li et al. [105] estimate run-time power of the operating system using simple IPC 

counts.  They did not run on real systems, but used simulators to model a simple in-

order MIPS CPU and showed that for such a CPU a single metric, instructions per 

cycle (IPC), gives a fairly accurate estimate of CPU power of the operating system’s 

software threads. 

 

Joseph et al. [106],  Kadayif et al. [107], and Weissel et al. [108] used performance 

events to estimate the contribution of different microarchitecture features to the total 

processor power, again on single-thread CPUs.  Joseph’s studies were done using a 

simulation of an Alpha 21264.  Kadayif’s studies were done by using cache 

performance counters on an UltraSPARC CPU to measure cache hit and misses, reads 

and writes.  Then used generic analytic equations [109] that assume some amount of 

energy for every cache or memory access.  Since these equations themselves were not 

derived from real silicon nor were they validated against real silicon, the accuracy is 

suspect.  Weissel used the Intel XScale 80200 and a system enhanced to be able to 

measure the power consumed by the CPU.  Though he did not come up with 

equations to estimate the power of the CPU, he did find that four event counter values 

seem to correlate to increased power.  These were the instructions executed per cycle, 

branches executed per cycle, data cache references per cycle, and memory requests 

per cycle. 

 

Bircher et al. [110] [111], Contreras et al. [102], and Lee et al. [112] used runtime 

information as input into detailed analytic models to estimate power consumption.  

Again, these models were for single-threaded processors. 

 

Gurun et al. [113] explored an adaptive feedback-driven power estimation model.  

Such feedback-driven models will be increasingly useful in large systems and 

database warehouses, where power dissipation and thermal limitation are often the 

limiting factor on the capacity of the system.[114] [115]. 
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There is a variety of developing simulation frameworks that are commonly used in 

literature to simulate or estimate the power of a variety of processors and systems.  

Again, none of these were for a processor with simultaneous multi-threading.  Some 

of the commonly used simulators include Wattch [95] developed by Brooks, Tiwarri, 

and Martonosi at Princeton University.  Wattch is a processor simulator that consists 

of a suite of parameterizable power models.  The user can specify the building blocks 

such as array structures, fully associative content-addressable memory, logic and 

interconnect, and the clock tree.  Based on usage counts, the simulator estimates 

power consumption.  SimplePower [116] is another simulator that does usage counts 

and estimates power consumption.  SimplePower was developed by Vijaykrishnan et 

al. at Pennsylvania State University; it uses a combination of analytic models and 

switch capacitance energy tables to model each part of the microarchitecture.  

PowerTimer [99], developed by Brooks et al. at IBM, uses a parameterized set of 

energy functions that can be used in conjunction with any given cycle-accurate 

microarchitectural simulator.  The energy models are for typical structures such as 

latches, buffers, multiplexers, register files, cache arrays, etc.   SoftWatt [117], 

developed by Gurumurthi et al., uses analytical energy models for the entire system 

including the CPU, memory hierarchy, and disk subsystem. 

 

6.8 Summary and Future Work 

In this chapter, we have shown that SMT energy efficiency is very good when SMT 

speedup is good.  We have also concluded that an analytic model to estimate SMT 

energy benefit is a very reasonable thing to do, and that a minimum SMT speedup of 

1.1 would most likely be needed for any SMT microarchitecture before a SMT energy 

benefit would be observed.  However, after that we can assume that SMT energy 

benefit will improve linearly with additional SMT speedup.  In the Intel Pentium 4 

Processor case, nearly 0.8 of the SMT speedup goes towards SMT energy benefit, 

while 0.2 of that is expended on extra energy resources needed due to the additional 

resource utilization.  However, future processors which are more efficient will have a 

less dramatic impact. 
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The SMT implementation in the Intel Pentium 4 Processor was the first, and was 

done in a low cost way with only minimum hardware.  In future processors, such as 

Intel’s recently disclosed Nehalem processor, the expected SMT speedup will be 

much higher and it will be interesting where the SMT Energy Benefits will fall. 

 

6.8.1 Future work 

There is a lot of further work that can be done in this area.  Repeating these 

measurements on the Intel Nehalem processor, when available, would be extremely 

insightful because the Nehalem processor has done a lot to improve SMT 

performance and power efficiency. 

 

Also testing on other desktop applications would be very insightful.  The multimedia 

applications and the SPEC benchmarks have been very carefully optimized for the 

Pentium 4 Processor, so there is not as much “wasted” resources as in more typical 

applications.  The performance and energy benefit would be more compelling on 

typical less-optimized applications. 

 

More study needs to be done on pairing two or more applications; such scenarios can 

represent the multi-tasking environment of typical computer users.  For example, 

virus scan, ripping a DVD, and video decode or computer game. 
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  CHAPTER 7  

CONCLUSIONS 

 

This thesis is concerned with hardware approaches to maximizing the number of 

independent instructions delivered to the execution core and thereby maximizing the 

processing efficiency for a given amount of compute bandwidth.  The compute 

bandwidth is determined by the number of parallel execution units or pipelining of 

those units in the processor.  Keeping those computing elements busy is a key to 

maximizing processing efficiency and thereby maximizing power efficiency. 

 

While there are some applications that have an enormous amount of independent 

instructions that can be issued in parallel without inefficiencies due to branch 

behavior, cache behavior, or instruction dependencies, these types of applications are 

not the common cases. 

 

This thesis presents research on approaches to improving the number of independent 

instructions that are provided to the execution core.  This work has two major areas of 

focus to provide a large quantity of readily executable instructions to the execution 

core.  The first approach addresses the problem of very small basic blocks due to 

branchy code.  Our approach is to predict multiple branches simultaneously and fetch 

non-contiguous basic blocks simultaneously to send to the backend. 

 

If we can correctly predict two to three branch paths every cycle and if the average 

basic block size is five instructions, then the average fetch size is 10 to 15 

instructions.  Many non-numeric applications today have an average basic block size 
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of 5 instructions, and floating point applications tend to be much larger.  The ability 

to fetch multiple basic blocks per cycle coupled with compiler technology to increase 

basic block size can result in significant performance gains.  This chapter shows that 

just providing the ability to fetch multiple instructions without specific compiler 

optimizations already increases the useful instruction fetch capacity of a machine by 

40% and 63% when 2 and 3 basic blocks can be fetched each cycle, respectively, for 

integer benchmarks.  For floating point benchmarks, the improvement is 27% and 

59%.  

 

The second approach to increasing the number of independent instructions to the 

execution core is to introduce a separate independent software thread.  Specifically, 

we discuss an approach called simultaneous multithreading.  We present the Intel 

Pentium 4 Processor, and study some of the microarchitecture choices and tradeoffs 

to make simultaneous multithreading as efficient as possible. 

 

Finally, we look at the power efficiency of simultaneous multithreading.   More 

independent instructions in the processor mean better processor resource utilization.  

Improvements in processor resource utilization also benefit energy efficiency.  We 

found that indeed the energy efficiency is improved.  We showed that although SMT 

power is typically ~5-15% higher than ST power, the energy efficiency can be quite 

substantial when the SMT speedup is > 1.1.  A new metric, the SMT Energy Benefit, 

was defined and used to show that for a given increment of SMT speedup, 

approximately 80% of that directly lowers energy usage, while 20% is spent to obtain 

that speedup on the Intel Pentium 4 Processor.  We then generalized the results and 

built a model for what future processors’ SMT Energy Benefit might be. We 

concluded that SMT will continue to be an energy-efficient feature, however as 

processors get more energy-efficient the relative SMT Energy Benefit will be 

reduced. 
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7.1 Future Directions 

 

There is a lot more work that needs to be done to understand and characterize the 

performance and energy benefits of SMT.  For real system measurements, Intel’s 

Nehalem processor will soon be coming out, and it would be fascinating to repeat 

many of the studies on Nehalem.  Since Nehalem’s microarchitecture will be quite 

different from the Pentium 4 Processor, it will provide a good opportunity to compare 

microarchitecture features on a wide variety of real applications as well as a wide 

variety of microbenchmarks. 

 

Power models should be validated with real system measurements to see how close 

they are.  Good models using performance monitoring events should be developed to 

open up power analysis to a wide variety of applications.  These models can also 

allow operating systems and other applications to understand the power 

characteristics of their applications and possibly dynamically adjust or schedule 

threads for optimum power performance distribution. 

 

Even for the Pentium 4 Processor, there is a lot more work that can be done to 

develop more microbenchmarks in order to isolate and understand the power 

characteristics of the different microarchitecture features.
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