

MICROARCHITECTURE CHOICES AND TRADEOFFS

FOR MAXIMIZING PROCESSING EFFICIENCY

by

Deborah T. Marr

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in The University of Michigan

2008

Doctoral Committee:

 Professor Trevor N. Mudge, Chair

 Professor Farnam Jahanian

 Professor William R. Martin

 Associate Professor Dennis M. Sylvester

© Copyright by Deborah T. Marr, 2008

All Rights Reserved

 ii

DEDICATION

For my husband

 Jim Brayton

and our lovely children

Matthew, Mason, Mariella,

and one more to arrive this winter.

 iii

ACKNOWLEDGEMENTS

I am enormously grateful to the many brilliant, caring, and truly remarkable people who

have encouraged and supported me in my pursuit of a Ph.D. Without their help, I would

never have finished this dissertation.

I am grateful to my advisor, Trevor Mudge, for supporting and guiding me through the

process and taking so much time for me out of his busy schedule. He supported and even

encouraged me in my unusual approach and assured me that it could be done. I followed

his guidance and came out the other end of the tunnel!

I would also like to thank my committee: Farnam Jahanian, Dennis Sylvester, and Bill

Martin, who took the time to read and discuss my work.

A couple of people who I would like to call out especially are my mother-in-law and

father-in-law, the esteemed Professor Robert Brayton of UC Berkeley and his kind-

hearted wife Ruth Brayton who took such interest in the story about why I didn’t finish

my degree in my first attempt. Professor Brayton discussed my case with his friend and

colleague, Professor Ralph Otten, of Eindhoven University. Professor Otten sent me

information and offered to take me on as his student! I was humbled by his kind offer

and seriously considered following through at Eindhoven, though ultimately decided to

continue my degree at the University of Michigan where I had left off. I am grateful for

all of their thoughtfulness and encouragement. This degree wouldn’t have happened

without them.

My colleagues at Intel have been so good to me. How can I ever thank all of them? I am

honored to count these remarkable people as both co-workers and friends. Intel

supported me throughout the process of this Ph.D. How I am worthy of this, I will never

know. I will start with Joe Schutz. When I mentioned that someday I would like to

 iv

finish my degree, Joe jumped on the suggestion and said that he would fully support me

in doing just that in CTG (the research group at Intel)! I was truly astonished, and even

more so when Steve Pawlowski said why go to CTG when I could stay in DEG (Digital

Enterprise Group) and do the same? John Shen took an interest in what I was doing, and

introduced me to Professor Trevor Mudge. I shall always be grateful to John for his time

and his advice on how to get started. Such support has touched me and I am truly

grateful to all of them. Intel has indeed been very good to me.

My good friends and colleagues in CTG’s microprocessor research group then adopted

me into their fold and treated me as one of their own. Konrad Lai, Haitham Akkary, Ravi

Rajwar, Srikanth Srinivasan, and Chris Wilkerson were a fun team who made me come to

lunch with them every day and made sure I participated in their group discussions.

My long-time colleagues in the Oregon CPU Architecture team are like family. We have

worked and persevered through so many ground-breaking projects – the P6, the Pentium

4, Nehalem, and all their proliferations, and now the 2012/2013 “Tock” project. A

special thank-you goes to Frank Binns, Kris Konigsfeld, Atiq Bajwa, Glenn Hinton, John

Holm, Tom Huff, Mike Upton, and many others for encouraging me and allowing me to

work on my little side project while they took the brunt of the hard work on the Nehalem

project. They covered for me and showed remarkable restraint in not asking me to jump

in to help with many fire-fights.

With the completion of my degree, my colleagues welcomed me back with open arms

and asked me to lead the 2012/2013 Core Tock as lead architect! I was honored to

accept, and I thank them for their confidence in placing such an important responsibility

on my shoulders, in spite of my long “absence”. As I came back into the fold, I was

reminded again of the amazing the talents, enthusiasm, and spirit in this team! Together

we will make the next-generation CPU core something to behold.

I’d like to thank Jim Hunt for sharing his power measurement setup with me and showing

me how it worked and answering all of my many questions! He was patient and generous

 v

with his time and expertise. Thanks also go to Paul Zagacki who answered my questions

about SPEC, attaching network drives, and Ryan who answered my questions about how

to get the system booted with the latest drivers, cards, CPUs, etc.

I would like to give a very special “thank you” to my parents who I love dearly. My

mom, Alice Ho, has always been there for me. She comes running at the drop of the hat!

I don’t know how I could have made it through life’s challenges without her hugs, love,

support, and sheer hard work! She is the best mother and grandmother in the world, and

a great cook to boot! She has an adventurous spirit, often surprising us. She raised me,

my brother, and my sister to be caring, responsible citizens of the world. Thanks Mom

for all that you do! My dad, George Marr, was my idol and mentor growing up. My

career and various academic achievements were inspired by him. I fondly remember

hours of discussions about the meaning of life. He is a philosopher, an explorer

adventurer, an achiever, and very generous to all around him. He sure enjoys a good

party, too. Thanks Dad, for everything!

I have a wonderful family network that have encouraged, supported, and celebrated with

me through all of life’s ups and downs: My dear brother and sister, David and Dianah

Marr; my half-sister Jennifer Marr; my step siblings James and Ann Liu; my brothers and

sisters by marriage, May Marr, Matt Mow, Jane and Dan Burchard, and Mike Brayton.

And I have some wonderful nephews and nieces who I am so proud of: Ryan and Ethan

Marr, Eric and Evan Mow, Tommy and Lia Burchard. Thank you all for being there for

me, I love you all!

Finally, I would like to thank my dear husband, Jim Brayton, who works so hard to

support our family and is funny, caring, and ever-patient at the same time! Jim and I are

truly a team; he helps me find a way through when I’m certain that I’ve taken on too

much, he is the rock that is the foundation of my dreams, he celebrates my successes

more than I do. A more perfect life partner cannot be had. Thank you Jim, I love you!

We are the proud parents of some great kids. I just can’t get over how we were blessed

with such treasures: Matthew, Mason, and Mariella cheer me up and melt my heart just

 vi

by showing their sweet little faces, their unique personalities, and their calls of

“Mommy!” We are expecting another bundle of joy in February 2009, an event we look

forward to with great anticipation.

 vii

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

LIST OF ABREVIATIONS ... xii

ABSTRACT ... xiv

CHAPTER 1 INTRODUCTION ...1

1.1 Contributions..5

1.2 Organization ...6

CHAPTER 2 INCREASING INSTRUCTION FETCH RATE VIA

MULTIPLE BRANCH PREDICTION ...7

2.1 Branch Prediction Previous Work ...9

2.1.1 Two-level Adaptive Branch Predictor ..9

2.1.2 Instruction Supply ...12

2.2 Fetching Multiple Basic Blocks Each Cycle ...13

2.2.1 The Multiple Branch Two-Level Adaptive Branch Predictor14

2.2.2 The Branch Address Cache (BAC) Design ..21

2.2.3 The Instruction Cache ...23

2.3 Simulation Methodology ...25

2.3.1 Simulation Environment ...25

2.3.2 Performance Metric ..26

2.4 Simulation Results ...27

2.4.1 Effect on Prediction Accuracy and IPC_f of History Register Length27

2.4.2 Tradeoff Between the Number of Pattern History Tables and History

Register Length ...28

2.4.3 Number of Branch Predictions per Cycle ...30

2.4.4 Branch Prediction Efficiency ..33

2.4.5 Instruction Cache Configuration ...35

2.4.6 Effect of Branch Misprediction Penalty ...37

2.4.7 Effect of Instruction Cache Miss Penalty ...38

2.5 Related Work ...39

2.6 Conclusion ...41

CHAPTER 3 SIMULTANEOUS MULTITHREADING ...43

3.1 Motivation ..43

3.2 Terms ...45

3.3 Background ..46

3.3.1 Simultaneous Multithreading ..46

 viii

3.3.2 Interleaved Multithreading..47

3.3.3 Switch-on-Event Multithreading ..47

3.4 Performance of SMT vs. SOEMT ...48

CHAPTER 4 SIMULTANEOUS MULTITHREADING

IMPLEMENTATION ..53

4.1 Intel Pentium 4 and Xeon Processor Family SMT Microarchitecture55

4.1.1 Front End ..56

4.1.2 Out-of-order Execution Engine ...58

4.1.3 Memory Subsystem ..60

4.1.4 Single-task and Multi-task Modes ..61

4.2 IBM Power5 ...62

4.2.1 Front-end ...63

4.2.2 Out-of-order Execution Engine ...64

4.2.3 Memory Subsystem ..64

4.2.4 Single-task and Multi-task Modes ..65

4.2.5 SMT Performance Enhancing Features ..65

4.3 Alpha EV8 ...66

4.3.1 Front-end ...67

4.3.2 Out-of-order Execution Engine ...68

4.3.3 Memory Subsystem ..68

4.4 Clearwater Networks CNP810SP Processor ..68

4.4.1 Front-end ...69

4.4.2 Out-of-order Execution Engine ...69

CHAPTER 5 SIMULTANEOUS MULTITHREADING

MICROARCHITECTURE CHOICES AND TRADEOFFS70

5.1 Partition ..70

5.2 Threshold ...74

5.3 Full sharing ..75

5.4 Conclusions ..77

CHAPTER 6 POWER AND ENERGY ANALYSIS OF SIMULTANEOUS

MULTI-THREADING ..78

6.1 Methodology ..79

6.1.1 Motherboard modifications to measure CPU power81

6.1.2 SMT Energy Benefit Metric ...83

6.2 Micros Study Results ...85

6.3 SPEC 2000 Integer ...91

6.4 SPEC2000 Floating Point ..97

6.5 Multimedia Applications ...102

6.6 Analytic Model of SMT Energy Benefit ...108

6.7 Related Work ...113

6.8 Summary and Future Work ..118

6.8.1 Future work ...119

CHAPTER 7 CONCLUSIONS..120

7.1 Future Directions ...122

BIBLIOGRAPHY ..123

 ix

LIST OF FIGURES

Figure 1. Example of 4-bit Global Two-level Adaptive Branch Predictor making a

branch prediction. In this example, since the branch history register (BHR) is 4 bits, the

pattern history table (PHT) must have 2
4
 = 16 entries. ... 10

Figure 2. Example of a 4-bit Global Two-level Adaptive Branch Predictor updating the

branch history register (BHR) and pattern history table (PHT). 11

Figure 3. Identification of the primary and secondary branches, and the primary and

secondary basic blocks for a two-branch-per-cycle predictor. ... 15

Figure 4. Identification of the tertiary branches and tertiary basic blocks for a three-

branch-per-cycle predictor. ... 16

Figure 5. Algorithm to make 2 branch predictions from a single branch history register.

... 17

Figure 6. Algorithm to make 3 branch predictions from a single branch history register.

... 18

Figure 7. Variation of the size of the global branch history register. 28

Figure 8. Variation of the number of the PHTs with the hardware cost held constant, for

integer benchmarks. .. 29

Figure 9. Variation of the number of the PHTs with the hardware cost held constant, for

floating point benchmarks... 30

Figure 10. Instructions per cycle when 1, 2, and 3 branches are predicted each cycle. .. 31

Figure 11. Instructions per fetch when 1, 2, and 3 branches are predicted each cycle. ... 32

Figure 12. Machine performance of various instruction cache configurations on gcc. ... 36

Figure 13. Machine performance of various instruction cache configurations on fpppp. 37

Figure 14. Effect of branch misprediction penalty on machine performance. 38

Figure 15. Effect of instruction cache miss penalty on machine performance. 39

Figure 16. Simultaneous Multithreading vs. Switch-on-Event Multithreading

performance comparison on different application classes. ... 51

Figure 17. The Intel Pentium 4 processor and the visible processor resources duplicated

or added to support SMT. There are also scattered miscellaneous pointers and control

logic that were too small to highlight in this figure. The APIC is the advanced

programmable interrupt controller. ... 54

Figure 18. Intel Pentium 4 Processor Pipeline. APIC is the advanced programmable

interrupt controller. TC is the trace cache. MS-ROM is the micro-sequencer read-only-

memory which stores and sequences microcode. ... 55

Figure 19. Details of the Front-end Pipeline for (a) Trace Cache Hit and (b) Trace Cache

Miss. .. 56

 x

Figure 20. Details of the Out of order Execution Engine Pipeline. 59

Figure 21. Comparison of a shared and a partitioned queue. The light-shaded micro-ops

belong to Thread 0, and the dark-shaded micro-ops belong to Thread 1. The numbers in

the boxes are the micro-op ID which are assigned sequentially to each thread’s micro-

ops. Thread 0 has a downstream stall, such as a data cache miss. In this situation, the

queues will not send any slower micro-ops to the next pipeline stage. The figure shows

how the queues will progress through cycles 0 (a), 1 (b), 2 (c), 3 (d), and 4 (e), where the

shared queue lets the slower thread block the progress of the faster (light) thread. 72

Figure 22. Snapshot of scheduler occupancy on a transaction processing workload over a

short period of time. Each data point is the instantaneous scheduler occupancy for its

respective logical processor, measured by the number of entries occupied by each thread.

... 75

Figure 23. Cache hit rate and overall performance impact for a fully shared cache

normalized against values for a partitioned cache. On average, the shared cache had a

40-percent better cache hit rate and 12-percent better performance. Notice that no single

application workload lost performance because of the shared cache. 76

Figure 24. Three-phase voltage regulator on the Lakeport/ICH7 motherboard. 81

Figure 25. Voltage Regulator modifications to measure power at the CPU core. 82

Figure 26. Throughput Micros and Latency Micro measured SMT speedups on an Intel

Pentium 4 Processor System. .. 88

Figure 27. Throughput Micros and Latency Micros measured SMT Energy benefit on an

Intel Pentium 4 Processor System. SMT Energy Benefit is extremely compelling for the

latency micros. .. 89

Figure 28. SMT Energy Benefit vs. SMT Speedup shows a slope 90

Figure 29. SPEC2000 Integer SMT-ST Power Difference vs. ST Power 94

Figure 30. SMT Power Increase vs. SMT Speedup for SPECint 95

Figure 31. SMT Energy Benefit vs. SMT Speedup for SPECint..................................... 96

Figure 32. SMT-ST Power Difference vs. ST Power for applications in SPEC2000_fp. 99

Figure 33. SMT Power Increase vs. SMT Speedup for SPECfp 100

Figure 34. SMT Energy Benefit vs. SMT Speedup for applications in SPEC200_fp on an

Intel Pentium 4 Processor System... 101

Figure 35. Multimedia applications SMT-ST Power Difference vs. ST Power 107

Figure 36. SMT Power Increase vs. SMT Speedup for Multimedia Applications 107

Figure 37. SMT Energy Benefit vs. SMT Speedup for multimedia applications. 108

Figure 38. SMT energy benefit for all workloads measured, except the micros. 109

Figure 39. SMT energy benefit for all workloads measured, including micros. 109

Figure 40. SMT Power Ratio vs. SMT Speedup ... 110

Figure 41. Projections of SMT Energy Benefit of Future Processors, for a variety of

assumptions for % Dynamic power. ... 113

 xi

LIST OF TABLES

Table 1. Benchmark list and average basic block size... 26

Table 2. Branch prediction utilization of an instruction fetch mechanism which is able to

provide fetch addresses of two basic blocks in each cycle. .. 34

Table 3. Percentage of fetches causing the instruction fetch mechanism to stall. 34

Table 4. Instruction Cache Configurations .. 35

Table 5. Table of trace categories, the applications in those trace categories, and the

number of traces of each application that were used for simulations. 49

Table 6. Throughput Micro SMT speedup measurements. ... 86

Table 7. Latency Micro SMT speedup measurements. .. 87

Table 8. SPECint_rate performance measured on an Intel Pentium 4 system. 91

Table 9. SPECint SMT Power measurements for two copies of the same application and

combinations of different applications. ... 93

Table 10. Performance of SPEC2000_fp_rate with and without SMT enabled on an Intel

Pentium 4 Processor System. .. 97

Table 11. Power measurements of SPEC2000_rate_fp on an Intel Pentium 4 Processor

System. .. 98

Table 12. Multimedia Applications SMT power measurements. 106

 xii

LIST OF ABREVIATIONS

APIC – Advanced programmable interrupt controller.

BAC – Branch address cache

BHR – Branch history register

BIOS – Basic Input/Output System (the firmware code run by a computer when first

powered on)

CD – Compact disk

CMP – Chip-level multiprocessing

CPU – Central processing unit

DDR – Double data rate synchronous dynamic random access memory (a type of

DRAM).

DDR2 – Double data rate two synchronous dynamic random access memory (a type of

DRAM twice as fast as DDR).

DRAM – Dynamic random access memory

DTLB – Data transition lookaside buffer

DVD – Digital video disk

ED2 – (Energy*delay)^2 metric

GCT – Global Completion Table (of IBM’s Power 5 microarchitecture)

HT – Hyperthread Technology, Intel’s brand name for SMT (simultaneous

multithreading)

I/O – Input/output

IA-32 – Intel Architecture for the 32-bit address-space

ICH7 – I/O Controller Hub, part of a high-end Intel chipset that started shipping in 2005.

ID – Identifier

IPC – Instructions per cycle executed

IPC_f – Instructions per cycle fetched

ITLB – Instruction transition lookaside buffer

KB – Abbreviation for kilobyte

L1 – First-level cache

L2 – Second-level cache

L3 – Third-level cache

MB – Abbreviation for megabyte

MGAg – Multiple Branch Global Two-level Adaptive Branch Prediction using Global

Pattern History Table

MGAp - Multiple Branch Global Two-level Adaptive Branch Prediction using Per-

address Pattern History Tables

MGAs - Multiple Branch Global Two-Level Adaptive Branch Prediction using Per-set

Pattern History Tables

 xiii

MOSFET – Metal-oxide-semiconductor field-effect transistor

MPEG – Moving picture experts group – this group standardized compression formats

for video.

MPEG-1 – First video compression format standardized by MPEG, currently used on

video CDs.

MPEG-2 – Video compression format standardized by MPEG, used for over-the-air

digital television.

MPEG-4 – Video compression format standardized by MPEG which expands MPEG-1

features and support.

MT – Multi-thread mode

OS – Operating system

PHT – Pattern history table

RAT – Register alias table

SMP – Shared memory multiprocessing

IMT – Interleaved multithreading

SMT – Simultaneous multithreading

SOEMT – Switch-on-event multithreading

SPEC – Standard Performance Evaluation Corporation (generally refers to the

benchmarks released by this corporation for comparing computer performance).

SPEC2000 – Benchmark suite released by SPEC in 2000.

SPEC89 – Benchmark suite released by SPEC in 1989.

SPECfp – Portion of the SPEC benchmark suite that measures floating point application

performance.

SPECint – Portion of the SPEC benchmark suite that measures integer application

performance.

SPECjbb – Portion of the SPEC benchmark suite that measures the performance of

server-side Java applications.

SPECweb – Portion of the SPEC benchmark suite that measures internet application

performance.

SRAM – Static random access memory

ST – Single-thread mode

ST0 – Single-thread mode where logical processor 0 is active

ST1 – Single-thread mode where logical processor 1 is active

TC – Trace cache

TLB – Transition lookaside buffer

uROM – Read only memory structure that stores the microcode of the CPU.

VLIW – Very long instruction word

 xiv

ABSTRACT

This thesis is concerned with hardware approaches for maximizing the number of

independent instructions in the execution core and thereby maximizing the processing

efficiency for a given amount of compute bandwidth. Compute bandwidth is the number

of parallel execution units multiplied by the pipelining of those units in the processor.

Keeping those computing elements busy is key to maximize processing efficiency and

therefore power efficiency.

While some applications have many independent instructions that can be issued in

parallel without inefficiencies due to branch behavior, cache behavior, or instruction

dependencies, most applications have limited parallelism and plenty of stalling

conditions.

This thesis presents two approaches to this problem, which in combination greatly

increases the efficiency of the processor utilization of resources. The first approach

addresses the problem of small basic blocks that arise when code has frequent branches.

We introduce algorithms and mechanisms to predict multiple branches simultaneously

and to fetch multiple non-continuous basic blocks every cycle along a predicted branch

path. This makes what was previously an inherently serial process into a parallelized

instruction fetch approach. For integer applications, the result is an increase in useful

instruction fetch capacity of 40% when two basic blocks are fetched per cycle and 63%

for three blocks per cycle. For floating point benchmarks, the associated improvement is

27% and 59%.

 xv

The second approach addresses increasing the number of independent instructions to the

execution core through simultaneous multi-threading (SMT). We compare to another

multithreading approach, Switch-on-Event multithreading, and show that SMT is far

superior. Intel Pentium 4 SMT microarchitecture algorithms are analyzed, and we look at

the impact of SMT on power efficiency of the Pentium 4 Processor. A new metric, the

SMT Energy Benefit is defined. Not only do we show that the SMT Energy Benefit for a

given workload with SMT can be quite significant, we also generalize the results and

build a model for what other future processors’ SMT Energy Benefit would be. We

conclude that while SMT will continue to be an energy-efficient feature, as processors get

more energy-efficient in general the relative SMT Energy Benefit may be reduced.

 1

 CHAPTER 1

INTRODUCTION

This thesis is concerned with the optimization of processor resource utilization. At its

most basic level, a processor consists of arithmetic, logic, and branch processing

capability, i.e., execution units. The maximum rate at which execution units are

capable of executing instructions is the maximum execution throughput that the

processor can achieve. The role of everything else - instruction fetch capacity, branch

predictors, caches, memory, I/O - is to feed the execution units as efficiently as

possible. Let us call “everything else” the support hardware. If the execution units

are 100% busy doing useful work, then the support hardware is doing its job and no

further improvement is possible. At that point, the way to increase performance is to

add raw execution capability, a task which, on balance, is a rather simple thing to do.

Indeed, every generation of processor generally adds some execution capacity, some

of it general execution capacity and some of it specialized capacity (e.g., Intel’s

MMX, SSE, SSE2, etc.).

The ideal workload consists of an easily predictable instruction stream, easily

predictable data, and long flows of instructions that exactly match the capacity of the

execution units. However, this type of workload is unusual outside of some

application-specific domains. In such cases, it is often possible to design special

purpose processors where the execution units are chosen to fit the workload, while

support hardware is designed with sufficient capability to keep those execution units

as close to100% operating efficiency as possible.

 2

However, the general-purpose processor must be designed to execute well on a wide

range of different types of workloads. A sufficient array of execution units is

assembled and circuit designers are employed to make them as fast as possible. Then

the architect focuses most of his/her time on the support hardware. Although it is a

challenge, a well-known list of general techniques is available: out-of-order

execution, complex branch predictors, caches, TLBs, memory address predictors, etc.

If the execution units are to be efficiently fed, the appropriate combination must be

selected based on the technology and trends in application profiles. The key points

are: how can we provide a continuous stream of ready instructions to feed the

voracious appetites of those execution units, and how can we provide data to the

instructions? It is rather like feeding heat, fuel, and oxygen to a fire. All three are

needed to keep the fire going. Similarly, instructions and data must both be there to

keep the execution units busy.

This thesis focuses on the processor resource utilization efficiency problem: how to

keep all those execution units busy. Better resource utilization leads to better power

utilization and less waste. In particular, this thesis will discuss the delivery problem:

how to get more instructions per cycle to the execution units so that they are not idle,

waiting for instructions. Then we will discuss how to improve the mix of instructions

such that there is more parallelism. Finally, we will measure and show the energy

efficiency of using resources more effectively.

The first basic problem of instruction delivery is overcome the basic block limit for

fetching instructions. A basic block is the sequence of instructions following a branch

instruction up to and including the next branch instruction in the sequence. The

number of instructions that can be accurately and efficiently fetched is a key metric

for keeping the execution units busy. One approach is to enlarge the basic blocks into

traces [1] or into superblocks [2]. Forming instructions into traces and storing those

traces assumes that the trace will be used enough to justify the area of the trace cache,

and that the branch predictions made while making the traces will be accurate in

 3

future executions of the trace. Also, in the first execution of the instructions, the fetch

delivery rate will be limited by the branch prediction bandwidth. Another approach is

to exploit predicated execution to schedule instruction execution along multiple

execution paths [3]. The disadvantage of predicated execution is that execution

bandwidth is wasted on instructions whose results are discarded and instruction fetch

bandwidth is wasted on instructions which will not be executed.

In this thesis we analyze a different approach which allows us to fully utilize the fetch

and execution bandwidth with useful instructions from a dynamically predicted path.

This approach also takes advantage of the latest branch predictor information on

every instruction fetch. Our highly accurate branch prediction algorithm is capable of

making predictions for multiple branches in a single cycle. We also include a branch

address cache to provide the addresses of the basic blocks to which the branches

direct the instruction flow, and an instruction cache configuration with a suitably high

bandwidth. If we can correctly predict two to three branch paths every cycle and if

the average basic block size is five instructions, then potentially the average fetch size

can be doubled or tripled. Our analysis shows that this capability increases the useful

instruction fetch capacity by 40% and 63% when 2 or 3 basic blocks can be fetched

each cycle, respectively, for integer benchmarks. For floating point benchmarks the

improvement is 27% and 59%.

The Intel Pentium 4 Processor uses a trace cache to provide similar instruction fetch

capability. A trace is a concatenation of multiple basic blocks that together represents

a likely path of execution. Since the trace cache is located after the branch predictor

and instruction decoder, the branch predictions are effectively recorded in the trace.

Also, since each trace starts at the beginning of a trace cache line and the instructions

are already decoded, instruction fetch from the trace cache is very efficient. The trace

cache in the Pentium 4 implementation can deliver 8 useful instructions each cycle.

Those instructions originally may have spanned up to 3 non-consecutive basic blocks

and may have been split across several cache lines. A trace cache is an alternative

way to deliver performance similar to multiple branch prediction.

 4

Once instruction delivery to the processor core is sufficient, we turn our attention to

how the instruction mix can be efficiently executed. A major bottleneck to this is the

number of independent instructions that can be executed simultaneously in the mix.

A way of delivering more independent instructions into the processor is to implement

SMT. It potentially doubles the number of independent instructions in the processor

by fetching instructions from two (or more) software threads. This thesis discusses

the implementation in the Pentium 4 processor and presents analysis of SMT on

modern high-performance out-of-order processors. The analysis uses a wide variety

of commercial software as well as common benchmarks to evaluate microarchitecture

choices and tradeoffs. The workloads include applications from desktop,

workstation, high-performance computing, server, and the SPEC suite of benchmarks.

Detailed execution-driven simulators that were used in the development of the

Pentium 4 microarchitecture, and real system measurements will be the tools for

evaluating the microarchitecture optimizations.

More instructions in the processor that are independent means better processor

resource utilization. Improvements in processor resource utilization also benefit

energy efficiency. Energy efficiency is becoming an increasingly important aspect of

design due to mobility requirements, sustainability, and cost. This thesis analyzes the

energy efficiency of a processor with both a trace cache and simultaneous

multithreading. We find that indeed the energy efficiency is improved. We show that

although SMT power is typically ~5-15% higher than single-thread (ST) power, the

energy efficiency can be quite substantial when the SMT speedup is > 1.1. A new

metric, the SMT Energy Benefit, is defined and used to show that for a given

increment of SMT speedup, approximately 80% of that directly lowers energy usage,

while 20% is spent to obtain that speedup on the Intel Pentium 4 Processor. We then

generalize the results and build a model for what future processors’ SMT Energy

Benefit might be. We conclude that SMT will continue to be an energy-efficient

feature, however as processors get more energy efficient, the relative SMT Energy

Benefit will be reduced.

 5

1.1 Contributions

This thesis makes the following contributions:

 Introduce novel algorithms to predict and fetch multiple basic blocks, a key to

improving execution efficiency. We introduce the multiple branch predictor

and its companion instruction fetch mechanism. Combined, these new

algorithms get around the basic block limitation, which previously forced

instruction fetch to be an inherently serial process. We also use the best and

most up-to-date branch prediction history to make those predictions.

 Develop an in-depth understanding of how simultaneous multithreading

(SMT) and switch-on-event multithreading (SOEMT) can provide more

varied instructions to the execution units and improve execution efficiency.

We show that SMT gives better utilization and therefore better performance

on a wider variety of applications than SOEMT.

 Examine the SMT implementation of the Intel Pentium 4 and Xeon family,

and analyze the resource utilization choices made. We show why resources

have different utilization patterns, and how those utilization patterns

necessitate different approaches to sharing the resource. We consider how

SMT changes the fundamentals of key algorithms and tradeoffs. We also

discuss how SMT introduces new deadlock conditions and fairness

requirements which impact the choice of implementation algorithms.

 Provide first measurements and analysis of a real SMT system, on

microbenchmarks and a wide variety of real applications.

 Define and a new metric, the SMT energy benefit. We show that on the

Pentium 4 Processor, for a given increment of SMT speedup, approximately

80% of that directly lowers energy usage, while 20% is spent on additional

power to enable the speedup. We show that leakage power is proportional to

SMT area growth, while dynamic power depends on SMT speedup.

 Create a simple power model to estimate the expected SMT Energy Benefit of

future, possibly more power-efficient, processors.

 6

1.2 Organization

Chapter 2 introduces the multiple branch predictor and instruction fetch mechanism

that vastly improves instruction fetch rate. Increasing the number of instructions sent

to the execution resources improves processor resource utilization. Chapter 3

discusses a variety of threading methods, including simultaneous multithreading, and

shows that simultaneous multithreading can provide more and better resource

utilization and performance than the alternative switch on event multithreading.

Chapter 4 discusses the Intel Pentium 4 Processor microarchitecture and the

microarchitecture decisions, tradeoffs, and challenges. Chapter 5 is an in-depth study

that shows why three different resource sharing protocols were critically important

and were the right choices for different parts of the microarchitecture. Chapter 6

looks at the power and energy efficiency of a processor with simultaneous

multithreading. Finally Chapter 7 presents some concluding remarks.

 7

 CHAPTER 2
INCREASING INSTRUCTION FETCH RATE VIA

MULTIPLE BRANCH PREDICTION

As architectures become increasingly parallel, it is important to fetch more and more

instructions each cycle. This can be done either by increasing basic block size and

fetching the entire block in a single cycle, or by fetching multiple basic blocks per

cycle. The optimal solution may be to combine both. The first approach is being

researched and implemented in today’s advanced compilers. One approach is to

enlarge the basic block into traces [1] or into superblocks [2]. Another approach is to

exploit accurate predicated execution to schedule instruction execution along multiple

execution paths [3]. The disadvantage of predicated execution is that execution

bandwidth is wasted on instructions whose results are discarded, and instruction fetch

bandwidth is wasted on instructions which will not be executed.

Here we propose a scheme which allows us to more fully utilize the fetch and

execution bandwidth with useful instructions from a dynamically predicted path. We

published this work in [4].

There are three essential components to providing the ability to fetch multiple basic

blocks each cycle:

 Predicting the branch paths of multiple branches each cycle.

 Generating fetch addresses for multiple and possibly non-consecutive basic

blocks each cycle.

 8

 Designing an instruction cache with enough bandwidth to supply a large

number of instructions from multiple, possibly non-consecutive basic blocks.

This chapter discusses an integrated solution for these problems. We introduce a

highly accurate branch prediction algorithm capable of making predictions for

multiple branches in a single cycle, a branch address cache to provide the addresses

of the basic blocks to which the branches direct the instruction flow, and an

instruction cache configuration with a suitably high bandwidth. Although hardware

intensive, these solutions are not excessively so for today’s modern processor

implementations.

If we can correctly predict two to three branch paths every cycle and if the average

basic block size is five instructions, then the average fetch size will be 10 to 15

instructions. Many non-numeric applications today have an average basic block size

of 5 instructions, and floating point applications tend to be much larger. The ability

to fetch multiple basic blocks per cycle coupled with compiler technology to increase

basic block size can result in significant performance gains. This chapter shows that

simply providing the ability to fetch multiple instructions without specific compiler

optimizations already increases the useful instruction fetch capacity of a machine by

40% when 2 basic blocks can be fetched each cycle, or 63% for 3 basic blocks, in the

case of integer benchmarks. For floating point benchmarks, the improvement is 27%

and 59%, respectively.

In Section 2.1 we provide an overview of the branch prediction work that this work

builds on. Our multiple branch prediction algorithm is based on the Two-level

Adaptive Branch Predictor [5-7]. The Two-level Adaptive Branch Predictor achieves

an average of 97% accuracy. An instruction supply mechanism [8] to do back-to-

back branch predictions and supply up to one basic block per instruction cache fetch

is also briefly reviewed.

 9

Section 2.2 describes the multiple basic block supply mechanism, the multiple branch

prediction algorithms, and the structure and operation of the branch address cache,

and the instruction cache design issues. Section 2.3 describes the simulation model

and the benchmarks used, and Section 2.4 our simulation results.

Section 2.5 discusses other related research on multiple branch prediction or

alternative methods of increasing instruction delivery, and finally Section 2.6

summarizes the benefits and trade-offs of multiple branch prediction.

2.1 Branch Prediction Previous Work

2.1.1 Two-level Adaptive Branch Predictor

Yeh and Patt [5-7] introduced several implementations of the Two-level Adaptive

Branch Predictor, each with somewhat different cost vs. prediction accuracies. The

average prediction accuracy on the SPEC89 benchmarks was shown to be 97%. One

important result was that each of the different Two-level Adaptive Branch Prediction

schemes can achieve the same accuracy by varying its configuration. The following

is a brief overview of the schemes. The interested reader is referred to the original

papers for more details.

The Two-level Adaptive Branch Predictor uses two structures, a Branch History

Register (BHR), and a Pattern History Table (PHT). The BHR is used to record the

history of taken and not taken branches. For example, if the recent history of the

branch behavior is: taken twice, not taken, and taken again, then the BHR would

contain the pattern 1101, where 1 indicates taken, and 0 indicates not taken.

In addition, for each possible pattern in the BHR, a pattern history is recorded in the

PHT. If the BHR contains k bits to record the history of the last k branches, then

there are 2
k
 entries, each entry containing a 2-bit up-down saturating counter to record

the execution history of the last several times the corresponding pattern occurred in

 10

the BHR. Yeh and Patt showed that the 2-bit up-down saturating counter was

sufficient in keeping pattern history to give highly accurate branch predictions.

Prediction decision logic interprets the two pattern history bits to make a branch

prediction. If the 2-bit up-down saturating counter is used, the prediction is usually

based on the high-order bit of the counter value.

1 1 0 11 1 0 1 0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Pattern History Table (PHT)

Index

lookup

Branch History Register (BHR)

01

01

00

00

11

11

10

00

01

10

11

10

11

11

10

11

01

01

00

00

11

11

10

00

01

10

11

10

11

11

10

11

Branch prediction: taken

(most significant bit is ‘1’)

History of taken and

not taken branches

Table of two-bit saturating

up-down counter predictors

Figure 1. Example of 4-bit Global Two-level Adaptive Branch Predictor making a branch

prediction. In this example, since the branch history register (BHR) is 4 bits, the pattern history

table (PHT) must have 2
4
 = 16 entries.

For example, as shown in Figure 1, if the BHR were 4 bits wide, the PHT would have

2
4
 = 16 entries. Suppose that each entry in the PHT contains 2 bits with initial value

of 01, and that the last two times the pattern 1101 showed up in the BHR, the branch

was taken. Then the 11012-th entry of the PHT will contain 11 and the next

prediction when the BHR has the pattern 1101 will be predicted taken.

The BHR and PHT are updated with the predicted branch direction to make the next

branch prediction, as shown in Figure 2. The 2-bit counter associated with the

 11

prediction is incremented (if the prediction was “not taken” then the counter would be

decremented). The global branch history register is updated by shifting the entries to

the left, and adding the most recent branch’s predicted behavior on the right in order

to be ready to make the next branch prediction immediately. The high accuracy of

the branch predictor means that it is far better to update the tables with the predicted

branch behaviors. However, this policy means that on mispredictions the BHR and

PHT entries need to be recovered.

1 0 1 11 0 1 1 0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Pattern History Table (PHT)

Pattern

shifts left

when

updated.

Most

recent

branch is

on the

right.

Branch History Register (BHR)

01

01

00

00

11

11

10

00

01

10

11

10

11

11

10

11

01

01

00

00

11

11

10

00

01

10

11

10

11

11

10

11

Branch prediction: taken

History of taken and

not taken branches

Table of two-bit saturating

up-down counter predictors

Increment

2-bit counter

Figure 2. Example of a 4-bit Global Two-level Adaptive Branch Predictor updating the branch

history register (BHR) and pattern history table (PHT).

 12

Based on the source of the first-level branch history, Two-level Adaptive Branch

Prediction has three classes of variations: global history schemes (as described in the

previous example), per-address history schemes, and per-set history schemes.

1. Global history schemes (also called Correlation Branch Prediction [9]) use a

single BHR, called the Global BHR, to record the history of all branches. The

pattern in this Global BHR is used to look up the PHT prediction. The

prediction of a conditional branch is influenced by the history of other

branches.

2. Per-address history schemes use one BHR per static branch; therefore,

multiple BHRs are used in the scheme. The prediction of a conditional branch

is influenced by the history of the branch itself.

3. Per-set history schemes use one BHR to record the history of a set of adjacent

static branches. The prediction of a conditional branch is influenced by the

history of the branches in the same set, not just the branch itself.

2.1.2 Instruction Supply

In Yeh and Patt [8] an instruction supply mechanism was introduced where up to one

basic block per cycle can be fetched by predicting branch targets in back-to-back

cycles. We summarize a few details of the mechanism in this section, but the

interested reader is referred to the original paper for more details. We will use the

term “fetch address” to be the address used to fetch a sequence of instructions from

the instruction cache. Three things are done at the same time: the instruction cache

access, the branch address cache access, and the branch path prediction. The fetch

address is used for both the instruction cache access and the branch address cache

access from which a fall-through address, target address, and branch type are

retrieved (conditional, unconditional, or call/return).

If the instructions fetched include a branch, those instructions up to and including the

branch instruction comprise one basic block. Instructions after the branch are not

issued to the processor until the next branch prediction is made.

 13

If the fetch address misses in the branch address cache, then either there is no branch

in the sequence of instructions fetched, or the sequence is being fetched for the first

time. In either case, the fetch address is incremented by the fetch size, and the

hardware continues fetching the next sequential block of instructions. In the event

that a branch instruction is discovered after the instructions are decoded, the fall-

through address, target address, basic block size, type of branch, and branch path are

recorded in the branch address cache.

If the fetch address hits in the branch address cache, then we know that there is a

branch somewhere in the sequence of instructions just fetched. Since the information

from the branch address cache is available at the same time that the instructions are

fetched from the instruction cache, a new fetch address (either the fall-through

address or the taken address) can be determined immediately. The next instruction

cache and branch address cache accesses begin on the next cycle.

2.2 Fetching Multiple Basic Blocks Each Cycle

The performance of the mechanism described Section 2.1.2 limited the fetch capacity

to one basic block per cycle. Since only one branch path prediction and only one set

of consecutive instructions could be fetched from the instruction cache per cycle,

instruction fetch stopped when a branch was encountered. This was due to the

limitation of a single prediction per cycle and limitations in the instruction cache

configuration.

Fetching multiple basic blocks each cycle requires more than a multiple branch

prediction algorithm. At the same time that multiple branch paths are being

predicted, the addresses of the basic blocks following those branches must be

determined. In addition, the instruction cache must be able to supply multiple non-

consecutive blocks of instructions in a single cycle. Our solutions to these issues are:

 14

 The Multiple Branch Two-level Adaptive Branch Predictor which provides

highly accurate predictions for multiple branch paths.

 The Branch Address Cache (BAC) which is a hardware structure to provide

multiple fetch addresses of the basic blocks following each branch.

 An instruction cache with enough bandwidth to supply a large number of

instructions from non-consecutive basic blocks.

In this chapter we will describe the mechanisms for fetching two and three basic

blocks each cycle. The mechanisms described can be easily extended to more than

three branches, but the hardware cost increases exponentially with each additional

basic block.

2.2.1 The Multiple Branch Two-Level Adaptive Branch Predictor

The prediction algorithm for a single branch per cycle described in Section 2.1.1 can

be extended to two branch predictions per cycle. We will henceforth identify the first

branch as the primary branch, the second branch as the secondary branch, and the

third branch as the tertiary branch.

The primary basic block is the basic block dynamically following the primary branch,

i.e., the basic block containing a secondary branch. There are two possibilities for the

primary basic block: The target and the fall-through basic blocks of the primary

branch. These will be denoted as T or N, depending on whether the primary branch

was taken or not taken. The secondary basic block is the basic block following the

secondary branch. The secondary basic block can be one of up to four different

blocks depending on the direction of the primary and the secondary branches. These

will be denoted as TT, TN, NT, or NN, depending on whether the primary and

secondary branches were taken-taken, taken-not taken, not-taken-taken, or not taken-

not taken, respectively. Finally, the tertiary basic block is the one following the

tertiary branch. The tertiary basic block can be one of up to 8 different blocks

 15

depending on the outcome of the primary, secondary, and tertiary branch paths, and

its denotations are TTT, TTN, TNT, etc.

Figure 3. Identification of the primary and secondary branches, and the primary and secondary

basic blocks for a two-branch-per-cycle predictor.

Figure 3 shows the primary and secondary branches and the primary and secondary

basic blocks for the case when two predictions are made per cycle. If the darker

branch paths are predicted, the darker basic blocks are fetched.

Figure 4 adds the tertiary branches and the tertiary basic blocks. When three branch

paths are predicted, then the address used for the next prediction would be in a

I

CB0

A0: I

CB0

A0:

I

CB1

A1: I

CB1

A1: I

CB2

A2: I

CB2

A2:

I

CB3

A3: I

CB4

A4: I

CB4

A4: I

CB5

A5: I

CB5

A5: I

CB6

A6: I

CB6

A6:

Two Branch Predictions per Cycle

Address Used

for Prediction

T N

T N T N

Primary

Basic Blocks

(A1, A2)

Secondary

Basic

Blocks

(A3, A4,

A5, A6)

Address

for

Next

Prediction

Primary

Conditional

Branch

(CB0)

Secondary

Branches

(CB1, CB2)

 16

tertiary basic block. The circled branches are the branches for which predictions were

made in this example.

Figure 4. Identification of the tertiary branches and tertiary basic blocks for a three-branch-

per-cycle predictor.

The multiple branch prediction algorithm introduced in this chapter is modified from

the global history schemes of the Two-level Adaptive Branch Prediction described in

I

CB0

A0: I

CB0

A0:

I

CB1

A1: I

CB1

A1: I

CB2

A2: I

CB2

A2:

I

CB3

A3: I

CB4

A4: I

CB4

A4: I

CB5

A5: I

CB5

A5: I

CB6

A6: I

CB6

A6:

Three Branch Predictions per Cycle

Address Used

for Prediction

T N

T N T N

I

CB3

A7: I

CB4

A8: I

CB4

A8:

T N

Tertiary

Basic

Blocks

(A7,…,A14)

Address

for

Next

Prediction

I

CB6

A14: I

CB6

A14:

N

Tertiary

Branches

(CB3, …,CB6)

 17

[7] and summarized in Section 2.1.1. The modified global history schemes not only

make the prediction of the immediately-following branch, but predict subsequent

branches. The per-address history and per-set history schemes of Two-Level

Adaptive Branch Prediction, on the other hand, require more complicated BHT access

logic for making multiple branch predictions in each cycle, because they may require

many different branch histories to make predictions for different branches. In order

to simplify the BHT design, we consider only the global history schemes in this

chapter.

Figure 5. Algorithm to make 2 branch predictions from a single branch history register.

The first multiple branch prediction variation is called Multiple Branch Global Two-

level Adaptive Branch Prediction using Global Pattern History Table (MGAg). This

scheme uses a global history register of k bits and a global pattern history table of 2
k

entries, each entry containing 2 bits. The k bits in the history register record the

outcome of the last k branches. The history register is updated speculatively with the

predicted branch outcomes and corrected later in the event of an incorrect prediction,

because the prediction accuracy is expected to be high. The right-most bit

corresponds to the prediction of the most recent branch, and the leftmost bit

corresponds to the prediction of the oldest branch.

Global History

Register (k bits)

Pattern History

Table (2
k

entries)

2

k

k-1

Primary Branch

Prediction

Secondary Branch

Prediction

k-1

Select

 18

As shown in Figure 5, all k bits in the history register are used to index into the

pattern history table to make a primary branch prediction. The 2-bit counter value

read from the pattern history table entry is used to make the prediction, just as in the

single branch Adaptive Two-level Branch Predictor.

To predict the secondary branch, the right-most k-1 branch history bits are used to

index into the pattern history table. Note that since we are missing one binary digit,

k-1 bits would address two adjacent entries in the PHT, which are resolved by using

the primary branch prediction. In other words, the primary branch prediction is used

to select one of the two entries to make the secondary branch prediction.

Figure 6. Algorithm to make 3 branch predictions from a single branch history register.

Finally, as shown in Figure 6 the tertiary prediction uses the right-most k-2 history

register bits to address the pattern history table and access four adjacent entries. The

primary and secondary predictions are used to select one of the four entries for the

tertiary branch path prediction. This algorithm allows each of the multiple branch

Global History

Register (k bits)

Pattern History

Table (2
k
 entries)

2

k

k-1

k-2

Primary Branch

Prediction

Tertiary

Branch Prediction

Secondary Branch

Prediction

k-2

k-1

 19

path predictions to take full advantage of the k bits of branch history. Longer history

registers increase the prediction accuracy, and as multiple branches are predicted, the

accuracy becomes increasingly important.

The second multiple branch prediction variation is called Multiple Branch Global

Two-Level Adaptive Branch Prediction using Per-set Pattern History Tables (MGAs).

It differs from the previous scheme in that there are multiple pattern history tables.

The pattern history tables are associated with the primary branches. Similar to

MGAg, all k bits are used to index into a pattern history table to make a prediction for

the primary branch. The pattern history table is selected based on the fetch address

corresponding to the primary branch. The second prediction is made from the same

pattern table since the address of the secondary branch is not known at the time of the

prediction. This scheme attempts to limit the amount of pollution in the pattern

history tables by different branches, but may result in less accurate secondary and

tertiary branch predictions.

The extreme case of the MGAs scheme is when there is a separate pattern history

table associated with each branch. This scheme is called Multiple Branch Global

Two-level Adaptive Branch Prediction using Per-address Pattern History Tables

(MGAp).

The pattern table entries are updated after the branch instructions are resolved, which

could take several cycles. Therefore the pattern table entries are always somewhat

out-of-date. This is likely to degrade the accuracy of the multiple branch prediction

algorithm more than the accuracy of a single branch prediction algorithm. The reason

the branch may take several cycles to resolve is that it may have to wait for a

condition to be evaluated or an address to be computed which may take several cycles

due to data dependencies.

Since the branch predictions are done at the same time the instructions are fetched,

the determination of whether there is a branch in a fetch sequence is done through the

 20

Branch Address Cache which is described in detail in the next section. If the fetch

address hits in the Branch Address Cache, then there is a branch in the sequence

being fetched. Otherwise no branch is assumed and the instruction fetch mechanism

fetches down the sequential stream.

The branch path predictions made with the Multiple Branch Two-level Adaptive

Branch Predictor are done at the same time the Branch Address Cache and instruction

cache are accessed. These branch path prediction bits are used to select the fetch

addresses that are needed for the next cycle from the possible fetch addresses

provided by the Branch Address Cache. For now, we will merely state that if two

predictions are made, then two fetch addresses are selected. If three predictions are

made, then three fetch addresses are selected.

Multiple predictions might not be made every cycle for several reasons. The first

case is when a basic block is very large, so the entire instruction cache bandwidth

may be devoted to fetching the basic block. Fetching the primary basic block has

higher priority than fetching secondary or tertiary basic blocks. Therefore if we

cannot fetch one basic block in its entirety with its instruction cache bandwidth quota,

then we allow it to usurp the bandwidth quota from a subsequent block.

If a secondary or tertiary basic block’s bandwidth is usurped, the prediction of the

branch in that basic block is delayed until the cycle when it is actually being fetched.

At that point it becomes the primary branch and a (different) secondary and tertiary

branch may be predicted along with it.

The other case when multiple branch path predictions are not made is when the

branch is a return instruction. The return instruction’s predicted target address is

obtained from the return address stack. The next branch is difficult to predict because

the return may direct the instruction stream to any number of locations.

 21

2.2.2 The Branch Address Cache (BAC) Design

With each of the MGAg, MGAs, and MGAp algorithms, we use a Branch Address

Cache (BAC) to store the addresses to which the branches may direct the instruction

flow. Recall that with the single basic block instruction supply algorithm

summarized in Section 2.2 the branch address cache is indexed by the fetch address,

from which two potential fetch addresses are obtained (one for the target block and

one for the fall-through block). The branch prediction chooses between the two

addresses.

The multiple basic block supply algorithms use a similar BAC. The fetch address is

used to access the BAC. This is done in parallel to the instruction cache access.

Although there may be two or three fetch addresses accessing the instruction cache

simultaneously, only a single fetch address is used to access the BAC. If only one

basic block is being fetched, that fetch address is used. If two basic blocks are being

fetched simultaneously, the second fetch address is used to access the BAC. If three

basic blocks are fetched, the third fetch address is used.

If the fetch address hits in the BAC, there is a branch in the sequence of instructions

just fetched. The BAC entry records the branch type (conditional, unconditional, or

return) and the target and fall-through basic block starting addresses of the primary

branch. The same entry also contains the branch type and fetch addresses of basic

blocks for each of the expected number of branches for which we will make

predictions, and all the known potential fetch addresses of their targets. If the number

of basic blocks predicted and fetched per cycle is limited to 2, we get 6 fetch

addresses: 2 for the two primary basic block addresses, and 4 for the four possible

secondary basic blocks. If the basic block prediction and fetch limit is 3, we get 14

possible fetch addresses: 2 for the primary basic blocks, 4 for the secondary, and 8 for

the tertiary basic blocks.

 22

Each entry in a 512-entry, 4-way set associative Branch Address Cache which

supports two branch predictions per cycle has the following fields: TAG, P_valid,

P_type, Taddr, Naddr, ST_valid, ST_type, TTaddr, TNaddr, SN_valid, SN_type,

NTaddr, NNaddr, where each field contains:

 TAG field – The 23 high-order bits of the primary fetch address. A “BAC

hit” occurs if the tag matches with the upper address bits of the current fetch

address and the primary branch is valid.

 Valid bits – The valid bits for the corresponding branch entries. P refers to the

primary branch, ST refers to the secondary branch if the primary branch is

taken, and SN is the secondary branch if the primary branch is not taken.

 Type fields – The branch type of the corresponding branch. The type can be

conditional, unconditional, or return. Each type field consists of 2 bits.

 Addr fields – The address of the corresponding basic block. Each address

field consists of 30 bits.

A BAC supporting two branch predictions per cycle would have a total of 212 bits

per entry. A BAC supporting three branches would have an additional eight address

fields and four additional valid bits for the four possible tertiary branches, making

each entry 464 bits wide.

When a fetch address misses in the BAC, a large basic block is assumed and the

entire instruction cache bandwidth is devoted to fetching sequential instructions. If a

branch is discovered once the instructions are decoded and the branch is predicted

taken or is an unconditional branch, the prefetched instructions after the branch are

discarded. The address of the fall-through and target addresses are calculated in the

cycle after decode. The branch is then allocated a primary branch entry in the BAC.

The higher order bits of the fetch address are entered in the tag field, the primary

 23

branch valid bit is set, the secondary (and tertiary) branch valid bits are cleared, and

primary fall-through and target addresses are entered. If the branch is an indirect

branch, however, the target address is not calculated until the operands are ready, and

the valid bit is not set until that time.

The branch will also be entered as a secondary branch in the BAC entry of the

previous branch if:

 the previous fetch address had a valid primary branch entry in the BAC but

did not predict a secondary branch and

 the basic block of the previous fetch address was not oversized (i.e., there was

enough instruction cache bandwidth for another basic block fetch) and

 the previous branch was not a return.

2.2.3 The Instruction Cache

The ability of the instruction cache to provide enough instructions becomes critical

when multiple possibly non-consecutive basic blocks are fetched each cycle. The

instruction cache must have high bandwidth, low miss rate, and the ability to fetch

from multiple addresses in parallel.

To satisfy the high bandwidth requirement, the cache must either have a large number

of banks, or have wide banks. Also, due to off-chip bandwidth and pin limitations,

the instruction cache should be on-chip.

The ability to fetch from multiple addresses in parallel implies a cache with either

interleaved or multi-ported banks, or both. With interleaved banks, each

independently addressable, multiple fetch addresses can access the instruction cache

simultaneously provided that their accesses are not to the same bank. If there is a

bank conflict, priority is given to the earlier (relative to the dynamic instruction

 24

stream) fetch address. Therefore it is important to have enough banks to make the

probability of bank conflicts low.

A multi-ported cache eliminates the bank conflict problem. For example, a dual-

ported cache allows the simultaneous access of two fetch addresses, and a tri-ported

cache allows the simultaneous access of three fetch addresses. Unfortunately, multi-

ported memories are expensive in silicon chip area.

It is critical for the instruction cache miss rate to be low. Each instruction cache miss

stalls the fetch sequence. Since multiple basic blocks can be fetched each cycle, the

opportunity cost can be (up to) the number of cycles it takes to service the miss

multiplied by the number of instructions that could have been fetched during those

idle fetch cycles. Also, since more instructions are fetched each cycle, there are

fewer cycles between instruction cache misses. Therefore more time is spent waiting

for instruction cache misses to be satisfied. Commonly used ways to minimize

instruction cache miss rates are to increase the associativity, to increase the size of the

cache, and to prefetch instructions.

We chose several cache configurations which gave us reasonably high bandwidth, the

ability to fetch multiple addresses in parallel, and a relatively low miss rate. Most of

our simulations were done with a 32K cache which was 2-way set associative with 8

interleaved single-ported banks, each bank having a line size of 16 bytes. Each fetch

address can access two banks so that we guarantee between 5 and 8 instructions per

fetch address (due to basic block alignment). This configuration and several others

are compared in Section 2.4.

 25

2.3 Simulation Methodology

2.3.1 Simulation Environment

We used a trace-driven simulator to evaluate the performance of a machine front-end

which implements the Multiple Branch Two-level Adaptive Branch Predictor, a 512-

entry 4-way set associative Branch Address Cache (BAC), and a high-bandwidth

instruction cache. Unless otherwise specified, the instruction cache configuration

used was 32K bytes, 2-way set associative, 8-way interleaved, single-ported, and with

a line size of 16 bytes (4 instructions).

For the multiple basic block mechanisms, we can fetch two cache lines (a maximum

of 8 instructions) per basic block fetch address because most basic blocks contain 4 to

8 instructions. In order to do a fair comparison, we allow the single basic block

prediction and fetch algorithm to fetch up to 4 cache lines. The maximum number of

instructions issued, passed to the back-end of the machine, is limited to 16

instructions per cycle.

The benchmarks written in C were compiled with the Motorola Apogee C compiler

for the Motorola 88100 instruction set and the ones written in Fortran were compiled

with the Green Hill Fortran compiler. A Motorola 88100 instruction level simulator

generated the instruction traces. The first 50 million instructions from each trace

were used rather than the entire trace due to simulation time constraints.

Nine benchmarks were selected from the SPEC89 benchmark suite. These included 4

integer and 5 floating point benchmarks. The integer benchmarks were li, gcc,

eqntott, and espresso. The floating point benchmarks were doduc, fpppp, matrix300,

spice2g6, and tomcatv. The figures included in the result section have the

abbreviations listed in Table 1 for the various benchmarks. Table 1 also shows the

average basic block size of the first 50 million instructions of each benchmark.

 26

 Benchmark Abbreviation Average Basic

Block Size

(instructions)

Integer eqntott Eq 4.76

espresso Es 3.41

gcc Gc 4.94

li Li 4.14

Floating Point doduc Dd 10.46

fpppp Fp 57.01

matrix300 Mt 28.20

spice2g6 Sp 5.36

tomcatv Tc 26.33

Table 1. Benchmark list and average basic block size.

The MGAg, MGAs, and MGAp are parameterized according to the history register

length and the number of Pattern History Tables. These parameters will be given as:

HhPp, where h is the number of bits in the Global History Register, and p is the

number of pattern history tables.

2.3.2 Performance Metric

Since the simulator only models the front end of a machine, we use a new metric,

IPC_f (instructions per cycle fetched) to evaluate the performance of an instruction

fetch mechanism. IPC_f measures the effective number of instructions fetched per

cycle by an instruction fetch mechanism. To derive IPC_f, we assume the machine

stalls or wastes cycles for various reasons from the instruction fetch mechanism but

not from the rest of the machine, so the instructions issued can be executed without

stalling the machine front end. Moreover, only effective instructions are counted;

 27

instructions fetched down the incorrectly predicted paths are not counted. The

machine front end could waste cycles due to the following reasons:

 Instruction cache misses

 Incorrect branch predictions which include incorrect branch path predictions

and incorrect fetch address predictions

 Branch Address Cache misses on taken branches

Since we do not simulate the rest of the machine, the exact mispredicted branch

penalty is approximated. A 6 cycle mispredicted branch penalty is assumed;

therefore, the instructions following an incorrectly predicted branch will not be

fetched until 6 cycles after the branch is fetched. The I-cache miss penalty is

assumed to be 10 cycles. We also show how the machine performance changes as the

branch misprediction penalty and I-cache miss penalty are varied.

2.4 Simulation Results

2.4.1 Effect on Prediction Accuracy and IPC_f of History Register

Length

Figure 7 shows how the prediction accuracy changes as we increase the number of

bits in the global history register of the MGAg scheme for two branch predictions per

cycle. The prediction accuracy is the number of correctly predicted branches over the

total number of branches in the dynamic instruction stream. Longer branch histories

give better prediction accuracy which is reflected in the rising curves. The hardware

cost goes up exponentially with the number of history bits due to the number of

pattern history table (PHT) entries required.

 28

Figure 7. Variation of the size of the global branch history register.

The prediction accuracies varied between 91.5 and 98.4% for a branch history register

(BHR) length of 14 bits, and between 93.5 and 98.7% for a history register length of

16 bits. The knees of the curves for most benchmarks are reached at a BHR length of

14 bits. We used a 14-bit BHR length for the other experiments reported in this

chapter. A 14-bit BHR length means that a PHT has 2
14

 X 2 bits, or 32K bits.

2.4.2 Tradeoff Between the Number of Pattern History Tables and

History Register Length

We simulated several MGAg, MGAs, and MGAp configurations to determine how

the performance accuracy changes with the number of PHTs for two branch

predictions per cycle. Figure 8 for integer benchmarks and Figure 9 for floating

 29

point benchmarks show the branch prediction accuracy for 1 to 512 PHTs. Each

configuration shown has the same hardware cost, which was achieved by decreasing

the number of entries in each PHT as the number of PHTs is increased. Since the

entries in the PHTs are addressed by the BHR, the BHR length is reduced when we

decrease the number of entries in each PHT.

Figure 8. Variation of the number of the PHTs with the hardware cost held constant, for integer

benchmarks.

The PHT used to make the predictions is determined by the primary branch address.

The experiments shown in Figure 8 and Figure 9 used the branch address starting at

bit 10 to select a PHT. This allows branches within the same 256-instruction block in

the static code to map to the same PHT.

 30

Figure 9. Variation of the number of the PHTs with the hardware cost held constant, for

floating point benchmarks.

The prediction accuracies shown in Figure 8 and Figure 9 tend to be higher for

configurations with one to eight pattern history tables, then decreases when the

number of pattern history tables is increased beyond 8. Longer branch history helps

to increase the prediction accuracy. Increasing the number of PHTs reduces the

interference between branches, but since the second branch is predicted using the

PHT of the first branch, the probability of mapping two branches predicted together

into different PHTs is higher when more PHTs are used.

2.4.3 Number of Branch Predictions per Cycle

Figure 10 shows the IPC_f increase with the number of branch predictions per cycle.

The number of opportunities for multiple branch prediction is quite high despite the

 31

greater likelihood of bank conflicts in the instruction cache when three basic blocks

are fetched.

Figure 10. Instructions per cycle when 1, 2, and 3 branches are predicted each cycle.

The average IPC_f when one basic block is predicted per cycle is 3.0 and 5.6, for

integer and floating point benchmarks, respectively. Two predictions per cycle

increase this to 4.2 for integer and 7.1 for floating point. Three predictions per cycle

increases IPC_f further to 4.9 for integer and 8.9 for floating point.

For the one and two predictions per cycle experiments we allowed a maximum of 16

instructions to be fetched from the instruction cache per cycle. For the three

predictions per cycle experiments we increased the instruction cache bandwidth to 24

instructions in order to accommodate the 3 fetch addresses. To cap the number of

instructions issued, we constrained the issue width to 16 instructions for all three

cases. The larger instruction cache bandwidth allows more instructions to be fetched

 32

per cycle, which affects the performance of floating point programs more than integer

programs because of the high branch prediction accuracy and large basic block size of

floating point benchmarks. This effect results in the significant floating point

performance increase when going from two to three predictions per cycle.

The application fpppp (abbreviated fp in the graph) does not show significant

performance increase when going from one to two to three predictions per cycle due

to the repeated execution of an extremely long sequential code segment which causes

the instruction cache to thrash. The instruction cache miss penalty dominates its

performance.

Integer programs show noticeable performance increase except for gcc which is

dominated by incorrect branch predictions.

Figure 11. Instructions per fetch when 1, 2, and 3 branches are predicted each cycle.

 33

Figure 11 shows the IPF, instructions per fetch, for the benchmarks as the number of

branch predictions and basic block fetches of 1, 2, and 3 per cycle. An efficient

instruction fetch mechanism should attain an IPC_f as close to the IPF as possible.

The discrepancy between IPF and IPC_f is due to the branch misprediction penalty,

BAC misses, and instruction cache miss penalty.

2.4.4 Branch Prediction Efficiency

Now we look at how often we use the unique ability of our multiple branch predictor

to actually predict multiple branches per cycle. We call this the multiple branch

prediction utilization. Table 2 shows the data for the case where 2 basic blocks can

be predicted and fetched each cycle. We count the percentage of cycles when zero,

one, and two branches were predicted. Zero branches are predicted if we are fetching

a long sequential segment of code, or if the fetch address misses in the Branch

Address Cache, and a branch is found in the sequence of instructions after the

instructions are decoded. The application fpppp has a high percentage of cycles with

no predictions due to the extremely long sequential code segment which is repeatedly

executed. The percentage of cycles when zero predictions were done per cycle is

10% per cycle for integer and 44% for floating point.

Only a single branch is predicted when the primary branch is a return, or the primary

basic block is large (oversized) in which case the instruction fetch bandwidth of the

secondary basic block is usurped. About 24% of the single basic block fetches are

due to oversized basic blocks, and about 5% are due to the primary branch being a

return. Two branch predictions are made and two basic blocks are fetched 62% of the

time for integer and 24% of the time for floating point benchmarks.

 34

Table 2. Branch prediction utilization of an instruction fetch mechanism which is able to

provide fetch addresses of two basic blocks in each cycle.

Benchmark No Prediction One Prediction Two

Predictions Oversized Return

Eq 0.0839 0.1231 0.0272 0.7528

Es 0.0364 0.1125 0.0145 0.8317

Gc 0.1843 0.3634 0.0522 0.3844

Li 0.0939 0.2518 0.1213 0.5244

Dd 0.3335 0.2580 0.0602 0.3364

Fp 0.7415 0.1909 0.0120 0.0550

Mt 0.3386 0.3335 0.0042 0.3236

Sp 0.2145 0.2142 0.1613 0.4081

Tc 0.5893 0.3337 0.0006 0.0751

Table 3. Percentage of fetches causing the instruction fetch mechanism to stall.

Benchmark No Delay Decode

Delay

Incorrect

Branch

Prediction

I-cache

Miss

Bank

Conflict

Eq 0.8924 0.0004 0.0679 0.0001 0.0392

Es 0.9207 0.0063 0.0565 0.0001 0.0164

Gc 0.7674 0.0708 0.0980 0.0288 0.0351

Li 0.8753 0.0202 0.0645 0.0060 0.0340

Dd 0.8678 0.0110 0.0452 0.0632 0.0128

Fp 0.6357 0.0003 0.0091 0.3508 0.0041

Mt 0.6805 0.0000 0.0065 0.0001 0.3129

Sp 0.9706 0.0068 0.0150 0.0034 0.0042

Tc 0.9905 0.0006 0.0085 0.0001 0.0003

 35

Table 3 shows the percentage of fetches that cause the machine front-end to stall.

The machine front-end stalls only due to instruction cache misses, mispredicted

branches, and branch decode penalties.

No_Delay cause no stalls in instruction fetching. Bank_Conflicts to the same cache

line do not stall instruction fetch, but conflicts to different cache lines within the same

bank do stall instruction fetch. Therefore 84 to 90% of the fetches do not cause any

instruction fetch stall. If a taken branch is not detected in a fetched instruction

sequence (via a Branch Address Cache miss), a branch decode penalty is taken.

Branch Decode penalties occur in approximately 2.4% and 0.4% of the fetch cycles

for integer and floating point benchmarks, respectively. An incorrect branch path

prediction requires a full branch penalty to be incurred. This happens about 7.2% and

1.7% of the time for integer and floating point.

2.4.5 Instruction Cache Configuration

Table 4. Instruction Cache Configurations

Configuration

Number

Number of

Interleaved

Banks

Number of

Read Ports

Set

Associativity

Line Size Fetch Size

0 8 1 2 16 2

1 8 1 1 16 2

2 4 1 2 16 2

3 8 1 4 16 2

4 8 1 2 32 1

5 8 2 2 16 2

We simulated six instruction cache configurations with various numbers of read ports,

degrees of interleaving, set associativity, and line sizes. These configurations are

 36

listed in Table 4. Configuration 0 was used for most of our experiments. Fetch size

refers to the number of cache lines each fetch address can access.

Figure 12 and Figure 13 show the performance with the various instruction cache

configurations. The applications gcc and fpppp were chosen because they have more

significant instruction cache miss rates. Each curve represents a different cache size.

More read ports and more banks reduce bank conflicts but result in only a minimal

performance increase. Higher set associativity significantly improves performance.

However, fpppp actually has better performance with either direct-mapped or 4-way

set associative caches due to the large sequential code segment. 32-byte line size

degrades the performance a little because some bandwidth is wasted due to basic

block alignment.

Figure 12. Machine performance of various instruction cache configurations on gcc.

 37

Figure 13. Machine performance of various instruction cache configurations on fpppp.

2.4.6 Effect of Branch Misprediction Penalty

To investigate the effect of branch misprediction penalty on machine performance,

we varied the time to resolve a branch from 4 cycles to 12 cycles, as shown in Figure

14. Floating point programs have flatter curves because they contain fewer branches

and the prediction accuracy of those branches is higher. The performance

degradation when the branch resolution time is increased from 4 cycles to 12 cycles is

less than 10%. Integer programs have about 20% to 30% performance degradation.

 38

Figure 14. Effect of branch misprediction penalty on machine performance.

2.4.7 Effect of Instruction Cache Miss Penalty

We varied the instruction cache miss penalty from 4 cycles to 12 cycles.

Configuration 0 of Table 4 is used. Among the nine benchmarks, fpppp, doduc, and

gcc have lower cache hit rates, as listed in the legend of Figure 15. When the

instruction cache miss penalty is increased from 4 cycles to 12 cycles, doduc’s

performance degrades by about 20%. The application fpppp’s performance degrades

by about 50%. The other benchmarks showed minimal performance degradation due

to their low instruction cache miss rates.

 39

Figure 15. Effect of instruction cache miss penalty on machine performance.

2.5 Related Work

The research described in this chapter was the first in the area of multiple branch

prediction, and is considered to be the seminal piece of work in this field and which

kicked off a large body of other research which builds on this work. Therefore there

is an extensive body of related work. We categorize the related work into three

categories. The first is research that builds directly on the ideas and algorithms we

presented in this chapter. The second category is other multiple branch prediction

research which are not modifications of our algorithms. The third category is the area

of trace caches, an alternative way of increasing fetch bandwidth by creating traces of

execution paths and storing multiple, possibly non-contiguous, basic blocks into

contiguous storage, or special caches, called trace caches.

 40

While there are many papers which build on our algorithms, we will call out a few of

the more notable improvements to our algorithms here. Calder et al. [10] proposed a

modification of our multiple branch prediction algorithms to use cache indices instead

of the full instruction fetch addresses. The advantage of this idea is lower storage

area and costs, and the possible expense of accuracy. Conte et al. [11] improved on

our multiple branch prediction algorithms by introducing the collapsing buffer for

grouping non-contiguous basic blocks. Wallace et al. [12] improved on our multiple

branch prediction algorithm by using an array of two-bit predictors for each

instruction in the fetch block to predict multiple branches per fetch block. They also

used a BTB with targets for each instruction in the fetch block which was used for

near-block encoding to reduce the space needed to store target addresses. The

limitation to their approach is that they can only handle one taken branch per cycle.

In Lee et al. [13], instead of using the global history register they used the per-address

history register to reduce interference. Both predictions come from the same history

register of the primary address. Finally, Koppelman [14] published some interesting

system simulations comparing our multiple branch prediction algorithms to a

superblock predictor and showed that our multiple branch predictor gave superior

performance of 10% over the superblock predictor which gave 8%.

The next category of related work is other multiple branch prediction algorithms,

published after our work, inspired by our work, but not building directly on our

algorithms. We list some of the more interesting research here. Seznec et al. [15]

proposed an algorithm where the current instruction fetch address is not used for

predicting the address of the next instruction block, but rather for predicting the block

following the next instruction. This effectively pipelines the branch prediction loop

to achieve higher clock rate, as opposed to wider instruction fetch (similar to the

difference between superpipelining vs. superscalar). Rakvic et al. [16] proposed a

tree-based multiple branch predictor which employs a three-level design with two

levels of Pattern History Tables. It maintains a tree structure of individual single

branch predictors, and based on their predictions, a path in the tree is identified as the

candidate trace. Pnevmatikatos et al. [17] relied on compilers to partition the control

 41

flow graph (CFG) into tree-like subgraphs of depth 3. All parameters required to

describe a subgraph are stored in a Subgraph History Table. Finally, in Reinman et

al. [18] they propose decoupling the branch predictor and instruction fetch. The

branch predictor is allowed to run far ahead of instruction fetch by storing many fetch

addresses in a Fetch Target Queue. This allows optimizations such as a multi-level

branch predictor design, and fetch-directed prefetching.

The last category of related work described here will be that of the Trace Cache. The

instructions stored in the trace cache represent a dynamic trace of execution, and

therefore takes multiple possibly non-contiguous blocks of instructions and stores

them together to be easily fetched. The earliest publication was in the form of a U.S.

Patent filed by Peleg and Weiser of Intel [19]. The earliest academic publication of

the trace cache was by Rotenberg et al. [20], this publication gave the idea its current

commonly known name, the Trace Cache. Patel et al. [21] published several more

practical implementation options for the trace cache. And Intel’s Pentium 4

Processor was the first commercial processor to implement a trace cache to support

its aggressive out-of-order and simultaneous multithreading microarchitecture [22].

2.6 Conclusion

The trend towards increasingly complex and parallel hardware mechanisms to extract

instruction level parallelism from sequential code is advancing at an accelerated rate.

Much research has gone into compiler technology to increase basic block size in

order to fetch more and more instructions at a time. Increasing basic block size is not

enough, however. We propose in this chapter a hardware mechanism to fetch

multiple basic blocks simultaneously.

We demonstrate in this chapter the viability of such schemes by identifying the three

essential problems and presenting solutions to each of these. The Multiple Branch

Two-level Adaptive Branch Predictor provides the capability of predicting multiple

branches each cycle, the Branch Address Cache supplies the starting addresses of

 42

basic blocks following the multiple predicted branches, and an instruction cache with

interleaved banks provides sufficient bandwidth for fetching multiple non-

consecutive basic blocks without the hardware cost of multiple read ports.

In addition, we have presented simulation results indicating that significant

performance improvements can be achieved even without specific compiler

optimizations. When going from one to two to three branch predictions and basic

block fetches per cycle, we saw the IPC_f (effective instructions fetched per cycle for

a machine front-end) improve from 3.0 to 4.2, and 4.9, respectively for integer

benchmarks. For floating point benchmarks, the IPC_f went from 5.6 to 7.1 and 8.9.

These improvements were achieved by providing the hardware mechanisms to predict

and fetch multiple basic blocks without specific compiler optimizations.

 43

 CHAPTER 3
SIMULTANEOUS MULTITHREADING

3.1 Motivation

Processor speeds have increased dramatically over the past decades, much faster than

the speed of memory, so memory latency tolerance has become a major focus of

attention. Even more importantly, power consumption has been increasing at a

greater rate than processing speeds [23-25]. In the past, shrinking process technology

producing smaller and smaller devices has alleviated the power requirements to some

extent. However, process devices are now so small that current leakage is becoming

a major concern.

Power-efficient computing for memory latency tolerance has led Intel, IBM, and

others to embrace simultaneous multithreading (SMT) as a solution. Intel and IBM

have introduced the first commercially available processors with SMT in recent years.

SMT builds on the dynamic-issue superscalar processing technology of modern high-

performance processors to increase the pool of instructions available to the processing

units. This helps keep the processor busy in the face of long memory latencies due to

cache misses, as well as for code with low to medium instruction-level parallelism.

Since leakage power is typically about 40% of total power for today’s processors

[23], and is expected to grow as a percentage of total power [24, 25], reusing the

same processor’s resources more efficiently can result in much more power-efficient

computing. It is better to use existing physical processing resources to their full

extent in order to amortize the leakage current.

 44

An SMT processor from the hardware perspective looks like one physical processor.

However from a software (operating system or application) perspective it looks like

multiple processors. The operating system can schedule a runable software thread for

every “logical processor”, and there may be many logical processors for each

physical processor. The SMT processor will fetch the instructions for all the software

threads scheduled on it, to increase the pool of independent instructions available to

the execution units. Since there are no data dependencies between instructions from

different software threads, the number of independent instructions can be

dramatically greater than in a non-SMT processor. In addition, the variety of

instructions could potentially be greater and thus make more efficient use of hardware

resources that otherwise might remain idle.

Each logical processor has its own set of registers, instruction pointer, and a few other

resources, such as interrupt handling mechanisms. In general, SMT processor

execution units are unaware of what instructions belong to which software thread.

Completed instructions are sorted out to the independent software threads to which

they belong so that each architectural state can be updated correctly.

SMT provides higher overall system throughput and therefore performance.

However, there are important considerations that must be carefully addressed when

designing an SMT processor. Since SMT logical processors share the physical

processor’s resources, the overall throughput depends on the mix of software threads

and their characteristics that happened to be scheduled simultaneously. Predicting

performance and throughput can be challenging. Ensuring fairness can be even more

difficult. Some threads may thrash the cache, some threads may have aliased

addresses with other threads, some threads may compete for the same resources, and

some threads may be so highly optimized to run on the implementation alone, that

any interference can result in poor performance. Some real-time applications may

require a minimum bandwidth from physical resources. These and other

considerations are only beginning to be understood.

 45

If the SMT processor were targeted at a specific market, such as the network

processor market where every threads is handling packet processing, the choices and

tradeoffs for microarchitecting the processor may be easier. Or if the processor is

targeted at a specific database processing market where the application and operating

system are aware and optimized for the SMT implementation, the design choices and

tradeoffs could also be made in a relatively straight-forward manner.

It can be an entirely different matter for a processor that must contend with any

operating system, and a wide variety of applications. This is the environment for

which the Pentium 4 processor was targeted, and the focus of this work.

3.2 Terms

For clarity, we will avoid using the generic terms “thread” or “threads” due to

confusion between hardware contexts and software threads. Accordingly, we define

the following terms for use in the rest of this thesis:

 Software threads: Software may be written with one or more threads that

can be schedulable separately by the operating system onto logical processors

for execution.

 Logical processor: What the software/operating system views as a

schedulable processor entity. Distinct logical processors may or may not

share a physical processor’s resources.

 Physical processor or Package: The physical implementation of a processor

entity, typically consisting of a full pipeline from instruction fetch to

execution and then to retirement.

 IA-32: The Intel 32-bit instruction set architecture.

 46

3.3 Background

In this section I will describe some of the history of SMT research as well as other

hardware multithreading approaches. A concise survey of a variety of other hardware

multithreaded processors, including their general characteristics, is presented in a

paper by Ungerer et al. [26]. In general, there are three categories of hardware

multithreading techniques: Simultaneous multithreading (SMT), interleaved

multithreading (IMT), and switch-on-event multithreading (SOEMT).

3.3.1 Simultaneous Multithreading

Early work on SMT was done at both Intel, and at universities. At Intel, early

research resulted in a proposal to add SMT (internally it was called shared resource

multiprocessing) to the P6 microarchitecture was done in 1991. At the time, it was

decided not to add this to the P6 for market reasons. After adding SMT to their

Pentium 4 and Xeon products, Intel announced their SMT work in the Fall of 2001 at

the Intel Developers’ Forum where an entire track was devoted to introducing and

optimizing for their SMT design [27].

Mario Nemirovsky did early research work published in his Ph.D. dissertation [28] on

SMT in the late 1980s, which he called multistreaming. He later proposed to

implement SMT in the Clearwater network processor [29, 30], but this project was

never completed.

The most commonly cited research work was done at the University of Washington

by Dean Tullsen [31], where he evaluated an SMT design and compared it with a

superscalar non-SMT design and an interleaved multithreaded design (IMT). He

found that SMT was a clear performance win. His later work showed that adding

SMT to an out-of-order superscalar design would involve only a relatively small cost

[32-34].

 47

Another team, Loikkanen and Bagherzadeh, was also working on a fine-grain

multithreading processor which had many similar characteristics to SMT, including a

shared but partitioned register file and dynamically shared execution units [35].

3.3.2 Interleaved Multithreading

Interleaved multithreading refers to processors that hold the context of a number of

software threads while alternating execution of the instructions in the threads on a

cycle-by-cycle basis. Examples of supercomputing products which use interleaved

hardware multithreaded architectures include the Heterogeneous Element Processor

(HEP)[36], the Horizon[37, 38], the Tera (based on the Horizon)[39], and the Cray

Multi-Threaded Architecture (MTA-2)[40]. Other proposals included the Multilisp

Architecture for Symbolic Applications (MASA)[41], MIT’s M-Machine[42],

MicroUnity’s Media Processor[43], and the SB-PRAM/HPP[44, 45]. An example of

a network processor is the Lextra LX4580, which could have up to five threads. In

principle, the interleaved multithreading technique can be combined with superscalar

out-of-order execution techniques, but Eggers et al., show that SMT is more efficient

[33].

3.3.3 Switch-on-Event Multithreading

SOEMT refers to processors that context switch to a different software thread on

certain long-latency events, such as a cache miss, to a different software thread. This

type of multithreading is coarser grained than SMT or interleaved multithreading.

Examples of SOEMT include the MIT Sparcle [46] and the Msparc [47, 48]

processors which switch on cache miss. The Columbia Homogeneous Parallel

Processor (ChoPP) 1 [49] uses switch-on-cache-miss and switch-on-use. The

Decoupled Multithreaded Processor Rhama [50, 51] uses several static and dynamic

events. The EVENTS scheduler [48, 52] uses an external scheduler to trigger context

switches. The Komodo microcontroller [53-55] detects real-time events requiring

 48

fast response and uses those events to trigger context switches. Commercial

processors include the IBM RS64 IV [56] and the Sun MAJC [57]. Network

processors include the Intel IXP [58], IBM Power NP [59], Vitesse IQ2x00 [60], and

AMCC nP [60]. Finally, the MIT Jellybean Machine (J-Machine) [61] falls into this

category.

3.4 Performance of SMT vs. SOEMT

Much has been said about the benefits of SOEMT compared to SMT. In the

following sections, we will quantify the performance benefits.

Since we do not have any real systems that can be used to readily compare switch-on-

multi-threading vs. simultaneous multi-threading, we use our Pentium 4 simulator.

The simulations were done for the Pentium 4 “Prescott” configuration (31-stage

pipeline, 16KB L1 cache, 1MB L2 cache, SSE3).

The switch-on-event configuration was as follows:

1. Only one software thread’s uops are active in the pipeline at a time.

2. There are two instruction pointers in the trace cache, microcode ROM, and pre-

decoder. There are instruction prefetch buffers for both threads so that both logical

processors will have prefetched instruction bytes ready-to-decode.

3. The switching to executing uops from the other thread happens in a single cycle.

We clear the pipeline and start reading bytes from the prefetch buffers for the other

thread simultaneously.

4. The “events” that we switch on are cache and TLB misses that must go to DRAM

(i.e., misses the last-level on-chip cache), and IN and OUT instructions that stall the

pipeline. An out-of-order pipeline can often mitigate short-latency delays, but has

trouble with long delays, such as those required for DRAM accesses and IN/OUT

instructions.

 49

5. Data loads that miss the cache are allowed to become the oldest uop in the pipeline

before we clear the pipeline and switch to the other thread. This allows as many as

possible simultaneous load misses to get started to DRAM before we switch to the

other thread.

For workloads, we used a wide variety of traces grouped into “classes” to compare

the performance. The classes of traces are: SPEC2000, Internet, Multimedia,

Productivity, Workstation, and Server. Table 5 lists the applications in each trace

class.

Table 5. Table of trace categories, the applications in those trace categories, and the number of

traces of each application that were used for simulations.

Trace Category Applications # of

Traces

SPEC2000: Gzip 3

 Wupwise 3

 Swim 3

 Mgrid 3

 applu 3

 Vpr 3

 Gcc 3

 Mesa 3

 Mcf 3

 Equake 3

 Crafty 3

 Facerec 3

 Ammp 3

 Lucas 3

 Fma3d 3

 Parser 3

 Sixtrack 3

 Perlbmk 3

 Gap 3

 Vortex 3

 Bzip2 3

 Twolf 3

 Apsi 3

Internet Webmark2001 b-autoconcepts 3

 Webmark2001 b2b-ecommodity 3

 50

 Webmark2001 b2b-ehousebuilder 3

 Webmark2001 b2b-electronics 3

 Webmark2001 b2b-emedinsure 3

 Webmark2001 b2b-myfoyer 3

 Webmark2001 b2b-superetailer 3

 I-bench Quicktime 1

 I-bench Shockwave 1

 I-bench VRML 1

Multimedia 3dwb2k 1

 Dragon-Naturally-Speaking 3

 EjayMP3Encoder 2

 Flask-MPEG4-Encoder 4

 Photoshop 1

 QuakeIII Arena 2

 Virtual-ray Scene5 1

Productivity Winstone2001_Business 10

 Winstone2001_ContentCreation 10

 Wintune_Test2 1

 CPUmark99 1

 Hammerhead 2

 Officebench11 2

 Sysmark2K 23

Workstation Ansys55 5

 Nastran 4

 Oasis 3

 FPUmark99 1

 Verilog 3

 Catlym 1

 Viewperf 1

Server SQLServer 15

We ran the simulations in two ways. The first we referred to as “domain

decomposition”, where we follow the software threading practice of taking a single

computation loop and multi-threading each iteration of the loop. Since we don’t have

any traces of true multi-threaded applications, we approximated the behavior by

running the same trace on both threads, but offsetting the physical addresses of the

memory accesses. The second we referred to as “functional decomposition”, where

we follow the software threading practice of using different threads to implement

different functions (e.g. grammar checking, printing, rendering different objects) or

multi-tasking. Again, we don’t have any traces of a true multi-threaded applications

 51

or multi-tasking workloads, so we approximated the behavior by running different

combinations of traces. The trace combinations were established randomly.

SMT vs. SOEMT

Pentium 4 Processor 3.4 GHz

Simulation

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

C
P
U
 2

00
0

D
om

ai
n

D
ec

om
p

C
P
U
 2

00
0

Func
tio

nal
 D

eco
m

p

In
te

rn
et_

D
om

ai
n D

ec
om

p

In
te

rn
et F

unc
tio

na
l D

ec
om

p

M
ul
tim

ed
ia
 D

om
ain

 D
ec

om
p

M
ul
tim

ed
ia
 F

un
ct

io
na

l D
ec

om
p

P
ro

duc
tiv

ity
 D

om
ain

 D
eco

m
p

P
ro

duc
tiv

ity
 F

un
ct

io
na

l D
ec

om
p

W
ork

st
at

io
n

D
om

ai
n

D
ec

om
p

W
ork

st
at

io
n

F
un

ct
io
nal

 D
eco

m
p

S
er

ve
r (

T
P
CC

),
1P

A
ve

ra
ge

M
T

 S
p

e
e
d

u
p

SMT Speedup

SOEMT Speedup

Figure 16. Simultaneous Multithreading vs. Switch-on-Event Multithreading performance

comparison on different application classes.

Figure 16 shows the results of the simulation. With the exception of the database

class of workloads, much of the performance benefit of SMT comes from taking

advantage of both inefficient pipeline use and cache latency tolerance, while SOEMT

only takes advantage of cache latency tolerance . The database class of workload is

dominated by cache misses and I/O, so it is only in that area that SOEMT benefits are

close to that of SMT.

Specifically, applications where SOEMT exceeded 20% included: database server

application running a warehouse transaction application, SPECjbb, SPECweb,

Verilog, trade2, facerec, mcf, msvc, equake, art, and vpr. Applications where

 52

SOEMT gave a 10-20% benefit included Media Encoder, Ansys, Nastran, Dragon

Naturally Speaking, and an MPEG1 encoder.

In conclusion, SOEMT might provide significant benefit in some application spaces,

especially server application spaces which run a lot of applications similar to

transaction processing, SPECweb, and SPECjbb. It can also significantly boost a

few other applications. However, SMT benefits a much wider classes of applications.

 53

 CHAPTER 4

SIMULTANEOUS MULTITHREADING

IMPLEMENTATION

This chapter presents our work in designing the Intel Pentium 4 Processor’s SMT

implementation, and compares our implementation with those of other commercial

implementations. Section 4.1 describes the Pentium 4 microarchitecture. Sections

4.2 through 4.4 describe the implementations of commercial processors such as the

IBM Power5, Alpha EV8, and the Clearwater CNP810SP, as well as comparing their

features with the Pentium 4 processor SMT implementation. Only the Intel and IBM

Power5 implementations were completed; the Alpha and Clearwater processor

designs were cancelled before they could be completed.

Several goals were at the heart of the microarchitecture choices and tradeoffs of the

Pentium 4 implementation of simultaneous multithreading (SMT). One goal was to

minimize the implementation cost in terms of die area. Since the logical processors

share the vast majority of microarchitecture resources, only a few small structures

were replicated. The cost was less than 5% of the total die area. Figure 17 shows

some of the larger structures contributing to this die area increase.

Since the die area allotted to the Pentium 4 processor’s SMT implementation was

limited, there were some interesting trade-offs that were made to maximize the

usefulness of the limited resources for best performance. There were also interesting

opportunities that were left on the table since they were either too expensive or too

complex for a first implementation of a risky technology.

 54

Instruction TLB

Next Instruction PointerInstruction Streaming Buffers

Trace Cache

Fill Buffers

Register Alias

Tables

Trace Cache

Next IP

Return Stack

Predictor

APIC

Figure 17. The Intel Pentium 4 processor and the visible processor resources duplicated or added

to support SMT. There are also scattered miscellaneous pointers and control logic that were too

small to highlight in this figure. The APIC is the advanced programmable interrupt controller.

A second goal was to ensure that when one logical processor was stalled the other

logical processor could continue to make progress. A logical processor can be stalled

for a variety of reasons, including servicing cache misses, handling branch

mispredictions, or waiting for the results of previous instructions. Independent

progress was ensured by managing buffering queues such that no logical processor

could use all the entries when two active software threads were executing. Raasch and

Reinhardt reinforced the Pentium resource partitioning decisions by showing that

simple partitioning schemes were the fairest, while more complex dynamic

partitioning schemes did not significantly improve overall throughput [62].

A third goal was to ensure that an SMT processor running a single software thread

could run at the same speed as a processor without SMT capability. This implies that

partitioned resources should be able to be recombined when only one software thread

is active to give the single software thread the full resources of the physical processor.

 55

4.1 Intel Pentium 4 and Xeon Processor Family SMT

Microarchitecture

The Pentium 4 processor [22] and Xeon processor family share a common

microarchitecture. The microarchitecture was designed as a general-purpose

microprocessor aimed at running a wide variety of computing applications well. The

Pentium 4 and Xeon family can vary in the maximum number of processors

supported and in cache size and hierarchy. The SMT features were implemented at

minimum cost to allow two logical processors [63] to share the resources of a single

physical processor. The general flow of the pipeline is shown in Figure 18. Buffering

queues separate major pipeline logic blocks. These buffering queues are either

partitioned or duplicated to ensure independent forward progress through each logic

block.

T
C

 /
 M

S
-R

O
M

R
en

am
e/

A
ll

o
ca

te

Q
u
eu

e

O
u
t-

o
f-

o
rd

er

S
ch

ed
u
le

 /
 E

x
ec

u
te

D
ec

o
d
e

Q
u
eu

eQ
u
eu

e

R
et

ir
em

en
t

Q
u
eu

e
Q

u
eu

e

Q
u
eu

e

Phys

Regs

Arch

State

Arch

State

Q
u
eu

e

APIC

APIC

F
et

ch

Arch

State

Arch

State

Figure 18. Intel Pentium 4 Processor Pipeline. APIC is the advanced programmable interrupt

controller. TC is the trace cache. MS-ROM is the micro-sequencer read-only-memory which

stores and sequences microcode.

In the following sections we will walk through the pipeline and discuss the

implementation of the major function blocks.

 56

4.1.1 Front End

Cache

Fill

Trace

Cache

Uop

Queue

IP

Queue
L2

Access

Decode

Queue

ITLBITLB

Decode

L2 Access

I-Fetch

Trace

Cache

Uop

Queue

IP

(a)

(b)

Figure 19. Details of the Front-end Pipeline for (a) Trace Cache Hit and (b) Trace Cache Miss.

The front-end of the pipeline is responsible for fetching, decoding, and delivering

micro-operations (“uops”) to the later stages of the pipeline.

 57

Instructions generally come from the Execution Trace Cache (TC), which is the

primary instruction cache, as shown in Figure 19(a). Figure 19(b) shows that only

when there is a TC miss does the machine fetch and decode instructions from the

unified Level 2 (L2) cache (unified because it is a shared cache for both instructions

and data). Not shown, but in the same functional block as the TC is the Microcode

ROM (MS-ROM), which stores decoded instructions for the longer and more

complex IA-32 instructions.

Execution Trace Cache (TC). The TC stores decoded instructions, or uops as

described above. Most instructions are fetched and executed from the TC. Two sets

of next-instruction-pointers (one for each logical processor) track the progress of the

two software threads running on two logical processors. The two logical processors

arbitrate access to the TC every clock cycle. All TC entries are tagged with logical

processor ID such that a single entry cannot be used by both logical processors. The

TC is 8-way set-associative; entries are replaced based on a least-recently-used

(LRU) algorithm.

Microcode ROM (uROM). The uROM stores uops for either less-commonly used

or more complex Intel Architecture instructions. When one of these instructions are

encountered, the TC sends a pointer to the uROM which then fetches the sequences

of uops needed and returns control to the TC. Two microcode instruction pointers are

used to control the flows independently if both logical processors are executing uops

from the uROM; however, both logical processors share the uROM entries.

ITLB. When there is a TC miss, the ITLB receives the request from the TC to

deliver new instructions, and translates the next-instruction-pointer address to a

physical address. The request is sent to the L2 unified cache, and instruction bytes

are returned. These bytes are placed into streaming buffers which hold the bytes until

they can be decoded. Each logical processor has its own ITLB and its own set of

instruction pointers to track progress of instruction fetch and its own set of streaming

buffers to enable independent progress for instruction fetch.

 58

Branch prediction. The return stack buffer is duplicated for better call/return

prediction. The large global branch history array is a shared structure with entries

tagged with a logical processor ID. The branch history register used to look up the

global history array is duplicated to track the branch history of the two logical

processors independently.

Instruction Decode. The decode logic takes instruction bytes from the streaming

buffers and decodes them into uops. In general, if both logical processors need access

to the decoder, the decode logic will decode several instructions for one before

switching to decode several for the other logical processor. This allows the

implementation to share all of the complex logic and buffering required to decode IA-

32 instructions. These decode uops are then placed into the TC.

Uop Queue. After uops are fetched from the TC or the uROM, or forwarded from

the decode logic, they are placed in the uop queue. This queue decouples the Front

End from the Out-of-order Execution Engine in the pipeline flow. The uop queue is

partitioned such that each logical processor has half the entries.

4.1.2 Out-of-order Execution Engine

The out-of-order execution engine consists of the allocation, register renaming,

scheduling, and execution functions, as shown in Figure 20. This part of the machine

re-orders instructions and executes them as soon as their inputs are ready, without

regard to the original program order.

 59

Rename Queue

Register

Read Execute L1 Cache

Register

Write Retire

Registers

Sched
Uop

Queue

Register

Rename

Register

Rename

Registers
Re-Order

Buffer

Store

Buffer

L1 D-Cache

AllocateAllocate

Figure 20. Details of the Out of order Execution Engine Pipeline.

Allocator. The allocator allocates many of the key machine buffers for each uop,

including the 126 re-order buffer entries, 128 integer and 128 floating point physical

registers, 48 load and 24 store buffer entries. If there are uops for both logical

processors in the uop queue, the allocator will alternate selecting uops from the

logical processors every other cycle to assign resources. Each logical processor can

use at most half of the resources allocated at this stage.

Register rename. The register rename logic renames the architectural IA-32

registers onto the machine’s physical registers. The renaming logic uses a Register

Alias Table (RAT) to track the latest version of each architectural register to tell the

next instruction(s) where to get its operands. There are two RATs, one for each

logical processor. Register renaming is done in parallel with the allocator logic

described above. Once uops have completed the allocate and register rename

processes, they are placed into two sets of queues, one for memory operations and

another for all other operations, called the memory instruction queue and the general

instruction queue, respectively.

 60

Instruction scheduling. Five uop schedulers are used to schedule different types of

uops for the various execution units. Collectively, they can dispatch up to six uops

each clock cycle. The memory instruction queue and the general instruction queue

send uops to the five scheduler queues as fast as they can, alternating between uops

for the two logical processors every clock cycle, as needed. The schedulers are

oblivious to logical processor distinctions; they simply evaluate whether to dispatch

uops based on dependent inputs and availability of execution resources. To avoid

deadlock and ensure fairness, there is a limit on the number of active entries that a

logical processor can have in each scheduler’s queue.

Execution units. The execution core and memory hierarchy are largely oblivious to

the logical processors. Uops merely access the physical register file to get their

destinations and then write results back to the physical register file. By simply

comparing physical register numbers, the forwarding logic sends results to other

executing uops without having to understand logical processors. After execution,

uops are placed in the reorder buffer.

Retirement. The retirement logic tracks when uops from the two logical processors

are ready to be retired, then retires the uops in program order. Retirement will retire

uops for one logical processor, then the other, alternating back and forth. For stores,

once retired, the store uop needs to write its data into the data cache. Selection logic

alternates between the two logical processors to commit store data to the cache.

4.1.3 Memory Subsystem

The memory subsystem includes the DTLB, the level 1 data cache, the level 2 unified

cache, and an optional level 3 unified cache. The memory subsystem is largely

oblivious to logical processors. The schedulers send load or store uops to the

memory subsystem without regard to logical processors, and the memory subsystem

handles them as they come.

 61

DTLB. Although the DTLB is a shared structure, each entry includes a logical

processor ID tag. Each logical processor also has a reservation register to ensure

fairness and forward progress in processing DTLB misses.

L1 data cache, L2 unified cache, (and optional L3 unified cache). The L1 data

cache is virtually addressed and physically tagged. Each entry includes a context

identifier [64] which is dynamically set or reset based on whether the page-directory

base addresses (stored in a control register) are the same or different for the two

logical processors. If the page-directory base addresses are the same, then the two

logical processors are likely to be sharing the same data and therefore can read/write

each others’ cache entries in an optimal way. If different then the two logical

processors are unlikely to be sharing the same data and we can prevent partial-address

aliasing conflicts by giving them two different context identifiers.

Bus. From a service perspective, cache miss requests and other bus requests from the

logical processors are processed on a first-come-first-served basis, with queue and

buffering space shared. Priority is not given to one logical processor over another at

any time. For debug purposes, the logical processor ID of the request that generated

the transaction is visibly sent onto the bus in the request phase.

Interrupts. Requests to the local APIC (advanced programmable interrupt

controller) and interrupt delivery resources are unique and separate per logical

processors.

4.1.4 Single-task and Multi-task Modes

To optimize performance when there is one software thread to execute, there are two

modes of operation, called single-task (ST) and multi-task (MT). In MT-mode, there

are two active logical processors and some of the resources are partitioned as

described earlier. In ST-mode, only one logical processor is active and resources that

were partitioned in MT-mode are re-combined to give the single active logical

 62

processor full use of all the resources. The two flavors of ST-mode are ST0-mode

and ST1-mode, depending on which logical processor is active.

4.2 IBM Power5

The IBM Power5 is a dual-core microarchitecture. It has two identical processor

cores, each supporting two logical processors (or threads in IBM terminology). The

two cores share a 1.875-Mbyte L2 cache. There is also an integrated directory for an

off-chip 36MB L3 cache, and an integrated memory controller.

The key differences between the IBM Power5 [65] and the Intel Pentium 4 processor

are due to different goals for the SMT implementations. Intel intended for their

processors to run with shrink-wrapped off-the-shelf operating systems and any variety

and combination of standard off-the-shelf software applications. Intel therefore went

out of the way to balance fairness and throughput aspects throughout the

microarchitecture.

The IBM Power5 assumes a special operating system to dynamically detect whether

software threads run well together and only schedule threads if they run well. The

applications themselves also must be aware of the SMT implementation in order to

run. Therefore, while IBM includes deadlock detection and resolution mechanisms,

they did not go to the same effort to balance throughput and fairness in the

microarchitecture, since only applications that are known to benefit and to run

“fairly” on the SMT-enabled system would share the SMT feature. In fact, the major

drawback of the IBM approach is lack of backward compatibility and the requirement

that applications and operating systems be aware of the SMT feature. This is an

onerous restriction, and puts huge responsibility on application writers who may not

want to worry about coding to specific hardware resource sharing on specific

implementations. This is likely to limit the number of applications that can take

advantage of IBM’s SMT implementation, and those applications that do take

 63

advantage of it may be limited in performance on future implementations due to

different tradeoffs in terms of resource utilization and balance.

4.2.1 Front-end

The Power5 front-end operation is similar to the Pentium 4 processor. Instruction

fetches alternate between the two logical processors, they share the instruction

translation facilities, and they share the instruction cache.

For branch prediction, the IBM Power5 uses separate return stack buffers, but entirely

shares the branch prediction state. The Pentium 4 processor shared most of the large

structures, but had separate branch history buffers and return stack buffers. A

drawback of the IBM implementation, where even the branch history buffers are

shared, is increased likelihood of incompatible branch histories resulting in poorer

branch performance.

The logical processors have separate instruction fetch queues to place instruction

bytes after fetch, similar to the Pentium 4 processor.

Decode is done for one logical processor at a time, the logical processor selection is

based on logical processor priority, which can be set by software or by hardware if

unfairness is detected. Instructions are decoded in groups of up to 5 instructions per

cycle, and each group is allocated an entry in the global completion table (GCT).

Unlike the Pentium 4 Processor’s reorder buffer which allows each logical processor

to occupy only half the entries, the Power5’s GCT entries can be entirely occupied by

a single thread. This can be a potential source of deadlock or fairness issue.

 64

4.2.2 Out-of-order Execution Engine

Like the Pentium 4 processor, the Power5’s logical processors dynamically share the

physical register files. After renaming, the instructions are placed into shared issue

queues. Instructions are scheduled and issued to execution units with no regard to

logical processors.

The GCT, which tracks instructions through the pipeline, groups instructions for

tracking. Each group takes an entry in the global completion table. There are 20

entries in the GCT, which can each hold up to 5 instructions in a group. While each

entry can only contain instructions from one logical processor and are allocated in

program order, successive entries may belong to different logical processors. When

all instructions in a group have executed and the group is the oldest for the given

logical processor, it can commit (or retire in Intel terminology). Up to two groups

can commit per cycle, one group from each logical processor.

4.2.3 Memory Subsystem

The L1 instruction and data caches are 64KB 2-way set-associative and 32KB 4-way

set-associative, respectively. The first-level data translation table is 128 entries, which

is the same as the Power 4, but it was made fully associative for better SMT

performance.

The non-core levels of cache hierarchy (1.875 MB L2 cache, the optional L3 cache,

and bus/memory access) is assumed to be competitively shared.

Overall, since the L1 cache sizes are larger on the Power5 than the Pentium 4

processor, the Power5 may have better average cache hit rates on many applications.

However, the lower set associativity increases the likelihood of cache interference

(thrashing) resulting in less predictable performance benefits from the SMT

capability.

 65

4.2.4 Single-task and Multi-task Modes

The IBM Power5 supports the same set of single-task and multi-task modes as Intel’s

Pentium 4 processor: two flavors of the ST-mode, and the MT-mode.

4.2.5 SMT Performance Enhancing Features

The Power5 depends on software, including operating system, middleware, and

applications, to appropriately set the priority levels in order to run optimally. They

call this feature “adjustable thread priority”. Software is responsible for choosing the

correct balance of priority. Some of the reasons listed by IBM [65] for changing

thread priority include:

 Spin loops. Software would give the software thread lower priority because

it’s not doing useful work.

 Idle loops. If there is no immediate work for the OS to schedule to a logical

processor, the OS would run an idle loop which is similar to a spin loop. The

idle loop is not doing useful work and the OS should move the idle thread to a

lower priority.

 One application is more important than another. For example, real-time tasks

may be given higher priority. Or foreground tasks may be given higher

priority than background tasks.

Ensuring that all software would use thread priority appropriately without abusing it

is a challenge. IBM feels that this is reasonable since they own the entire software

stack for their server systems.

In addition to software-controlled priority levels, Power5 also has a feature they call

“dynamic resource balancing” which is needed to ensure that instructions from two

logical processors flow smoothly through the processor. This is needed because a

single L2 cache miss can cause dependent instructions to quickly backup the issue

queues, slowing down groups of instructions from the other logical processor. Or one

 66

logical processor may be running a software thread that has higher CPI (and is

therefore slower) than the other due to the mix of dependencies and instruction types.

The slower thread would eventually use more and more of the GCT entries and slow

down the faster thread. The Power5 microarchitecture monitors the number of L2

cache misses and the number of GCT entries that each thread is using and then takes

one or more of the following actions:

 Reduce the logical processor priority. This is the primary mechanism for

cases where a thread uses more than a predetermined number of GCT entries.

 Inhibit the logical processor’s instruction decoding until the congestion clears.

This is the primary mechanism for cases where a logical processor has greater

than a prescribed number of L2 cache misses.

 Flush all instructions waiting for dispatch and halt decoding instructions for

one logical processor. This is the primary mechanism for throttling in the case

of a long-executing instruction such as a synch instruction.

The problem with the first two mechanisms is that application behavior tends to be

very bursty. Some instruction segments will be slower for a while, due to

dependencies and cache misses, after which the instructions may execute quickly for

a while. Putting throttling mechanisms at the front-end of the machine is generally

too late to react to most conditions, such as L2 cache misses and slow segments of

code. As for the third mechanism, flushing instructions is expensive and wastes

power, and therefore is not suitable for frequently encountered conditions.

4.3 Alpha EV8

The Alpha EV8 processor was cancelled before it was completed. However, its

microarchitecture included a proposed 4-way SMT implementation [66] [67] [68].

The EV8 was intended to be an 8-wide out-of-order superscalar microarchitecture.

The additional silicon area to implement 4-way SMT was estimated to be less than

 67

10%. Few details are publicly available describing the SMT implementation in the

microarchitecture.

The EV8 was much more aggressive in trying to achieve 4-way SMT performance

than the Pentium 4’s modest 2-way SMT. However, going to 4-way SMT adds a

disproportionate amount of complexity to the microarchitecture. With 4 logical

processors, and many structure sizes are limited by access latency, which means that

complex sharing algorithms and even more complex fairness algorithms are required.

This is in contrast to the simple approach of dividing a few key resources in half as

done in the Pentium 4.

The overly complex nature of having to support 4 logical processors may have

contributed to the design time and ultimate failure of the EV8 processor becoming a

real product. While this does not mean that a 4-way SMT cannot be done, the

performance predictability and complexities of efficiently sharing resources are

extremely difficult problems to solve. Complex sharing mechanisms are required to

prevent structures from severely limiting the overall frequency of the processor. The

problem is very similar to that encountered in trying to design thread priority

mechanisms that improve overall throughput without compromising fairness and

predictability. Thus far no mechanisms have been shown to be effective and tractable

in dynamically sharing resources.

4.3.1 Front-end

The instruction fetch logic attempts to assemble 8 valid instructions each cycle. To

do this, they fetch 16 instructions from two separate cache blocks, each 8 instructions

wide. A collapsing block removes instructions not on the predicted path. In each

clock cycle instructions are fetched for only one logical processor. The instruction

cache is a shared structure. There are four separate program counters to track fetch

progress for the four logical processors independently. During register renaming,

 68

there are four independent register alias tables. With 32 integer and 32 floating point

architectural registers for each logical processor a total of 256 total architectural

registers are required. The implementation has 512 physical registers to

accommodate a total of 256 in-flight instructions. The register file takes 3 cycles to

access due to transit delays and its size, so smaller register caches for the integer and

floating point units were added to reduce the penalty of this latency. The register

caches store copies of 8 cycles’ worth of results. The renamed instructions are placed

in a shared instruction queue, possibly allocated based on an I-count algorithm as

described in [33].

4.3.2 Out-of-order Execution Engine

Presumably the instructions are issued to execution units and access the memory

pipeline based on instruction dependencies. Instructions are retired in blocks of

instructions in program order [67].

4.3.3 Memory Subsystem

The first and second level caches, and the translation buffers are shared by all logical

processors [67].

4.4 Clearwater Networks CNP810SP Processor

The Clearwater Networks CNP810SP processor was another processor that spent

years in the design but never taped out. It was also intended to be an SMT processor,

but targeted specifically at the network processing market. The intention was to have

eight logical processors executing simultaneously on a superscalar core capable of a

executing a maximum of ten instructions per cycle [69]. Very little detail is publicly

known about the Clearwater processor’s microarchitecture implementation.

 69

Again, supporting a large number of logical processors involved complexity and huge

wiring challenges that may have contributed to its demise. However, since the

Clearwater processor was narrowly targeted at a specific application class and market,

it did not need to have the same level of fairness vs. throughput guarantees that the

Pentium 4 required.

4.4.1 Front-end

A shared dual-ported instruction cache can supply up to eight instructions for each of

two logical processors per cycle, for a maximum of sixteen instructions per cycle.

The instructions are placed in separate instruction queues for each logical processor,

so there are eight instruction queues, each can hold up to 16 instructions. Two logical

processors are selected each cycle to access the instruction cache. The selection is

based on which logical processors have the fewest number of instructions in their

instruction queue.

Each logical processor has its own 31-entry register file. There is no sharing of

registers between the logical processors.

4.4.2 Out-of-order Execution Engine

The logical processors are divided into two groups of four for scheduling and

dispatch. The dispatch logic is therefore split into two groups, or “clusters”. Each

cluster consists of the dispatch logic, and four functional units. There are also two

ports to the data cache that are shared by both clusters. Each cluster dispatch logic

can send up to six instructions from the four different logical processors, where zero

to three instructions can be executed from each logical processor depending on

instruction dependencies and availability of resources. A maximum of ten

instructions can be dispatched per cycle. The functional units are fully bypassed so

that dependent instructions can be dispatched in successive cycles.

 70

 CHAPTER 5

SIMULTANEOUS MULTITHREADING

MICROARCHITECTURE CHOICES AND TRADEOFFS

This chapter presents the results of our research on the sharing policies of key

structures in the Pentium 4 microarchitecture.

The Intel Pentium 4 processor implementation of SMT required microarchitecture

choices and tradeoffs with respect to the resource sharing policy for each shared

resource[70] [71]. This chapter analyzes how the choice of sharing policy can impact

performance dramatically. The policies discussed in this chapter included:

 Partition - dedicating equal resources to each logical processor;

 Threshold - flexible resource sharing with a limit on the maximum resource

usage; and

 Full sharing - flexible resource sharing with no limit on the maximum

resource usage.

The analysis and discussion covers evaluation of performance, throughput vs.

fairness, potential livelock scenarios, as well as die size and complexity.

5.1 Partition

In a partitioned resource, each logical processor can use only half the entries.

Clearly, resource partitioning has the advantage of simplicity and low complexity. It

 71

is a good choice for resources when you expect the structure’s utilization to be

generally high and somewhat unpredictable. For example, partitioning is a good

choice for the major pipeline queues, which provide buffering to avoid pipeline stalls

and, ideally, remain full most of the time. However, because software thread

execution speeds can differ at any instant in time, the rate at which the queues fill and

empty is unpredictable. By partitioning these queues, we can allow slippage between

a fast and a slow thread, preventing a slow thread from blocking or slowing down the

faster thread and thereby making the best use of each pipeline stage.

Figure 21 illustrates how this works. At the start, Figure 21(a), both the shared queue

(on the left) and the partitioned queue (on the right) have two light-shaded and two

dark-shaded micro-ops. The light-shaded micro-ops belong to Thread 0, and the

dark-shaded micro-ops belong to Thread 1. Both the light micro-ops and the dark

micro-ops are labeled 0 and 1, representing the per-thread micro-op ID. Every micro-

op is given a unique micro-op ID assigned in sequential order to distinguish it from

other dynamic micro-ops in the pipeline. In Cycle 1, Figure 21(b), both the shared

and partitioned queues send light micro-op 0 down to the next pipeline stage. In the

shared queue, the previous pipeline stage sends dark micro-op 2, but in the partitioned

queue, because the dark thread is already occupying its maximum number of entries,

the previous pipeline stage sends a light micro-op instead (light micro-op 2). At the

end of Cycle 1, the shared queue has one light micro-op and three dark micro-ops.

The partitioned queue has two micro-ops of each shade.

In Cycle 2, Figure 21(c), both the shared and the partitioned queues send a light

micro-op to the next pipeline stage, and the previous pipeline stage delivers a light

micro-op in both cases. The shared queue gets a light micro-op in this cycle because

in the previous cycle it sent a dark micro-op. In general, in-order pipeline stages will

alternate between light and dark micro-ops unless the staging queue after the pipeline

stage is full or the previous staging queue has no micro-ops available to work on.

 72

(a)

1010

Shared Queue Partitioned Queue

1010Cycle 010101010

Shared Queue Partitioned Queue

10101010Cycle 0

(b)

(d)

210 3 10Cycle 3

22

210 3 10Cycle 3

22

210 3 10Cycle 3

3 4

210 3 10Cycle 3

3 4

3210

Shared Queue Partitioned Queue

3410Cycle 332103210

Shared Queue Partitioned Queue

34103410Cycle 3

(c)

210 210Cycle 2

11

210 210Cycle 2

11

210 210Cycle 2

2 3

210 210Cycle 2

2 3

22102210

Shared Queue Partitioned Queue

32103210Cycle 2

(e)

32103210

Shared Queue Partitioned Queue

3410Cycle 4

Figure 21. Comparison of a shared and a partitioned queue. The light-shaded micro-ops belong

to Thread 0, and the dark-shaded micro-ops belong to Thread 1. The numbers in the boxes are

the micro-op ID which are assigned sequentially to each thread’s micro-ops. Thread 0 has a

downstream stall, such as a data cache miss. In this situation, the queues will not send any

slower micro-ops to the next pipeline stage. The figure shows how the queues will progress

through cycles 0 (a), 1 (b), 2 (c), 3 (d), and 4 (e), where the shared queue lets the slower thread

block the progress of the faster (light) thread.

1 1 0 1 1 0 Cycle 1

0 0

1 1 0 1 1 0 Cycle 1

0 0

1 1 0 1 1 0 Cycle 1

2 2

1 1 0 1 1 0 Cycle 1

2 2

1 2 1 0

Shared Queue Partitioned Queue

1 2 1 0 Cycle 1 1 2 1 0 1 2 1 0

Shared Queue Partitioned Queue

1 2 1 0 1 2 1 0 Cycle 1

 73

In Cycle 3, Figure 21(d), both queues again send a light micro-op to the next pipeline

stage. The previous pipeline stage sends a dark micro-op in the case of the shared

queue and a light micro-op in the case of the partitioned queue. At the end of Cycle

3, the shared queue has four dark micro-ops and no light micro-ops, while the

partitioned queue still has two of each.

In Figure 21(e), the shared queue is now blocked because it has no light micro-ops,

and the dark thread has a downstream stall. The partitioned queue is thus a simple

mechanism that can continue to issue light micro-ops. The partitioned queue prevents

the pipeline from stalling.

In Section 4.1, Figure 18 showed a basic execution pipeline of the Pentium 4

microarchitecture. It is especially important to guarantee fairness and progress for the

pipeline’s in-order parts. Therefore, a partitioned scheme works best for the major

pipeline queues in the in-order pipeline: the Instruction Fetch pipeline and

Retirement. If there is a front-end stall (say, because of a trace-cache miss), the back-

end can continue to take micro-ops from the micro-ops queue. If there is a back-end

stall (say, because of a data cache miss), the front end can continue to fill the queue.

Large queues can keep both the front end and the back end mostly busy when one end

is temporarily stalled for one logical processor.

As illustrated in Figure 21, if the two logical processors fully shared these queues, a

slow thread could gain an unfair share of the resources and prevent a fast thread from

making progress. Because the slow thread is often stalled, its micro-ops start to pile

up in the queues. In time, the slow thread will collect more and more entries, because

it competitively shares entries with the fast thread. Eventually, the slow thread will

get most, if not all, of the queue, thereby slowing the fast thread’s progress. A

partitioned queue, however, lets the fast thread always have half of the entries and

advance at its own pace.

 74

The use of partitioned resources is simple, entails little implementation complexity,

and ensures fairness and progress for both logical processors.

5.2 Threshold

Another way of sharing resources is to limit the maximum resource usage that a

logical processor can have. This approach is ideally suited for small structures where

the resource utilization is bursty, and the length of time a micro-op stays in the

structure is short, fairly uniform, and predictable. Processor schedulers provide an

example of where threshold sharing is a good choice. Scheduler throughput on the

Pentium 4 is high because they assume that load instructions will hit in the cache, so

micro-ops don’t linger in the schedulers (a separate re-issue mechanism resubmits

micro-ops to execution units in the event of a cache miss). Also, the schedulers are

very small, to enable speed. They run at twice the clock frequency, so a 3 GHz

processor has schedulers running at 6 GHz.

The allocation of micro-ops to these schedulers is round-robin until a logical

processor reaches its threshold number of entries. At that point, it cannot allocate

more micro-ops until it dispatches some of its current entries.

 75

<--------- Time -------->

O
c

c
u

p
a

n
c

y
Logical Processor 0
Logical Processor 1

Figure 22. Snapshot of scheduler occupancy on a transaction processing workload over a short

period of time. Each data point is the instantaneous scheduler occupancy for its respective

logical processor, measured by the number of entries occupied by each thread.

Figure 22 shows scheduler occupancy over a number of processor clock cycles.

Although average scheduler utilization is low, the activity can be bursty. A threshold

limiting the maximum number of entries for each logical processor prevents one

logical processor from blocking the other’s access to the scheduler. The threshold

lets the scheduler look for maximum parallelism among micro-ops across both

threads, thereby improving execution resource utilization.

5.3 Full sharing

Fully shared resources, the most flexible mechanism for resource sharing, does not

limit the maximum resource usage for a logical processor. In general, fully shared

resources is a good mechanism for large structures in which working set sizes are

variable, and one logical processor cannot starve the other.

 76

Shared Cache vs. Partitioned Cache

0.80

1.00

1.20

1.40

1.60

1.80

2.00
1

6
4

.g
z
ip

1
7

5
.v

p
r

1
7

6
.g

c
c

1
8

1
.m

c
f

1
8

6
.c

ra
ft

y

1
9

7
.p

a
rs

e
r

2
5

2
.e

o
n

2
5

3
.p

e
rl

b
m

k

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

3
0

0
.t

w
o

lf

1
6

8
.w

u
p

w
is

e

1
7

1
.s

w
im

1
7

2
.m

g
ri

d

1
7

3
.a

p
p

lu

1
7

7
.m

e
s

a

1
7

8
.g

a
lg

e
l

1
7

9
.a

rt

1
8

3
.e

q
u

a
k
e

1
8

7
.f

a
c

e
re

c

1
8

8
.a

m
m

p

1
8

9
.l

u
c
a

s

1
9

1
.f

m
a

3
d

2
0

0
.s

ix
tr

a
c
k

3
0

1
.a

p
s
i

A
v
e

ra
g

e

S
h

a
re

d
 C

a
c

h
e

 i
m

p
ro

v
e

m
e

n
t

o
v

e
r

S
p

li
t

C
a

c
h

e
 Cache Hit Rate

Performance

Figure 23. Cache hit rate and overall performance impact for a fully shared cache normalized

against values for a partitioned cache. On average, the shared cache had a 40-percent better

cache hit rate and 12-percent better performance. Notice that no single application workload

lost performance because of the shared cache.

Processor caches are a good example of structures best suited to the full sharing

policy. In the Pentium 4 microarchitecture, all processor caches are shared. This has

several advantages. First, it allows for better overall performance than with a

partitioned or threshold cache because cache interference is usually modest. Second,

some applications benefit from a shared cache because they share code and data,

minimizing redundant data in the caches. Finally, high set-associativity minimizes

conflict misses between logical processors. The second- and third-level caches (if

present) are eight-way set associative. Because SMT technology was a new

architectural field, we implemented multiple resource management algorithms in

some areas of the processor. This included the cache sharing policy. This feature lets

us experiment with various cache management policies on real systems. Figure 23

shows results for some of those experiments and the advantage of using a shared

 77

cache. The figure compares the results of running multiple workloads on two cache

configurations: fully shared and partitioned. For each workload, the figure shows the

cache hit rate and performance impact of a fully shared cache normalized to those of

a partitioned cache. We collected cache miss statistics using the Intel Pentium 4

event-monitoring counters [72], specifically the second-level cache’s load-miss-

retired event. The workload consisted of running two copies of the same application.

This study highlights the modest cache interference in a shared cache.

5.4 Conclusions

With a resource sharing policy matched to the traffic and performance requirements

of each resource, SMT can significantly increase resource utilization and improve

performance. This research and development has also resulted in a number of related

patents [73-82]. Continued research in academia [83] and industry [84, 85] has also

continued to make progress in continuously improving the algorithms for sharing

resources in a simultaneous multithreaded processor. Brayton [84] demonstrated

Intel’s latest SMT technology on the Nehalem processor, to start shipping in 2008,

and Singhal [85] described it in more detail.

 78

 CHAPTER 6

POWER AND ENERGY ANALYSIS OF

SIMULTANEOUS MULTI-THREADING

SMT is an energy-efficient method to get performance. In this chapter we analyze

the additional power needed for a processor with SMT, and how much less energy

SMT systems can use doing the same amount of work.

Power and energy [86] are frequently confused. Power is a measure of the rate of

doing work or using energy. The common way of measuring electrical power is in

watts. One watt is equal to one joule (J) of energy per second. Computer system and

processor manufacturers and designers are often concerned about peak power and

average power. In a computer system, peak power will determine the power supply

and heat dissipation requirements for the processor. For a computer lab, the

combined peak power for all components in the lab (computers, instruments, lights,

fans, air conditioning, etc.) determines the peak power supply requirements for the

room.

Energy is the capacity to do work. Energy can be stored, in a battery for example. A

common electrical energy metric for batteries is the watt-hour. The standard MKS

metric for energy is the joule (J), equal to one watt-second. One watt-hour is equal to

3600 joules. We can compute the energy requirement for a specific task. A battery

that stores 200 watt-hours can keep a system that draws on average 50 watts of

power, up and running for 4 hours. Energy requirements determine the battery life

 79

for battery-powered systems, or the energy cost to buy power from power companies.

Laptop designers need to know the average power of a system to specify the battery

requirements. This is of increasing importance as computers and handheld devices

become more powerful and ever smaller.

We show that, although SMT power is typically ~5-15% higher than ST power, SMT

can do the same amount of work using less energy. The higher the SMT speedup is,

the more energy efficient it is. The SMT energy efficiency can be quite compelling

when speedup is > 1.1.

6.1 Methodology

Our power and energy measurements were done on real systems. For the same

amount of work, we compared the power and energy used with SMT on and SMT off.

Every workload had at least two software threads/processes. When SMT is off, the

operating system will context-switch the workload’s threads/processes to share the

single logical CPU. When SMT is on, the operating system will schedule the two

threads to run simultaneously on the two logical CPUs.

The system used for these experiments was as follows:

 Hardware configuration

o CPU: Intel® Pentium® 4 CPU 661 3.60 GHz (ES) 2MB L2 cache.

o Bus speed: 800 MHz

o Memory: 1.0 GB DDR2

o Motherboard: Lakeport/ICH7

o Chipset: Intel i975x Rev. c0

o Southbridge: Intel 82801GB (ICH7)

o BIOS: American Megatrends Inc. (AMI) version VVPLI763.86P

 Software configuration

 80

o Operating System: Windows XP Professional x64 Edition Version

5.2, Service Pack1

For SPEC2000, the libraries and compilers used are as follows:

 Intel C++ and Fortran Compiler 9.1 for 32-bit applications

 Microsoft Visual Studio 2005 for libraries

 SmartHeap Library version 8.0.

To measure power accurately, we made modifications to the motherboard to access

the voltage and current drawn by the CPU.

A National Instruments Model SC-2345 with National Instruments Measurement and

Automation Explorer Software was used to log the data at a rate of 1000

measurements/second. For our purposes, this is sufficient granularity.

A chiller (USTC Thermal Tool Quick Disconnect System Model # USTC-5502MX

with USTC Thermal Tool PreChiller System Model # USTC-LC10MC050) was used

to keep the CPU package temperature at a constant 25C because of the super-linear

impact of temperature on leakage power. The actual leakage and its dependence on

temperature varies widely depending on the size and type of circuit as well as many

other design and process technology factors [87].

SMT was enabled/disabled through the BIOS. Enabling and disabling SMT through

the BIOS ensures that the ITLB are usable by the single thread in single-thread mode.

 81

6.1.1 Motherboard modifications to measure CPU power

Gate

Drive

Pulse

Width

Modulator

Controller

Phase 3

Pulse

Voltage

sense

CPU

Voltage Identifier (VID)

+12V

Gate

DrivePhase 2

Pulse

Voltage

sense

+12V

Gate

DrivePhase 1

Pulse

Voltage

sense

+12V

Vcc

Figure 24. Three-phase voltage regulator on the Lakeport/ICH7 motherboard.

This section describes the modifications made to the motherboard voltage regulator

for power measurements. To measure power at the CPU, we need the current and

voltage delivered to the CPU silicon. We were fortunate to have available a system

designed and built by Jim Hunt, of Intel Corporation [88].

Modifications were made to the voltage regulator to add a current sensor. Figure 24

shows the unmodified three-phase voltage regulator for the Pentium 4 processor. A

three-phase voltage regulator has three identical interleaved cells connected such that

their output is a summation of all individual voltage regulator cells. Each cell uses a

 82

synchronous rectifier consisting of two MOSFETs to convert the 12V input voltage to

the Vcc voltage requested by the CPU via the encoded voltage identifier (VID) signal.

The Pulse Width Modulator Controller sends pulses of a given width to each of the

three phases in turn. The width of the pulses determines the output voltage. The

“voltage sense” signal allows the Pulse Width Modulator Controller to fine-tune the

pulse width for an accurate Vcc output.

Gate

Drive

Pulse

Width

Modulator

Controller

Phase 3

Pulse

Voltage

sense

CPU

Voltage Identiity (VID)

+12V

Gate

DrivePhase 2

Pulse

Voltage

sense

+12V

Gate

DrivePhase 1

Pulse

Voltage

sense

+12V

Vcc

IHA-150

V
c
c
 t
e

s
t

G
ro

u
n

d
 T

e
s
t

V
c
c
 a

t
C

P
U

S
ili

c
o

n

 Vi µ current

DATA LOGGER

Figure 25. Voltage Regulator modifications to measure power at the CPU core.

Figure 25 shows the modifications to the voltage regulator that were done. The IHA-

150 current sensor was chosen because of its accuracy and because it is a Hall effect

[89] current sensor which provides electrical isolation of the current being sensed and

the voltage output. The output wires of the three regulator cells are run through the

 83

hole in the IHA-150. The total electric current flowing through the wires creates a

magnetic field which produces a voltage, the Hall voltage, which is proportional to

the amount of current flowing through the wires. This voltage, Vi, is sent to our data

logger system. The data logger logs the changes to Vi over time to tell us how much

current is being drawn by the CPU at any point in time. The Vcc that the voltage

regulator produces goes to the CPU package, then to the CPU silicon itself. By the

time the Vcc gets to the actual CPU silicon, it has experienced some voltage droop so

it is important to get an actual Vcc measurement from the CPU silicon itself.

Fortunately, we have two test outputs to tell us effective Vcc and ground levels that

the CPU is actually seeing. We route the difference between these two test signals to

our data logger to get an accurate reading of effective Vcc.

Another important modification involved the load line. Because of the additional

wires that were soldered to the voltage regulator cells, care had to be taken to make

sure the lengths of those wires were all the same. The wire lengths were determined

by the longest wire to get the signals through the IHA-150 and back. Because these

wires put additional load on the Vcc lines, the resistors on the three voltage sense

signals had to be swapped out and replaced with different size resistors to compensate

for the additional load.

6.1.2 SMT Energy Benefit Metric

We need a metric to understand the energy benefit when SMT is enabled similar to

the speedup metric for measuring performance benefit. Let us review the definition

of speedup [90]. Speedup is defined as the execution time for the workload on a

single processor divided by the execution time for the workload on multiple

processors:

 Speedup = T1 / TP

where T1 is the execution time on a single processor, and TP is the execution time on

P processors.

 84

In the case of SMT speedup, this means:

 SMT Speedup = TST / TSMT

Where TST is the execution time in single-thread mode, and TSMT is the execution

time in SMT-mode. If the execution time in SMT-mode is half the execution time in

ST-mode, then the speedup would be 2.0.

Similarly, we define a metric called SMT Energy Benefit as follows:

 SMT Energy Benefit = EST / ESMT

Where EST is the total energy used to execute the workload in ST-mode, and ESMT is

the total energy used to execute the workload in SMT-mode. SMT Energy Benefit =

1 means that the same energy is required to do the work in ST mode as SMT mode.

If SMT-mode takes half the energy compared to ST-mode, then the SMT Energy

Benefit would be 2.0, i.e., we can do twice the amount of work on the same battery,

or we doubled the battery life.

Since energy is equal to power multiplied by execution time, SMT Energy Benefit

can also be calculated as follows:

 SMT Energy Benefit = (PST * TST) / (PSMT * TSMT)

Where PST and TST are the average power and total execution time in ST-mode,

respectively, and PSMT and TSMT are the average power and total execution time in

SMT-mode.

With the SMT Energy Benefit metric, a value >1 means that the total energy with

SMT enabled improves battery life. A value of 2.0 means that we can expect to

double the battery life needed for that workload.

 85

6.2 Micros Study Results

SMT power efficiency is excellent on the Pentium 4 processor. To test the extent of

this efficiency, we wrote and ran several micro-benchmarks, or micros. Micros are

small simple programs, often written in assembly language, designed to exercise

and/or isolate a specific feature of the CPU for better understanding of processor

behavior.

We wrote and ran two types of micros: throughput and latency micros. Throughput

micros use a particular resource at or near 100%. When both logical processors are

attempting to saturate the resource, we expect SMT speedup to be around 1.0. On the

other hand, latency micros measure the latency of a particular type of resource. Since

some resources are pipelined, those resources are <=50% busy in latency micros. In

these cases, we can expect an SMT speedup of about 2.0 when both logical

processors are simultaneously testing the latency of that resource. Micros with SMT

speedups around 1 (no performance benefit) and 2 (performance doubles with SMT)

are particularly interesting for our analysis because they lead to an intuitive

understanding of the relationship between performance, power, and energy.

The micros used in the following experiments have 2 threads. Both threads are doing

the same thing. When run in ST-only mode, the operating system context-switches

the threads. In SMT-enabled mode, the operating system schedules the two threads to

run on the two logical processors simultaneously.

Table 6 shows the results of several throughput micros whose SMT speedup is ~1.0.

The expectation is that the SMT power increase would be approximately the area

growth for enabling SMT. Looking at the measured results, although there is no

performance benefit for these micros, enabling SMT results in a small increase in

power of 3-5%, or 1-2 Watts. This is precisely as expected! The increase in power is

due to (1) enabling additional structures required for SMT such as architectural

 86

resources, a second set of rename tables, queues in the front-end, etc., and (2) logic

that monitors each thread’s forward progress and controls thread switching at the

various pipestages.

Table 6. Throughput Micro SMT speedup measurements.

fmul
through-

put
if-then
loop

L0 cache
load hit
through-

put
noop
loop

padd
through-

put

fadd
through-

put

SMT Speedup 1.00 0.96 0.95 0.92 1.01 1.00

ST Power
(Watts) 28.3 34.4 36.7 30.4 28.4 28.6

SMT Power
(Watts) 29.4 35.8 38.3 32.2 29.9 30.2

Power Difference
(Watts) 1.0 1.4 1.6 1.8 1.5 1.6

Power Difference
% 3% 4% 4% 5% 5% 5%

SMT Energy
Benefit (ST
Energy/SMT
Energy) 0.966 0.923 0.910 0.871 0.957 0.953

ST CPI 1.87 0.56 0.47 0.38 0.95 0.93

SMT CPI 1.87 0.55 0.50 0.41 0.94 0.94

Some of the very low-CPI throughput micros have a small performance loss due to

too-small buffers between major pipestages. On the Pentium 4 processor the buffers

were sized for ST performance and therefore when half the buffers are allocated to

each logical processor they are too small for SMT performance. The inefficiencies

are due to the latency of signaling “buffer full” and “buffer not full” to prior

pipestages that are feeding the buffers. “Buffer full” must be signaled early enough

to accommodate all potentially in-flight uops coming from previous pipestages. This

results in times when the buffer is not actually full when we signal “buffer full”. If

later pipestages start to empty the buffer at maximum rate, in some cases the buffers

can be empty before the “buffer not full” signal to the previous pipestage can restart

and deliver new uops. While the size of the buffers are appropriate in ST-only mode

to hide these inefficiencies, in MT-enabled mode where each logical processor may

 87

have only half the entries, the size of the buffers may be insufficient. Fortunately,

while these inefficiencies tend to show up on micros with very low CPIs, they rarely

impact real applications.

The SMT Energy Benefit row in Table 6 is as defined in Section 6.1.2, the ratio of

energy expended in ST-mode divided by the energy expended in SMT-mode. A value

>1 means that the total energy with SMT enabled improves battery life. For the

throughput micros, the ratios are all <1 meaning that it is better not to enable SMT for

these workloads. This is intuitively correct since we have no performance benefit.

Table 7 shows several micros whose SMT speedup is ~2.0. These are the latency

micros. In these micros, the performance doubles with SMT enabled. The power

increase ranges from 7-18%, or 2-6 Watts. The L1 cache latency micro has the

largest increase in power because accessing the 2MB L1 cache is high power due to

powering up and enabling the large cache banks.

Table 7. Latency Micro SMT speedup measurements.

fmul

latency

L1 cache
load hit
latency

padd
latency

fadd
latency

imul
latency

SMT Speedup 2.00 1.99 2.00 2.00 2.00

ST Power (Watts) 26.7 31.7 28.7 27.1 26.6

SMT Power (Watts) 28.6 37.5 31.8 29.4 28.5

Power Difference
(Watts) 1.9 5.8 3.1 2.3 1.9

Power Difference % 7% 18% 11% 8% 7%

SMT Energy Benefit
(ST Energy/SMT
Energy)

1.866 1.679 1.804 1.845 1.868

ST CPI 7.25 1.97 1.87 5.42 8.84

SMT CPI 3.65 0.99 0.94 2.74 4.47

The expectation would be that the dynamic power increase should be proportional to

the increase in activity due to SMT. To see if this is true, we need to graph the slope

 88

of the increase in power difference vs. ST power increase, and see if the slope of the

latency micros is approximately equal to one.

Figure 26 plots the data from the two tables. The graph shows that indeed the latency

micros have a slope of one! It also shows visually that the throughput micros (where

the SMT speedup ~ 1) are 3-5% higher as expected. Also note that the latency

micros, where SMT speedup = 2, tend to be lower-power due to lower utilization of

CPU resources, but there is more increase in power from SMT due to doubling the

dynamic usage of resources.

SMT - ST Power Difference vs. ST Power

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

25.0 27.0 29.0 31.0 33.0 35.0 37.0 39.0

ST Power (Watts)

S
M

T
 P

o
w

e
r

-
S

T
 P

o
w

e
r

(W
a
tt

s
)

SMT Speedup = 1

(throughput micros)

SMT Speedup = 2

(latency micros)

Figure 26. Throughput Micros and Latency Micro measured SMT speedups on an Intel

Pentium 4 Processor System.

 89

Another important metric to look at is the SMT Energy Benefit, which tells us

whether batter life improves with SMT. The dramatic performance improvement but

small power increase means that it is much better to enable SMT. We get up to 1.9x

energy improvement, or 1.9x improvement in battery life!

Figure 27 shows the SMT Energy Benefit, and graphs this vs. ST Power for all the

micros. Here, we see in graph form the huge potential SMT Energy Benefit for the

latency micros are ranging from 1.7 to 1.9 when SMT speedup is close to 2.0. We

can do 70-90% more work on the same battery! For the throughput micros whose

speedup is ~1.0, the SMT energy benefit is <1 due to the power increase of 3-5% for

the same execution time, so we can do less work on the battery.

SMT Energy Benefit vs. ST Power

0.8

1

1.2

1.4

1.6

1.8

2

25 27 29 31 33 35 37 39

ST Power (Watts)

S
M

T
 E

n
e
rg

y
 B

e
n

e
fi

t
=

 S
T

 E
n

e
rg

y
 /

 S
M

T
 E

n
e
rg

y

SMT Speedup = 1

(throughput micros)

SMT Speedup = 2 (latency

micros)

Figure 27. Throughput Micros and Latency Micros measured SMT Energy benefit on an Intel

Pentium 4 Processor System. SMT Energy Benefit is extremely compelling for the latency

micros.

 90

The important take-away from this analysis is that the increase in power from SMT is

low compared to the potential speedup. The conclusion is that the potential SMT

power efficiency of the Pentium 4 processor is excellent. Finally, we would like to

plot the SMT Energy Benefit vs. SMT Speedup for the micros. This is shown in

Figure 28. The better the SMT speedup of the workload, the higher the SMT energy

benefit, or the longer the battery life.

Figure 28. SMT Energy Benefit vs. SMT Speedup shows a slope

 In the next few sections, we will look at the SMT Energy Benefit of real workloads,

and see how they compare to the microbenchmark data.

SMT Energy Benefit vs. SMT Speedup

Micros

y = 0.8609x + 0.0923

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.80 1.00 1.20 1.40 1.60 1.80 2.00

SMT Speedup

S
M

T
 E

n
e
rg

y
 B

e
n

e
fi

t Micros

Linear (Micros)

 91

6.3 SPEC 2000 Integer

Armed with the intuition from the micros analysis, we would like to now see what the

performance vs. power and energy of other applications look like.

Table 8. SPECint_rate performance measured on an Intel Pentium 4 system.

Base Base Base Peak Peak Peak

Benchmarks # Copies
Run
Time Rate

Copies

Run
Time Rate

SMT Off:

164.gzip 2 232 14 2 228 14.2

175.vpr 2 233 13.9 2 232 14

176.gcc 2 108 23.7 2 108 23.7

181.mcf 2 174 24 2 174 24

186.crafty 2 150 15.5 2 151 15.4

197.parser 2 259 16.1 2 258 16.2

252.eon 2 107 28.3 2 108 28

253.perlbmk 2 168 24.8 2 169 24.7

254.gap 2 110 23.2 2 110 23.2

255.vortex 2 122 36.1 2 122 36.1

256.bzip2 2 226 15.4 2 226 15.4

300.twolf 2 329 21.2 2 329 21.2

SPECint_rate_base2000 20.4

SPECint_rate2000 20.5

SMT on:

164.gzip 2 176 18.4 2 195 16.7

175.vpr 2 228 14.3 2 228 14.2

176.gcc 2 93.2 27.4 2 93.2 27.4

181.mcf 2 190 22 2 190 22

186.crafty 2 147 15.8 2 156 14.9

197.parser 2 217 19.3 2 236 17.7

252.eon 2 100 30.1 2 107 28.2

253.perlbmk 2 182 23 2 185 22.6

254.gap 2 99.6 25.6 2 99.6 25.6

255.vortex 2 127 34.7 2 127 34.7

256.bzip2 2 175 19.8 2 174 20

300.twolf 2 274 25.4 2 276 25.3

SPECint_rate_base2000 22.3

SPECint_rate2000 21.7

Before we started collecting our power measurements, we did an “official” SPECrate

2000 run to make sure that the overall system performance matches that of the

 92

published numbers on the official SPEC website. Table 8 shows the results. These

SPEC numbers are as expected, within 1% of the published numbers of equivalent

systems.

For the power and energy measurements, we combined the SPEC 2000 applications

in two ways. The first was the way SPECrate is measured, where two copies of the

same application are run at the same time. The second way was to combine different

applications, for example gap and gcc. To minimize idle time (where one logical

processor is active and the other is idle) one thread would run gap followed by gcc,

and the other thread would run them in reverse order, gcc followed by gap. Since the

applications have different run times, this means that there is some overlap time when

the same application is running on both threads, one near the end and the other just

beginning. We then compared the performance, power, and energy with SMT on and

off.

Table 9 shows the data. SMT speedup is ST time / SMT time. The speedup ranges

from 0.92 (performance loss) to 1.36. The lower speedup numbers tend to be

SPECrate data because the same workload is run twice and an optimized workload

should use 100% of some critical resource. So if the workload is highly optimized we

wouldn’t expect any speedup, but would expect some performance loss due to

conflicts in the cache/TLB/branch predictors. In general, running combinations of

applications would give better speedups because two different applications are more

likely to stress different physical resources.

9
3

Table 9. SPECint SMT Power measurements for two copies of the same application and combinations of different applications.

SMT

speedup

(ST

time/SMT

time)

ST Time

(sec)

SMT Time

(sec)

ST Power

(Watts)

SMT

Power

(Watts)

Power

Difference

Power Diff

%

ST Energy

(Watt-Hrs)

SMT

Energy

(Watt-Hrs)

Relative

Energy

Benefit

(ST

Energy /

SMT

Energy)

mcf 0.92 176 191 34.7 35.3 0.5 1% 1.69 1.87 0.91

perlbmk 0.97 170 176 39.0 41.1 2.2 6% 1.84 2.01 0.92

vortex 0.97 123 127 36.7 39.5 2.8 7% 1.26 1.39 0.90

crafty 1.02 150 146 37.1 40.8 3.7 10% 1.54 1.66 0.93

vpr 1.05 235 224 36.4 38.1 1.7 5% 2.37 2.37 1.00

eon 1.06 106 101 36.2 41.0 4.7 13% 1.07 1.15 0.94

gap 1.11 110 99 38.5 41.6 3.1 8% 1.18 1.15 1.03

gcc 1.15 108 93 36.8 40.1 3.4 9% 1.10 1.04 1.05

parser 1.18 259 219 38.1 41.0 2.9 8% 2.74 2.49 1.10

twolf 1.20 328 275 36.5 40.5 4.0 11% 3.33 3.09 1.08

gzip 1.32 233 177 38.6 42.0 3.4 9% 2.49 2.06 1.21

bzip2 1.32 231 175 37.8 40.2 2.3 6% 2.43 1.96 1.24

crafty_perlbmk 1.11 321 288 38.0 41.9 3.9 10% 3.39 3.36 1.01

eon_vortex 1.14 231 204 36.4 41.0 4.5 12% 2.34 2.32 1.01

perlbmk_eon_gap 1.16 390 337 38.0 42.0 4.0 11% 4.12 3.93 1.05

vortex_bzip_twolf 1.22 684 562 36.8 40.2 3.4 9% 7.00 6.28 1.11

mcf_crafty_parser 1.24 585 470 36.7 40.1 3.3 9% 5.97 5.23 1.14

bzip_vpr 1.25 473 380 37.0 39.5 2.5 7% 4.86 4.16 1.17

parser_gcc_twolf 1.26 714 568 37.0 40.9 4.0 11% 7.34 6.46 1.14

gap_gcc 1.26 240 190 37.4 41.1 3.7 10% 2.49 2.18 1.14

mcf_perlbmk 1.26 347 275 36.7 40.0 3.3 9% 3.54 3.06 1.16

gzip_vpr 1.30 477 368 37.4 40.8 3.5 9% 4.96 4.17 1.19

gzip_vpr_gcc 1.30 610 468 37.2 40.7 3.6 10% 6.30 5.30 1.19

bzip_gzip 1.36 462 340 38.0 41.6 3.6 9% 4.88 3.93 1.24

SPEC

Rate

Integer

SPEC

Integer

Combos

 94

SMT - ST Power Difference vs. ST Power

SPEC2000 Integer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5

ST Power (Watts)

S
M

T
 P

o
w

e
r

-
S

T
 P

o
w

e
r

(W
a
tt

s
)

Specrate

Combos

Figure 29. SPEC2000 Integer SMT-ST Power Difference vs. ST Power

We were interested in how much more power was consumed when running the

workload with SMT on vs. off.

Figure 29 shows the increase in power when run in SMT-enabled mode. The power

increase ranges from 0.5-5 watts, and is in the range expected based on our previous

experiments on micros.

The next questions to ask are whether the power increase or energy efficiency of

these workloads is impacted by SMT speedup?

Figure 30 shows the relative SMT power increase (SMT power / ST power) vs. SMT

speedup (ST execution time / SMT execution time). At first glance, it looks like

SMT power is on average 7-8% higher than ST. This makes sense because when

 95

SMT is enabled, we have twice the number of key structures active (e.g. register alias

tables), and conflicts between the threads are likely to cause additional work due (e.g.

cache misses).

SMT Power Increase vs. SMT Speedup

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0.80 0.90 1.00 1.10 1.20 1.30 1.40

SMT Speedup (ST time / SMT time)

S
M

T
 P

o
w

e
r

In
c
re

a
s
e

(S
M

T
 p

o
w

e
r

/
S

T
 p

o
w

e
r)

SMT Power Increase (SMT power / ST power)

Rate

Combo

Figure 30. SMT Power Increase vs. SMT Speedup for SPECint

 96

SMT Energy Benefit vs. SMT Speedup

y = 0.8604x + 0.0693

R2 = 0.9605

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40

SMT Speedup (ST time / SMT time)

R
e
la

ti
v
e
 E

n
e
rg

y
 B

e
n

e
fi

t
(b

a
tt

e
ry

 l
if

e
)

(S
T

 E
n

e
rg

y
 /

 S
M

T
 E

n
e
rg

y
)

Relative Energy Beneft

Rate

Combos

Linear (Relative Energy Beneft)

Figure 31. SMT Energy Benefit vs. SMT Speedup for SPECint

Finally, we calculated the SMT Energy Benefit, a metric related to battery life, as

defined in section 6.1.2. Figure 31 shows the SMT Energy benefit of the SPEC 2000.

As shown, there is a very strong correlation between SMT speedup and the energy

efficiency. This is because the SMT power increase has very little increase with SMT

speedup.

Energy efficiency is defined as a value between 0 and 1 estimating how well the SMT

performance speedup is translated into SMT energy benefit. To find the energy

efficiency of SMT for the SPEC2000 workloads, we can do a linear fit to the points in

Figure 31. The slope is the energy efficiency, and as shown is 0.86. As the SMT

speedup improves, 0.86 of that speedup transfers directly to improved energy

savings! And 0.14 (1 – 0.86) of the SMT speedup is wasted due to inefficiencies such

as additional cache misses, extra hardware, and other things. SMT is extremely

energy efficient!

 97

6.4 SPEC2000 Floating Point

Next, we ran the SPEC 2000 floating point applications.

Table 10. Performance of SPEC2000_fp_rate with and without SMT enabled on an Intel

Pentium 4 Processor System.

Base Base Base Peak Peak Peak

Benchmarks # Copies
Run
Time Rate

Copies

Run
Time Rate

SMT Off:

168.wupwise 2 83.3 44.6 2 83.2 44.6

171.swim 2 252 28.5 2 252 28.5

172.mgrid 2 230 18.1 2 230 18.1

173.applu 2 241 20.2 2 241 20.2

177.mesa 2 187 17.4 2 187 17.4

178.galgel 2 155 43.3 2 162 41.5

179.art 2 110 54.9 2 110 54.9

183.equake 2 87.3 34.5 2 91.3 33

187.facerec 2 182 24.2 2 190 23.2

188.ammp 2 346 14.7 2 355 14.4

189.lucas 2 185 25 2 193 24.1

191.fma3d 2 269 18.1 2 269 18.1

200.sixtrack 2 309 8.26 2 324 7.87

301.apsi 2 379 15.9 2 399 15.1

SPECfp_rate_base2000 23.3

SPECfp_rate2000 22.8

SMT on:

168.wupwise 2 78 47.6 2 77.8 47.7

171.swim 2 247 29.1 2 247 29.1

172.mgrid 2 203 20.5 2 203 20.5

173.applu 2 238 20.4 2 238 20.4

177.mesa 2 179 18.1 2 179 18.1

178.galgel 2 177 37.9 2 178 37.8

179.art 2 146 41.2 2 146 41.2

183.equake 2 79 38.2 2 80.4 37.5

187.facerec 2 162 27.3 2 160 27.5

188.ammp 2 333 15.3 2 325 15.7

189.lucas 2 177 26.3 2 177 26.3

191.fma3d 2 250 19.5 2 250 19.5

200.sixtrack 2 250 10.2 2 246 10.4

301.apsi 2 327 18.5 2 337 17.9

SPECfp_rate_base2000 24.3

SPECfp_rate2000 24.3

9
8

Table 11. Power measurements of SPEC2000_rate_fp on an Intel Pentium 4 Processor System.

SMT

speedup

(ST

time/SMT

time)

ST Time

(sec)

SMT Time

(sec)

ST Power

(Watts)

SMT

Power

(Watts)

Power

Difference

Power Diff

%

ST Energy

(Watt-Hrs)

SMT

Energy

(Watt-Hrs)

Relative

Energy

Benefit

(ST

Energy /

SMT

Energy)

art 0.73 107 146 36.1 35.9 -0.2 -1% 1.07 1.45 0.74

galgel 0.91 156 172 38.4 39.8 1.4 4% 1.67 1.90 0.88

applu 0.98 232 236 36.1 38.0 2.0 5% 2.32 2.50 0.93

swim 1.02 252 248 34.0 34.5 0.5 1% 2.38 2.38 1.00

mesa 1.03 190 184 36.7 40.6 3.8 10% 1.94 2.07 0.94

fma3d 1.05 257 245 35.9 39.0 3.1 9% 2.56 2.65 0.97

lucas 1.05 186 177 36.3 38.5 2.2 6% 1.87 1.89 0.99

ammp 1.09 352 324 35.5 37.3 1.7 5% 3.47 3.36 1.04

equake 1.10 88 80 36.4 38.6 2.2 6% 0.89 0.86 1.03

mgrid 1.12 229 204 37.7 40.8 3.1 8% 2.40 2.32 1.04

facerec 1.15 182 158 36.4 39.7 3.2 9% 1.84 1.74 1.06

wupwise 1.16 84 73 36.4 39.2 2.8 8% 0.85 0.79 1.07

apsi 1.17 381 327 35.7 39.4 3.7 10% 3.78 3.58 1.06

sixtrack 1.20 301 251 36.7 41.1 4.4 12% 3.07 2.86 1.07

galgel_art 0.86 263 306 37.5 38.5 1.0 3% 2.74 3.27 0.84

art_equake_facerec 1.11 378 340 36.3 39.1 2.9 8% 3.81 3.70 1.03

mgrid_applu 1.12 464 414 36.8 40.0 3.2 9% 4.74 4.60 1.03

applu_mesa_galgel 1.13 589 523 36.9 40.2 3.3 9% 6.04 5.84 1.03

swim_wupwise_mgrid 1.14 569 499 35.9 37.9 2.0 6% 5.67 5.25 1.08

wupwise_equake 1.15 172 150 36.4 39.2 2.7 8% 1.74 1.63 1.07

lucas_fma3d_ammp 1.17 790 674 35.8 38.3 2.5 7% 7.86 7.16 1.10

facerec_lucas 1.18 368 312 36.3 39.7 3.3 9% 3.71 3.44 1.08

mesa_lucas 1.19 376 317 36.5 40.4 3.9 11% 3.81 3.56 1.07

facerec_mesa 1.19 376 315 36.6 40.3 3.7 10% 3.82 3.53 1.08

swim_fma3d 1.20 510 426 35.0 37.4 2.4 7% 4.97 4.42 1.12

ammp_apsi 1.27 725 571 35.6 39.1 3.4 10% 7.17 6.20 1.16

sixtrack_mgrid_equake 1.29 629 486 36.9 41.7 4.8 13% 6.45 5.63 1.15

sixtrack_apsi_wupwise 1.30 772 596 36.2 41.3 5.1 14% 7.76 6.83 1.14

SPEC

Rate

Floating

Point

SPEC

Floating

Point

Combos

 99

Again, to ensure that the performance of our system is consistent with equivalent

systems, we compared the SPECrate for floating point applications with published

results. Table 10 shows the results of our runs. These are comparable (within 1%)

with published results.

Just as we did for the integer applications, for our power measurements we ran the

floating point applications two different ways. The way Specrate is run, where we

run the same application on both threads, and in combination.. Table 11 shows the

results.

SMT - ST Power Difference vs. ST Power

SPEC2000 Floating Point

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0

ST Power (Watts)

S
M

T
 P

o
w

e
r

-
S

T
 P

o
w

e
r

(W
a
tt

s
)

Specrate

Combos

Figure 32. SMT-ST Power Difference vs. ST Power for applications in SPEC2000_fp.

Figure 32 plots the power increase from SMT vs. ST power. Like the integer

applications, most points are in the 1-5 watt range. There is one outlier where the

SMT energy was actually better than the ST energy. This was for the application art,

when it was running on both threads.

 100

Figure 34 plots the power increase vs. SMT speedup, and this is interesting because

we see that there is a correlation between the power increase due to SMT vs. the SMT

speedup. There was no such correlation for the integer applications. The reason for

this in the floating point applications is because the Pentium 4 processor does not

issue floating point uops on a speculative data cache miss. In other words floating

point uops will wait in the scheduler until it knows that any load operations that it

depends on are available (either L0 data cache hit or ready to be forwarded). This is

not the case for integer operations which are scheduled speculatively assuming a L0

data cache hit. If it turns out to be a cache miss, the dependent integer uops will need

to be reissued and re-executed, wasting power. Since we have less of that going on,

the floating point uops see increasing SMT power with SMT speedup.

SMT Power Increase vs. SMT Speedup

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40

SMT Speedup (ST time/SMT time)

S
M

T
 R

e
la

ti
v
e
 P

o
w

e
r

In
c
re

a
s
e

(S
M

T
 p

o
w

e
r

/
S

T
 p

o
w

e
r)

Figure 33. SMT Power Increase vs. SMT Speedup for SPECfp

 101

SMT Energy Benefit vs. SMT Speedup

y = 0.7386x + 0.2091

R2 = 0.9617

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40

SMT Speedup

S
M

T
 E

n
e
rg

y
 B

e
n

e
fi

t

(S
T

 E
n

e
rg

y
 /

 S
M

T
 E

n
e
rg

y
)

Figure 34. SMT Energy Benefit vs. SMT Speedup for applications in SPEC200_fp on an Intel

Pentium 4 Processor System.

Figure 34 shows the SMT energy efficiency vs. SMT speedup, and again we see that

there is a strong correlation between SMT energy efficiency and SMT speedup.

SMT energy efficiency would be the slope of the line of Figure 34. The slope for

SPECfp is 0.73, somewhat lower than SPECint. As SMT speedup increases, 0.73 of

that translates directly into battery life savings, and 0.27 is “wasted”. In this case, the

inefficiencies include the energy spent on execution resources.

 102

6.5 Multimedia Applications

Finally we look at a number of multimedia applications. Unlike the SPEC workloads

where we arranged the workloads so that both logical processors were active

simultaneously for nearly 100% of the workload, when we run individual multimedia

applications, the parallelism varies due to sequential sections of code. Therefore we

looked at a number of multimedia applications and selected those that were at least

50% multi-threaded. The way we determined this was to start Windows Task

Manager, click the performance tab, and look for applications where the CPU

utilization was 75%. When the CPU utilization shows 75%, it means that the

application is 50% threaded because half the time one logical processor was 100%

busy, and half the time the second logical processor was 50% busy, giving a total of

75% overall CPU utilization.

The following is a list of the applications selected for use in this study, including a

description of the application, and the test workload description.

Autodesk* 3ds Max* 9

This is a popular animation modeling and rendering solution for film, television,

games, and design visualization. It contains the essential high-productivity tools

required for creating eye-catching film and television animation, cutting-edge games,

and distinct design visualizations.

Test workload description: The workload used in our analysis is called

Dragon_Character_Rig.max. The workload consists of a scene of a

Dragon_Character_Rig.max rendered at 1920x1080. One frame is rendered. The

render options set are: Atmospherics, Effects and Displacement. The advanced

lighting options are also set.

 103

Apple* iTunes* 7.0.2

 iTunes is the industry leading application used to convert, save, and manage digital

music. iTunes allows the user to record, organize, and play songs on a PC or use the

high quality encoder to convert music to MP3 or other formats.

Test workload description: The tested workload for iTunes 7.0.2 measures the time

needed to convert a 634.746KB .wav file to an mp3 with 160kbps bitrate.

MainConcept* H.264 Encoder v2.1

The H.264 Encoder v2 with v2.1 codec for Microsoft* Windows* offers video

encoding and decoding of the highest quality. H.264/AVC (Advanced Video

Coding), also known as MPEG-4 Part 10, is poised to be a major video standard

because it can replace several popular formats while offering significant advantages

over them.

Test workload description: The input file is a 24 second 1920x1080 HD (high-

definition) MPEG2 video clip with a bitrate of about 18000kbps. The output is an

H.264 format video clip encoded at 6000kbps.

POV-Ray* 3.7

POV-Ray, aka the Persistence of Vision Ray-Tracer*, is a free high-quality ray tracer

tool for creating stunning three-dimensional graphics. Many scenes are included with

POV-Ray, which can be modified so you do not have to start from scratch. In

addition to pre-defined scenes, a large library of pre-defined shapes and materials is

provided.

Test workload description: The POV-Ray 3.7 includes a built-in benchmark test

developed by the creators of POV-Ray for evaluating system performance.

 104

Apple* Quicktime* Pro 7.1.3

Quicktime Pro allows users to create video using the H.264 video codec, record audio

for producing podcasts, create movies for iPod, convert media to more than a dozen

formats, and playback a wide variety of video formats.

Test workload description: The input file is a 2 minute 1 second 416MB DV file with

720x480 resolution and 29.97 fps (frames per second). The output movie file is

created using the Quicktime Broadband-High profile with H.264 compression,

672kbps video bitrate, multi-pass encoding, 480x360 resolution, AAC audio, and a

128kbps audio bitrate.

Microsoft* Windows Media* Encoder 9.0

Windows Media Encoder 9.0 with Advanced Profile is a powerful tool for content

producers. It features high-quality multi-channel sound, high-definition video quality,

support for mixed-mode voice and music content, advanced capture abilities, power

server integration for live broadcasts, and optimized compression for a wide range of

delivery scenarios including multiple bit rate streaming and delivery on CD or DVD.

Test workload description: The workload is the creation of a streaming video file for

Windows Media Servers from a raw DV video file. Windows Media Encoder 9

encodes a 416MB DV file with 720x480 resolution to a streaming WMV9 file. The

input DV file is a 2 minutes and 1 second video of kite-surfing. The encode rate is

282kbps, 320x240 resolution, and 29.97fps (frames per second).

XMPEG* 5.03 with DivX* 6.4

XMPEG is a multipurpose video encoding application which takes MPEG-1 and

MPEG-2 streams, or DVD-IFO video format, and converts them to AVI or bbMPEG

Encoder format, changing video parameters, frame rate, and audio frequency. One of

the most popular uses of XMPEG is to convert unencrypted DVD VOB files to either

MPEG-1 (compatible with most Panasonic/LSX Encoders) or to an AVI file

(compatible with most codecs).

 105

DivX* is a format for digital video, much like MP3 is a format for digital music. The

DivX codec is based on the MPEG-4 compression standard and can reduce an

MPEG-2 video (same format used for DVD) to ten percent of its original size. The

DivX technology provides excellent compression and the resulting visual quality is

virtually indistinguishable from a DVD.

Test workload description: The input file is a 24 second 1920x1080 HD mpeg2 video

clip with a bitrate of about 18000kbps. The output is a HD (high-definition) DivX

format video clip encoded at 7800kbps.

Table 12 shows the results of the SMP Power tests that we ran. The applications

ranged in thread parallelism from 56% to 100%. Thread parallelism is the % of time

when both logical processors are active.

Figure 35, Figure 36, and Figure 37 show the same data in graph form. The data

shows the same trends as SPECint and SPECfp. In SMT-mode, the power is 2.5-4.5

watts higher than in ST-mode. Figure 37 is the important figure. It shows the SMT

energy benefit. We see that the slope of the line is about 0.79 for multimedia

applications. This means that as we get increasingly better SMT speedup, 0.79 of that

is also transferred to energy savings, and 0.21 is wasted on the additional energy

required for SMT execution. Again, the energy efficiency is compelling.

1
0
6

Table 12. Multimedia Applications SMT power measurements.

 107

SMT - ST Power Difference vs. ST Power

Multimedia Applications

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5

ST Power (Watts)

S
M

T
 P

o
w

e
r

-
S

T
 P

o
w

e
r

(W
a
tt

s
)

Figure 35. Multimedia applications SMT-ST Power Difference vs. ST Power

SMT Power Increase vs. SMT Speedup

Multimedia Applications

0%

2%

4%

6%

8%

10%

12%

14%

0.80 0.90 1.00 1.10 1.20 1.30 1.40

SMT Speedup (ST time / SMT time)

S
M

T
 P

o
w

e
r

In
c
re

a
s
e
 (

S
M

T
 p

o
w

e
r

/
S

T

p
o

w
e
r)

Figure 36. SMT Power Increase vs. SMT Speedup for Multimedia Applications

 108

SMT Energy Benefit vs. SMT Speedup

Multimedia Applications

y = 0.7904x + 0.1436

R
2
 = 0.9816

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0.80 0.90 1.00 1.10 1.20 1.30 1.40

SMT Speedup (ST time / SMT time)

S
M

T
 E

n
e

rg
y

 B
e

n
e

fi
t

(S
T

 e
n

e
rg

y
 /

S
M

T
 e

n
e

rg
y

)

Figure 37. SMT Energy Benefit vs. SMT Speedup for multimedia applications.

6.6 Analytic Model of SMT Energy Benefit

Thus far in this chapter, we have achieved a good understanding of the SMT energy

benefit of the Intel Pentium 4 Processor on a number of workloads and

microbenchmarks. The next step would be to offer a model to predict the expected

SMT energy benefit of other applications.

To do this, let us take all of the results of the previous sections and plot all of the

points on the same graph. Figure 38 and Figure 39 plot all the points without and

with the microbenchmarks respectively. Note that the slopes of the linear fit in the

two figures are 0.79 and 0.86 which are not radically different. This gives us a

reassuring feeling that we should be able to reasonably predict SMT energy benefit of

other applications.

 109

SMT Energy Benefit vs. SMT Speedup

SPEC and Multimedia Apps

y = 0.7935x + 0.147

R2 = 0.9607

0.70

0.80

0.90

1.00

1.10

1.20

1.30

0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40

SMT Speedup

S
M

T
 E

n
e
rg

y
 B

e
n

e
fi

t

SPECint

SPECfp

Multimedia

All

Linear (All)

Figure 38. SMT energy benefit for all workloads measured, except the micros.

SMT Energy Benefit vs. SMT Speedup

SPEC, Multimedia, and Micros

y = 0.8602x + 0.0747

R2 = 0.9842

0.70

0.90

1.10

1.30

1.50

1.70

1.90

2.10

0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10

SMT Speedup

S
M

T
 E

n
e
rg

y
 B

e
n

e
fi

t

SPECint

SPECfp

Multimedia

Micros

All

Linear (All)

Figure 39. SMT energy benefit for all workloads measured, including micros.

 110

Let us discuss briefly the accuracy of the linear regression to the data set (how close

the data points are to the best-fit line). The R
2
 value is a measure of the goodness-of-

fit of the linear regression. The value R
2
 is a fraction between 0.0 and 1.0, and has no

units. An R
2
 value of 0.0 means that knowing X does not help you predict Y; there is

no linear relationship between X and Y. When R
2
 equals 1.0, all points lie exactly on

a straight line with no scatter. Knowing X lets you predict Y perfectly. The closer the

R
2
 value is to 1, the more precise the linear regression, or best-fit line is.

Figure 38 and Figure 39 show R
2

values of 0.96 and 0.98, respectively, meaning that

the linear regression line is a very good fit. It is interesting that the micros and the

real applications all fall on a fairly nice linear line! This means that as we get better

SMT speedup, we get better battery life. SMT on Pentium 4 is indeed an extremely

power-efficient feature.

Figure 40. SMT Power Ratio vs. SMT Speedup

SMT Power Ratio vs. SMT Speedup

y = 0.152x + 0.9094

R2 = 0.434

0.95

1.00

1.05

1.10

1.15

1.20

1.25

0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50

SMT Speedup (SMT Time / ST Time)

S
M

T
 P

o
w

e
r

R
a
ti

o
 (

S
M

T
 P

o
w

e
r

/
S

T
 P

o
w

e
r)

SPECint

SPECfp

Multimedia

All Real Apps

Linear (All Real Apps)

 111

Now let’s take a more detailed look, and plot the SMT Power Ratio, which is the

SMT Power / ST Power, as shown in Figure 40.

Conceptually, we would expect the following equation to hold:

 SMT Power Ratio = 1+ SMT Fixed Overhead + (SMT Speedup-1) * % Dynamic

Where the SMT Fixed Overhead is defined by how much additional power is needed

simply to have an SMT-enabled part, e.g., the area and power overhead for tracking a

full set of logical registers. The % Dynamic is defined as the additional dynamic

execution overhead due to executing in SMT mode because we are executing more

instructions through the pipeline and increasing throughput.

The % Dynamic is approximately due to offsetting factors such as:

 We have effectively smaller caches and TLBs due to two software threads

simultaneously sharing the resources, resulting in additional cache misses, and

other activity.

 Our speculative execution is only half as deep, and therefore we have fewer

instructions on the mispredicted path taking (and wasting) execution

resources.

Doing a curve fit of the data in Figure 40, and solving for SMT Fixed Overhead and

% Dynamic gives us:

 SMT Fixed Overhead = 6%

 % Dynamic = 15%

The key question here is what is the significance of these numbers? An extremely

efficient base microarchitecture would have a high % Dynamic power component.

15% is quite low. This means that the Pentium 4 processor actually is not a power-

efficient base microarchitecture. Some of the reasons include data speculation and

 112

replay, the special ½ cycle ALUs which use power-hungry circuits to attain incredible

speeds, and the double-speed clocking at execution and the first-level cache.

We believe that with the emphasis on power-efficiency, future microarchitectures will

be implementing more power-efficient circuits, more clock gating, more power-

efficient microarchitecture features. However, at the same time process technology is

reported to have more leakage in the future. Therefore there is a wide range of

possible SMT Energy Benefit vs. SMT Speedup possibilities, depending on the %

Dynamic power of the processors of the future.

Let us now project the SMT Energy Benefit for a variety of future processor

scenarios. The SMT Energy Benefit can be written as follows:

SMT Energy Benefit = SMT Speedup / (1+ SMT_fixed_overhead + ((SMT_Speedup

– 1) * % Dynamic))

Plotting this for various values of % Dynamic, we get the results in Figure 41. As the

% Dynamic increases, as would be expected for future power-efficient

microarchitectures, we would expect that the SMT Energy Benefit to be reduced.

SMT is most power-efficient on high-powered processors by amortizing that high

power fixed cost over more performance. But on more efficient processors there is

less overhead to amortize and power becomes more and more proportional to

performance gain.

 113

Figure 41. Projections of SMT Energy Benefit of Future Processors, for a variety of assumptions

for % Dynamic power.

6.7 Related Work

There is a significant body of work comparing SMT and CMP energy efficiency, and

there is also some work comparing SMT with single-thread superscalar. While

clearly CMP gives higher overall performance and throughput, SMT usually has

better power efficiency except when applications are compute-bound, or have bad

cache thrashing behavior.

Li et al. [91] used a power simulator, PowerTimer, to analyze the power and energy

efficiency of SMT. They used ten SPEC2000 integer benchmarks to make 16 pairs of

workloads. Ten of the workloads were the same single thread benchmark paired with

itself. Then they selected six other pairings (gzip+perlbmk, gcc+gap, twolf+mcf,

parser+bzip2, bzip2+twolf, gcc+mcf), and used the average performance of these 16

SMT Energy Benefit varies with % Dynamic Power

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 1.2 1.4 1.6 1.8 2

SMT Speedup

S
M

T
 E

n
e

rg
y

 B
e

n
e

fi
t

15% Dynamic Power

30% Dynamic power

45% Dynamic Power

60% Dynamic Power

75% Dynamic Power

 114

pairs. They concluded that on a POWER4-like microarchitecture, designers can

expect SMT performance gains of nearly 20% with an increase in power of 24%

resulting in a significant improvement in energy efficiency as measured by the

Energy-Delay
2
 metric. Their simulations show an improvement in ED2 of nearly

30%, assuming an energy leakage of 10%. The SMT energy efficiency gets even

better for higher leakage because as leakage power is fixed and SMT’s increase in

resource utilization and therefore active power becomes a smaller proportion of the

total power.

Seng and Tullsen [92] used SMTSIM, which models an out-of-order SMT

microarchitecture, and paired it with an high-level power model [93] based on silicon

area, transistor density, and activity level. As the authors note, this model is only a

rough estimate power of the processor. It is primarily intended to provide intuition

for the power impact of a variety of optimizations to a fixed-resource SMT processor.

Cong et al. [94] use a power estimation tool similar to the wattch [95] approach to

show how clustered microarchitectures might impact the SMT vs. CMP power and

performance decision. They show that clustering can reduce the difference in energy

consumption between SMT and CMP by reducing the number of buses and ports.

CMP actually comes out ahead when leakage current is low, but SMT in a clustered

microarchitecture is better when leakage current is high. For these studies they used

6 integer and 6 floating point applications from the SPEC2000 suite to create 12 pairs

of traces.

Li and Martinez [96] look at the power and performance of a CMP running parallel

applications from scientific application domains. For their analysis they use the

wattch [95] power analytical model and a performance simulator to model an Alpha

21264-like processor in a CMP configuration. They show that while a CMP can give

good power performance scalability, there is a complex dependency on a variety of

factors including process technology, the application’s parallel efficiency, the power

 115

budget, the performance requirements, the chip’s voltage/frequency scaling

properties, and the number of available processor cores.

Sasanka et al. [97] looked at comparing SMT and CMP performance for multimedia

workloads. They also used the wattch [95] simulator and a microarchitecture

performance simulator. In contrast to other studies, however, they concluded that

CMP was more energy efficient than SMT for multimedia workloads. While no other

studies focused on multimedia workloads, there are at least a few issues with their

studies. First, they compared the SMT and CMP configuration at the same

performance. Since their CMP configuration had much higher area because each

core had double the area and therefore double the resources, to get the CMP

configuration to have low enough performance they had to drastically scale back the

frequency which dramatically decreases power. Other studies compared CMP and

SMT for the same work, and some for the same die size, which I believe is a more

reasonable comparison. Second, they assumed leakage of only 2%, which is far too

low for any modern high-performance processor silicon technology. Third, they

assumed that 90% of the circuitry is not only clock gated, but also that the clock

gating turned off power to those circuits such that they used absolutely no power

when not active. With these assumptions it is understandable how they came to their

conclusions, but the assumptions are unreasonable. While multimedia workloads

may still prefer CMP over SMT, I don’t believe the results would be so dramatic, and

quite possibly several or more of the workloads would favor SMT.

Y. Li et al. [98] also studied the performance, energy, and thermal properties of SMT

and CMP in the context of a fixed die size. They show that CMP offer significantly

more throughput than SMT. As far as energy efficiency CMP could also be superior

for CPU-bound benchmarks, while SMT was better on a variety of workloads but

especially so on some memory-bound benchmarks due to larger L2 cache size. SMT

will offer better power efficiency as leakage increases in future process technologies.

Their studies were done using a power model called PowerTimer [99] together with a

 116

microarchitecture performance simulator, and used 15 SPEC2000 benchmarks,

pairing each with itself, and forming 18 other pairs.

Kaxiras et al. [100] studies the problem of energy efficiency of SMT and CMP for a

VLIW embedded processor for a mobile phone. They show that for mobile

workloads using VLIW cores, SMT is more efficient. They used their own

simulators and analytic power models.

Isci et al. [101] measured power on an Intel Pentium™ 4 Processor and developed a

model to correlate performance counter and power measurements. However, even

though SMT was available on the Pentium 4 processor, they did not enable it.

Therefore all of their measurements and analysis were done on a single-threaded

CPU. Due to the complexity of the Pentium 4 Processor, the models that Isci et. al.

developed were often off by 10-20% on average in either direction. Sometimes the

estimated power was too high and sometimes too low. We speculate that this

inaccuracy led them to use their model to identify power phases rather than to

estimate power.

Contreras et al. followed the Isci methodology and did something similar for the Intel

Xscale® processor [102, 103]. They measured the power of the processor and used

performance counters to develop a power model. Because the Intel Xscale®

processor has a much simpler microarchitecture, it lends itself much better to

modeling with performance counter values. They were able to get the average

estimation error down to 4% on average across tested benchmarks. But again, this

work was for a single-threaded CPU.

Bellosa [104] proposed using performance counters to analyze software thread power

requirements of an energy-aware OS scheduler. He showed that the use of

performance events can give a good correlation to energy use. The processor used

was the Intel Pentium II processor, a single-thread CPU.

 117

Li et al. [105] estimate run-time power of the operating system using simple IPC

counts. They did not run on real systems, but used simulators to model a simple in-

order MIPS CPU and showed that for such a CPU a single metric, instructions per

cycle (IPC), gives a fairly accurate estimate of CPU power of the operating system’s

software threads.

Joseph et al. [106], Kadayif et al. [107], and Weissel et al. [108] used performance

events to estimate the contribution of different microarchitecture features to the total

processor power, again on single-thread CPUs. Joseph’s studies were done using a

simulation of an Alpha 21264. Kadayif’s studies were done by using cache

performance counters on an UltraSPARC CPU to measure cache hit and misses, reads

and writes. Then used generic analytic equations [109] that assume some amount of

energy for every cache or memory access. Since these equations themselves were not

derived from real silicon nor were they validated against real silicon, the accuracy is

suspect. Weissel used the Intel XScale 80200 and a system enhanced to be able to

measure the power consumed by the CPU. Though he did not come up with

equations to estimate the power of the CPU, he did find that four event counter values

seem to correlate to increased power. These were the instructions executed per cycle,

branches executed per cycle, data cache references per cycle, and memory requests

per cycle.

Bircher et al. [110] [111], Contreras et al. [102], and Lee et al. [112] used runtime

information as input into detailed analytic models to estimate power consumption.

Again, these models were for single-threaded processors.

Gurun et al. [113] explored an adaptive feedback-driven power estimation model.

Such feedback-driven models will be increasingly useful in large systems and

database warehouses, where power dissipation and thermal limitation are often the

limiting factor on the capacity of the system.[114] [115].

 118

There is a variety of developing simulation frameworks that are commonly used in

literature to simulate or estimate the power of a variety of processors and systems.

Again, none of these were for a processor with simultaneous multi-threading. Some

of the commonly used simulators include Wattch [95] developed by Brooks, Tiwarri,

and Martonosi at Princeton University. Wattch is a processor simulator that consists

of a suite of parameterizable power models. The user can specify the building blocks

such as array structures, fully associative content-addressable memory, logic and

interconnect, and the clock tree. Based on usage counts, the simulator estimates

power consumption. SimplePower [116] is another simulator that does usage counts

and estimates power consumption. SimplePower was developed by Vijaykrishnan et

al. at Pennsylvania State University; it uses a combination of analytic models and

switch capacitance energy tables to model each part of the microarchitecture.

PowerTimer [99], developed by Brooks et al. at IBM, uses a parameterized set of

energy functions that can be used in conjunction with any given cycle-accurate

microarchitectural simulator. The energy models are for typical structures such as

latches, buffers, multiplexers, register files, cache arrays, etc. SoftWatt [117],

developed by Gurumurthi et al., uses analytical energy models for the entire system

including the CPU, memory hierarchy, and disk subsystem.

6.8 Summary and Future Work

In this chapter, we have shown that SMT energy efficiency is very good when SMT

speedup is good. We have also concluded that an analytic model to estimate SMT

energy benefit is a very reasonable thing to do, and that a minimum SMT speedup of

1.1 would most likely be needed for any SMT microarchitecture before a SMT energy

benefit would be observed. However, after that we can assume that SMT energy

benefit will improve linearly with additional SMT speedup. In the Intel Pentium 4

Processor case, nearly 0.8 of the SMT speedup goes towards SMT energy benefit,

while 0.2 of that is expended on extra energy resources needed due to the additional

resource utilization. However, future processors which are more efficient will have a

less dramatic impact.

 119

The SMT implementation in the Intel Pentium 4 Processor was the first, and was

done in a low cost way with only minimum hardware. In future processors, such as

Intel’s recently disclosed Nehalem processor, the expected SMT speedup will be

much higher and it will be interesting where the SMT Energy Benefits will fall.

6.8.1 Future work

There is a lot of further work that can be done in this area. Repeating these

measurements on the Intel Nehalem processor, when available, would be extremely

insightful because the Nehalem processor has done a lot to improve SMT

performance and power efficiency.

Also testing on other desktop applications would be very insightful. The multimedia

applications and the SPEC benchmarks have been very carefully optimized for the

Pentium 4 Processor, so there is not as much “wasted” resources as in more typical

applications. The performance and energy benefit would be more compelling on

typical less-optimized applications.

More study needs to be done on pairing two or more applications; such scenarios can

represent the multi-tasking environment of typical computer users. For example,

virus scan, ripping a DVD, and video decode or computer game.

 120

 CHAPTER 7

CONCLUSIONS

This thesis is concerned with hardware approaches to maximizing the number of

independent instructions delivered to the execution core and thereby maximizing the

processing efficiency for a given amount of compute bandwidth. The compute

bandwidth is determined by the number of parallel execution units or pipelining of

those units in the processor. Keeping those computing elements busy is a key to

maximizing processing efficiency and thereby maximizing power efficiency.

While there are some applications that have an enormous amount of independent

instructions that can be issued in parallel without inefficiencies due to branch

behavior, cache behavior, or instruction dependencies, these types of applications are

not the common cases.

This thesis presents research on approaches to improving the number of independent

instructions that are provided to the execution core. This work has two major areas of

focus to provide a large quantity of readily executable instructions to the execution

core. The first approach addresses the problem of very small basic blocks due to

branchy code. Our approach is to predict multiple branches simultaneously and fetch

non-contiguous basic blocks simultaneously to send to the backend.

If we can correctly predict two to three branch paths every cycle and if the average

basic block size is five instructions, then the average fetch size is 10 to 15

instructions. Many non-numeric applications today have an average basic block size

 121

of 5 instructions, and floating point applications tend to be much larger. The ability

to fetch multiple basic blocks per cycle coupled with compiler technology to increase

basic block size can result in significant performance gains. This chapter shows that

just providing the ability to fetch multiple instructions without specific compiler

optimizations already increases the useful instruction fetch capacity of a machine by

40% and 63% when 2 and 3 basic blocks can be fetched each cycle, respectively, for

integer benchmarks. For floating point benchmarks, the improvement is 27% and

59%.

The second approach to increasing the number of independent instructions to the

execution core is to introduce a separate independent software thread. Specifically,

we discuss an approach called simultaneous multithreading. We present the Intel

Pentium 4 Processor, and study some of the microarchitecture choices and tradeoffs

to make simultaneous multithreading as efficient as possible.

Finally, we look at the power efficiency of simultaneous multithreading. More

independent instructions in the processor mean better processor resource utilization.

Improvements in processor resource utilization also benefit energy efficiency. We

found that indeed the energy efficiency is improved. We showed that although SMT

power is typically ~5-15% higher than ST power, the energy efficiency can be quite

substantial when the SMT speedup is > 1.1. A new metric, the SMT Energy Benefit,

was defined and used to show that for a given increment of SMT speedup,

approximately 80% of that directly lowers energy usage, while 20% is spent to obtain

that speedup on the Intel Pentium 4 Processor. We then generalized the results and

built a model for what future processors’ SMT Energy Benefit might be. We

concluded that SMT will continue to be an energy-efficient feature, however as

processors get more energy-efficient the relative SMT Energy Benefit will be

reduced.

 122

7.1 Future Directions

There is a lot more work that needs to be done to understand and characterize the

performance and energy benefits of SMT. For real system measurements, Intel’s

Nehalem processor will soon be coming out, and it would be fascinating to repeat

many of the studies on Nehalem. Since Nehalem’s microarchitecture will be quite

different from the Pentium 4 Processor, it will provide a good opportunity to compare

microarchitecture features on a wide variety of real applications as well as a wide

variety of microbenchmarks.

Power models should be validated with real system measurements to see how close

they are. Good models using performance monitoring events should be developed to

open up power analysis to a wide variety of applications. These models can also

allow operating systems and other applications to understand the power

characteristics of their applications and possibly dynamically adjust or schedule

threads for optimum power performance distribution.

Even for the Pentium 4 Processor, there is a lot more work that can be done to

develop more microbenchmarks in order to isolate and understand the power

characteristics of the different microarchitecture features.

 123

BIBLIOGRAPHY

[1] R. Colwell, R. Nix, J. O'Donnell, D. Papworth, and P. Rodman, "A VLIW

Architecture for a Trace Scheduling Compiler," Proceedings of the 2nd

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pp. 180-192, 1987.

[2] W. Hwu, S. Mahlke, W. Chen, P. Chang, and N. Warter, "The Superblock:

An Effective technique for VLIW and Superscalar Compilation," The Journal

of Supercomputing, 1993.

[3] B. R. Rau, D. Yen, W. Yen, and R. Towle, "The Cydra 5 Departmental

Supercomputer - Design Philosophies, Decisions, and Trade-offs," IEEE

Computer, pp. 12-35, 1989.

[4] T.-Y. Yeh, D. T. Marr, and Y. N. Patt, "Increasing the Instruction Fetch Rate

via Multiple Branch Prediction and a Branch Address Cache," presented at

Proceedings of the 7th International Conference on Supercomputing, Tokyo,

Japan, 1993.

[5] T. Yeh and Y. N. Patt, "Two-Level Adaptive Branch Prediction," The 24th

ACM/IEEE International Symposium and Workshop on Microarchitecture,

pp. 51-61, 1991.

[6] T. Yeh and Y. N. Patt, "Alternative Implementations of Two-Level Adaptive

Branch Prediction," Proceedings of the 19th International Symposium on

Computer Architecture (ISCA), pp. 124-134, 1992.

[7] T. Yeh and Y. N. Patt, "A Comparison of Dynamic Branch Predictors that use

Two Levels of Branch History," Proceedings of the 20th International

Symposium on Computer Architecture (ISCA), 1993.

[8] T. Yeh and Y. N. Patt, "A Comprehensive Instruction Fetch Mechanism for a

Processor Supporting Speculative Execution," Proceedings of the 25th

International Symposium on Microarchitecture (Micro), pp. 129-139, 1992.

[9] S. Pan, K. So, and J. T. Rahmeh, "Improving the Accuracy of Dynamic

Branch Prediction Using Branch Correlation," Proceedings of the 5th

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pp. 76-84, 1992.

[10] B. Calder and D. Grunwald, "Next Cache Line and Set Prediction," presented

at Proceedings of the 22nd Annual International Symposium on Computer

Architecture, 1995.

[11] T. Conte, K. Menezes, P. Mills, and B. Patel, "Optimization of Instruction

Fetch Mechanisms for High Issue Rates," presented at Proceedings of the

22nd Annual International Symposium on Computer Architecture, 1995.

 124

[12] S. Wallace and N. Bagherzadeh, "Multiple Branch and Block Prediction,"

presented at Proceedings of the 1997 ACM/IEEE Conference on High

Performance Computer Architecture, 1997.

[13] J. B. Lee, S. M. Moon, and W. Sung, "An Enhanced Two-level Adaptive

Multiple Branch Predictor for Superscalar Processors," Journal of Systems

Architecture, vol. 45, pp. 591-602, 1999.

[14] D. Koppelman, "The Benefit of Multiple Branch Prediction on Dynamically

Scheduled Systems," presented at Workshop on Duplicating, Deconstructing,

and Debunking, 2002.

[15] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud, "Multiple-block Ahead

Branch Predictors," ACM SIGOPS Operating Systems Review, vol. 30, pp.

116-127, 1996.

[16] R. Rakvic, B. Black, and J. P. Shen, "Completion Time Multiple Branch

Prediction for Enhancing Trace Cache Performance," presented at

Proceedings of the 27th Annual International Symposium on Computer

Architecture, 2000.

[17] D. N. Pnevmatikatos, M. Franklin, and G. S. Sohi, "Control Flow Prediction

for Dynamic ILP Processors," presented at Proceedings of the 26th Annual

International Symposium on Microarchitecture (MICRO 26), Austin, Texas,

1993.

[18] G. Reinman, T. Austin, and B. Calder, "Optimizations Enabled by a

Decoupled Front-End Architecture," IEEE Transactions on Computers, vol.

50, pp. 330-355, 2001.

[19] A. Peleg and U. Weiser, "Dynamic Flow Instruction Cache Memory

Organized around Trace Segments Independent of Virtual Address Line,"

U.S. Patent 5, 533, Ed., 1992, 1994.

[20] E. Rotenberg, S. Bennett, and J. E. Smith, "Trace Cache: A Low Latency

Approach to High Bandwidth Instruction Fetching," presented at Proceedings

of the 29th International Symposium on Microarchitecture, 1996.

[21] S. Patel, D. Friendly, and Y. Patt, "Evaluation of Design Options for the Trace

Cache Fetch Mechanism," IEEE Transactions on Computers, vol. 48, pp. 193-

204, 1999.

[22] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P.

Roussel, "The Microarchitecture of the Pentium(R) 4 Processor," Intel

Technology Journal, vol. 5, pp. 1-13, 2001.

[23] S. Borkar, N. P. Jouppi, and P. Stenstrom, "Microprocessors in the Era of

Terascale Integration," presented at Design, Automation, & Test in Europe

Conference & Exhibition (DATE'07), 2007.

[24] S. Rusu, "Trends and Challenges in High-Performance Microprocessor

Design," in Electronic Design Processes 2004. Monterey, CA, 2004.

[25] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall, "Managing the Impact of

Increasing Microprocessor Power Consumption," Intel Technology Journal,

vol. 5, 2001.

[26] T. Ungerer, B. Robic, and J. Silc, "A Survey of Processors with Explicit

Multithreading," ACM Computing Surveys, vol. 35, pp. 29-63, 2003.

 125

[27] D. T. Marr, "Introduction to Next Generation Multiprocessing: Hyper-

Threading Technology," in Intel Developer Forum, Fall 2001, 2001.

[28] M. Nemirovsky, "DISC, A Dynamic Instruction Stream Computer," vol.

Ph.D.: University of California, Santa Barbara, 1990.

[29] W. Yamamoto, M. J. Serrano, A. R. Talcott, R. C. Wood, and M.

Nemirovsky, "Performance estimation of Multistreamed, Superscalar

Processors," presented at HICSS94, 1994.

[30] W. Yamamoto and M. Nemirovsky, "Increasing Superscalar Performance

Through Multistreaming," presented at Proceedings of the 1995 Conference

on Parallel Architectures and Compilation Techniques (PACT'95), 1995.

[31] D. M. Tullsen, S. J. Eggers, and H. M. Levy, "Simultaneous Multithreading:

Maximizing On-Chip Parallelism," presented at Proceedings of the 22nd

International Symposium on Computer Architecture (ISCA'95), 1995.

[32] D. M. Tullsen, S. J. Eggers, J. S. Emer, and H. M. Levy, "Exploiting Choice:

Instruction Fetch and Issue on an Implementable Simultaneous Multithreading

Processor," Proceedings of the 23rd International Symposium on Computer

Architecture (ISCA'96), pp. 191-202, 1996.

[33] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M.

Tullsen, "Simultaneous Multithreading: A Platform for Next-Generation

Processors," IEEE Micro, vol. 17, pp. 12-19, 1997.

[34] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M. Tullsen, and S. J.

Eggers, "Converting Thread-Level Parallelism to Instruction-Level

Parallelism via Simultaneous Multithreading," ACM Transactions on

Computer Systems, vol. 15, pp. 322-354, 1997.

[35] M. Loikkanen and N. Bagherzadeh, "A Fine-Grain Multithreading Superscalar

Architecture," Proceedings of the 1996 Conference on Parallel Architectures

and Compilation Techniques (PACT'96), pp. 163-168, 1996.

[36] B. J. Smith, "Architecture and Applications of the HEP Multiprocessor

Computer System," presented at Proceedings SPIE Real Time Signal

Processing IV, 1981.

[37] J. T. Kuehn and B. J. Smith, "The Horizon Supercomputing System:

Architecture and Software," presented at 1988 ACM/IEEE Conference on

Supercomputing, 1988.

[38] M. R. Thistle and B. J. Smith, "A Processor Architecture for Horizon,"

presented at 1988 ACM/IEEE Conference on Supercomputing, 1988.

[39] L. Carter, J. Feo, and A. Snavely, "Performance and Programming Experience

on the Tera MTA," presented at SIAM Conference on Parallel Processing,

1999.

[40] W. Anderson, P. Briggs, and C. S. Hellberg, "Early Experience with Scientific

Programs on the Cray MTA-2," presented at 2003 ACM/IEEE Conference on

Supercomputing, 2003.

[41] R. H. Halstead and T. Fujita, "MASA: A Multithreaded Processor

Architecture for Parallel Symbolic Computing," presented at 15th Annual

International Symposium on Computer Architecture, 1988.

 126

[42] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich, and

W. S. Lee, "The M-Machine Multicomputer," presented at 28th International

Symposium on Computer Architecture, 1995.

[43] C. Hansen, "MicroUnity's MediaProcessor Architecture," IEEE Micro, vol.

16, pp. 34-41, 1996.

[44] P. Bach, M. Braun, A. Formella, J. Friedrich, T. Grun, and C. Lichtenau,

"Building the 4 Processor SB-PRAM Prototype," presented at Proceedings of

the Thirteenth Hawaii International Conference on System Sciences, 1997.

[45] A. Formella, T. Grun, and C. W. Kebler, "The SB-PRAM: Concept, Design,

and Construction," presented at Proceedings 3rd Conference on Massively

Parallel Programming Models, 1997.

[46] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeong, G. D'Souza, and

M. Parkin, "Sparcle: An Evolutionary Processor Design for Large-Scale

Microprocessors," IEEE MIcro, vol. 13, pp. 48-61, 1993.

[47] A. Mikschl and W. Damm, "MSparc: A Multithreaded Sparc," in

Proceedings of the Second International Euro-Par Conference on Parallel

Processing - Volume II, vol. 2, 1996, pp. 461-469.

[48] A. Metzner and J. Niehaus, "MSparc: Multithreading in Real-Time

Architectures," Journal of Universal Computer Science, vol. 6, pp. 1034-

1051, 2000.

[49] H. Sullivan and T. R. Bashkow, "A Large Scale, Homogeneous, Fully

Distributed Parallel Machine, I," in International Symposium on Computer

Architecture Proceedings of the 4th Annual Symposium on Computer

Architecture, 1977.

[50] W. Grunewald and T. Ungerer, "Towards Extremely Fast Context Switching

in a Blockmultithreaded Processor," in Proceedings of the 22nd Euromicro

Conference. Prague, Czech Republic, 1996.

[51] W. Grunewald and T. Ungerer, "A Multithreaded Processor Designed for

Distributed Shared Memory Systems," in Proceedings of the International

Conference on Advances in Parallel and Distributed Computing. Shanghai,

China, 1997.

[52] K. Luth, A. Metzner, T. Piekenkamp, and J. Risu, "The Events Approach to

Rapid Prototyping for Embedded Control System," in Proceedings of the

Workshop Zielarchitekturen Eingebetteter Systeme. Rockstock, Germany,

1997.

[53] U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T. Ungerer, "A

Multithreaded Java Microcontroller for Thread-oriented Real-time Event-

handling," in Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques. Newport Beach, CA, 1999.

[54] U. Brinkschulte, C. Krakowski, R. Marston, J. Kreuzinger, and T. Ungerer,

"The Komodo Project: Thread-based Event Handling Supported by a

Multithreaded Java microcontroller," in Proceedings of the 25th Euromicro

Conference. Milan, Italy, 1999.

[55] U. Brinkschulte, J. Kreuzinger, M. Pfeffer, and T. Ungerer, "A Microkernel

Middleware Architecture for Distributed Embedded Real-time Systems," in

 127

Proceedings of the 20th IEEE Symposium on Reliable Distributed Systems.

New Orleans, LA, 2000.

[56] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel, "A

Multithreaded PowerPC Processor for Commerical Servers," IBM Journal of

Research and Development, vol. 44, pp. 885-898, 2000.

[57] M. Tremblay, "A VLIW Convergent Multiprocessor System on a Chip," in

Proceedings of the Microprocessor Forum. San Jose, CA, 1999.

[58] Intel, "Intel Internet Exchange Architecture Network Processors: Flexible,

Wirespeed Processing from the Customer Premises to the Network Core.,"

Intel Corporation, Santa Clara, CA, White Paper 2002.

[59] IBM, "IBM Network Processor," IBM Corporation, Yorktown Heights, NY,

Product overview 1999.

[60] P. N. Glaskowsky, "Network Processors Mature in 2001," in Microprocessor

Report, February 19 ed, 2002.

[61] W. J. Dally, J. Fiske, J. Keen, R. Lethin, M. Noakes, P. Nuth, R. Davison, and

G. Fyler, "The Message-driven Processor: A Multicomputer Processing Node

with Efficient Mechanisms," IEEE Micro, vol. 12, pp. 23-39, 1992.

[62] S. E. Raasch and S. K. Reinhardt, "The Impact of Resource Partitioning on

SMT Processors," Proceedings of the 12th International Conference on

Parallel Architectures and Compilation Techniques (PACT), pp. 15-25, 2003.

[63] D. T. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. A. Miller, and M.

Upton, "Hyperthreading(TM) Technology Architecture and

Microarchitecture," Intel Technology Journal, vol. 6, pp. 1-12, 2002.

[64] D. Boggs, A. Baktha, J. Hawkins, D. T. Marr, J. A. Miller, and M. Upton,

"The Microarchitecture of the Intel(R) Pentium(R) 4 Processor on 90nm

Technology," Intel Technology Journal, vol. 8, pp. 1-17, 2004.

[65] R. Kalla, B. Sinharoy, and J. M. Tendler, "IBM Power5 Chip: A Dual-Core

Multithreaded Processor," IEEE Micro, vol. 24, pp. 40-47, 2004.

[66] K. Diefendorff, "Compaq Chooses SMT for Alpha," Microprocessor Report,

pp. 1, 6-11, 1999.

[67] J. Emer, "Simultaneous Multithreading: Multiplying Alpha Performance,"

Microprocessor Forum, 1999.

[68] R. P. Preston, R. W. Badeau, D. W. Bailey, S. L. Bell, L. L. Biro, W. J.

Bowhill, D. E. Dever, S. Felix, R. Gammack, V. Germini, M. K. Gowan, P.

Gronowski, D. B. Jackson, S. Mehta, S. V. Morton, J. D. Pickholtz, M. H.

Reilly, and M. J. Smith, "Design of an 8-wide superscalar RISC

microprocessor with simultaneous multithreading," Proceedings of the 2002

IEEE Solid-State Circuits Conference (ISSCC 2002), pp. 334-335, 2002.

[69] S. Melvin, "Clearwater Networks CNP810SP Simultaneous Multithreading

(SMT) Core," http://www.zytek.com/~melvin/clearwater.html 2001.

[70] D. T. Marr, "Hyper-Threading Technology in the Netburst(TM)

Microarchitecture.," in Hot Chips 14. Palo Alto, Ca., 2002.

[71] D. A. Koufaty and D. T. Marr, "Hyper-Threading Technology in the

Netburst(TM) Microarchitecture," IEEE Micro, vol. 23, pp. 56-65, 2003.

http://www.zytek.com/~melvin/clearwater.html

 128

[72] Intel, IA-32 Intel Architecture Software Developer's Manual, Vol. 3: System

Programming Guide: order no. 244472,

http://developer.intel.com/design/pentium4/manuals, 2001.

[73] D. Marr, "Establishing Thread Priority in a Processor or the Like." USA

Patent Pending (filed 1/22/2000): Intel Corp., 2000.

[74] D. T. Marr and D. Rodgers, "Method and Apparatus for Pausing Execution in

a Processor or the Like." U.S. Patent 6,671,795 (filed 1/21/2000, issued

12/30/2003): Intel Corporation, 2003.

[75] D. L. Hill, D. T. Bachand, C. B. Prudvi, and D. Marr, "Dynamic Priority

External Transaction System." USA Patent 6,654,837 (filed 12/28/1999 issued

11/25/2003) Patent 7,143,242 (filed 9/23/2003 issued 11/28/2006): Intel

Corp., 2003.

[76] S. J. Jourdan, P. H. Hammarlund, H. Hum, and D. Marr, "System and method

for employing a global bit for page sharing in a linear-addressed cache." USA

Patent 6,675,282 (issued 2/12/2003 issued 1/6/2004) USA Patent 6,560,690

(filed 12/29/2000, issued 5/6/2003): Intel Corp., 2003.

[77] D. Marr, "Causality-based memory ordering in a multiprocessing

environment." US Patent 6,681,320 (filed 12/29/1999 issued 1/20/2004): Intel

Corp., 2004.

[78] L. Hacking and D. Marr, " Synchronization of load operations using load

fence instruction in pre-serialization/post-serialization mode." USA Patent

6,862,679 (filed 2/14/2001, issued 3/1/2005), 2005.

[79] D. L. Hill, D. T. Marr, D. Rodgers, S. Kaushik, J. B. Crossland, and D. A.

Koufaty, "Coherency techniques for suspending execution of a thread until a

specified memory access occurs." USA Patent 7,127,561 (filed 12/31/2001,

issued 10/24/2006): Intel Corp., 2006.

[80] L. Hacking and D. Marr, " Method and apparatus for synchronizing load

operations." USA Patent 7,284,118 (filed 2/12/2004, issued 10/16/2007): Intel

Corp., 2007.

[81] L. Hacking and D. Marr, "Globally observing load operations prior to fence

instruction and post-serialization modes." USA Patent 7,249,245 (filed

2/12/2004, issued 7/24/2007): Intel Corp., 2007.

[82] D. Rodgers, D. Marr, D. L. Hill, S. Kaushik, J. B. Crossland, and D. A.

Koufaty, " Method and apparatus for suspending execution of a thread until a

specified memory access occurs." USA Patent 7,363,474 (filed 12/31/2001,

issued 4/22/2008): Intel Corp., 2008.

[83] S. Swanson, L. McDowell, M. Swift, S. Eggers, and H. Levy, "An Evaluation

of Speculative Instruction Execution on Simultaneous Multithreaded

Processors," Transactions on Computer Systems, vol. 21, 2003.

[84] J. Brayton, "Nehalem: Talk of the Tock, Intel Next Generation

Microprocessor," presented at Intel Developer Forum, Shanghai, China, 2008.

[85] R. Singhal, "Inside Intel Next Generation Nehalem Microarchitecture,"

presented at Intel Developer Forum, Shanghai, China, 2008.

[86] T. N. f. A. T. a. T. A. (NATTA), Energy: A Beginner's Guide: The Open

University, 2000.

http://developer.intel.com/design/pentium4/manuals

 129

[87] Y. Liu, R. P. Dick, L. Shang, and H. Yang, "Accurate Temperature-

Dependent Integrated Circuit Leakage Power Estimation Is Easy," presented

at Proceedings of the Conference on Design, Automation, and Test in Europe,

Nice, France, 2007.

[88] J. Hunt. Portland, Oregon, 2007, pp. Conversation with Debbie Marr on the

modifications to the Lakeport/ICH7 motherboard required to measure CPU

power.

[89] E. Hall, "On a New Action of the Magnet on Electric Currents," American

Journal of Mathematics, vol. 2, 1879.

[90] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, Third edition: Morgan Kaufmann, 2002.

[91] Y. Li, D. Brooks, Z. Hu, K. Skadron, and P. Bose, "Understanding the Energy

Efficiency of Simultaneous Multithreading," in Proceedings of the 2004

International Symposium on Low Power Electronics and Design. Newport

Beach, CA: ACM, 2004, pp. 44-49.

[92] J. Seng, D. Tullsen, and G. Cai, "Power-sensitive Multithreaded

Architecture," in Proceedings of the 2000 International Conference on

Computer Design, 2000.

[93] G. Cai and C. H. Lim, "Architectural Level Power/Performance Optimization

and Dynamic Power Estimation," in Proceedings of Cool Chips Tutoria at

32nd International Symposium on Microarchitecture, 1999.

[94] J. Cong, A. Jagannathan, G. Reinman, and Y. Tamir, "Understanding the

Energy Efficiency of SMT and CMP with Multiclustering," in Proceedings of

the 2005 International Symposium on Low Power Electronics and Design.

San Diego, CA, 2005.

[95] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations," in Proceedings of the

27th International Symposium on Computer Architecture, 2000.

[96] J. Li and J. F. Martinez, "Power-Performance Considerations of Parallel

Computing on Chip Multiprocessors," ACM Transactions on Architecture and

Code Optimization (TACO), vol. 2, pp. 397-422, 2005.

[97] R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes, "The Energy Efficiency of

CMP vs. SMT for Multimedia Workloads," in Proceedings of the 18th Annual

International Conference on Supercomputing, 2004.

[98] Y. Li, D. Brooks, Z. Hu, and K. Skadron, "Performance, Energy, and Thermal

Considerations for SMT and CMP Architectures," in Proceedings of the

Eleventh IEEE International Symposium on High Performance Computer

Architecture (HPCA), 2005.

[99] D. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind, P. G. Emma, and M. G.

Rosenfield, "New Methodology for Early-Stage, Microarchitecture-Level

Power-Performance Analysis of Microprocessors," IBM Journal of Research

and Development, vol. 47, pp. 653-670, 2003.

[100] S. Kaxiras, G. Narlikar, A. D. Berenbaum, and Z. Hu, "Comparing Power

Consumption of an SMT and a CMP DSP for Mobile Phone Workloads," in

Proceedings of the 2001 International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems, 2001.

 130

[101] C. Isci and M. Martonosi, "Runtime Power Monitoring using High-End

Processors: Methodology and Empirical Data," 36th ACM/IEEE International

Symposium on Microarchitecture (MICRO-36), 2003.

[102] G. Contreras and M. Martonosi, "Power Estimation for Intel XScale

Processors Using Performance Monitoring Unit Events," in Proceedings of

the 2005 International Symposium on Low Power Electronics and Design

(ISLPED 05), 2005.

[103] G. Contreras, M. Martonosi, J. Peng, G.-Y. Lueh, and R. Ju, "The XTREM

Power and Performance Simulator for the Intel XScale Core: Design and

Experiences," ACM Transactions on Computing Systems, vol. 6, 2007.

[104] F. Bellosa, "The Benefits of Event-Driven Energy Accounting in Power-

sensitive Systems," Proceedings of the 9th Workshop on ACM SIGOPS

European Workshop, 2002.

[105] T. Li and L. K. John, "Run-time Modeling and Estimation of Operating

System Power Consumption," ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Systems, 2003.

[106] R. Joseph and M. Martonosi, "Run-time Power Estimation in High

Performance Microprocessors," Proceedings of the 2001 International

Symposium on Low Power Electronics and Design (ISLPED'01), 2001.

[107] I. Kadayif, T. Chinoda, M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and

A. Sivasubramaniam, "vEC: Virtual Energy Counters," Workshop on

Program Analysis for Software Tools and Engineering, pp. 28-31, 2001.

[108] A. Weissel and F. Bellosa, "Process cruise control: Event-driven Clock

Scaling for Dynamic Power Management," Proceedings of the International

Conference on Compilers, Architecture and Synthesis for Embedded Systems

(CASES 2002), 2002.

[109] H. Y. Kim, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "Multiple

Access Caches: Energy Implications," Proceedings of The IEEE CS Annual

Workshop on VLSI, pp. 53-58, 2000.

[110] W. Bircher, J. Law, M. Valluri, and L. K. John, "Effective Use of

Performance Monitoring Counters for Run-Time Prediction of Power,"

University of Texas at Austin Technical Report TR-041104-01, November

2004.

[111] W. Bircher, M. Valluri, J. Law, and L. K. John, "Runtime Identification of

Microprocessor Energy Saving Opportunities," Proceedings of the 2005

International Symposium on Low Power Electronics and Design (ISLPED),

2005.

[112] B. Lee and D. Brooks, "Accurate and Efficient Regression Modeling for

Microarchitecture Performance and Power Prediction," Proceedings of the

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-XII), 2006.

[113] S. Gurun and C. Krintz, "A Run-Time, Feedback-Based Energy Estimation

Model for Embedded Devices," Proceedings of the International Conference

on Hardware-Software Codesign and System Synthesis (CODES+ISSS), 2006.

 131

[114] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, "Full-System

Power Analysis and Modeling for Server Environments," Proceedings of the

Workshop on Modeling Benchmarking and Simulation (MOBS), 2006.

[115] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria, and R. Bianchini,

"Mercury and Freon: Temperature Emulation and Management in Server

Systems," Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS),

2006.

[116] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye, "Energy-

Driven Integrated Hardware-Software Optimizations Using SimplePower," in

Proceedings of the 27th International Symposium on Computer Architecture,

2000.

[117] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M.

Kandemir, T. Li, and L. K. John, "Using Complete Machine Simulation for

Software Power Estimation: The SoftWatt Approach," in Proceedings of the

8th International Symposium on High-Performance Computer Architecture

(HPCA), 2002.

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABREVIATIONS
	ABSTRACT
	INTRODUCTION
	Contributions
	Organization

	INCREASING INSTRUCTION FETCH RATE VIA MULTIPLE BRANCH PREDICTION
	Branch Prediction Previous Work
	Two-level Adaptive Branch Predictor
	Instruction Supply

	Fetching Multiple Basic Blocks Each Cycle
	The Multiple Branch Two-Level Adaptive Branch Predictor
	The Branch Address Cache (BAC) Design
	The Instruction Cache

	Simulation Methodology
	Simulation Environment
	Performance Metric

	Simulation Results
	Effect on Prediction Accuracy and IPC_f of History Register Length
	Tradeoff Between the Number of Pattern History Tables and History Register Length
	Number of Branch Predictions per Cycle
	Branch Prediction Efficiency
	Instruction Cache Configuration
	Effect of Branch Misprediction Penalty
	Effect of Instruction Cache Miss Penalty

	Related Work
	Conclusion

	SIMULTANEOUS MULTITHREADING
	Motivation
	Terms
	Background
	Simultaneous Multithreading
	Interleaved Multithreading
	Switch-on-Event Multithreading

	Performance of SMT vs. SOEMT

	SIMULTANEOUS MULTITHREADING IMPLEMENTATION
	Intel Pentium 4 and Xeon Processor Family SMT Microarchitecture
	Front End
	Out-of-order Execution Engine
	Memory Subsystem
	Single-task and Multi-task Modes

	IBM Power5
	Front-end
	Out-of-order Execution Engine
	Memory Subsystem
	Single-task and Multi-task Modes
	SMT Performance Enhancing Features

	Alpha EV8
	Front-end
	Out-of-order Execution Engine
	Memory Subsystem

	Clearwater Networks CNP810SP Processor
	Front-end
	Out-of-order Execution Engine

	SIMULTANEOUS MULTITHREADING MICROARCHITECTURE CHOICES AND TRADEOFFS
	Partition
	Threshold
	Full sharing
	Conclusions

	POWER AND ENERGY ANALYSIS OF SIMULTANEOUS MULTI-THREADING
	Methodology
	Motherboard modifications to measure CPU power
	SMT Energy Benefit Metric

	Micros Study Results
	SPEC 2000 Integer
	SPEC2000 Floating Point
	Multimedia Applications
	Analytic Model of SMT Energy Benefit
	Related Work
	Summary and Future Work
	Future work

	CONCLUSIONS
	Future Directions

	BIBLIOGRAPHY

