
WiBench: An Open Source Kernel Suite for
Benchmarking Wireless Systems

Qi Zheng∗, Yajing Chen∗, Ronald Dreslinski∗, Chaitali Chakrabarti†, Achilleas Anastasopoulos∗,
Scott Mahlke∗ and Trevor Mudge∗

∗EECS Department, University of Michigan, Ann Arbor
†School of ECEE, Arizona State University, Tempe

{qizheng,yajchen,rdreslin,anastas,mahlke,tnm}@umich.edu, chaitali@asu.edu

Abstract—The rapid growth in the number of mobile devices
and the higher data rate requirements of mobile subscribers
have made wireless signal processing a key driving application of
mobile computing technology. To design better mobile platforms
and the supporting wireless infrastructure, it is very important
for computer architects and system designers to understand and
characterize the performance of existing and upcoming wireless
protocols.

In this paper, we present a newly developed open-source
benchmark suite called WiBench. It consists of a wide range
of signal processing kernels used in many mainstream stan-
dards such as 802.11, WCDMA and LTE. The kernels include
FFT/IFFT, MIMO, channel estimation, channel coding, constel-
lation mapping, etc. Each kernel is a self-contained configurable
block which can be tuned to meet the different system require-
ments. Several standard channel models have also been included
to study system performance, such as the bit error rate. The suite
also contains an LTE uplink system as a representative example of
a wireless system that can be built using these kernels. WiBench
is provided in C++ to make it easier for computer architects to
profile and analyze the system. We characterize the performance
of WiBench to illustrate how it can be used to guide hardware
system design. Architectural analyses on each individual kernel
and on the entire LTE uplink are performed, indicating the
hotspots, available parallelism, and runtime performance. Finally,
a MATLAB version is also included for debugging purposes.

I. INTRODUCTION

The mobile market has experienced a rapid increase over
the last decade. It is expected that by the end of 2013 there
will be almost as many mobile-cellular subscriptions as there
are people in the world [1]. The number of mobile broad-
band subscribers, who access the internet wirelessly through
mobile devices, has climbed from 268 million in 2007 to 2.1
billion in 2013—a 40% annual increase rate [1]. To support
this growth the number of base stations has also increased
exponentially [2]. All indications show that this trend is likely
to continue, at least in the near future.

In order to design better mobile platforms and the wireless
infrastructure to support them, computer architects and system
designers will have to understand and characterize the perfor-
mance of wireless protocols. In a nutshell, wireless protocols
encode the raw information in the transmitter side, and recover
it in the receiver side. These processes consume significant
computing resources and power in a handheld system. For
instance, a GSM subsystem in a smartphone consumes 30%-
50% of the overall power [3], and an even larger portion
is used in more recent WCDMA and LTE protocols. In

addition, the portion of the global CO2 footprint for wireless
networks will be 13% of the total allocation to information
and communication technology (ICT) by 2020, according to
the Climate Group [4]. Clearly it is important that wireless
devices be power-efficient—requiring designers to understand
the power/performance characteristics of the algorithms within
these protocols.

Benchmarks are an important tool for characterizing
power/performance tradeoffs in different application domains.
Examples of important benchmark suites include SPEC bench-
marks [5] for general purpose computing, PARSEC bench-
marks [6] for multithreaded applications, MEVBench [7] for
mobile computer vision applications, and BBench [8] for
interactive smartphone applications. Although there exist some
benchmarks for wireless communication, they either are out-
of-date, lack essential algorithm details, or distorted the com-
putational characteristics by introducing addition overhead.

In this paper, we develop an open source configurable
kernel set for wireless signal processing called WiBench1.
The set consists of important signal processing kernels that
are widely used in many wireless standards such as 802.11,
WCDMA or LTE. The kernels include Fast Fourier transform
(FFT), multiple-input and multiple-out (MIMO) detection,
channel estimation, channel coding, constellation mapping, and
scrambling. Each kernel is a self-contained configurable block.
Such a system can be used to build multiple wireless protocols
and evaluate their performance. To demonstrate this feature, we
include an LTE uplink benchmark in WiBench. LTE is a fourth
generation wireless communication standard (4G) that is being
deployed worldwide. It is designed to deliver data rates up to
100 Mbps. The configurability of WiBench kernels allows our
LTE uplink to support a variety of peak data rates ranging from
1.56 to 100 Mbps. We also include several standard channel
models in WiBench so that system researchers can use it to
evaluate the bit error rate (BER) performance of their system.
WiBench is provided in C++, which enables architecture
researchers to characterize applications, and MATLAB, which
helps debugging and functional verification.

Our key contributions are:

• An open source configurable wireless signal process-
ing kernel suite, which includes a rich set of key signal
processing kernels that are used widely in mainstream
wireless protocols.

1WiBench is available through http://wibench.eecs.umich.edu.

123978-1-4799-055-3/13/$31.00 ©2013 IEEE

• An LTE uplink in the benchmark that illustrates how
to build a wireless application by assembling kernels.
The configurability of our kernels allows us to support
different peak data rates. Users can similarly establish
their own applications to model WCDMA or Wi-Fi.

• Benchmark support for several standard channel mod-
els that allows system designers to evaluate their
decisions by examining BER.

• A demonstration of WiBench for hardware design
which analyses and identifies the hotspots, available
parallelism, and runtime performance at the kernel and
system levels.

The rest of paper is organized as follows. Section II
presents the related work. In Section III, we describe our kernel
suite, and provide details of each kernel in the benchmark and
the LTE uplink. We also explain our design philosophy of
WiBench. In Section IV, we examine the characteristics of each
individual kernel and the LTE uplink, and provide pointers for
efficient hardware design.

II. RELATED WORK

The wireless communication community works on open
problems in telecommunication as well as next generation
technologies. Their primary focus is on the impact of commu-
nication theory and algorithm optimization on system perfor-
mance, typically measured in terms of BER. There are many
open source system simulators written in MATLAB or built
through Simulink [9]–[11] to aid in this analysis. MATLAB
and Simulink are easy to use due to their interactive natures
and a large number of built-in functions. However, MATLAB
and Simulink are not suitable for hardware design because
their abstraction levels are too high. To aid in the co-design
of systems and their underlying architecture, we release both
MATLAB and C++ versions of all kernels in WiBench—
System designers may explore BER through MATLAB, and
architects can explore power-efficient hardware organizations
that execute the C++ code. While most system simulators are
in MATLAB/Simulink, there are several that include C/C++
versions which will be discussed in the following paragraphs.

First, the closest related work to WiBench is GNU Ra-
dio [12], a free and open source software toolkit providing
signal processing blocks for software radio implementation.
GNU Radio uses a “block” abstraction to connect signal
processing kernels, which are implemented in C++, together
with a few lines of Python code. Each block is equipped with
its own input/output buffers. The GNU Radio suite then uses
a runtime scheduler that activates each block when there is
enough data in its input buffer and space in its output buffer
to perform the function. It is designed to run on commodity
hardware. To construct a complete end-to-end wireless system,
the user must first understand algorithmic details of these
blocks. WiBench has a different goal, which is to support
hardware exploration of domain specific hardware solutions.
To this end, we provide all key kernels as well as the entire
system in WiBench. In addition, the GNU radio block class
introduces non-kernel overheads. This may lead to a distorted
picture of how the signal processing algorithms would perform
on domain specific hardware. WiBench’s behavior is closer
to the actual computational characteristics of wireless signal

processing kernels, similar to the approach used in the design
of several high-performance DSP prototypes [13]–[15].

Second, MiBench [16] is a set of embedded applica-
tions released over a decade ago. Telecommunication, one of
the six categories in the benchmark, contains GSM related
processing—FFT/IFFT, GSM voice encoding and decoding
algorithms, Adaptive Differential Pulse Code Modulation en-
code/decode, and CRC32 checksum algorithm. These represent
only a small portion of wireless signal processing kernels.
Since the release of MiBench in 2001, communication tech-
nology has seen rapid development including several gener-
ations of technology enhancements rendering many of the
MiBench kernels irrelevant. WiBench is designed specifically
for wireless signal processing and includes many state-of-the-
art algorithms that will be used in next generation technology.

Third, LTE Uplink Receiver PHY Benchmark [2] is an
open source, freely available benchmark that represents the
baseband processing of an LTE base station. The benchmark
implements SC-FDMA modulation, channel estimation, trans-
form decoding and soft symbol demapping, and is capable of
generating different number of users with different workloads.
However, this benchmark mainly aims to simulate the work-
load change in an LTE base station to study the power man-
agement strategy, rather than the characterization of wireless
algorithms for hardware design. In addition, it only includes
some parts of the LTE uplink and is missing the details of
several important kernels, for example the Turbo decoder is
represented simply as a sleep function. Ultimately this limits
the use of this benchmark in a wider scope of wireless system
design. Our WiBench contains all the signal processing kernels
for LTE in both MATLAB and C++ versions.

Finally, the BDTITM OFDM receiver benchmark [17] is
a commercial benchmark for evaluating multi-core and other
high-performance processing engines for communication ap-
plications. Public information about this benchmark is limited,
but their website does indicate that they still use the Viterbi
decoder rather than the more state-of-the-art Turbo decoder
present in WiBench. The BDTITM OFDM receiver benchmark
requires a license for use, in contrast to WiBench.

TABLE I: The components of WiBench
Category Benchmark

Kernels

Channel coding/decoding
Rate matching
Scrambling/Descrambling
Constellation mapping/demapping
MIMO detection
FFT/IFFT
Sub-carrier mapping/demapping
Channel Estimation

Channel models

Gaussian Random Channel model
(GRC)
Extended Pedestrian A model (EPA)
Extended Vehicular A model (EVA)
Extended Typical Urban model (ETU)

Applications LTE uplink

124978-1-4799-055-3/13/$31.00 ©2013 IEEE

Channel estimation

Convolution
encoderIFFT Constellation

mapper

Viterbi
decoderFFT Constellation

demapper

Modulation Channel coding

Equalizer

Rate matcher

Rate matcher

(a) 802.11a
Channel estimation

Turbo
encoderSpreaderScrambler Constellation

mapper

Turbo
decoderDespreaderDescrambler Constellation

demapper

Modulation Channel coding

Rate matcher

Rate matcher

(b) WCDMA

Channel estimation

Turbo
encoder

Constellation
mapperIFFT Scrambler

Turbo
decoder

Constellation
demapperFFT Descrambler

Modulation Channel coding

Rate matcher

Rate matcherMIMO
detector

MIMO

(c) LTE

Fig. 1: The downlink flow charts of 802.11a, WCDMA and LTE [13]. This figure shows that different wireless systems have
many common signal processing kernels, such as FFT/IFFT, channel coding, constellation mapping, etc. We picked the most
frequently used algorithms to include in our benchmark.

Broadcaster FSM

FSMInterleaver

Systematic bit 0

Parity bit 1

Parity bit 2

Information
bits

Fig. 2: The structure of the Turbo code encoder. The Turbo
encoder consists of two FSMs and an interleaver. The outputs
of the encoder are the original input sequences interleaved with
outputs of two FSMs.

III. BENCHMARK DESCRIPTION

A. Design Philosophy

WiBench was built to handle multiple wireless protocols.
Thus, unlike some recent benchmarks [2], WiBench was
constructed with configurable kernels, which are the basic
blocks for multiple wireless systems. The intent is for users
of current and possibly future wireless systems to be able
to design their own system using these building blocks and
characterize them. Figure 1 illustrates the downlink flow charts
of several mainstream wireless systems. It shows that differ-
ent wireless systems actually share a lot of common signal
processing kernels. In this work, we selected kernels that are

Soft
Broadcaster SISO

SISO
Interleaver

Deinterleaver

Symmetric soft inverse but not actually used

Symmetric soft inverse and actually used

Systematic bit 0

Parity bit 1

Parity bit 2

Information bits

Fig. 3: The structure of the Turbo code decoder. It consists
of two Soft-Input-Soft-Output decoders and an interleaver. The
decoder works in an iterative fashion.

most frequently used and are representative of the algorithms
that are used in many wireless protocols. We also include
several standard channel models so that system designers can
test the performance of their systems under different channel
conditions. Additionally, we show users how to use these
kernels to build their own wireless systems by including an
LTE uplink system in the benchmark. Table I summarizes
the details of the benchmark. WiBench is originally written
in C++, but we also provide a MATLAB version to facilitate
debugging and functional verification.

125978-1-4799-055-3/13/$31.00 ©2013 IEEE

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
s=map(b0,b1,b2,b3) LLR(b1)=d0(b1)−d1(b1)

received symbol
Set0=(s:b1=0)
Set1=(s:b1=1)
d0(b1) = minSet0|r−s|2

d1(b1) = minSet1|r−s|2

10011011

1010

1110

1111 1101

1000

1100

0000

0101

0101

0001

0010

0011

0110

0111

Fig. 4: The constellation demapping of 16QAM. In con-
stellation mapping, every four binary bits are mapped to
one of the sixteen complex values (circles and triangles).
In constellation demapping, the distances between a received
symbol (square) and all sixteen complex values (circles and
triangles) is computed and the distances are used to recover
the four bits of data.

B. Kernels

1) Channel coding: Channel coding is the technique used
to control errors in data transmission over noisy channels
that enable reliable delivery of digital data. There are many
different channel coding techniques such as convolutional
codes [18], Turbo codes [19], and Low Density Parity Check
codes (LDPC) [20], etc. The Turbo codes we chose belong to
a high-performance forward error correction family of codes
widely used in 3G/4G mobile communications.

The scheme of our Turbo encoder is a Parallel Con-
catenated Convolutional Code (PCCC) with two Finite State
Machines (FSM) and one internal interleaver. The structure of
the Turbo encoder for R = 1/3 code is shown in Figure 2;
One information bit is encoded into three transmitted bits.

The Turbo decoder architecture includes two Soft-Input-
Soft-Output (SISO) decoders [21] and one internal inter-
leaver/deinterleaver as illustrated in Figure 3. Inside each SISO
decoder, a forward and backward trellis traversal algorithm
is performed [21]. The Turbo decoder works in an iterative
fashion—increasing the iteration number results in a better
error correction performance at the cost of higher computation.
Our Turbo code implementation supports 188 different input
lengths from 40 to 6144.

2) Rate matching: The purpose of rate matching is to
provide a variety of channel coding rates from a single “mother
code” with a fixed rate R. This considerably increases the
flexibility of a system in terms of the performance-complexity
tradeoff of channel coding. Rate matching is performed by
puncturing or by repeating coded bits. Internally, the rate
matching algorithm buffers the incoming bit stream and does
bit collection, selection and pruning.

3) Scrambling/Descrambling: Scrambling encrypts and
randomizes data. It encodes the transmitted information to
make it unintelligible to a potential eavesdropper. The bit

stream in a subframe is scrambled with a User Equipment
(UE) specified scrambling sequence in the transmitter, which
is reversed by descrambling at the receiver side. Our imple-
mentation supports arbitrary lengths of scrambling.

4) Constellation mapping/demapping: The goal of constel-
lation mapping is to represent a binary data stream with a
signal that matches the characteristics of the channel [22].
The binary sequences are grouped and mapped into complex-
valued constellation symbols. Figure 4 shows a 16 Quadrature
Amplitude Modulation (16QAM) constellation, where every
four bits are mapped to one of the sixteen complex values
(circles and triangles in Figure 4). We implemented BPSK (1-
bit Constellation), QPSK (2-bit Constellation), 16QAM (4-bit
constellation), and 64QAM (6-bit constellation) mapping in
our benchmark.

Constellation demapping retrieves the binary stream from
the signal by generating either hard or soft information. Hard
information selects and outputs the binary representation of
the closest symbol to the received signal (e.g., (0000) in the
example of Figure 4). Soft information computes likelihood
ratios for each bit that will be used by the channel code decoder
as bit metrics. Figure 4 interprets the process of generating
logarithmic likelihood ratios (LLRs) for the second bit (i.e.,
bit b1) of a received symbol r.

5) Multiple-Input Multiple-Output (MIMO): MIMO tech-
nology is the use of multiple antennae at both the transmitter
and the receiver with the aim of increasing performance and/or
data rate. MIMO for spatial multiplexing transmits independent
data streams from each of the multiple transmit antennae, thus
increasing the system data rate. MIMO for diversity transmits
a single data stream from each of the multiple transmit anten-
nae. The single data stream is coded by space-time coding,
which improves the reliability of data transmission. There
are various MIMO detection methods, for example, linear
detection, sphere decoder, lattice reduction detection, etc. We
include some widely used algorithms in WiBench, including
a Least Square (LS) based zero forcing detection and a tree
based sphere decoder. Our MIMO detection module includes
different antenna configurations including 1 × 1, 2 × 2 and
4× 4.

6) FFT/IFFT: Discrete Fourier Transform (DFT) is one
of the most frequently used transformations in science and
engineering. It transforms a finite set of samples of a function
in the time domain into frequency domain; inverse IDFT
reverses this operation. Fast Fourier transform (FFT) is a fast
algorithm to compute DFT. It requires only O(NlogN) opera-
tions to get the same result as DFT. We utilized FFTW [23] to
implement FFT/IFFT. FFTW is a C library for computing the
DFT that adapts to the running hardware platform to maximize
performance. Its performance is competitive with, or even
better than, some highly-tuned FFT implementations such as
Suns Performance Library and IBMs ESSL library [24]. Our
kernel supports any FFT/IFFT size in the form of 2a ·3b ·5c ·7d.

7) Sub-carrier mapping/demapping: The mapping kernel
inserts data and reference symbols into the sub-carrier. If mul-
tiple users exist in the system, their data will be mapped into
non-overlapping sub-carriers. The demapping kernel extracts
data and reference symbols from the sub-carrier for each user
in the system.

126978-1-4799-055-3/13/$31.00 ©2013 IEEE

!"#"$%"&'(')*+"',-*-$./

0&"12"/#3'
4.5*$/'
612*7$8"&

,29:#*&&$"&'
4"5*;;"&

<&*/+=.&5'
4"#.>"&

?./+-"77*-$./'
4"5*;;"&4"+#&*597"!*-"'@*-#A"&<2&9.'

4"#.>"&

?A*//"7'
6+-$5*-.&

,?:04@B
4"5.>27*-$./

,?:04@B
4"5.>27*-$./

B/-"//*'C

B/-"//*'D

<&*/+5$--"&'('E+"&'612$;5"/-

<2&9.'
6/#.>"&

!*-"'
@*-#A"& ,#&*597" ?./+-"77*-$./

@*;;"&
<&*/+=.&5
F&"#.>"&

,29:#*&&$"&
@*;;"&

,?:04@B
@.>27*-$./

<&*/+5$-'G*3"&'C
<&*/+5$-'G*3"&'D

B/-"//*'C
B/-"//*'D

?A*//"7

Fig. 5: The system flow graph of the LTE uplink. It contains the Turbo coding, rate matching, scrambling, constellation
mapping, transform precoding, sub-carrier mapping, SC-FDMA modulation, channel estimation and equalization.

8) Channel Estimation: In order to achieve reliable com-
munication most kernels in the receiver side require knowledge
of the channel parameters, also known as Channel State
Information (CSI) [25]. CSI can be obtained in two ways.
One is to insert known symbols as pilots into data sequences,
and the performance of pilot signals is used for estimation.
The other is blind estimation by using knowledge of statistical
characteristics of the received signal. Most blind methods
suffer from several drawbacks such as slow convergence speed,
high complexity, and poor performance. As a result pilot aided
channel estimation is more common, therefore, we adopt it
for WiBench. There is a choice of algorithms for pilot aided
channel estimation, including Least Square (LS) estimation
and Minimum Mean Square Error (MMSE) estimation. MMSE
estimation provides better performance than LS, but requires
more computation and sophisticated statistical characteristics
of the channel. We include both LS and MMSE kernels in the
benchmark.

C. Channel Models

The channel model represents the characteristic degrada-
tion of the signal as it is transmitted wirelessly through the
environment. In order for system designers to measure the
BER that a particular receiver configuration experiences there
are several standardized channel models. The basic channel
model is a Gaussian random channel (GRC) which introduces
Gaussian noise to the signal. In addition to the GRC, we
include several other channel models—Extended Pedestrian
A model (EPA), Extended Vehicular A model (EVA), and
Extended Typical Urban model (ETU) [26]—which provide
more realistic channel scenarios.

D. Application: LTE uplink

We built an LTE uplink system to illustrate how to use
the kernel and channel models provided in WiBench to create
a complete wireless link. Similarly, other systems such as
WCDMA and 802.11a can also be built. The LTE uplink
system is organized as shown in Figure 5. We implemented
the entire physical layer as well as the most compute-intensive

parts of the transport layer including the Turbo decoder
and rate matching. Our LTE uplink supports configurations
covering all transmission bandwidths whose peak data rate
ranges from 1.56 to 100 Mbps. In Section IV we will evaluate
the performance of each kernel in the LTE uplink and show
an example system analysis by determining the BER under
different channel conditions. In the following subsections we
describe in more detail the specific kernel choices for the LTE
application.

1) Turbo encoder/decoder: The FSM of the Turbo encoder
in the LTE specification is an 8-state recursive systematic con-
volutional encoder [27]. For our analysis, we set the iteration
number of the Turbo decoder at 5. Although we have fixed the
iteration number, WiBench could be used to explore the trade-
off between BER performance and the amount of computation
for different numbers of iterations.

2) Single Carrier Frequency Diversity Multiple Access (SC-
FDMA): SC-FDMA is a precoded Orthogonal Frequency
Diversity Multiplexing (OFDM) scheme, which has an addi-
tional transform precoding step that precedes the conventional
OFDM processing. OFDM processing encodes data on multi-
ple carrier frequencies. OFDM is applied in the LTE downlink
(base station to user equipment), while SC-FDMA is realized
in the uplink (user equipment to base station). Compared to
OFDM, SC-FDMA has two main advantages that are critical
to the uplink transmission: 1) SC-FDMA has a lower Peak-
to-Average Power Ratio; 2) SC-FDMA is less sensitive to
frequency offsets than OFDM.

In the transmitter, we implement the OFDM step of SC-
FDMA by performing IFFT and inserting a Cyclic Prefix (CP).
In the receiver, we eliminate the inter-symbol interference by
removing CPs and converting data from the time domain to
the frequency domain by FFT. The transform precoding step
of SC-FDMA is done with a 2a ·3b ·5c mixed radix FFT, while
the IFFT is performed in the transform decoder at the receiver
side.

3) Channel estimation: The LTE uplink transmission uses
the comb-type pilot arrangement [28], where only time domain

127978-1-4799-055-3/13/$31.00 ©2013 IEEE

interpolation needs to be applied. The uplink pilot reference
symbols from different transmit antennae occupy the same
sub-carriers. However, pilot reference symbols are designed
so that they can be distinguished from each other at the
receiver side. Channel estimation takes the received signal and
known pilot reference symbols to estimate the CSI, which is
then used to compute the channel coefficients. We selected
the frequency domain least square estimator that provides an
acceptable performance with reasonable computation under the
assumption that we have no knowledge of the channel [29].

4) Equalizer: The equalizer we apply is a zero forcing
MIMO detector in the frequency domain. Taking advantage
of OFDM/SC-FDMA, channel equalization in LTE can be
implemented simply by a Frequency Domain Equalizer (FDE)
with the coefficients estimated by the channel estimator.

IV. BENCHMARK CHARACTERIZATION

We perform four studies to characterize the benchmark
suite on two different types of processors, illustrating how
WiBench can be used for hardware design and system study.
First, we profiled each individual kernel, determining how each
performs on different processors. This type of analysis can be
used by hardware architects to design the underlying hardware
to achieve power-efficient systems and by code designers
to better target optimization points. Second, we explore the
performance of the LTE uplink included in the benchmark
for different bandwidth requirements. Third, we show how
different LTE uplink configurations with the same bandwidth
impact the relative importance of each kernel. Finally, we
perform an analysis of how the LTE uplink performs, in terms
of BER, under one type of channel conditions. This type of
analysis can be used by system designers to explore how their
design performs under different channel conditions.

A. Experimental Setup

We performed our analyses on cores that are used in
desktop systems and embedded devices, because wireless ap-
plications run on both embedded platforms (e.g. smartphones)
and server-like machines (e.g. wireless base stations). For the
desktop class processor, we used an Intel Core i7-2600 CPU
running Linux 3.2.0-38-generic. For the embedded system,
we utilized an NVIDIA ION box with an Intel Atom 330
processor and 4 GB of SDRAM. The Intel Atom is the Intel’s
line of low-power, low-cost microprocessors [30], whose SoC
platform is used in many smartphones and tablets such as
Lenovo K800, Motorola RAZR i, Safaricom Yolo, Samsung
Series 5 Slate, and HP ElitePad 900 [31], [32]. The detailed
configuration of the systems are presented in Table II. The
benchmarks were compiled using GNU g++ compiler suite
version 4.6.3 with O2-level optimization. Intel VTune Amplier
XE 2013 was used to gather code hotspot information and
instructions per cycle (IPC) for the wireless benchmarks.
VTune Amplifier XE is a performance profiler provided by
Intel for x86 based processors. It provides information on
code performance, including the hotspots, CPU utilization,
multithread synchronization overhead, etc.

B. Individual Kernel Characterization

For the first example study we analyse the performance of
each kernel in WiBench. Table III describes the configurations

TABLE II: System configurations of the profiling platforms
Feature Configuration

Desktop platform Mobile platform

Operating System Linux 3.2.0-38 Linux 3.2.0-39
Processor Intel Core i7 2600 Intel Atom 330
Frequency 3.40 GHz 1.60 GHz
L1 I-Cache 32 KB 32 KB
L1 D-Cache 32 KB 24 KB
L2 Cache 256 KB 512 KB
Last Level Cache 8 MB N/A
Memory 16 GB DDR3 4 GB SDRAM
Out-of-order Yes No
Single core issue
width 4 2

SIMD 128-bit, SSE2,
SSE3, SSSE3, SSE4

128-bit, SSE2,
SSE3, SSSE3

TABLE III: The configurations of the individual kernel
Kernel Configuration

Turbo decoder
code rate = 1/3,
codeword length = 1184

Descrambling sequence length = 300

Constellation demapping QPSK, sequence length = 150

FFT 128
IFFT 75
MIMO 2× 2, sequence length = 75

of each kernel. Figure 6 compares the IPCs obtained by the
two platforms. Based on Figure 6, the i7 processor, with
dynamic out-of-order scheduling, can make use of instruction
level (ILP) and memory level parallelism (MLP) in order to
issue more instructions per cycle than the Atom processor, even
taking the issue width difference into account . Since out-of-
order execution requires more complex hardware, leading to a
high power consumption, this improvement must be balanced
against the limited power budget of embedded platforms.

Next we study the speedup obtained by compiling each
kernel with automatic vectorization flags. We used -ftree-
vectorize -msse2 -ffast-math for automatic vectorization; the
corresponding results are shown in Figure 7. When the auto-
matic vectorization is enabled, SIMD instructions are inserted
automatically by the compiler. By using automatic vectoriza-
tion, we can get as much as 1.45× speedup on the i7 and 1.85×
speedup on the Atom. However, since automatic vectorization
is implemented by the compiler, there is a limited range over
which it works. Table IV shows the theoretical SIMD width
of each kernel obtained by analyzing the code manually. The
kernels do not achieve this speedup when using automatic
vectorization either because there is no vectorizable operation
in the kernel, or it is difficult for the compiler to extract
the parallelism. More speedup is expected if the program is
vectorized manually using SIMD intrinsics. Overall, the results
indicate that hardware platforms designed for these kernels
should include vectorization support and that hand optimized

128978-1-4799-055-3/13/$31.00 ©2013 IEEE

TABLE IV: The theoretical SIMD width of individual kernels
for the configurations in Table III

Kernel SIMD width

Turbo decoder 8
Rate matching 1
Descrambling 300
Constellation demapping 600
LS detection 150
Tree-based detection 300
FFT 128
IFFT 75
Channel estimation 300

!"

!#$"

%"

%#$"

&"

&#$"

'(
)*
+,
--.
/(
)"0
,1
.2
23)
4"

5,
*6
7.
1
8-3
)4
"

'9
.)
),
-",
*/
1
./
()
"

:;
"0,
+,
6/
()
"

<7,
,=8
.*
,0
"0,
+,
6/
()
"

>.
+,
"1
.+
69
3)4
"

??
<"

@??
<"

<A
78
("0
,6
(0
,7
"

@)
*+
7A
6/
()

"2
,7
"'
B6
-,
"C@
D'

E"

3F" G+(1"

Fig. 6: IPCs for desktop and embedded processors. The
IPCs of kernels on the i7 processor are higher than those on
the Atom processor even taking the issue width difference
into account. Because the i7 is an out-of-order processor,
it can dynamically schedule instructions and take advantage
instruction and memory level parallelism.

code/libraries will continue to be needed in order to attain
better performance.

C. Application Example: LTE Uplink System

Next we profile the LTE Uplink provided in the benchmark
with respect to hotspots and runtime performance. Because
most of the computations are done in the receiver side, we
only profile kernels in the LTE uplink receiver. We perform
four studies: 1) a characterization of one LTE uplink config-
uration across different peak data rates; 2) a characterization
of different LTE uplink configurations for a fixed peak data
rate; 3) an analysis on the sizes of data transfered between
kernels; and, 4) a study of the BER for the LTE uplink under
a Gaussian Random Channel model.

1) LTE Uplink Characterization: We first studied the
breakdown of runtime for the LTE uplink to determine the
computational hotspots. For the LTE uplink, we used peak
data rates varying from 1.56 to 100 Mbps to assess the runtime
changes of the algorithms. Figure 8 shows the time spent by
each kernel as a fraction of the overall system runtime for
both the i7 and the Atom platforms at 100Mbps (the system

!"##$

!"#%$

!"!#$

!"!%$

!"&#$

!"&%$

!"'#$

!"'%$

!"(#$

!"(%$

!"%#$

)*
+,
-.
//0
1*
+$2
.3
04
45+
6$

2.
,7
80
3
9/5
+6
$

):
0+
+.
/$.
,1
3
01
*+
$

;<
$=.
-.
71
*+
$

>8.
.?9
0,
.=
$=.
-.
71
*+
$

@0
-.
$3
0-
7:
5+6
$

AA
>$

BAA
>$

>C
89
*$=
.7
*=
.8
$

D.
7-
*8
5E
01

*+
$<
4.

.=
$F
4$
*+

$5G
$H*

I.
8$
+*

+?
I.
7-
*8
5E
01

*+
J$

(a) i7 processor

!"##$

!"!#$

!"%#$

!"&#$

!"'#$

!"(#$

!")#$

!"*#$

!"+#$

!",#$

-.
/0
12
334
5.
/$6
27
48
89/
:$

62
0;
<4
7
=39
/:
$

->
4/
/2
3$2
05
7
45
./
$

?@
$A2
12
;5
./
$

B<2
2C=
40
2A
$A2
12
;5
./
$

D4
12
$7
41
;>
9/:
$

EE
B$

FEE
B$

BG
<=
.$A
2;
.A
2<
$H2

;1
.<
9I
45

./
$@
82

2A
$J
8$
./

$K
1.
7
$L.

M2
<$
/.

/C
M2
;1
.<
9I
45

./
N$

(b) Atom processor

Fig. 7: Vectorization Impact on (a) i7 and (b) Atom for
configurations in Table III. These graphs show speedups
achieved when kernels were compiled with automatic vec-
torization flags turned on. The results suggest that hardware
platforms should include vectorization support when running
these kernels.

TABLE V: The configurations of the LTE uplink at 100Mbps
Kernel Configuration

Turbo decoder
code rate = 1/3,
codeword length = 6144

Constellation demapping 16QAM
FFT 2048
IFFT 1200
MIMO 2× 2

configuration is shown in Table V). We see that the Turbo
decoder takes more than 70% of the execution time. Thus, for
high throughput applications, either the Turbo decoder should
be highly optimized for the specific platform or it should be
implemented by a hardware accelerator.

Next we measured the total runtime of the LTE uplink for
different subframe sizes to illustrate the performance of the
system as the workload changes. Figure 9 demonstrates that
the processing time of an LTE uplink subframe increases pro-

129978-1-4799-055-3/13/$31.00 ©2013 IEEE

!"#$%&'()%'(#&
*+,-./&

0%123(4456%1&
'(758891:&
;<,<=/&

>?"549@56%1&
*,A</&

B0CDEFG&
;,*-/&

H#('()%'91:&
;,I;/&

E(2)#57$491:&.,;-/&
J53(&753)K91:&.,;I/&

B"$C)5##9(#&'(758891:&
.,LI/&

M3K(#&
I,<./&

(a) i7 processor

!"#$%&'()%'(#&
*+,-./&

0%123(4456%1&
'(758891:&
;<,=-/&

>?"549@56%1&
A,A;/&

B0CDEFG&
;,H+/&

I#('()%'91:&
;,.+/&

E(2)#57$491:&=,+</&
J53(&753)K91:&=,;H/&

B"C$)5##9(#&'(758891:&
=,-./&

L3K(#&
.,<A/&

(b) Atom processor

Fig. 8: Breakdowns of the LTE uplink runtime among the
kernels on (a) i7 and (b) Atom. The results indicate that
hardware designers should put much concern on expediting
the Turbo decoder. It should be either highly optimized for the
specific platform or implemented by a hardware accelerator.

portionally to the subframe size. Since the size of a subframe is
proportional to the system peak data rate, the processing time
of an LTE uplink subframe is also proportional to the system
peak data rate. This indicates that the dynamic operation count
for most LTE uplink kernels scale linearly.

TABLE VI: The configurations of the LTE uplink at 12.5
Mbps.

Config FFT IFFT MIMO Constellation
Demapping

A 256 150 2× 2 16QAM
B 512 300 1× 1 16QAM
C 512 300 2× 2 QPSK
D 1024 600 1× 1 QPSK

2) Different LTE Configurations: Next we looked into the
runtime changes of each individual kernel for different LTE
uplink configurations. For this study, the LTE uplink peak
data rate is fixed at 12.5 Mbps. While the 12.5Mbps can be
achieved by many configurations, in this study we choose four
representative configurations, presented in Table VI. These
configurations differ in the size of the OFDM symbol, num-

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

!" #!!!" $!!!" %!!!" &!!!" '!!!!" '#!!!"

()
*+
,-
-.
/0
"1
2
,"
*3
"4
/"
56
7"
89

:./
;"
-8
<3
)4
2
,"
=2

->
"

?8<3)42,"-.@,"=<.A->"

!"#

$%&'#

Fig. 9: Processing times of an LTE uplink subframe with
different subframe sizes. The larger the subframe size, the
higher the peak data rate. It shows that the processing time of
an LTE uplink subframe is proportional to the subframe size.
This indicates a linear scaling of the dynamic operation count
for most LTE uplink kernels.

ber of antennas and constellation size. For instance, a large
FFT configuration with simpler constellation can be used for
bad channel conditions with larger bandwidth usage, while
a small FFT configuration with complex constellation and
more antennae can be used for good channel condition but
limited bandwidth. We assume that the Turbo decoder is
implemented by a specialized accelerator and exclude the
Turbo decoder runtimes. This is a reasonable assumption
because these accelerators are typical even in programable
wireless signal processors. Figure 10 shows the results. From
the figures, we derive the following conclusions.

• The constellation demapping and equalization kernels
take most of the execution time (when excluding
Turbo) for all four configurations. Therefore, hardware
and software optimizations should be done to acceler-
ate these two kernels.

• The importance of each kernel changes as the system
configuration changes, even if the data rate remains the
same. While constellation demapping is much more
important than all the other kernels, equalization, FFT
and IFFT are also important for Configuration D.

3) Data transfer between kernels: In this study, we look
at how much data is transfered between different kernels.
Figure 11 demonstrates the data movement between kernels
when processing one LTE subframe for the configuration in
Table V. The values in the red circles represent the amount of
data movement, which indicates the minimum sizes needed
for the buffers containing the intermediate results between
adjacent kernels. Because on-chip memory is an expensive
resource, this information helps domain specific computer
architects design their memory system.

4) Exploring Channel Models and BER: This study shows
an example of how system designers can connect an entire
LTE uplink out of the kernels and connect them through a

130978-1-4799-055-3/13/$31.00 ©2013 IEEE

!"

!#$"

%"

%#$"

&"

&#$"

'"

()&$*+&,&+%*-(." /)$%&+%,%+%*-(." 0)$%&+&,&+-123" 4)%!&5+%,%+-123"

36
78
69
"7
:8

;
<
6=
">
?"@

7>
A6
==
B8
C"
D8

"E
FG
":
@9
B8
H"
=:
I?
7D
<
6"

DJ
""%
&#
$"
.
I@

="
>8

"BK
"B8
"<

="
L6
,A
6@

J"F
:7
I>

"M
6A
>M

67
N"

0>8=J699D;>8"M6<D@@B8C" GO:D9BPD;>8" 20QR4.("

176M6A>MB8C" 46=A7D<I9B8C" SDJ6"<DJATB8C"

2:IQAD77B67"M6<D@@B8C"

(a) i7 processor

!"

#"

$!"

$#"

%!"

%#"

&'%#()%*%)$(+&," -'#$%)$*$)$(+&," .'#$%)%*%)+/01" 2'$!%3)$*$)+/01"1
4
5
6
4
7"
5
8
6
9
:
4
;
"<
="
>
5<
?
4
;
;
@6
A
"<
6
4
"B
C
D
"8
>
7@
6
E
";
8
F
=5
G
:
4
"

G
H"
"$
%
I#
",

F
>
;
"<
6
"&
H<
:
"@
6
":

;
"J
4
*
?
4
>
H"
C
8
5
F
<
"K
4
?
<
K
4
5
L"

.<6;H477G9<6"K4:G>>@6A" DM8G7@NG9<6" 0.OP2,&"

/54K4?<K@6A" 24;?5G:F7@6A" QGH4":GH?R@6A"

08FO?G55@45"K4:G>>@6A"

(b) Atom processor

Fig. 10: The runtimes of kernels (exclude the Turbo
decoder) in LTE uplink with different configurations at
12.5 Mbps on (a) i7 and (b) Atom processor. The results
suggest hardware and software optimizations on the constel-
lation demapping and equalization kernels. The graph also
demonstrates the importance change of each kernel as the
system configuration changes.

channel model and inject noise to measure BER. The kernel
configurations are the same as those in Table III. We studied
the BER performance of our LTE uplink system under a
Gaussian random channel (the amplitude follows a Rayleigh
distribution) with additive white Gaussian noise (AWGN). The
BER performance is shown in Figure 12. BER is calculated by
collecting the difference between the information bits encoded
in the transmitter and those decoded at the receiver end.
Perfect CSI means that the receiver knows the exact channel
impulse response when processing received data. The FD LS
curve expresses the performance of a system running with a
frequency domain least square channel estimator, which is a
more realistic scenario.

SC-FDMA
Demodulation

Frequency
Domain

Equalizer

Ant

Transform
Decoder

Turbo
Decoder

Su
bc

ar
rie

r
D

em
ap

pe
r

Channel
Estimator

D
es

cr
am

bl
e

R
at

e
M

at
ch

er

Constellation
Demapper

448KB

37.5KB 37.5KB

225KB

225KB

225KB
450KB450KB≥450KB

Fig. 11: The sizes of data movement between kernels. The
results show how much data needs to be stored in the buffers
for the intermediate results between adjacent kernels to process
one LTE subframe for the configuration in Table V.

0 5 10 15 20 25 30 35 40
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No in dB

Bi
t E

rro
r R

at
e

LTE Uplink System BER

Perfect CSI
FD LS

Fig. 12: BER of LTE uplink through Gaussian random
channel with AWGN. The configurations are: FFT This graph
shows the BER performance of the LTE uplink system under
a Gaussian random channel with AWGN.

D. Architectural Implications from LTE characterization

The above analyses show that the Turbo decoder, constel-
lation demapping, and equalization are the most important
kernels in an LTE uplink. Thus a processor designed for
LTE uplink should efficiently execute these three kernels.
Second, constellation demapping and equalization (consisting
of MIMO detection and channel estimation) have very large
theoretical SIMD widths (from Table IV), and also achieve
appreciable speedups with automatic vectorization by the com-
piler. Therefore, a wide SIMD engine should be included in the
processor to accelerate these two kernels. In contrast, the Turbo
decoder has a small SIMD width and little speedup with auto-
matic vectorization. Furthermore, the Turbo decoder takes the
largest portion of the runtime, suggesting it should be mapped

131978-1-4799-055-3/13/$31.00 ©2013 IEEE

to a hardware accelerator—which is often the case in today’s
practice. Finally, we noted that the importance of each kernel
varies when system configurations are different. All together,
these observations illustrate the usefulness of a benchmarking
infrastructure to evaluate wireless signal processing systems.

V. CONCLUSION

As the mobile market continues to grow rapidly wireless
signal processing is becoming one of the primary uses of
computing technology. Consequently, closer attention is being
paid to the hardware platform design and its power consump-
tion. Computer architects usually benefit a great deal from
analyzing application benchmarks during design time to gain
insight into power and performance tradeoffs. In this paper
we presented an open source benchmark suite of wireless
system kernels and channel models to support hardware and
system design of wireless signal processing platforms. We
characterized the benchmark suite on two different types of
processors to illustrate how it can be used. Users can easily
build their own wireless systems by simply assembling our
kernels together to realize a target configuration.

VI. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their efforts and
helpful suggestions. We also wish to thank Nilmini Abeyratne,
Joseph Pusdesris and Jui Wu for their generous and useful help
on WiBench and the paper. This work is in part supported by
NSF-CNS-0910851 and ARM.

REFERENCES

[1] “The World in 2013: ICT Facts and Figures,” International Telecom-
munication Union, 2012.

[2] M. Sjalander, S. McKee, P. Brauer, D. Engdal, and A. Vajda, “An LTE
Uplink Receiver PHY Benchmark and Subframe-based Power Manage-
ment,” in IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2012, pp. 25–34.

[3] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a
Smartphone,” in USENUX, 2010.

[4] “SMART 2020: Enabling the Low Carbon Economy in the
Information Age,” The Climate Group on behalf of the Global
eSustainability Initiative (GeSI), 2008. [Online]. Available: http:
//www.smart2020.org/ assets/les/02 Smart2020Report.pdf

[5] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, “Complete
Computer System Simulation: the SimOS Approach,” IEEE Parallel
Distributed Technology: Systems Applications, vol. 3, no. 4, pp. 34–43,
1995.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceedings
of the 17th International Conference on Parallel architectures and
Compilation Techniques (PACT), 2008, pp. 72–81.

[7] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “MEVBench: A
Mobile Computer Vision Benchmarking Suite,” in IEEE International
Symposium on Workload Characterization (IISWC), 2011, pp. 91–102.

[8] A. Gutierrez, R. Dreslinski, T. Wenisch, T. Mudge, A. Saidi, C. Em-
mons, and N. Paver, “Full-system Analysis and Characterization of
Interactive Smartphone Applications,” in IEEE International Symposium
on Workload Characterization (IISWC), 2011, pp. 81–90.

[9] MATLAB Central–File Exchange. [Online]. Available: http://www.
mathworks.com/matlabcentral/fileexchange/

[10] X. Guo and P. Song, “Simulink Based LTE System Simulator,” M. Sci.
thesis, Chalmers University of Technology, Goteborg, Sweden, 2010.

[11] “LTE PHY Downlink with Spatial Multiplexing.” [On-
line]. Available: http://www.mathworks.com/help/comm/examples/
lte-phy-downlink-with-spatial-multiplexing.html

[12] “GNU Radio.” [Online]. Available: http://gnuradio.org/redmine/
projects/gnuradio/wiki

[13] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner, “SODA: A High-Performance DSP Architecture for
Software-Defined Radio,” IEEE Micro, vol. 27, no. 1, pp. 114–123,
2007.

[14] M. Woh, Y. Lin, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, R. Bruce,
D. Kershaw, A. Reid, M. Wilder, and K. Flautner, “From SODA to
Scotch: The Evolution of a Wireless Baseband Processor,” in 41st
IEEE/ACM International Symposium on Microarchitecture (MICRO-
41), 2008, pp. 152–163.

[15] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner,
“AnySP: Anytime Anywhere Anyway Signal Processing,” IEEE Micro,
vol. 30, no. 1, pp. 81–91, 2010.

[16] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: A Free, Commercially Representative Embed-
ded Benchmark Suite,” in IEEE International Workshop on Workload
Characterization (WWC-4), 2001, pp. 3–14.

[17] “BDTITM OFDM Receiver Benchmark.” [Online]. Available: http:
//www.bdti.com/Services/Benchmarks/OFDM

[18] A. Viterbi, “Error Bounds for Convolutional Codes and an Asymptot-
ically Optimum Decoding Algorithm,” IEEE Transactions on Informa-
tion Theory, vol. 13, no. 2, pp. 260–269, 1967.

[19] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate,” IEEE Trans. Intell.
Transport. Syst., vol. 20, pp. 284–287, Mar. 1974.

[20] R. Gallager, “Low-density Parity-check Codes,” IRE Transactions on
Information Theory, vol. 8, no. 1, pp. 21–28, 1962.

[21] Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti, A. Reid, and K. Flautner,
“Design and Implementation of Turbo Decoders for Software Defined
Radio,” in IEEE Workshop on Signal Processing Systems Design and
Implementation (SIPS), 2006, pp. 22–27.

[22] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New
York, NY: McGraw-Hill, 2008.

[23] M. Frigo and S. G. Johnson, “The Design and Implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005,
special issue on “Program Generation, Optimization, and Platform
Adaptation”.

[24] M. Frigo and S. Johnson, “FFTW: An Adaptive Software Architecture
for the FFT,” in Proceedings of the 1998 IEEE International Conference
on Acoustics, Speech and Signal Processing, vol. 3, 1998, pp. 1381–
1384 vol.3.

[25] “Wiki papge: Channel state information.” [Online]. Available:
http://en.wikipedia.org/wiki/Channel state information

[26] LTE Specification, 3GPP Std. 36.521.
[27] LTE Specification, 3GPP Std. 36.312.
[28] LTE Specification, 3GPP Std. 36.211.
[29] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel Estimation

Techniques based on Pilot Arrangement in OFDM Systems,” IEEE
Transactions on Broadcasting, vol. 48, no. 3, pp. 223–229, 2002.

[30] List of Intel Atom microprocessors. [Online]. Available: http:
//en.wikipedia.org/wiki/List of Intel Atom microprocessors

[31] Atom (system on chip). [Online]. Available: http://en.wikipedia.org/
wiki/Atom (system on chip)

[32] Smartphones with Intel Inside. [Online]. Available: http://www.intel.
com/content/www/us/en/smartphones/smartphones.html

132978-1-4799-055-3/13/$31.00 ©2013 IEEE

