
Full-System Analysis and Characterization of
Interactive Smartphone Applications

Anthony Gutierrez, Ronald G. Dreslinski,
Thomas F. Wenisch, Trevor Mudge

Advanced Computer Architecture Laboratory

University of Michigan - Ann Arbor, MI

{atgutier, rdreslin, twenisch, tnm}@umich.edu

Ali Saidi, Chris Emmons, Nigel Paver
ARM - Austin, TX

{ali.saidi, chris.emmons, nigel.paver}@arm.com

Abstract—Smartphones have recently overtaken PCs as the
primary consumer computing device in terms of annual unit
shipments. Given this rapid market growth, it is important that
mobile system designers and computer architects analyze the
characteristics of the interactive applications users have come
to expect on these platforms. With the introduction of high-
performance, low-power, general purpose CPUs in the latest
smartphone models, users now expect PC-like performance and
a rich user experience, including high-definition audio and video,
high-quality multimedia, dynamic web content, responsive user
interfaces, and 3D graphics.
In this paper, we characterize the microarchitectural behav-

ior of representative smartphone applications on a current-
generation mobile platform to identify trends that might impact
future designs. To this end, we measure a suite of widely available
mobile applications for audio, video, and interactive gaming. To
complete this suite we developed BBench, a new fully-automated
benchmark to assess a web-browser’s performance when ren-
dering some of the most popular and complex sites on the web.
We contrast these applications’ characteristics with those of the
SPEC CPU2006 benchmark suite. We demonstrate that real-
world interactive smartphone applications differ markedly from
the SPEC suite. Specifically the instruction cache, instruction
TLB, and branch predictor suffer from poor performance. We
conjecture that this is due to the applications’ reliance on
numerous high level software abstractions (shared libraries and
OS services). Similar trends have been observed for UI-intensive
interactive applications on the desktop.

I. INTRODUCTION

Embedded processors, such as those found in smartphone

and tablet devices, are quickly becoming the most widely

used processors in consumer devices. International Data Cor-

poration (IDC) estimates that vendors will ship 472 million

smartphones in 2011 and that number is expected to double

by 2015 [19]. The cores in modern smartphones are growing

increasingly sophisticated. TI’s OMAP 4 [30] and NVIDIA’s

Tegra 2 [23] contain chips that include dual-core, out-of-

order ARM Cortex-A9 [4] processors. Future devices will

continue this trend towards high performance, for example

TI’s OMAP5 platform [30] will contain two ARM Cortex-

A15 processors [5].

With the increase in performance available in modern smart-

phones, users expect rich interactive applications, including

web-browsers, games, and multimedia, to be delievered on

their smartphones at PC-like performance. Computer architects

and systems engineers need to consider this important applica-

tion space when designing and optimizing their hardware. In

this paper, we characterize the microarchitectural behavior of

representative smartphone applications on a current-generation

mobile platform to identify trends that might impact future

mobile CPU designs.

Traditionally, when designing new platforms, systems de-

signers and researchers often use the SPEC benchmarks [27]—

the most widely used general purpose benchmarks in the

research community—as a way to measure the baseline per-

formance of their systems. By design, the SPEC benchmarks

stress primarily the CPU and are meant to be portable,

avoiding extensive use of system calls and shared libraries.

Over time, the datasets of successive SPEC CPU generations

have been grown to ensure that the CPU remains busy and

the benchmark runtime is long enough to facilitate repeatable

measurement. Although these design choices make the SPEC

benchmarks useful for evaluating CPU performance, they

give an incomplete picture when trying to evaluate complete

systems. This fact has been observed in previous studies on

desktop and server platforms [1], [7], [25], [31], [32].

We design and measure a new suite of real-world inter-

active smartphone applications including interactive gaming

and multimedia playback. To complete this suite we devel-

oped BBench, a new fully-automated benchmark to assess a

web-browser’s performance when rendering some of the most

popular and complex sites on the web. BBench comprises a

set of self-contained snapshots of some of the most popular

and sophisticated sites on the web selected to excercise a

wide range of browser functionality. Modern web-browsers

are increasingly feature rich and have capabilities far beyond

simply browsing the web; we design BBench to capture

this range of behavior. BBench is fully-automated and self-

contained such that it can be run offline or through a local

server to obtain meaningful and reproducible performance

results. The importance of the web-browser is evident in efforts

such as Google’s Chrome OS [14] and a new feature in Mac

OS X Lion that allows users to boot into the Safari browser [2].

The web-browser is also one of the most frequently executed

interactive application on smartphones. Though we only ana-

lyze BBench behavior on smartphone platforms in this study,

it is portable and has been tested on a wide variety of mobile

978-1-4577-2064-2/11/$26.00 ©2011 IEEE 81

trev
Typewritten Text
IEEE Int. Symp. on workload Characterization (IISWC-2011), Austin, TX, USA, Nov. 6-8, 2011.

and desktop browsers.
We contrast the behavior of our real-world smartphone

application suite with a subset of the SPEC CPU2006 bench-

marks. There are some obvious qualitative differences between

SPEC CPU and interactive smartphone applications. The

smartphone applications are interactive and contain rich graph-

ical user interfaces. To facilitate these interfaces and reduce

time-to-market while ensuring maintainability and consistency

of look-and-feel, the real-world applications often rely heavily

on shared libraries and OS features to improve programmer

productivity and add functionality. The applications are often

multi-threaded to increase performance or facilitate event-

driven programming paradigms spawning numerous threads

over the course of execution—a trend we expect to increase as

more cores are integrated on chip. Their interactive nature also

makes their execution inherently less predictable. In contrast,

the SPEC benchmarks are explicitly designed to be single-

threaded, CPU-intensive, and portable across a wide range of

platforms and compilers. Hence, they eschew extensive use

of OS services and shared libraries and tend to have more

compact code footprints.
These qualitative differences do not however imply that

there are necessarily quantitative differences between the

micro-architectural characteristics of real-world interactive

smartphone applications and the SPEC benchmarks. It is thus

our objective to characterize our representative smartphone

applications and identify trends that reveal implications for

future mobile CPU designs that perhaps differ from what the

SPEC benchmarks might reveal.
Our study demonstrates that there are indeed tangible and

important differences between real-world smartphone applica-

tions and the SPEC benchmarks. Most notably, we discover

that smartphone applications suffer from increased code size

and sparseness [31]—as evidenced by high branch mispre-

diction, instruction cache and instruction TLB miss rates,

and extensive time spent in the operating system and shared

libraries—in stark contrast to the SPEC benchmarks, but much

like interactive applications on the desktop. Conversely, we

find that mobile CPUs are well-equipped to handle the data

caching demands of the interactive applications, and that

these applications exhibit small footprints and good locality

comparable or more favorable than SPEC. These observations

suggest future mobile CPUs should be designed to better

handle the large and varied code footprints of interactive

applications.
In summary we make the following contributions:

• We indentify several of the most important classes of

interactive smartphone applications and construct a suite

comprising representative benchmarks.

• We develop a new web-browser page rendering bench-

mark, BBench, which is fully automated and can be run
offline or from a local server.

• We demonstrate that real-world smartphone applications

differ markedly from SPEC, and suffer performance

penalties incurred due to the use of high level software

abstractions on current mobile CPUs.

The rest of this paper is organized as follows. In Section II,

we describe our benchmark suite and explain the setup for

each benchmark. We also detail the design of our browser

benchmark, BBench. In Section III, we present our experimen-

tal framework and our methodology for characterizing each

benchmark. We present and discuss our experimental results

in Section IV. In Section V, we describe related work. Finally,

we conclude in Section VI.

II. BENCHMARKS

A key objective of our work is to design a benchmark

suite that represents the most important application classes

relevent to smartphone users, including web browsing, gaming,

and multimedia. In particular, our goal is to run real-world

smartphone applications on top of the Android operating

system in realistic use cases to allow us to capture repre-

sentative microarchitectural characterizations. We include four

benchmarks: BBench, a web-browser performance test; Taps
of Fire (TOF), an interactive game. ServeStream, a streaming
video player; and Rockbox, an mp3 audio player.
Our web-browser benchmark, BBench, is fully automated. It

exploits the JavaScript engine within the browser to automate

navigation between pages. The other three applications we

study are all interactive and we are aware of no easy means by

which to automate them within the Android ecosystem. Hence,

we develop procedures to operate each benchmark manually

while minimizing run-to-run variation. We have tested these

procedures to ensure repeatable results and average our re-

ported characterizations over ten runs. Similar methods have

been used in prior studies of interactive games [8].

This benchmark suite and associated procedures will be

made publicly available at http://www.gem5.org/BBench. The
following subsections describe each benchmark in greater

detail.

A. BBench

BBench is an automated benchmark that tests a browser’s

page rendering performance. It comprises a sequence of snap-

shots of a varied selection of the most popular sites on the

web in 2011. Because its goal is to test only rendering (as

opposed to network) performance while minimizing run-to-

run variance, BBench renders pages offline or from a local

server. Although we characterize the Android browser in this

study, BBench is portable to any JavaScript-enabled browser

and has been tested on all major desktop web-browsers—

Chrome, Firefox, Internet Explorer (Windows Only), Opera,

and Safari—on Linux, Mac, and Windows. Similar web-

browser benchmarks have been developed in the past [10],

[18] however these are either outdated, encounter compatibility

problems on the Android browser, or are not freely available

for academic use.

We select webpages to include in the benchmark based

on two criteria: (1) to maximize the diversity of content and

page styles (e.g., dynamic content, video, images, Flash, CSS,

HTML5, etc.), and (2) to cover some of the most visited sites

on the web (e.g., as reported by Google [13]). The list of

2

82

Webpage Description
http://www.amazon.com/ Amazon is a leading online retailer. This site contains much dynamic content that is generated based on a

user’s recent viewing history and preferences.
http://www.bbc.co.uk/ The BBC is the world’s largest news broadcaster. The BBC’s website is a comprehensive news website and

contains dynamic content, including flash that highlights several different news stories and also contains content
for all of the television programming on the BBC. There is also a significant amount of advertising contained
on the page.

http://www.cnn.com/ CNN is the leading cable news provider in the U.S. This site contains a significant number of images and
dynamic content, including scrolling news stories and advertisements.

http://www.craigslist.org/ Craigslist is a popular site for listing free classified advertisements and personal ads. This site is almost purely
html and consists of many links.

http://www.ebay.com/ eBay is the leading internet auction site. This webpage has a very complicated layout and contains dynamic
content based on a user’s recent viewing and or purchase history.

http://espn.go.com/ ESPN is a sports news website. This site contains an extremely complicated layout, several Flash elements,
and much dynamic content.

http://www.google.com/ Google is a popular web search engine. Google’s main page is well known for its simple, bare-bones design
however, it still contains significant amounts of JavaScript.

http://www.msn.com/ MSN is the internet portal for the Microsoft Network. MSN has a very complicated page layout and features a
significant amount of dynamic content including popup search bars, scrolling news stories, and advertisements.

http://www.slashdot.org/ Slashdot is an internet and technology news site that focuses on displaying brief news updates. This site contains
a significant amount of advertising and makes heavy use of CSS. The CSS engine is one of the most CPU
intensive parts of a modern web-browser.

http://www.twitter.com/ Twitter is a leading social networking site and blogging site. While Twitter has a relatively simple page layout
it contains dynamically generated user updates and a significant number of images.

http://www.youtube.com/ YouTube is the leading high definition video streaming site. It contains many elements such user comments,
advertisements, and a Flash video player. We include a YouTube page with a 1080p high defition video.

TABLE I: BBench Webpages.

pages, along with a brief description of each, are included in

Table I.

While we have created fully functional offline versions of

both ESPN and YouTube we did not include them in our

evalution of BBench on Android. The reason for this is that

we could not find a way to determine with certainty that

the Flash/video player was fully rendered and that the Flash

content or video actually played before jumping to the next

page.

Much of our effort in preparing the benchmark lay in cap-

turing all the necessary content (images, audio/video streams,

etc.) from sophisticated web sites to render the page offline

without error. To collect these pages for offline use, we use a

tool called HTTrack [17]. HTTrack allows us to download a

nearly complete archive of a webpage, including the HTML,

JavaScript, CSS, images, and other content. However, even

HTTrack is not sufficient to capture all of the content required

for some pages, as many of these sites download content

from dynamically-generated URLs (e.g., JavaScript code that

selects an ad to display). For cases in which the HTTrack

archive is not complete, we manually download and insert the

remaining content pointed to by the dynamically generated

links. To locate this content, we analyze each page in the

Firefox browser and use its built-in JavaScript debug console

and the Firebug plugin [11]. The debugger reports an error

for each missing link, which we can then repair by manually

downloading and inserting the missing content directly into

the page’s HTML source.

To automate benchmark execution, we use the browser’s

built-in JavaScript engine to navigate to each page when ren-

dering of the previous page is complete, using the JavaScript

onLoad event, which is triggered once a page has loaded.

One of the challenges of testing rendering times in a fair

manner is to ensure that a page is fully rendered before

navigating to the next page—many web-browsers exploit gray

areas in the JavaScript spec and trigger the onLoad event

before complete pages (in particular, off-screen elements) are

fully rendered. To prevent this behavior, the onLoad handler

uses the document.body.scrollHeight object to determine the

height of the page and then scrolls through the length of the

page via JavaScript commands. Then, once the scrolling is

complete (which requires rendering the full page), the script

sets the window.location.href object to the next page in the

benchmark sequence. The driver script is configurable and can

iterate through a set of pages any number of times.
We validate the reproducibility of BBench results through

a test experiment that examines the run-to-run variation of

the microarchitectural performance counters that we study in

greater detail in Section IV. We execute the benchmark ten

times, where each run iterates through the set of webpages five

times; further details of our methodology and test platform

appear in Section III. We report the coefficient of variation

(CV) of the performance counters in Table II. As the results

show, the CV is below 1.5%—easily low enough to meet our

reproducibility objectives—for all counters except the TLB

miss counters, which are susceptible to slightly higher variance

due to the smaller number of TLB misses relative to other

microarchitectural events.

B. Taps of Fire
With the introduction of high performance CPUs and mobile

GPUs, interactive games have become important applications

on smartphone devices. To represent this application class, we

3

83

Counted Event Coeff. of Var.

Predictable Branches 0.55 %
Mispredicted Branches 0.49 %
Instruction Cache Stall Cycles 1.38 %
Data Cache Stall Cycles 1.16 %
TLB Stall Cycles 0.82 %
Instruction Cache Misses 0.84 %
Data Cache Misses 0.70 %
Instruction TLB Misses 7.61 %
Data TLB Misses 5.47 %
Instructions 0.65 %
Cycles 0.78 %

TABLE II: BBench Variability. Coefficient of variation of

key microarchitectural statistics is low.

select Taps of Fire (ToF) [29]. ToF is an open source rhythm

game for Android that is written in Java. It is similar to the

popular Guitar Hero franchise. We select this game because of

its high level of fast moving on-screen graphics and because it

is representative of one of the most popular genres in gaming.

To play the game, the user must strike a note by clicking a

button at the correct time (i.e., on the beat) based on a marker

moving across the screen. In our benchmark procedure, we

play a single song to completion. We measure performance

counter statistics from the start to the end of the song. Because

the nature of the game elicits the user to produce near-identical

input in each session (indeed, this is the very objective of the

game), there is little variability from run to run. We select

an easy playing mode and play only a single string of notes

to maximize the benchmark operator’s ability to produce a

repeatable input. We repeat the experiment ten times with the

same song and average results over these ten runs.

C. ServeStream

High definition video is now ubiquitous, and with mo-

bile applications such as YouTube [33] smartphone users

now frequently view high definition video. To represent this

application class, we select ServeStream [26]. ServeStream

is an open source HTTP media server and stream player

that is written in Java for the Android platform. It has a

graphical user interface that displays player controls and track

information. ServeStream is representative of mobile video

player applications. We select this particular video player

because of its ability to stream many of the most popular and

current high definition video standards, including MPEG 4.

Our benchmark procedure consisted of playing a 30 sec-

ond MPEG 4 video clip, hosted by a local server, over a

dedicated wireless network. We begin capturing performance

counter statistics and then immediately navigate the Stream-

Serve browser to the HTTP address of the video file. Upon

completion of the video, we manually terminate performance

counter collection. We repeat this procedure ten times using

the same video clip and report the average results.

D. Rockbox

With the advent of mobile MP3 players, users have become

accustomed to having their music on the go. To avoid the

inconvenience of carrying multiple devices many consumers

opt to use their smartphones as MP3 players. We select

Rockbox [24] to represent this important application class.

Rockbox is an open source audio player for a wide variety

of different audio formats that is written in C and has been

ported to Android. Rockbox is representative of mobile audio

player applications. We select this particular player because of

its portability to a variety of platforms and its rich graphical

user interface comprising full player controls, track play time,

and album art.

Our benchmark procedure consists of playing the first

minute of an MP3 file using Rockbox. We begin collecting

performance counter statistics and then immediately start

playback in the Rockbox player interface to begin playing

the selected MP3. As soon as the player timeline displays

one minute of elapsed playback time, we stop collection

performance counter statistics. The MP3 file is stored on the

device’s local file system. As with the other benchmarks, we

repeat the procedure ten times with the same MP3 and report

average results.

E. SPEC CPU2006

Finally, we include a subset of the SPEC CPU2006 bench-

marks [27] in our characterization to support our main thesis

that modern mobile applications differ markedly from the

widely used CPU-intensive desktop/engineering benchmark

suite. We choose to run a subset of the suite and use the

train rather than the reference inputs due to memory and

run-time considerations. We exclude SPEC benchmarks and

input sets that do not fit within the memory footprint of a

typical smartphone today and chose the train input sets to

limit the experimentation time. From CINT2006, we include

astar (rivers.bin), bzip2 (combined), h264 (raw), libquantum,
mcf, omnetpp, and sjeng. Finally, we include a single floating
point benchmark, milc. We compile the benchmarks using

CodeSourcery’s GNU compiler toolchain for ARM Linux.

The SPEC CPU2006 benchmark programs and their key

characteristics are described in detail by Henning [16].

III. METHODOLOGY

To investigate the microarchitecture-level behavioral differ-

ences between our smartphone application suite and SPEC, we

capture performance counter data on a smartphone develop-

ment board. All experiments were performaned on an NVIDIA

Tegra 250 development board running Android version 2.2

and version 2.6.32.9 of the Android kernel. The Tegra 2 chip

contains a 1GHz dual-core ARM Cortex-A9 processor with

32KB private instruction & data L1 caches, a 1MB shared L2

cache, and an NVIDIA GPU. It is representative of the latest in

mobile and smartphone technology. It is important to note that

we run unmodified applications (obtained directly from the

developers) on the same commercial-grade Android operating

system, driver, and library software stack as typical modern

smartphone. We execute each benchmark in an otherwise

idle system, and unload all drivers and daemons that are not

4

84

(a) Streamline Timeline Displaying Counter Statistics

(b) Streamline Displaying Thread Usage For BBench

Fig. 1: The Streamline Performance Analyzer.

neccessary for the correct execution of the benchmarks. We

run a single benchmark at a time.

The ARM Cortex-A9 has a performance monitoring unit

that gives access to a wide variety of performance coun-

ters. [3], [9] The chip’s performance monitoring unit collects

many of the statistics throughout the execution pipeline rather

than at the commit stage. Hence, some of the statistics

(e.g., instructions and miss events) included both committed

and wrong-path instructions (speculative instructions that are

subsequently squashed due to a branch misprediction). How-

ever, because the Cortex-A9 instruction speculation depth is

relatively shallow, we do not expect these overcounts to distort

results significantly. Furthermore, the data and instruction

miss counters include counts that are satisfied by any level

of the memory hierarchy (L2 or main memory). However,

there is a separate counter for the number of stall cycles due

to misses, allowing us to obtain good estimates for average

memory access latency. The chip can count up to six events

simulataneously in addition to the number of elapsed clock

cycles. To gather more statistics, we repeat each experiment

multiple times with different combinations of counters, and

report average values from ten measurements.

To collect the performance counter data we use a tool called

Streamline [6]. Streamline is a sampling-based performance

counter monitoring tool used for system level analysis on

ARM-based platforms. With Streamline, we are able to capture

a variety of additional pertinent information including shared

library usage, network requests, memory and disk usage, and

the approximate amount of thread level parallelism exhibited

��

��

���

���

���

���

���

�
��
��
��
	

���

�
��

�

�
�

�

Fig. 2: Branch Misprediction Rate. The branch mispredic-
tion rates of the interactive applications are similar to or worse

than the worst SPEC benchmarks.

by the applications. An example of the output produced by

Streamline can be seen in Figure 1. Figure 1(a) shows the

performance counter statistics collected over time for a given

benchmark run. Figure 1(b) shows the thread usage of an

application for a given benchmark run.

IV. RESULTS

In this section, we explain our characterization results and

highlight the most notable differences between the SPEC

benchmarks and our interactive smartphone application suite.

In particular, we note significantly higher instruction cache and

instruction TLB miss rates, a greater amount of system and

shared library usage, and higher branch misprediction rates in

our suite. In all graphs, our suite are the four rightmost bars.

A. Branch Misprediction Rates

Branch prediction is one of the most important features uti-

lized in modern microprocessors to ensure high performance,

particularly to exploit instruction level parallelism. Applica-

tions that exhibit poor branch predictability can suffer greatly

because they spend a significant portion of time executing

intructions that are subsequently squashed.

We report branch performance in terms of the branch mis-

prediction rate—the percentage of predictable branches that

are predicted incorrectly. (Note that, in current ARM cores,

certain less common classes of branch operations are specified

as not predictable and are not included in the branch miss rate

statistic, these are extremely rare however and are unlikely to

affect the results). As can be seen in Figure 2 the branch mis-

prediction rate for each of the interactive applications is worse

than nearly all of the SPEC benchmarks evaluated in this study.

The only SPEC benchmarks that have branch misprediction

rates comparable to the interactive smartphone applications are

astar and sjeng. These two applications perform back-tracking

searches that require numerous data-dependant branches that

are inherently non-predictable. In contrast, in the smartphone

applications, the high misprediction rate is due to the massive

code footprints that overwhelm the capacity of the embedded-

class CPU’s predictor. Note that, though branch misprediction

5

85

�
��
��
��
��
��
��
	�

�

�
��
��
���

��
	

��
�

��
�

��
��

(a) ICache Miss Rate Per 1000 Instructions

�
��
��
��
��
���
���
���

�
��
��
���

��
	

��
�

��
�

��
��

(b) DCache Miss Rate Per 1000 Instructions

Fig. 3: Cache Miss Rates. Although the data cache miss rates
for SPEC are similar and in some cases much worse than the

interactive applications, the SPEC instruction cache miss rates

are far lower.

rates are comparatively high, the penalty for a branch predic-

tion is lower in embedded-class CPUs than server-class CPUs

because of their far smaller instruction windows. Nevertheless,

significant opportunities may exist to improve embedded CPU

performance by integrating more capable branch predictors.

B. Instruction Cache Miss Rates

Although CPU caches have scaled with process technology,

the application code footprints have also increased, and in

many cases code size has increased faster than cache sizes.

This code size increase leads to poor instruction cache miss

rates in many modern interactive applications [31].

We report instruction cache performance in terms of the

number of instruction cache misses per one thousand instruc-

tions. The instruction cache miss rate is the most striking

difference we observe between the SPEC benchmarks and the

interactive smartphone applications. As shown in Figure 3(a),

the instruction cache miss rates for the interactive smartphone

applications are several times higher than in any of the SPEC

benchmarks in our subset. Because SPEC benchmarks have

been explicitly designed for ease of portability, their code

footprints tend to be far more compact, and rely on fewer

operating system services, than complete interactive appli-

�

�

�

�

�

�

�

�
��
��
���

��
	

��
�

��
�

��
��

(a) ITLB Miss Rate Per 1000 Instructions

�
��
��
��
��
��
��
	�

�
��
��
���

��
	

��
�

��
�

��
��

(b) DTLB Miss Rate Per 1000 Instructions

Fig. 4: TLB Miss Rates. The interactive applications have
drastically worse instruction TLB performance as compared

to SPEC as a result of their heavy reliance on calls to shared

libraries, which tend to increase ITLB pressure.

cations. Moreover, SPEC applications lack a user interface,

which comprises a substantial fraction of the code footprints

of the interactive applications. As a result, SPEC benchmarks

place insignificant stress on instruction cache capacity. In

contrast, the interactive applications overwhelm the instruction

side of the memory system of the smartphone-class processor.

Hence, there is substantial opportunity to improve smartphone

performance through larger instruction caches and/or better

instruction prefetching.

C. Instruction TLB Miss Rates

We report instruction TLB performance in terms of the

number of instruction TLB misses per one thousand instruc-

tions. Figure 4(a) shows that, much like the instruction cache

miss rates, the instruction TLB miss rates in the interactive

smartphone applications are significantly higher than SPEC.

Only omnetpp has an instruction TLB miss rate similar to any

of the interactive applications.

These results indicate the smartphone applications’ frequent

calls to short functions and heavy reliance on shared libraries

(which are typically aligned on page boundaries and result

in frequent crossings of page boundaries). The SPEC bench-

marks, on the other hand, spend much of their time in tight

6

86

�
�
�
�
�
�
�
	

�

��
��
��
�	
�

��
�

�
�

��
�

Fig. 5: Cycles Per Instruction. In general, the CPI of the

interactive applications is worse than the SPEC CPU2006

applications.

loops.

It is worth noting that omnetpp is the only SPEC benchmark

we evaluated that utilizes a variety of shared libraries and

spends a significant amount of execution time inside these

libraries, as shown in Table III. Although ServeStream spends

a significant portion of execution time inside shared library

calls, it relies on comparatively fewer libraries and hence

incurs fewer page crossings (and TLB misses) than the other

benchmarks. Rockbox spends only a small fraction of time

inside shared library calls so it is not surprising that it has a

better instruction TLB miss rate than both BBench and ToF.

D. Data Cache and TLB Miss Rates

Given the scale of interactive applications, we expected

that they should have large data footprints and thus exhibit

poor data cache and data TLB characteristics. We report

data cache and data TLB performance in number misses per

one thousand instructions in Figure 4(b) and Figure 3(b),

respectively. Contrary to our expectations, we find their data

cache and TLB performance surprisingly good; on par with the

typical behavior of the SPEC applications and far better than

the most memory-intensive applications. This result is interest-

ing because, although the interactive smartphone applications

seem to have larger and less predictable code paths than the

SPEC bencharmks, their data access patterns exhibit good

locality on the average. Our result here suggests that embedded

CPU designers have struck good balances in selecting data

cache and data TLB capacities.

E. System Interaction

Much like interactive applications on the desktop, smart-

phone applications comprise a myriad of software layers

including drivers, daemons, system calls, and shared libraries.

A key result of our study is that these software layers play

a prominent role in the execution time, and hence microar-

chitectural characteristics, of the smartphone applications. To

demonstrate the importance of the various system layers, we

report the fraction of execution time each benchmark spends

in user code, in operating system code, and in shared libraries

��
���
���
���
���
���
���
���
	��
���

����

�
��
���

��
��
���
	

��
��

�
������
�����
�
������
�����
�
���
�����
�
����� !"��!#�
�����$

Fig. 6: Cycle Usage Breakdown. The SPEC benchmarks

spend their time either doing useful work or waiting on data.

The interactive applications have more varied cycle utilization.

in Table III. These results demonstrate that the amount of

time spent in system calls and shared libraries is significantly

greater in the interactive smartphone applications as compared

to the SPEC benchmarks. As previously noted, it is not sur-

prising that SPEC benchmarks spend little time outside of user

code, as they are designed to ensure high portability, which

precludes extensive external dependencies. Nevertheless, it is

worthy to note that increased code size [31] is as prevalent

on smartphones as on more capable platforms. As with the

desktop, the need to improve programmer productivity, in-

crease functionality, and maximize maintainability drive the

use of high-level languages, numerous software layers and

rich libraries; these concerns trump worries over the size of

application code footprints.

F. CPI and Cycle Usage Breakdown

Given our previous branch, cache, and TLB characteristics,

we would like to see how these characteristics affect applica-

tion performance. We calculate and report the average cycles

per instruction (CPI) for each application in Figure 5. (Recall

that the instruction count used to derive these CPIs includes

both committed instructions and wrong-path instructions that

are renamed but ultimately squashed). In general, the inter-

active smartphone applications spend more of execution time

Benchmark User System Shared Lib

SPEC 2006

astar 99 % <0.01 % 0.49 %
bzip2 99 % <0.01 % 0.25 %
h264 99 % <0.01 % 0.62 %
libquantum 99 % <0.01 % 0.83 %
mcf 99 % <0.01 % 0.20 %
milc 99 % <0.01 % 0.04 %
omnetpp 56 % <0.01 % 43.10 %
sjeng 99 % <0.01 % 0.51 %

Interactive

BBench 45 % 5 % 50 %
Rockbox 88 % 9 % 3 %
ServeStream 16 % 6 % 78 %
ToF 43 % 15 % 42 %

TABLE III: Shared Library and System Usage. By design,
the SPEC benchmarks do not use many shared libraries or

OS features. In contrast, the interactive applications make

significant use of shared libraries and system calls.

7

87

��
��
��
��
��
��
��
��
	�
��

���
�
��
��
��
���

	

���
��
�

��
	�
��

��
�

(a) % Stalled Due to ICache Misses

��
���
���
���
���
���
���
���
	��

�
��
��
��
���

	

���
��
�

��
	�
��

��
�

(b) % Stalled Due to DCache Misses

��

��

��

��

��

��

��

�
��
��
��
���

	

���
��
�

��
	�
��

��
�

(c) % Stalled Due to TLB Misses

Fig. 7: % Cycles Spent Stalled Due to Misses. The SPEC
benchmarks spend a significant portion of time waiting on

data cache misses, whereas the interactive applications spend

a larger portion of time waiting on instruction cache misses.

stalled than the SPEC benchmarks. The CPI for all of the

interactive smartphone applications is close to 3, but with

the exception of mcf and libquantum, the SPEC benchmarks

exhibit CPIs close to 1.

To determine the cause of the higher CPIs, we construct

time breakdowns for each application illustrating the relative

fraction of execution time spent on TLB, instruction, and data

cache stalls and useful execution, shown in Figure 6. (The

available performance counters do not allow us to distinguish

busy cycles from cycles with resource stalls or cycles lost due

�

�

��

��

��

��

��
��
��
��
��
���
��
	�

�

�

(a) Number of Stall Cycles Per ICache Miss

�

��

��

��

��

��

��

��
��
�

��
��
���
��
	�

�

�

(b) Number of Stall Cycles Per DCache Miss

�
�
�
�
�
�
�
	

��
��
�

��
��
���
��
	�

�

�

(c) Number of Stall Cycles Per TLB Miss

Fig. 8: Average Stall Penalty Per Miss. Whereas the SPEC

benchmarks have lower miss rates in general, the average stall

cycles incurred per miss is typically as bad or worse than the

interactive benchmarks, indicating SPEC benchmarks suffer

from few, but long-latency, misses (e.g., compulsory misses).

to the execution of wrong-path instructions). These results in-

dicate that the SPEC benchmarks spend their time either doing

useful work or stalled waiting for data, whereas the interactive

applications are more diverse and spend a far greater portion of

time on instruction and TLB misses, corroborating our earlier

findings.

We provide greater detail on each of the stall categories

of Figure 6 in Figure 7. Each graph shows the percentage

of cycles spent stalled due to a particular miss event (note the

8

88

difference in the scales of the vertical axes). Figure 7(b) shows

the large fraction of data stalls in the SPEC benchmarks, while

instruction stalls are far more prominent in the smartphone

applications, as seen in Figure 7(a).

Figure 8 shows the average latency for the various miss

events. It is interesting to note that the average number of stall

cycles due to instruction cache misses is comparable, and in

many cases worse, for the SPEC benchmarks when compared

to the interactive smartphone applications used in this study.

This result indicates that the few instruction misses that occur

in a SPEC apps tend to fetch the instruction from main

memory (likely compulsory misses), whereas the numerous

instruction misses in the interactive smartphone applications

are satisfied by the L2 cache. However, because instruction

cache misses are far less frequent in SPEC, they contribute

little to overall execution time.

V. RELATED WORK

A. Benchmark Development

One of the most important aspects when evaluating a new

CPU feature or architectural design is to have benchmarks that

are representative of the real workloads that will eventually

be run on these systems. For embedded systems, the most

widely used benchmark suite in the research community is

MiBench [15]. This benchmark suite, however, was developed

during a different era of embedding computing. Embedded

CPUs are no longer simple processors designed to execute

straight-forward tasks inside devices such as microcontrollers.

Instead, the latest CPUs found in advanced consumer devices,

such as smartphones and tablets, are quite sophisticated. The

applications run on these platforms have kept pace with the

increasing computing power and are becoming more like

desktop PC applications.

There are several existing benchmarks for web-browser

performance that bear similarity to BBench (e.g., [10], [18]),

however, these suffer from compatibility issues and/or do not

stress the latest web broswer features and standards. Moreover,

EEMBC [10] is proprietary and is not freely available to

academics.

B. Real Workload Analysis

Researchers have always known about the importance of

using benchmarks that are representative of the real workloads

that will eventually be run on the systems they are evaluating.

Because of this, extensive research has often been done to

characterize the most widely used synthetic benchmarks and

validate them against the real workloads they are meant to

represent.

In [21] the authors characterized and validated the most

popular CPU benchmarks of their era, the SPEC CPU95

benchmarks, on the most popular consumer platform at the

time, a desktop PC running Windows NT. In their results,

the authors concluded that the SPEC 95 benchmarks were

representative of desktop/engineering workloads. Although

that study noted many of the same differences between real

workloads and the SPEC benchmarks that we have noted, their

results did not indicate that these differences lead to diverging

microarchitectural conclusions as we have found in our study.

In [20], the authors studied embedded Java applications and

compared them against the leading Java benchmarks, SPEC

and Decapo. Their results are consistent with ours.

Several studies have looked at the thread-level parallelism

present in interactive applications [8], [12]. These studies show

that the available thread-level parallelism hasn’t increased

much in over ten years; nevertheless, modern interactive

workloads can still effectively utilize several cores. We observe

similar trends in our smartphone applications. As can be

seen in Figure 1(b), BBench spawns numerous threads and

effectively utilizes two cores.

VI. CONCLUSION

In this paper we have characterized interactive smart phone

applications, and shown how they differ significantly from

SPEC CPU2006 benchmarks. Smartphones have become the

primary consumer computing device. As computer architects

work to improve the efficiency and performance of such

systems they need to consider benchmarks that better match

typical use cases along with their library and system interac-

tions. In particular, the interactive smart phone applications

have significantly worse instruction cache, TLB miss statistics

and branch misprediction rates, which we attribute to heavy

use of high level software abstractions. To this end, we have

developed an interactive smartphone benchmark suite that

includes a web-browser benchmark, BBench, which is repre-

sentative of the most ubiquitous smartphone application—the

web-browser. BBench provides a fully contained, automated

and repeatable web-browser benchmark that exercises not only

the web-browser, but the underlying libraries and operating

system. While there is a place for CPU-intensive portable

benchmarks, computer architects and systems designers will be

ill-served relying solely on these benchmarks for performance

improvement and characterization in the mobile device arena.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers

for their feedback. We would like to thank Geoff Blake for

his advice on tools and background information. We would

also like to thank Joseph Pusdesris for his advice on passing

arguments through the webpage’s URL, the sustenance he

provided during many late hours in the lab, and for being

an inspiration to us always. This work was supported by a

grant from ARM.

REFERENCES

[1] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu,
D. J. Sorin, M. D. Hill, and D. A. Wood. Simulating a $2M Commercial
Server on a $2K PC. IEEE Computer, 36(2):50-57, 2003.

[2] Apple OS X Lion. http://www.apple.com/macosx/
[3] ARM Architecture Reference Manual: ARM v7-A and ARM v7-R

Edition.
[4] ARM Cortex-A9. http://www.arm.com/products/processors/cortex-a/

cortex-a9.php
[5] ARM Cortex-A15. http://www.arm.com/products/processors/cortex-a/

cortex-a15.php

9

89

[6] ARM Streamline Performance Analyzer. http://www.arm.com/products/
tools/software-tools/ds-5/streamline.php

[7] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt. The m5 simulator: Modeling networked systems. IEEE
Micro, 26(4):52-60, 2006.

[8] G. Blake, R. G. Dreslinksi, T. Mudge, and K. Flautner. Evolution of
Thread-Level Parallelism in Desktop Applications. Proceedings of the
37th Annual International Symposium on Computer Architecture, pages
302-313, 2010.

[9] Cortex-A9 Technical Reference Manual.
[10] EDN Embedded Microprocessor Benchmark Consortium. Browsing-

Bench. http://www.eembc.org/
[11] Firebug Firefox Plugin. http://getfirebug.com/
[12] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-Level Par-

allelism and Interactive Performance of Desktop Applications. Workshop
on Multi-Threaded Execution, Architecture, and Compilation, 2000.

[13] Google’s 1000 most-visited sites on the web. http://www.google.com/
adplanner/static/top1000/

[14] Google Chrome OS. http://www.chromium.org/chromium-os
[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and

R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. IEEE 4th Annual Workshop on Workload Characteri-
zation, pages 3-14, 2001.

[16] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Computer Architecture News, 34(4) :1-17, 2006.

[17] HTTrack Website Copier. http://www.httrack.com/
[18] iBench. ftp://ftp.pcmag.com/benchmarks/i-bench/
[19] IDC Worldwide Quarterly Mobile Phone Tracker 2011.

http://www.idc.com/

[20] C. Isen, L. John, J. P. Choi, and H. J. Song. On the Representative-
ness of Embedded Java Benchmarks. IEEE International Symposium on
Workload Characteriztion, pages 153-162, 2008.

[21] D. C. Lee, P. J. Crowley, J.-L. Baer, T. E. Anderson, and B. N.
Bershad. Execution Characteristics of Desktop Applications on Windows
NT. SIGARCH Computer Architecture News, 26(3):27-38, 1998.

[22] Nielsen. http://blog.nielsen.com/nielsenwire/?p=27418
[23] NVIDIA Tegra 2. http://www.nvidia.com/object/tegra.html
[24] Rockbox. http://www.rockbox.org/
[25] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete

Computer System Simulation: The SimOS Approach. IEEE Parallel and
Distributed Technology: Systems and Applications, 3(4):34-43, 1995.

[26] ServeStream. http://sourceforge.net/projects/servestream/
[27] SPEC CPU2006 benchmark suite. http://www.spec.org/cpu2006/
[28] C. Sudanthi, M. Ghosh, K. Welton, and N. Paver. Performance Analysis

of Compressed Instruction Sets on Workloads Targeted at Mobile Internet
Devices. IEEE International SOC Conference, pages 215-218, 2009.

[29] Taps of Fire. http://code.google.com/p/tapsoffire/
[30] Texas Instruments. http://www.ti.com/omap
[31] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, and J. Emer. Instruction

Fetching: Coping with Code Bloat. Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages, 1995.

[32] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe. SimFlex: Statistical Sampling of Computer System
Simulation. IEEE Micro, 26(4):18-31, 2006.

[33] YouTube Mobile Player. m.google.com/youtube

10

90

