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ABSTRACT
This paper presents an ultra low power programmable proces-

sor architecture for wireless devices that support 4G wireless

communications and video decoding. To derive such an ar-

chitecture, first we analyzed the kernel algorithms that con-

stitute these applications. The characteristics of these algo-

rithms helped define the wide-SIMD architecture, where the

SIMD width can be configured at run time to the specifics of

the algorithm being executed. For ultra low power operation,

we advocate operating the processor at near threshold volt-

age. While a combination of near-threshold circuit techniques

and parallel SIMD computations achieves excellent energy

efficiency, near-threshold operations suffer from large delay

variations due to increased process variability. The paper ex-

plores low overhead architectural techniques to tolerate and

mitigate problems due to delay variations. The techniques in-

clude replication of SIMD functional units to replace faulty

ones and use of an XRAM crossbar to efficiently set up the

new error-free SIMD datapath.

1. INTRODUCTION
In the coming years, wireless devices will support high-

bandwidth internet access, human-centric interfaces with voice

recognition, high-definition video processing, and interactive

conferencing. These devices are likely to be mobile, making

throughput/watt the most critical design constraint.

Fourth generation wireless technology (4G) has been pro-

posed to increase the bandwidth to maximum data rates of

100 Mbps for high mobility situations and 1 Gbps for station-

ary and low mobility scenarios like internet hot spots. This

translates to an increase in the computational requirements of

10-1000x over previous third generation wireless technolo-

gies (3G) with a power envelope that can only increase by

2-5x [8]. Other forms of signal processing, such as high-

definition video, are also 10-100x more compute intensive

than current mobile video.

Figure 1 presents the demands of the 3G and 4G protocols

in terms of the peak processing throughput and power budget.

Conventional processors cannot meet the power-throughput

requirements of these protocols. 3G protocols, such as W-

CDMA, require approximately 100 Mops/mW. SODA [5] im-

proved upon existing solutions such as VIRAM [2] and Imag-

ine [1] and was able to meet both the power and throughput

requirements for 3G wireless. For 4G wireless protocols, the

computation efficiency must be increased to greater than 1000

Mops/mW. Mobile computing platforms will also need to per-

form high-definition video. Figure 1 also shows the perfor-

mance requirements of video which exceed that of 3G wire-

less, but are not as high as 4G wireless. However the data

access complexity in video is much higher than wireless.

To address the challenge os next generation mobile com-

puting platforms that support 4G and video coding, we pro-

posed AnySP[9]. The key feature of the architecture is that

it has a configurable single-instruction multiple-data (SIMD)

datapath. AnySP also attacks the traditional inefficiencies of

SIMD computation: register file power, data shuffling, and

reduction operators. In 90nm technology, its power consump-

tion is 1.3W for 100Mbps 4G wireless.

For ultra low power applications, voltage scaling into the

subthreshold regime (Vdd (supply voltage) < Vth (threshold

voltage)) has been shown to be very effective. However, the

energy efficiency of subthreshold designs comes at the ex-

pense of significant performance degradation. Recent work

by Zhai et al. [10] shows that in the near-threshold regime

(Vdd ∼ Vth), delay improves by 50-100x compared to operat-

ing in the subthreshold region with only a 2x increase in en-

ergy. However compared to operating in the super-threshold

region, the delay is 10x larger. In applications with high de-

gree of parallelism, such as in many kernel algorithms used in

4G and video decoding, a wide-SIMD architecture can com-

pensate for the delay while maintaining energy efficiency.

Near-threshold designs also suffer from process variations

and the variation-induced timing errors become much more

critical in wide SIMD architectures. This is because in wide

systems, the probability that all SIMD lanes are error-free de-

creases when variations are severe. We investigate the ef-

fect of process variations in wide-SIMD architectures, such

as AnySP, operating at near-threshold voltages. We show that

replication of SIMD lanes, where the replicated lanes serve

as spares to replace the faulty ones, is a cost effective way to

tolerate and mitigate problems due to timing variation.

2. SIGNAL PROCESSING ALGORITHMS
2.1 4G Wireless Protocol

The major components of the 4G wireless physical layer

consists of three blocks: a modulator/demodulator, a MIMO
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Algorithm SIMD Scalar Overhead SIMD Width Amount
Workload (%) Workload (%) Workload (%) (Elements) of TLP

FFT/IFFT 75 5 20 1024 Low

STBC 81 5 14 4 High

LDPC 49 18 33 96 Low

Deblocking Filter 72 13 15 8 Medium

Intra-Prediction 85 5 10 16 Medium

Motion Compensation 75 5 10 8 High

Table 1: Data level parallelism analysis for different signal processing algorithms.
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Figure 1: Performance verses power requirements for various mobile com-
puting applications.

encoder/decoder, and a channel encoder/decode [8]. The mod-

ulator maps data sequences into symbols with certain ampli-

tudes and phases, onto multiple orthogonal frequencies. This

is done using inverse FFT. The demodulator performs the op-

erations in reverse order to reconstruct the original data se-

quences. The MIMO encoder multiplexes many data sig-

nals over multiple antennae. The MIMO decoder receives

all the signals from the antennae and either decodes all the

streams for increased data rates or combines all the signals

in order to increase the signal strength. The algorithm used

to increase data rate is the vertical Bell Laboratories layered

space-time (V-BLAST), and the algorithm used to increase

the signal quality is the space time block coding (STBC). Fi-

nally, the channel encoder and decoder perform forward error

correction (FEC) that enables receivers to correct errors in

the data sequence without retransmission. Of the FEC algo-

rithms, LDPC is widely used for high data rate applications.

Our target for 4G wireless is the maximum data rate for high

mobility, which is 100Mbps. This 4G configuration utilizes

the FFT, STBC, and LDPC kernels.

2.2 H.264 Video Standard
H.264 is selected as the multimedia benchmark because it

achieves better compression compared to previous standards

and also contains most of the basic functional blocks (predic-

tion, transform, quantization, and entropy decoding) of previ-

ous standards. We focused on the Baseline profile due to its

potential application in videotelephony and videoconferenc-

ing.

The H.264 decoder receives a compressed bitstream from

the network abstract layer (NAL). The first block is the en-

tropy decoder which is used to decode the bitstream. After re-

ordering the stream, the quantized coefficients are scaled and

their inverse transform is taken to generate the residual block

data. Using header information in the NAL, the decoder se-

lects prediction values for motion compensation either from

a previously decoded frame or from the filtered current frame

(intra-prediction). According to the power profile of H.264,

about 75% of the decoder power consumption is attributed to

three algorithms: deblocking filter (34%), motion compen-

sation (29%), and intra-prediction (10%) [4]. Therefore,we

focus on these three H.264 kernel algorithms.

2.2.1 Algorithm Analysis
Table 1 presents our study analyzing the data level paral-

lelism (DLP) of 4G and H.264 decoding algorithms. We cal-

culate the available DLP within each of the algorithms and

show the maximum natural vector width. The instructions are

broken down into 3 categories: SIMD, overhead, and scalar.

The SIMD workload consists of all the raw SIMD compu-

tations that use traditional arithmetic and logical functional

units. The overhead workload consists of all the instructions

that assist SIMD computations, for example loads, stores and

shuffle operations. The scalar workload consists of all the

instructions that are not parallelizable and must be run on a

scalar unit or on an address generation unit (AGU).

From Table 1, we see that many of the algorithms have dif-

ferent natural vector widths–4, 8, 16, 96, 1024. Also, the

algorithms with smaller SIMD widths exhibit a high level

of TLP, which means that we can process multiple threads

that work on separate data on a wide SIMD machine. For

instance, 8 instances of STBC that have SIMD width of 4

can be processed on a 32-wide machine. Unlike most SIMD

architectures that are designed with a fixed SIMD width to

process all the algorithms, this study suggests that the best

solution would be to support multiple SIMD widths and to

exploit the available thread-level parallelism (TLP) when the

SIMD width is small. By supporting multiple SIMD widths,

the SIMD lane utilization can be maximized.

Though the scalar and overhead workloads are not the ma-

jority, they still contribute 20-30% of the total computation.

For instance, in LDPC, data shuffling and memory operations

dominate the majority of the workload. This suggests that we

cannot simply improve the SIMD performance, but also must

reduce the overhead workload. This can be accomplished by

introducing better support for data reorganization or by in-

creasing the scalar and AGU performance.

Analysis of the algorithms provided us with four key in-

sights that need to be exploited in order to achieve an ef-

ficient high-performance architecture these applications: (i)

The vector width varies widely across the algorithms from 4

to 1024; (ii) Algorithms with small vector width frequently
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Figure 2: Block diagram of AnySP architecture

contain high TLP; (iii) A large percentage of register values

are short-lived and do not need to be written to the register

file; (iv) A small set of instruction pairs is used a large per-

centage of the time; (v) Each algorithm uses a small set of

predetermined swizzle patterns.

3. ANYSP ARCHITECTURE
3.1 Overview

In [9] we presented AnySP, a wide SIMD low power archi-

tecture that was optimized for 4G and video decoding algo-

rithms. Figure 2 shows the AnySP architecture, which con-

sists of SIMD and scalar data paths. The SIMD data path

consists of multiple groups of 8-wide SIMD units, which can

configure to create SIMD widths from 8 to 128. Each of

the 8-wide SIMD units are composed of groups of Flexible

Functional Units (FFUs). The datapath supports three exe-

cution scenarios: wide vector computation (multiple groups

combined), multiple independent narrow vector computation

threads (8 threads x 8 lanes), and 2-deep subgraphs on mod-

erate wide vector computation (32 lanes x depth 2 compu-

tations). This inherent flexibility allows the datapath to be

customized to the application, but still retain high execution

efficiency. Multiple SIMD register files feed the SIMD data

path. Each register file is 8 wide and has 16 entries. The

swizzle network aligns data for the FFUs. It can support a

fixed number of swizzle patterns of 8-, 16-, 32-, 64-, and 128-

wide elements. Finally, a multiple output adder tree can sum

groups of 4, 8, 16, 32, or 64 elements and store the results in

a temporary buffer.

The local memory consists of 2N memory banks, where

N is the number of SIMD groups; each bank is an 8-wide

SIMD containing 256 16-bit entries. Each group of 8-wide

SIMD units has a dedicated AGU. When not in use, the AGU

can run sequential code to assist the dedicated scalar pipeline.

The AGU and scalar unit share the same memory space as the

SIMD data path. To accomplish this, we use a scalar memory

buffer that can store 8-wide SIMD locations. Because many

algorithms access data sequentially, the buffer acts as a small

cache that helps avoid multiple accesses to the vector banks.

The main hardware components of the AnySP processor

were implemented as RTL Verilog and synthesized in TSMC

90 nm using Synopsys physical compiler. The timing and

power numbers were extracted from the synthesis and used by

our in-house architecture emulator tool to calculate the timing

and power values for each of the kernels. AnySP was able to

meet the throughput requirement of 100 Mbps 4G wireless

while consuming 1.3 W at 90 nm. It can also achieve high

quality H.264 4CIF video at 30 fps with 60 mW at 90 nm,

meeting the requirements for mobile HD video.

3.2 Key features
Configurable multi-SIMD width support
The kernel algorithms in 4G and H.264 have different SIMD

widths and mapping them all onto a fixed-width SIMD archi-

tecture is inefficient. In addition, most of these algorithms

are able to exploit TLP for the same task because each task

is independent of the others, runs the exact same code, and

follows almost the same control path. To support the different

types of kernel algorithms, we designed a multi-SIMD-width

architecture. Each group of 8-wide SIMD units has its own

AGU to access different data. We can also combine the 8-

wide groups to create SIMD widths of 16, 32, or 64. Such a

feature lets us exploit the DLP and TLP together for large and

small SIMD width algorithms.

Swizzle network
Since the kernel algorithms use a small set of swizzle patterns,

we use an SRAM-based swizzle network that adds flexibility

while maintaining a customized crossbar’s performance [6].

The swizzle patterns are stored in the SRAM-based swizzle

network configuration memory at initialization. This network

has lower power and also provides more functionality than

permutation networks found in typical SIMD architectures.

For instance, a 128x128 SRAM-based swizzle network con-

sumes less than 30 percent of the power consumed by an

equivalent mux-based crossbar.

Temporary buffer and bypass network
We implemented temporary register buffers and a bypass net-

work to lower register file power. We implemented the tem-

porary register buffers as a partitioned register file where the

main register file contains 16 registers and additional second

partition contains four registers. This small partitioned regis-

ter file shields the main register file from accesses by storing

values that have very short lifetimes. The bypass network
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Figure 3: Delay distributions of a critical path (50-long FO4 inverter chain) for 90nm GP model at Vdd=1V, 1-wide SIMD system at Vdd=1V, and 128-wide
SIMD system at different supply voltages from 0.50V to 1V.

modifies the write-back stage and forwarding logic. The pro-

grammer explicitly manages the forwarding and writing to the

register file. This eliminates register file writes for values that

are immediately consumed, reducing register file power.

Multiple output adder tree support
In many video decoding algorithms, we need sums of less

than the SIMD width. So the AnySP architecture has an adder

tree to allow for partial summations of 4, 8, 16, 32, or 64

elements, which are written back to the temporary buffer unit.

The summed values have short lifetimes, so writing into the

temporary buffer unit helps reduce the number of read and

write accesses to the register file.

4. NEAR-THRESHOLD OPERATION
For ultra-low power applications, subthreshold design is a

compelling approach. However, the large performance loss in

subthreshold operations makes it unsuitable for mobile com-

puting platforms. By using slightly higher Vdd, near-threshold

operation significantly increases the performance by 50-100x

compared to subthreshold with 2x increase in energy.

While near-threshold operation reduces the energy consump-

tion by 10x compared to super-threshold operation, it has a

performance degradation of 10x [10]. In cases where the ap-

plication can be parallelized, such as in many of the kernel

algorithms, using more near-threshold processing elements

can be used to compensate for the degraded performance.

Another drawback of near-threshold designs is that they suf-

fer from delay variations due to increased process variability.

This is because the driving current in the near-threshold volt-

age region is highly sensitive to the variations in threshold

voltage. In this section, we examine architecture-level delay

variations and ways to mitigate them.

4.1 Architecture-level Delay Variations
To examine the variation effects in a wide SIMD archi-

tecture, we emulate a critical path of an AnySP-type SIMD

architecture with a 50-long FO4 inverter chain. We assume

that the delay distribution of a critical path is Gaussian and

that a hundred critical paths exist in one SIMD lane. Further-

more, we assume that the delay of one SIMD lane (1-wide)

is determined by the slowest critical path in the lane and that

the delay of an N -wide SIMD datapath is determined by the

slowest of the N SIMD lanes.

Figure 3 shows the delay distributions of a critical path,

1-wide system operating at 1V and 128-wide systems oper-

ating at different supply voltages. The delay distribution of

the 1-wide SIMD system is shifted to the right compared to

that of one critical path because the delay of 1-wide system is

determined by the maximum delay of 100 critical paths. For

the same reason, the delay distribution of a 128-wide SIMD

system is shifted to the right of the 1-wide SIMD system. An-

other characteristic is that the delay distributions of 128-wide

systems operating at lower supply voltages drift to the right.

This shift is due to the fact that the delay distribution of a crit-

ical path at near-threshold voltage has a wider spread than the

distribution @ 1V. Also note that at lower voltages, the chip

distribution has a long tail, which means that the variation-

induced timing errors in near-threshold operations more ad-

versely impact wide SIMD architectures than a scalar datap-

ath (1-wide datapath).

4.2 Techniques to Control Effect of Variations
There are two mechanisms to tolerate variation-induced tim-

ing errors in a scalar pipeline: 1) flushing the pipeline and

re-executing the instruction with relaxed timing, or 2) wait-

ing one more cycle for the pipeline to generate the correct

output. However, applying these approaches to wide SIMD

architectures is problematic because the power penalty of the

flush-rollback process in the SIMD pipeline is much larger

than that of a scalar pipeline. Recent work also shows that

there is a significant performance drop in SIMD architectures

as single-stage-error probabilities increase [3]. To prevent

variation-induced timing errors in near-threshold operation,

we analyzed the effect of structural duplication for mitigating

variation in SIMD architectures.

In structural duplication, redundant structures are added to

the processor and designated as spares [7]. When some archi-

tectural modules fail in time, the spare structures replace the

failed ones. This structural duplication idea can be used to

handle slower SIMD lanes that fail to operate within a given

clock period. If the faulty SIMD lanes can be identified at test

time, spare SIMD lanes can be used to replace them.

We studied a 128-wide machine and analyzed how many
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SIMD lane replications (α spares) are required to tolerate

variation-induced timing errors. The delay distribution of a

128-wide machine @ 1V is used as the baseline and the delay

distribution of 128-wide+α-spares system @ 0.55V is used to

demonstrate the effect of SIMD lane duplication.

Figure 4 shows the chip delay distribution of a 128-wide

SIMD architecture with varying number of duplicated spares.

For example, the graph of 128-wide+6-spares@0.55V shows

the delay distribution of 128 good SIMD lanes out of 134

(128+6) SIMD lanes; i.e. six slowest SIMD lanes are dropped.

As can be seen, extra SIMD lanes help shift delay distri-

butions to the left and make the spread smaller. We match

the 95% and 99% FO4 delay points of the duplicated sys-

tems (128-wide+α-spare @ 0.55V) with those of the base-

line (128-wide @ 1V). We see that the 95% FO4 delay point

of the baseline system distribution matches with that of the

128-wide+10-spare system. Similarly, the 99% FO4 delay

point of the baseline system distribution matches with that of

128-wide+6-spare system. The smaller number of additional

SIMD lanes required to match the 99% FO4 delay point is be-

cause of the heavy tailed distribution of the baseline system.

In order to support structural duplication, there are some

mild modifications that have to be done to AnySP. First, an

additional XRAM crossbar has to be added to the output of

the register file. The sizes of the XRAM crossbars are now in-

creased to 128x134 and 134x128. The corresponding increase

in area and power is not substantial. Thus in 90nm technol-

ogy, use of replication and XRAM crossbars can mitigate the

timing variability problems of wide SIMD architectures.

5. CONCLUSION
Future uses for mobile devices will require more connec-

tivity at higher data rates, support of high quality audio and

video, as well as interactive applications. This increase in ap-

plication diversity can be addressed by combining different

processor types each tailored to a specific application. Such

a solution is costly in terms of time, silicon area, and power.

We proposed AnySP, a wide SIMD low power architecture,

where the SIMD width can be configured to the algorithm

specifics at run-time. For next generation wireless devices

with an even more stringent energy budget, we advocate oper-

ating the processor at near threshold voltage. Unfortunately,

near-threshold operations suffer from large delay variations

due to increased process variability. In this work, we analyze

variation issues on near-threshold wide SIMD architectures

and explore use of structural duplication to minimize the vari-

ation impact. Results show that replicating SIMD lanes and

using an enlarged XRAM crossbar significantly reduces vari-

ability while maintaining high energy efficiency.
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