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ABSTRACT

Medical imaging provides physicians with the ability to generate
3D images of the human body in order to detect and diagnose a
wide variety of ailments. Making medical imaging portable and
more accessible provides a unique set of challenges. In order to
increase portability, the power consumed in image acquisition –
currently the most power-consuming activity in an imaging device
– must be dramatically reduced. This can only be done, however,
by using complex image reconstruction algorithms to correct arti-
facts introduced by low-power acquisition, resulting in image pro-
cessing becoming the dominant power-consuming task. Current
solutions use combinations of digital signal processors, general-
purpose processors and, more recently, general-purpose graphics
processing units for medical image processing. These solutions
fall short for various reasons including high power consumption
and an inability to execute the next generation of image recon-
struction algorithms. This paper presents the MEDICS architec-
ture – a domain-specific multicore architecture designed specifi-
cally for medical imaging applications, but with sufficient general-
ity to make it programmable. The goal is to achieve 100 GFLOPs of
performance while consuming orders of magnitude less power than
the existing solutions. MEDICS has a throughput of 128 GFLOPs
while consuming as little as 1.6W of power on advanced CT re-
construction applications. This represents up to a 20X increase in
computation efficiency over current designs.
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1. INTRODUCTION
Medical imaging is one of the most effective tools used in mod-

ern medicine to aid physicians in diagnosing and analyzing ail-
ments. Computed tomography, or CT, employs geometry process-
ing to generate a three-dimensional image of the inside of an object
from a large series of two-dimensional x-ray images taken around a
single axis of rotation. More than 62 million scans are ordered each
year to detect ailments ranging from brain tumors and lung disease
to guiding the passage of a needle into the body to obtain tissue
samples [3]. Compared to traditional 2D x-rays, CT has inherent
high-contrast resolution to accurately detect differences in tissue
density of less than 1%. Further, the data is highly flexible in that
it can be aggregated and viewed in all three planes depending on
the diagnostic task. Other popular medical imaging techniques use
varying methods to acquire images, e.g., other forms of radiation
or radio frequency signals, including single photon emission com-
puted tomography (SPECT), positron emission tomography (PET),
and magnetic resonance imaging (MRI).

From a computer architecture perspective, the challenging as-
pect of medical imaging is the vast amount of computation that it
requires. This computation is floating-point-intensive and utilizes
a large amount of data. Figure 1 presents the performance require-
ments and power envelopes of large scale imaging systems as well
as portable (bed-side or in-field) systems. Here, the term image re-
construction (IR) is used to encompass the key algorithms found in
most variations of medical imaging. From the figure, the perfor-
mance of advanced imaging used in non-portable systems ranges
from 900 GFLOPs to nearly 10 TFLOPs. Portable IR requires an
order of magnitude less performance, but also has a substantially
lower power budget to operate in a less tethered environment. Fig-
ure 1 also presents the peak performance and power of several com-
modity processors for comparison including processors from Intel,
IBM and Nvidia.

Current medical imaging compute substrates: Conventional
CT scanners and MRI systems use a combination of general-pur-
pose x86 processors, ASICs, and FPGAs to perform the necessary
computation. The JXT6966 from Trenton systems [27] is a board
consisting of multiple Core i7-class processors; Texas Instruments
has a number of comprehensive solutions which use a combination
of analog components to control the x-ray emitters and detectors,
and fixed-point DSPs for image reconstruction [24]; and Nvidia
GPGPUs have been used to accelerate MRI reconstruction [22].
These solutions all have their drawbacks. The TI solutions do not
support floating-point computation. The x86-based solutions re-
quire turnaround times of many hours for the advanced IR algo-
rithms that researchers propose [26]. As a result, many developers
have turned to general-purpose graphics processing units, or GPG-
PUs, which are capable of delivering the requisite performance.
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GPGPUs, however, have a large disparity between their compute
capabilities and memory bandwidths. For instance, the latest gen-
eration of Nvidia GPGPUs, the GTX285, has a peak performance
of 1,063 GFLOPs but can transfer only up to 159 GB/s of data.
This works out to an average 0.15 bytes of data per FP operation.
For graphics applications, such a ratio is sustainable, but most IR
algorithms require an order of magnitude more memory bandwidth
due to the data-intensive nature of the computation. The resul-
tant bandwidth-limited performance is considerably less than the
reported peak performance. Power consumption, too, is an issue
for many of the existing solutions.

Low-radiation and portable medical imaging: Portable med-
ical imaging is an area of growing interest in the medical commu-
nity for a variety of reasons. Recent medical studies [29, 5, 17] have
shown a marked improvement in patient health when using portable
CT scanners and MRI machines, especially in emergency and crit-
ical cases. The National Institute for Neurological Disorders and
Stroke recommend that patients displaying signs of a severe stroke
undergo a CT scan to examine if they would be eligible for throm-
bolytic therapy – injection of a blood-clot dissolving medication.
However, there is a short window of 3 hours for the treatment to
be applied. In [29], the effective usage of portable CT scanners al-
lowed patients to be examined more quickly after their arrival at a
hospital and resulted in an 86% increase in the number of patients
who were eligible for thrombolytic therapy.

In [5], the authors examined the number of medical and technical
complications that occurred in medium and high-risk neurosurgery
intensive-care unit patients while they were being transporting to
CT scanning rooms. Using mobile CT scanners and bringing the
scanners to the patients, rather than vice-versa, cut down not only
the time required (between 40% and 55%) and the number of hos-
pital personnel required to perform the scan but, most importantly,
reduced the number of complications between 83% and 100%.

Conventional CT scanners require a very large amount of power
to operate, the majority of which is for the x-ray emitters them-
selves which consume several kilowatts of power. However, due
to the ever increasing number of CT scans performed on patients,
there is growing concern about the effects of elevated radiation ex-
posure [3] and, consequently, increased interest in reducing the in-
tensity and power of the x-rays [13]. One approach is using carbon
nanotube-based x-ray emitters which use just a few milliwatts of
power [21, 32]. Using low-power and low doses of x-rays, how-
ever, requires more compute-intensive, iterative techniques to com-
pensate for the associated artifacts [6, 26]. Therefore, reducing the
supply voltage and clock frequency of high-performance proces-
sors is not an appropriate solution to reduce the power of the recon-
struction engine as these techniques reduce performance as well.
Essentially, efforts made to reduce the power consumption of x-
ray emission and detection are increasing the power requirements
of the reconstruction engines, to the point that the computational
devices used for image reconstruction have become the dominant
power-consuming components.

A new domain-specific design: To overcome the problems of
high power consumption and insufficient memory bandwidth, this
work presents an architecture and system design that is targeted for
portable medical imaging. Our design, named MEDICS (Medical
Imaging Compute System), utilizes three critical technologies to
achieve its objectives: (1) a 2D datapath comprised of a chained,
wide-SIMD floating-point execution unit to efficiently support the
commonly occuring computation subgraphs while minimizing ac-
cesses to the register-file; (2) image compression units to com-
press/decompress data as it is brought on-chip to maximize the
available off-chip memory bandwidth; and (3) a memory system
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Figure 1: Performance and power requirements for the do-

mains of current and advanced image reconstruction tech-

niques in both tethered and untethered environments. Diagonal

lines indicate “Mops/mW” performance/power efficiency. For

comparison, the peak performance and power of several com-

mercial processors and GPGPUs are provided: Intel Pentium

M, Intel Core 2, Intel i7, IBM Cell, Nvidia GTX 280, Nvidia

GTX 295, and Nvidia Tesla S1070.

consisting of a 3D stacked DRAM and input/output streaming buf-
fer to sustain high utilization of a wide-SIMD datapath. Power-
efficiency is also garnered by using compile-time software pipelin-
ing to hide memory and datapath latencies, thereby eliminating the
need for sustaining a large number of contexts found in some high-
performance processors like GPGPUs. Overall, MEDICS achieves
128 GFLOPS while consuming as little as 1.6W on state-of-the-art
CT reconstruction algorithms.

2. COMPUTATIONAL REQUIREMENTS

OF IMAGE RECONSTRUCTION
The fundamental problem in tomographic image reconstruction

is illustrated in Figure 2. Figure 2(a) sketches the general concept
of how a CT scan occurs. The process begins with x-rays (dotted ar-
rows) being shot from multiple directions at the object. The detec-
tor on the opposite side of the x-ray emitter can only measure x-ray
attenuation, so it detects very few of the x-rays passing through the
opaque cylinder (represented by the dark lines), but detects more of
the x-rays passing through the transparent cube (represented by the
light line).

Successive scans (or slices) all around the subject at various an-
gles leads to the problem presented in Figure 2(b). Here, each ar-
row represents a path through the matrix and the number next to it
is the sum of all the numbers in the elements that the arrow passes
through. Using this information, the values in the matrix are pop-
ulated. Similarly, in tomography, the matrix is the cross section of
interest in the human body, each arrow represents one x-ray and
the number next to the arrow represents the attenuation measured
by the corresponding cell in the detector array. Using the x-ray po-
sitions, angles and attenuations, the reconstruction algorithms have
to compute the densities and sizes of all the elements in the matrix
in order to provide a two-dimensional image of the area of interest.

The total data per scan that reconstruction algorithms have to
process is quite large. For instance, the raw data collected by a re-
cent generation 3D multi-slice helical CT system has the following
dimensions:

Ns 888 samples per detector row
Na 984 projection views per rotation
Nt 64 detector rows
Nr 10 rotations (turns of helix)
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Figure 2: Capturing and deciphering x-rays for tomographic image reconstruction. (a) Detected x-ray attenuations vary based on

the density of the object; the opaque cylinder allows much fewer x-rays to pass through it than the transparent cube. (b) Internal

density values must be computed using x-ray attenuations measured by the detector array. (c) A slice of 3D helical x-ray CT scan

reconstructed by the conventional FBP method (left) and by a MBIR method (right). For these thin-slice images, the MBIR method

exhibits much lower noise than the FBP images, enabling better diagnoses.

A raw data set of the above dimensions is called a sinogram,
and iterative reconstruction methods need three sinograms: the log
transmission data, the statistical weighting associated with each
measurement, and a working array where predicted measurements
are synthesized based on the current estimate of the object at a
given iteration. Each of these three sinograms are stored as single-
precision, 4-byte floating-point (FP) values, so the typical mini-
mum memory needed for the data is

3 · 4 ·Ns ·Nt ·Na ·Nr ≈ 6.4 GB.

From that data, one reconstructs a 3D image volume that is a
stack of Nz ≈ 700 slices, where each slice contains Nx × Ny

pixels, where typically Nx = Ny ≈ 512. These image values are
also stored as single precision FP numbers, so the memory required
for a single 3D image volume is

4 ·Nx ·Ny ·Nz ≈ 700 MB.

Advanced iterative algorithms for image reconstruction require 2
to 5 arrays of that size, so several GB of RAM are needed for these
3D image volumes. Further, since the imaging data is iterated over
several times, the time taken to access the data must be kept small.

Each iteration of an iterative image reconstruction algorithm re-
quires many FP operations. The dominant computations are called
the “forward projection” and the “back projection” operations; one
of each is needed each iteration, and they require about the same
amount of computation. The amount of computation (measured in
number of FP operations) required for a forward projection opera-
tion is approximately

4 ·Nx ·Ny ·Nz ·Na ·Nr ≈ 7.2 trillion FP operations.

An iterative algorithm needs several iterations; the number of itera-
tions depends on the algorithm. The algorithms that are most easily
parallelized might need about 100 iterations, each of which needs a
foward projection and a back-projection operation. If algorithm ad-
vances could reduce the number of iterations to only 10 iterations,
then the total operation count would be about 2 · 10 · 7.2 = 144
trillion FP operations

Portable devices would require fewer helical rotations (Nr) as
they would have a narrower region-of-interest. The total number
of operations, therefore, would be between 14 and 30 trillion FP
operations for 1 or 2 rotations.

2.1 Benchmark Overview
For the purposes of this work, a representative subset of differ-

ent algorithms used in the reconstruction process were analyzed.
Though MRI is a very commonly used imaging technique, gener-
ating an MRI image is not considered tomographic image recon-
struction as it is not a product of multiple cross-sectional images.
This work, however, still presents results using MRI-related bench-
marks as they are computationally very similar to the tomographic
benchmarks.

MBIR: Model-based iterative reconstruction[26] (MBIR) algori-
thms work by iteratively minimizing a cost function that captures
the physics of an x-ray CT imaging system, the statistics of x-ray
CT data, and a priori knowledge about the object (patient) being
scanned. By incorporating accurate models, MBIR methods are
less sensitive to noise in the data, and can therefore provide equiva-
lent image quality as present-day “filtered back-projection” (FBP)
algorithms with much lower x-ray doses. Alternatively, they can
provide improved image quality at comparable x-ray doses. Fig-
ure 2(c) [26] shows an example of a coronal reformatted slice of
a 3D helical x-ray CT scan reconstructed by the conventional FBP
method and by an MBIR method. For these thin-slice images, the
MBIR method exhibits much lower noise than the FBP images,
enabling better diagnoses. The benchmark used here is the most
compute-intensive inner-loop in the algorithm.
The Radon Transform: The Radon transform of a continuous
two-dimensional function g(x,y) is found by stacking or integrat-
ing values of g along slanted lines. Its primary function in com-
puter image processing is the identification of curves with specific
shapes.
The Hough Transform: The Hough transform, like the Radon
transform, is used to identify specific curves and shapes. It does
this by finding object imperfections within a certain type of shape
through a voting procedure which is carried out in parameter space.
The Hough transform was historically concerned with identifying
lines in an image, but has later been used to identify the locations
of circles and ellipses.
CT Segmentation: A CT scan involves capturing a composite im-
age from a series of x-ray images taken from various angles around
a subject. It produces a very large amount of data that can be ma-
nipulated using a variety of techniques to best arrive at a diagnosis.
Oftentimes, this involves separating different layers of the captured
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Benchmark #instrs Data req’d Registers req’d #FPU chains

B/instr Int. FP 2-op 3-op 4-op

MBIR 17 0.94 12 14 1 0 1

Radon 70 0.80 12 18 1 3 2

Hough 21 0.95 12 8 1 0 0

Segment 86 1.26 16 11 0 6 6

Laplace 23 1.04 13 10 1 1 1

Gauss 25 0.80 14 9 0 1 0

MRI.FH 41 0.88 14 16 1 2 1

MRI.Q 37 0.97 14 14 3 0 1

Table 1: Medical imaging application characteristics.

image based on their radio-densities. A common way of accom-
plishing this is by using a well-known image-processing algorithm
known as “image segmentation”. In essence, image segmentation
allows one to partition a given image into multiple regions based on
any of a number of different criteria such as edges, colors, textures,
etc. The segmentation algorithm used in this work has three main
FP-intensive components, Graph segmenting (Segment), Lapla-
cian filtering (Laplace), and Gaussian convolution (Gauss).
Laplacian Filtering: Laplacian filtering highlights portions of the
image that exhibit a rapid change of intensity and is used in the
segmentation algorithm for edge detection.
Gaussian Convolution: Gaussian convolution is used to smooth
textures in an image to allow for better partitioning of the image
into different regions.
MRI Cartesian Scan Vectors: One of the main computational
components of reconstructing an MRI image is calculating the value
of two different vectors, which are referred to as MRI.FH and
MRI.Q [11, 22] in this paper. These vectors are used to reconstruct
an image using non-Cartesian sampling trajectories – a computa-
tionally less efficient but faster and less noisy than reconstructing
using a Cartesian scan trajectory.

2.2 Benchmark Analysis
Table 1 shows some of the key characteristics of the benchmarks

under consideration. The columns are defined as follows: “#in-
strs” specifies the number of assembly instructions in each of the
benchmarks, “Data required” specifies the memory requirements
in terms of average number of bytes required per instruction, “Reg-
isters required” specifies the number of entries required in integer
and FP register files (RFs) so that the benchmark need not spill tem-
poraries to memory, and “#FPU chains” specifies the number of FP
computation chains that are 2, 3, and 4 operations deep. From the
table, all of these benchmarks are FP-intensive and require a large
amount of data for the computation they perform with memory-
to-computation ratios ranging from 0.80 to 1.26, well in excess of
the 0.15 bytes/instruction supported by the GTX 285 GPGPU men-
tioned earlier. The loops in these benchmarks are “do-all” loops –
there are no inter-iteration dependences. However, each iteration is
typically sequential as indicated by the relatively small number of
registers that are required. FP computation tends to be organized
as moderately deep chains of sequentially dependent computation
instructions.

Figure 3 characterizes the type and frequency of instructions in
each benchmark, showing the percentage of FP arithmetic, mem-
ory, address-generation, control-flow, and integer arithmetic instruc-
tions, respectively. As can be seen from this graph, the computation
in these benchmarks is predominantly FP arithmetic, but there are
some integer operations as well. Of the integer registers specified
in Table 1, most of these registers are used for memory address
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generation, as the benchmarks often access elements from multi-
ple arrays and several member variables of data structures. In most
cases, the control-flow instructions are those to check the terminat-
ing condition of the loop. Benchmarks with a high % of control-
flow instructions have if-else conditions within the loop kernel.

3. THE MEDICS PROCESSOR

ARCHITECTURE
A computation system for portable medical imaging must meet

several requirements in order to deliver high performance while
still having low power utilization:

Low-latency FP computation: Most floating-point units (FPUs)
have a latency of 3 to 4 cycles. The applications considered here
often perform multiple consecutive FP operations on one piece of
data before storing the result in memory. Chains of 4 or 5 depen-
dent operations result in execution times of 12 to 15 cycles. Efforts
must therefore be made to either reduce the latency of the FPU
pipeline or implement low-power techniques to hide this latency.

Wide-SIMD FP pipeline: The algorithms in this domain are all
FP-intensive; the representative benchmarks considered in this pa-
per have, on average, 36% of FP instructions in the inner-most,
most frequently-executed loops. Further, the loops are all do-all
loops – all the iterations of the loops can execute in parallel as
there are no inter-iteration dependencies. This property enables
simple SIMD-ization of these loops, where subsequent iterations of
the loop may be assigned to individial lanes in the SIMD datapath.
Further, since SIMD replicates only the arithmetic units, there is
comparatively less control overhead in a SIMD design compared
to a single-issue design resulting in improved power efficiency.
Many of these algorithms have some simple control flow in their
inner-most loops, primarily limited to operations such as bounds-
checking requiring some support for predication. The ability to

broadcast a single value to all SIMD lanes is also required.
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Figure 4: Components required for a medical imaging compute

system.

High bandwidth, low-latency storage: Image reconstruction al-
gorithms have a very high memory-to-compute ratios, requiring
large amounts of data in a very short time. In order to support
this behavior, a sufficient amount of memory has to be available
on-chip. In addition to performing little compute per unit data, the
total amount of data processed in reconstruction applications is also
large. Several gigabytes of storage is therefore required, and should
ideally placed as “close” to the processor as possible.

These requirements are combined to create a high-level system
sketch for MEDICS shown in Figure 4 and explored in detail below.

3.1 FPU Pipeline
FP operations in reconstruction applications – especially those

in frequently executed blocks of code – are FP adds, subtracts and
multiplies. While the occassional divide is required, it is usually
executed in software with the aid of a reciprocal operation. Efforts
are therefore made in this work to optimize the main FPU pipeline,
consisting of an FP adder/subtractor and a multiplier.

3.1.1 Reducing FPU Latency

For an FPU with a latency of 3 clock cycles, back-to-back de-
pendent operations may only be issued every 3 cycles resulting in a
significant loss in performance. Operation chaining in FPUs helps
mitigate this latency, allowing some parallelism in the initial pro-
cessing and formatting of FP numbers.

In addition to reducing data-dependent stalls, chaining opera-
tions has the advantage of reducing the overall number of register-
file (RF) accesses; a sequence of two multiply instructions back-to-
back, for example, normally requires a total of four read accesses
and two write accesses. Chaining will reduce this to three read
accesses and a single write access, though it will require an addi-
tional read port to perform all the reads simultaneously. The sav-
ings from reducing the overall number of accesses is often more
than the added cost of a read port.

Reconstruction applications, however, typically have chains of
dependent FP operations longer than two operations. This work
explores the possibility of extending the principles applied in con-
structing conventional fused multiply-add FPUs further than is tra-
ditionally done allowing for one FP instruction to execute several
FP operations in series to best accelerate long FP chains and to re-
duce RF access power. Further, these units have to be generalized
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Figure 5: FPU architecture. (a) Internal structure for FPU. (b)

The Normalizer stage may be removed for all but the last in a

chain of FPUs

to execute any sequence of FP operations in any order rather than
just merely a fused multiply-add/subtract sequence.

Conventional FPU Architecture: A typical FP adder consists
of a zero detector, an exponent aligner, a mantissa adder, a nor-
malizer, and an overflow/underflow detector. The exponent aligner
in the FP adder aligns the mantissa for the two operands so as to
use the same exponent to compute the addition operation. Mean-
while, an FP multiplier generally consists of a zero detector, an
exponent adder, a mantissa multiplier, a normalizer, and an over-
flow/underflow detector. Following the IEEE-754 standard, FP units
also include rounders and flag generators. The rounder takes into
account desired rounding modes, namely round to nearest, round
toward 0, round toward positive infinity, and round toward nega-
tive infinity. The flag generator indicates whether the result is zero,
not-a-number, generates an overflow, or generates an underflow.
Figure 5(a) illustrates the interaction between these various com-
ponents.

Chained FPU Design: As depicted in Figure 5(a), the FPU
implementation used in this work is divided into four conceptual
stages: preprocessor, arithmetic unit, postprocessor and normal-
izer. Typically, all FPUs operate only on normalized FP numbers
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Figure 6: Example using chained FPUs (CFPs) from the Radon benchmark. (a) Operation identification. (b) Latency hiding via

software pipelining.

and this is enforced by the normalizer. In general terms, the ear-
lier parts of the FPU pipeline consist of components that expand
the IEEE standard-form input operands into intermediate represen-
tations suitable for the main arithmetic units, and the later parts of
the FPU pipeline compact the results of the computation back into
the IEEE representation. When operations are performed back-to-
back, the intermediate values are never committed to architected
state and, as such, need not be represented in the standard form,
saving time on the FPU critical path and reducing the required hard-
ware.

When the normalizer takes the result from the postprocessor, it
primarily detects leading zeroes and shifts them as necessary so
as to conform to the IEEE-754 FP format. If multiple FPUs are
chained together and the value computed in the postprocessor is
only an intermediate value, and not one committed to architectural
state, the normalizing step may be removed and the next stage in
the FPU chain can treat this result as a denormalized value. The
normalizer consumes a significant amount of computation time –
close to 30% – so its removal results in marked performance im-
provements. More details about the achievable improvements are
presented in Section 4.

Some extra logic that is necessary to make chaining work prop-
erly includes the truncation and shifter placed in the postprocessor
to process varying result widths, resolve temporary overflows, and
detect the true location of leading ones so that they may be cor-
rectly appended for the next stage of the computation. The 32-bit
representation produced by the postprocessor simplifies the relay
between one stage of FP computation to the next, and if deemed
necessary, outputs can be pulled out at any FPU to be normal-
ized immediately and its results obtained. The conceptual opera-
tion of the chained design is illustrated in Figure 5(b) where the
normalization step is performed for only the final operation in the
sequence. Additional control logic allows for earlier normalization
of intermediate values if a sequence of instructions has fewer than
the maximum number of operations. Operations can receive their
inputs from either a predecessor or from the register file.

Identifying FP chains: Modifications made to the Trimaran [28]
compiler are used to identify and select sequences of instructions
for execution on the chained FPU. First, an abstract representation
of the possible sequences of execution is created in a data-flow

graph (DFG) form. In the DFG, nodes are used to represent each
input, output and individual FPUs in the chain. Directed edges are
used to represent all possible communication between these nodes.
An abstract graph representation for the 4-Op chained FPU in Fig-
ure 5(b) is shown in Figure 6(a). This representation has 5 input
nodes, 1 output node and 4 operation nodes. Two edges are drawn
from the inputs to OP0 and one edge is drawn to one input of OP1,
OP2 and OP3. Edges are also drawn from OP0 to OP1, OP2, and
OP3; from OP1 to OP2, and OP3; from OP2 to OP3; and, finally,
from all of the operation nodes to the output node.

The compiler receives the application source code and this ab-
stract representation as input. It then draws a DFG for the compute-
intensive inner-most loop of the benchmark. We the find subgraphs
in the application’s DFG that are isomorphic to the FPU’s DFG,
which provides us with the set of operations that can be executed
as one instruction in the FPU chain. A greedy algorithm is then
used to select the largest of these subgraphs; i.e. a single, 4-long
sequence of operations is preferred over two 2-long sequences.

Figure 6(b) shows a subset of the DFG for the Radon transform
benchmark’s inner-most loop. Two chained FPUs are identified
here - one four FP operations in length and the other three FP oper-
ations in length. The sub-graphs used in this work were sequences
of dependent FP add, subtract, and multiply operations where in-
termediate values were not live-out of the DFG but were only con-
sumed locally. The internal interconnection is illustrated in Fig-
ure 5(b).

3.1.2 Hiding FPU Latency

While the total time taken to execute several back-to-back FP
operations may be reduced using FPU chaining, it significantly in-
creases the total pipeline depth and, consequently, the latency of
any FP instruction. Traditional architectures use hardware mul-
tithreading to hide various sources of latency – control latency,
computation latency, memory latency, etc. While hardware mul-
tithreading helps increase the overall performance, it has a few
drawbacks. Firstly, the control when using multithreading is signif-
icantly more complicated as each thread has its own PC, machine
status register, execution trace, etc. In addition, each thread must
be presented with the same architectural state. This work takes a
compiler-directed approach of hiding the long FPU pipeline latency
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by software pipelining the inner-most loops [16] and overlapping
independent successive iterations as shown in Figure 6(c). When
using software pipelining, since more data is being processed in
parallel, the RF must be increased in size to provide enough data
for the required computation. Instantaneous power will also in-
crease due to the increase in operations at any given time, but the
overall energy of computation will decrease since the processor is
spending more time doing useful work rather than idling and wait-
ing to issue a new instruction.

3.2 Data Compression

3.2.1 Lossy Compression

One approach to narrow the bandwidth gap and make more ef-
fective use of the computing resources available is to reduce the
total amount of data required by the application. Iterative CT re-
construction techniques [6, 26] are inherently error-tolerant since
they keep iterating until the number of artifacts in the image is
within some tolerance. A technique used in MEDICS that exploits
this in a power-reducing manner is the use of 16-bit floating-point
computation mentioned in the IEEE 754-2008 (or IEEE 754r) stan-
dard. These “half-precision” floating-point values consist of a sign
bit, a 5-bit exponent field and a 10-bit mantissa field as opposed to
the 8-bit exponent field and 23-bit mantissa field used in the 32-bit
standard.

The advantages of changing the floating-point width are two-
fold. The first advantage is an effective doubling of bandwidth; i.e.
twice as many operations can now execute using the same band-
width as before. The authors of [10] explored the effects of using
16-bit floating point on CT image reconstruction. Not only did [10]
conclude that the error produced by this reduced precision was well
within tolerance but that the resulting increase in bandwidth has
shown over a 50% increase in image reconstruction performance
on Intel CPUs.

The second advantage is a reduction in the datapath hardware;
our experiments showed a 58.5% reduction for a 2-input FPU. Fur-
ther, the FP register file size can also be reduced to a 16-bit width.
The effects of this change are discussed in section 4.

3.2.2 Lossless Compression

Several recent studies have demonstrated the effectiveness of
compression in reducing the size of CT scan results. These studies
have primarily been focused on long-term storage size, but similar
principles are applied in this work to improve performance. In [1],
the Lempel-Ziv and Huffman lossless compression algorithms are
used to compress sinogram data from PET scans. In a similar man-
ner, the JPEG-LS lossless compression algorithms are applied to
compress sinogram data from CT scans [2]. They explore using
lossy compression algorithms as well and demonstrate that com-
pression ratios up to 20:1 are possible with minimal artifacts in the
final reconstructed image. Lossless compression of sinograms re-
sults in 10:1 and greater compression ratios. An important point to
note is that the compression ratios when lossless techniques are ap-
plied to final images are considerably less – on the order of 2:1 and
3:1. Sinograms are generally much more compressible than images
due to their highly correlated structure.

Further, rather than using software techniques for compression,
this work takes the approach of using ASICs for performing com-
pression and decompression. Using software-based compression
provides greater flexibility in terms of the compression algorithm
used and at what granularity data has to be compressed. However,
it leads to a considerable loss of performance, up to 50% [20] in
some cases, without accounting for the fact that the main applica-
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tion cannot execute on the core while the compression and decom-
pression software is running. For this reason, this work focuses on
a hardware-only approach to compression using ASIC implemen-
tations of the JPEG-LS compression algorithm [14, 15, 20]. For
a 32-bit pixel, this hardware implementation has an area footprint
of 0.07mm2, power consumption of 1.6mW, and can operate at a
frequency of 500 MHz.

3.3 Memory System
In this work, a 3D die-stacked DRAM array is used for high-

density, low latency storage. Where traditional designs incur a la-
tency of several hundred cycles while accessing on-board DRAM
storage, utilizing 3D stacking provides the storage density of D-
RAM but without incurring the wire delay penalty of going off-
chip. The 3D DRAM cells are accessed using through-silicon vias
(TSVs). TSVs are essentially identical to the vias normally used
to connect adjacent metal layers in silicon [9]. The specific im-
plementation used in this paper is that provided by Tezzaron Cor-
poration [25]. This implementation, at a 130nm technology, has
a density of 10.6 MB/layer-per-mm2, a DRAM-to-core latency of
10ns, a data throughput of 4 giga-transfers/sec, and supports 10,000
TSVs each mm2; i.e., for a memory interface of area 0.1 mm2, the
DRAM-to-core memory bandwidth supported is up to 500 GB/s,
considerably higher than any off-chip memory bandwidth currently
offered, and much beyond the bandwidth requirements of most ap-
plications, including that of medical image reconstruction. Fur-
ther, when deployed on a core running at 500 MHz, the 10ns de-
lay results in a total latency of approximately 10 cycles to send
the required memory address to the DRAM and receive the appro-
priate data. This latency is comparable, or faster, to modern L2
caches and, for this reason, the 3D-DRAM storage will henceforth
be known as “L2 memory” in this paper.

3.3.1 On-chip Memory Organization

Two potential on-chip memory systems are considered, as de-
picted in Figure 7(a). The first, more traditional system, is to use
an L1 SRAM cache between the SIMD RF and the L2 memory in
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Figure 8: (a) Datapath latency, power and area effects of varying the number of FPUs when increasing FPU chain length. (b)

Speedup and FPU utilization with increasing chain length

order to hide the latency of an L2 memory access. The second sys-
tem takes advantage of the streaming nature of these benchmarks
by employing “streaming buffers” (SBs) to continuously fetch and
store data at pre-specified offsets. These are two alternatives to the
approach used in modern GPGPUs – utilizing a large number of
thread contexts and some caching to keep the computation units
busy while data is fetched from memory. All three techniques, as
they apply to this domain, are explored in Section 4.

3.3.2 Off-Chip Memory Organization

Sinogram data generated in reconstruction systems is first stored
in a “recon box” hard disk drive. The data on the drive is then pro-
cessed and reconstructed using whichever processor is used in the
machine. A similar design is envisioned for the system proposed
in this work as shown in Figure 7(b). Additional steps are taken,
however to further hide the long latency of a disk access. This is
done by using a very large array of off-chip DRAM (2 to 5 GB).
The on-board storage size selected is an appropriate match for re-
peated access to the large working set size required by advanced
reconstruction algorithms, as mentioned in Section 2.

4. EXPERIMENTAL EVALUATION
The major components of MEDICS were designed in Verilog

and synthesized at 500 MHz on a 65nm process technology using
the Synopsys Design Compiler and Physical Compiler. Power re-
sults were obtained via VCS and Primetime-PX, assuming 100%
utilization. Area and power characteristics for regular memory
structures like dual-ported RFs and caches were obtained through
a 65nm Artisan memory compiler while RFs with more than 2 read
ports were designed in Verilog and synthesized. The benchmarks
were SIMD-ized by hand and compiled using the Trimaran com-
piler infrastructure [28]. A SIMD width of 64 was chosen as hav-

ing a wider datapath led to the scalar broadcast interconnect being
on the critical path and reducing the efficiency of the processor.

4.1 FPU Chaining
Table 1 indicates that a number of the applications in this domain

have several long sequences of back-to-back FP operations. Based
on this data, the FP datapath in MEDICS was designed with an
FPU consisting of 4 back-to-back operations. Figure 8 shows the
effects of varying the number of operations in the FPU.

In Figure 8(a), the x-axis for all the graphs, “FP ops/instruction”
is the number of successive, dependent FP operations executed in
the chained FPU. The “latency” graph shows the time (in 2ns clock
cycles) taken to execute an input subgraph. The baseline 3-cycle
FPU takes 3 cycles for each operation and thus has a latency that
increases by 3 cycles for every added operation. The removal of
redundant hardware in the optimized FPU chain results in signifi-
cantly less overall latency – a savings of 3 cycles when 4 FPUs are
connected back-to-back.

The “power” graph illustrates the power savings obtained from
optimized normalizing. Here, the baseline is multiple un-modified
FPUs executing operations back-to-back. In this graph, too, the gap
between optimized and unoptimized FPUs widens quite dramati-
cally as the number of operations per instruction increases. This
gap widens further when the width of the datapath is reduced to
16 bits as mentioned in Section 3.2.1. The normalizing hardware
removed as part of the FPU optimization process removes a higher
percentage of the hardware in a 16-bit FPU than in a 32-bit FPU, re-
sulting in reduced baseline and incremental power with each added
FPU in the chain. The power measurement in this graph is the
sum of the RF access power and the FPU execution power to better
reflect the power penalty from increasing the number of RF read-
ports.

The “power/perf” graphs address the efficiency of the different
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solutions. They show the normalized power consumed per opera-
tion to achieve an IPC of 1; i.e., with every stage of the FPU occu-
pied and busy. Here, too, the power consumed for the amount of
work done steadily reduces as the number of FP operations per in-
struction increases. While the access power for an RF increases for
every added read port, the improvement in the efficiency of the RF
shown in the graph indicates that this is amortized by the reduction
in overall accesses and by the performance improvement achieved
by chaining together FPUs.

Figure 8(b) shows the speedup and FPU utilization observed for
the different benchmarks when using 2-, 3-, 4-, and 5-operation
chained FPU datapaths. The speedup varies based on how fre-
quently the various chained FP operations occur in each bench-
mark (see Table 1) and the latency penalty incurred when issuing
back-to-back dependent FP operations. The benchmarks that had
the most to gain from chaining FPUs were the ones with the most
number of 4-long chains of FP operations – MBIR and Segment,
for example. On average, 12%, 14% and 16% speedups are ob-
served when using 2-op, 3-op and 4-op chained FPUs, respectively.
Speedup saturates at 4 operations and adding a fifth operation in the
chain only reduces the overall utilization of the FPU. Using a 4-op
chain is, therefore, the best solution.

4.2 Local Storage
Two aspects of local storage were evaluated. The first is the num-

ber of entries in the main RF. A baseline RF size of 16 elements
was chosen as this captures the register storage requirement for the
majority of the benchmarks shown in Table 1. The larger an RF,
the more power it consumes per access, and so if only the instan-
taneous power consumption is considered, using a smaller RF is
the preferred solution. However, this does not account for the in-
crease in the application run-time associated with spill instructions
inserted due to a lack of available registers. Therefore, the met-
ric chosen to evaluate the efficiency of various RF sizes was the
energy consumed by individual iterations of the applications, ac-
counting for RF access and execution energy. Figure 9(a) shows
the energy consumption when using a 32-bit 8-entry RF and a 32-
bit 32-entry RF, normalized to that of a 16-entry RF. The energy
consumed when using an 8-entry RF is significantly higher than 1
– almost double in the case of the Segment benchmark – and is
only less than 1 for the Hough benchmark, which requires only
8 registers. The energy overhead of using a 32-entry RF is quite
small – less so for the Radon benchmark since it actually requires
18 registers to not have any spill code. Therefore, while a 16-entry
RF is chosen for the MEDICS design, the added power and energy
overhead of increasing this to a 32-entry RF is quite minimal.

The second aspect of local storage that was evaluated was the
mechanism used to hide the latency of the L2 memory. Three dif-
ferent solutions were analyzed using an L1 cache, using streaming
FIFO buffers, and replicating register contexts. To hide 10 cycles
of L2 memory latency, sufficient buffering is required for 10 mem-
ory instructions, or 40 bytes for 32-bit data values. This number is
increased to the nearest power of 2 to 64 bytes per SIMD lane. This
additional storage may be used for miscellaneous data like register
spill.

An L1 cache of 64 bytes/lane can be used, but this does not ef-
fectively exploit the spatial locality present in these applications.
Since all of these algorithms process images sequentially, pixel-by-
pixel, a 64 bytes/lane streaming data buffer FIFO and DMA engine
coupled together to transfer multiple loop iterations worth of data
in response to a single request is a better solution. This process re-
duces execution time since explicit address computation for loads
and stores may be eliminated from the main datapath. There is
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added performance overhead of programming the FIFO, but this is
amortized over the length of the loop. A small L1 cache of 16 bytes
would still required for miscellaneous data as mentioned earlier.
Another technique, used in modern GPGPUs, is to hide memory
latency by simply using thousands of register contexts.

The power consumptions of these different techniques was eval-
uated, with both 16-bit and 32-bit datapaths, and the results are
shown in Figures 9(b) (here, “nP-RF” is the power overhead per
context when utilizing 16-entry RFs with n read ports). This power
is multiplied for each context required, i.e. if a processor has 10,000
16-entry contexts, the power consumed by the dual-ported register
files will be approximately 5 Watts. Due to its high power con-
sumption, the common technique of having several parallel con-
texts is the least economical. This is evident even though the L2
memory latency that has to be hidden is very low, compared to that
of the off-chip DRAMs used in modern GPGPUs. The overhead
naturally increases as read ports are added to RFs to support FPU
chaining. The cache consumes approximately the same amount
of power as an additional dual-ported RF. The streaming FIFO
buffers, though, consume less power than either solution, primar-
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ily due to the lack of any addressability. The case for the stream-
ing buffers is further underscored in Figure 10 which illustrates
the speedup achieved from not having to always issue address-
calculating instructions when using the streaming buffers – 17%,
on average.

Based on the performance improvement observed and their low
power consumption, FIFO buffers and a small L1 cache provide
the best interface between the datapath and L2 memory. It is not
necessary to add hardware to maintain coherence between these
structures; the primary input and output data structures of the ap-
plications considered are accessed through the FIFO buffers and
the L1 is only used for storing any intermediate values such as reg-
ister spill. Therefore, as there is no overlap between data stored
in the L1 and data stored in the FIFOs, area and power-expensive
hardware coherence schemes need not be used in this design.

4.3 Compression
Two options for integrating hardware compression were consid-

ered: in-pipeline and compression at the memory bus as shown in
Figure 11(a). In the first approach, the compression and decom-
pression engines are placed directly in the main datapath. In this
scheme, compressed data is stored on the disk, on the on-board, off-
chip DRAM, and in the L2 memory. Compression and decompres-
sion hardware is placed between the L2 memory and the streaming
buffers. The DMA engine responsible for filling and clearing the
streaming buffer FIFOs triggers the decompression and compres-
sion, respectively. The decompressed data, however, must fit in the
streaming buffer FIFO which is only a few bytes in size per lane.
Considering each row is 2 kB in size, a small subset or fraction
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of rows in each sinogram must be compressed together rather than
compressing an entire 512-row sinogram.

In the second approach, only the disk and on-board storage hold
compressed data and data is decompressed before it is stored in
the L2 memory. The main advantage with this approach is the im-
provement in compression ratios. Figure 11(b) shows the typical
degradation of compression ratios as fewer and fewer rows of a
sinogram are compressed. If an entire slice (512 rows) is com-
pressed, its size shrinks from 1.05 MB to 93.2 kB (11.3:1 compres-
sion), whereas if the slice is compressed row-by-row, its overall
size is 1.02 MB (1.3:1 compression) – a negligible reduction in
size. Due to the improved compression achieved by decompress-
ing data into the L2 memory, MEDICS’s positioning of the com-
pression/decompression engines on the boundary of on-chip and
off-chip storage is the better of the two techniques.

Using compression engines on the memory bus interface allows
increasing the total number of PEs on the processor, thereby in-
creasing the total processing capability. The decompression en-
gines used have a throughput of 1 pixel/cycle, resulting in a latency
of 218 cycles per 512x512 image. At this rate, using a 64-wide
SIMD PE, at least 64 instructions need to execute per 4-byte pixel
generated in order to not be limited by the decompression engines.
While this is feasible for the benchmarks with lower memory foot-
prints, the ones with higher memory footprints require almost eight
times this throughput, or 8 decompression engines running in par-
allel, processing different chunks of data.

5. THE MEDICS SYSTEM
The MEDICS architecture is shown in Figure 12. The 3D-stack-

ed DRAM interface is illustrated in the lower-right part of the fig-
ure. An individual PE is illustrated on the left, showing the separate
scalar and vector pipelines. The top-right shows an individual lane
of the vector pipeline in more detail. A compound FPU which does
4 FP operations back to back is used in this design. The RF has 16
elements for each of the FP and integer RFs based on the data in
Table 1 and FIFO stream buffers are used to transfer data between
the datapath and the L2 memory.

The MEDICS processor’s design characteristics and power con-
sumption breakdown are shown in Figure 13. Figure 13(a) shows
the specifications of each individual PE. The 16-bit version con-
sumes significantly less power than the 32-bit version. However,
due to the reduced size of the FP datapath, the area is also reduced,
leading to approximately 11% less on-chip stacked DRAM. This is
not a problem, though, since the reduced bitwidth effectively leads
to a doubleing of the DRAM’s utilization. Figure 13(b) shows a
component-by-component breakdown of the power consumed in
the MEDICS processor. The most significant power reduction from
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16-bit 32-bit

Frequency 500 MHz

SIMD Lanes 64

Peak Performance 128 GFLOPs

Peak Total Power 1.58W 3.05W

Total Area 36.3 mm2 40.7 mm2

On-chip DRAM 774 MB 867 MB

Efficiency 81.1 Mops/mW 42.9 Mops/mW

(a)

Component 16-bit Power 32-bit Power

4-op 16-bit FPU 10.30 mW/ln. 29.15 mW/ln.

16-element 16-bit RF 5.48 mW/ln. 7.14 mW/ln.

Local stream buffers 2.51 mW/ln. 4.25 mW/ln.

Etc. datapath
(scalar pipe, AGU, control) 59 mW

DRAM Power 350 mW 390 mW

(b)

Figure 13: MEDICS specifications. (a) Overall per-PE specifi-

cations (b) Power breakdown of individual components

the 32-bit to the 16-bit datapath is seen in the 4-op, 5-input FPU
which sees a 64% reduction.

In addition are the area and power of the 8 sets of compres-
sion/decompression engines required for sufficient throughput, the
power consumption of the processor changes very little with this
addition and the area increases by 1.2mm2. Using this compres-
sion mechanism, the effective bandwidth seen by the processor is
10X the nominal, allowing for an equivalent increase in the amount
of processing power and improved scalability while maintaining
performance/power efficiency.

Figure 14(a) shows a modified Figure 1. Extra data points have
been added to show how MEDICS compares in performance/power
efficiency to the other processors in consideration. The 32-bit MED-
ICS system has an efficiency improvement of 10.6X over the Nvidia
GTX 280 and 6.8X over the Nvidia GTX 295, which are also fabri-
cated on a 65nm process. The 16-bit MEDICS system has a 20.5X
and 13.1X improvement, respectively. Its performance and power
consumption makes it an excellent choice for advanced, low-power
image reconstruction. If more PEs are used, and the necessary com-
pression engines and on-chip communication network are added,
the design scales to the denoted as MEDICS’ on the plot. At this
point, it delivers the same performance as the GTX 295 while con-
suming significantly less power.

For an off-chip bandwidth of 141 GB/s (the same as that of
Nvidia GTX 280), MEDICS has a peak data consumption of 1.11
bytes/instr. Given the benchmarks in consideration, the only bench-
mark that would be bandwidth-limited is the Segment bench-
mark, which requires 1.26 bytes/instr. The peak consumption of the
other processors in consideration, however, ranges between 0.08
bytes/instr for S1070 to 0.85 bytes/instr for the Core i7, all lower
than what is required for this domain. The ramification of this dis-
parity is best illustrated in Figure 14(b). This graph shows the over-
all run-time of the MBIR reconstruction application [26], assuming
that the application requires the full 144 trillion operations specified
in Section 2. The “theoretical” bar shows what the run-time would
be if the listed peak performance rating were actually possible. The
“realized” bar shows what is actually possible given the bandwidth
constraints of the various processors under consideration.

While consuming 1 to 2 orders of magnitude less power than all
the other existing solutions, MEDICS delivers reconstruction run-
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Figure 14: (a) (Modified Fig. 1) Suitability of MEDICS for

the performance and power characteristics of the domain (b)
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vanced reconstruction algorithms

times that are matched only by high-end desktop GPGPUs. It is
only significantly outperformed by the server-class S1070 which
consumes over 100X the power while only reducing the run-time
by two-thirds. The principle efficiency improvements come from:

• Optimized FPU design

• Fewer hardware contexts

• Increased bandwidth to off-core storage

• Improved on-chip latency-hiding

• Removing power-hungry application-specific hardware (e.g.
texture units)

6. RELATED WORK
There are multiple current hardware solutions for medical im-

age reconstruction, based on DSPs [24], general-purpose proces-
sors [27] and GPGPUs [12]. These are unsuitable for the next gen-
eration of low-power image reconstruction systems for the reasons
enumerated in Section 1, such as lack of floating-point supprt, in-
sufficient performance and high power consumption.

There are several other examples of low-power, high-throughput
SIMD architectures like SODA [30] for signal-processing but it,
being a purely integer architecture, is unsuitable for this domain
space. There are also high-throughput floating point architectures
such as TRIPS [19], RAW [23] and Rigel [8], but these are more
focused on general-purpose computing and do not have the same
power efficiency as MEDICS, nor do they address any bandwidth
concerns. There has also been recent work on image-processing [4,
11] and physics simulations [31] targetting domains traditionally
addressed by commercial GPGPUs but these, too, do not address
bandwidth and power to the extent that this work does.

Some CRAY systems use a “chained FPU” design. However,
these are essentially just forwarding paths across different SIMD
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lanes. While this connectivity reduces register acceses, the FPU
itself was not redesigned the way the MEDICS FPU was.

Other prior work specifically targetting medical imaging has pre-
dominantly focused on using porting existing programs to the com-
mercial products mentioned earlier. For instance, in [7], the au-
thors port “large-scale, biomedical image analysis” applications to
multi-core CPUs and GPUs, and compare different implementation
strategies with each other. In [18], the authors study image regis-
tration and segmentation and accelerate those applications by using
CUDA on a GPGPU. In [22], the authors use both the hardware
parallelism and the special function units available on an Nvidia
GPGPU to dramatically improve the performance of an advanced
MRI reconstruction algorithm.

7. CONCLUSION
The MEDICS architecture is a power-efficient system designed

for efficient medical image reconstruction. It consists of PEs of
wide SIMD floating-point engines designed around the computa-
tion requirements of the image reconstruction domain. Each PE
achieves a high performance-per-power efficiency by using tech-
niques such as FPU-chaining, streaming buffers and compression
hardware. As applications in this domain are normally executed on
high-performance, general-purpose processors and GPGPUs, these
architectures were used to gauge the performance and efficiency of
MEDICS. The results are very encouraging, with MEDICS achiev-
ing over 20X the power efficiency. The design is also bandwidth-
balanced so that all of the performance available on the processor
may be effectively used for computation.
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