
A 1.07 Tbit/s 128×128 Swizzle Network for SIMD Processors

Sudhir Satpathy, Zhiyoong Foo, Bharan Giridhar, Ronald Dreslinski, Dennis Sylvester, Trevor Mudge, David Blaauw
University of Michigan, Ann Arbor

Abstract
 A novel circuit switched swizzle network called XRAM is pre-

sented. XRAM uses an SRAM-based approach producing a compact

footprint that scales well with network dimensions while supporting

all permutations and multicasts. Capable of storing multiple shuffle

configurations and aided by a novel sense-amp for robust bit-line

evaluation, a 128×128 XRAM fabricated in 65nm achieves a band-

width exceeding 1Tbit/s, enabling a 64-lane SIMD engine operating

at 0.72V to save 46.8% energy over an iso-throughput conventional

16-lane implementation at 1.1V.

Motivation and Proposed Approach
 Single instruction multiple data (SIMD) engines are becoming

common in modern processors to handle computationally intensive

applications like video/image processing [1]. Such processors require

swizzle networks to permute data between compute stages. Existing

circuit topologies [2,4] for such networks do not scale well due to

significant area and energy overhead imposed by a rapidly growing

number of control signals (Fig. 4), limiting the number of processing

units in SIMD engines. Worsening interconnect delays in scaled

technologies aggravate the problem. To mitigate this we propose a

new interconnect topology, called XRAM, that re-uses output buses

for programming, and stores shuffle configurations at cross points in

SRAM cells, significantly reducing routing congestion, lowering

area/power, and improving performance.

 Fig. 1 provides a top-level diagram of the XRAM approach. The

input buses span the width while the output buses run perpendicular to

them, creating an array of cross points. For each configuration, the

state of an SRAM bitcell at a cross point determines whether or not

input data is passed onto the output bus at the cross point. Along a

column only one bitcell is programmed to store a logic high and create

a connection to an input. To minimize control overhead, output buses

are used to program the bitcells, reducing the number of wires by 40%

in a 128×128 16-bit bus implementation. Each bitcell in a column is

programmed by a unique bit from the output bus. As buses get wider,

the additional silicon area at a cross point is used to store multiple

configurations. In the 65nm implementation presented here, a 16-bit

bus width allows six configurations to be stored without incurring any

area penalty. Any one of these configurations can be individually

programmed and used to shuffle data. Since configurations are never

read out, access transistors in the SRAM cells are upsized to achieve

write robustness at the cost of read stability.

 In programming mode, the controller sends a one-hot signal onto

each output bus. A global wordline is then raised high to program the

XRAM. With 16-bit buses, a 16×16 XRAM can be programmed in a

single clock cycle. Larger XRAMs are divided into multiple sections

with independent wordlines and one section is programmed at a time.

In transmission mode, the wordline stays low and incoming data is

passed onto the output bus at the cross point storing a 1 using a pre-

charge followed by conditional discharge technique. Input data can

be multicast by storing multiple 1’s in a row.

 Fig. 2 shows the cross point circuitry. One of the bits (out0<0>)

from the output bus is used to program the cell. The one-hot signal

Config[0:5] is used to select a configuration. The output bus is pre-

charged concurrently while incoming data settles on the input bus.

Thereafter, the output lines are discharged if the cross point bitcell

stores a 1 and the incoming data is 1. Widths of 480nm for the top

transistor and 540nm for the bottom transistor were chosen in the

discharge stack to optimize overall XRAM delay. To avoid repeated

discharge for static high inputs, incoming data is transition encoded.

 Output lines are evaluated by a bank of sense amplifiers. Conven-

tional sense amps are prone to device mismatch, rely on accurate

timing, and consume power in precharging internal nodes every cycle,

rendering them unusable in XRAM. We propose a novel single-ended

thyristor-based sense amplifier shown in Fig. 3. The sense amp is

initially precharged to a low gain leakage state. During evaluation,

internal node A is immediately coupled to the output line through a

PFET access transistor. If the voltage on the output line drops, the

thyristor pair in the sense amp is triggered and a logic low is evaluated.

The precharge transistors are sized large enough to compensate for

leakage through the thyristor pair. The PFET access transistor is

sufficiently weak to prevent the output line from fully discharging to

save power. Given improved mismatch tolerance, devices can be

downsized, resulting in only 3% to 20% increase in XRAM area in

comparison with 12% to 52% for a conventional sense amp across

dimensions ranging from 128×128 to 16×16. The proposed sense amp

can be fired as soon as the output line starts discharging. This simpl-

ifies timing generation since SE and discharge can be generated off

the same edge. The internal nodes switch only if the input discharges,

reducing precharge power.

 The number of wires and hence the dimension of XRAM grows as

O(n), where n is the number of inputs/outputs, compared to

O(n(logn)) in conventional switches. Simulation results in Fig. 4

compare a conventional crossbar to XRAM with increasing dimen-

sions, showing the XRAM is 3.3× smaller, 37% faster, and saves 75%

energy per bit transfer for large networks. It does not require clus-

tering of unique bits from different buses at input, thereby avoiding

routing congestion. Programming power and latency can be further

saved by caching frequently used shuffle patterns in the XRAM. Data

transfer through XRAM takes a single cycle, while programming a

channel requires one (if cross points to be programmed lie in the same

section) or two cycles. An entire XRAM can be programmed in N

cycles where N = Number of inputs/Bus width. Programming latency

can be improved to (log2(Number of inputs)/Bus width) cycles by

locally decoding control words at cross points. The XRAM can switch

configurations in consecutive cycles without additional delay.

Prototype Implementation
 We explored the low voltage scalability of SIMD engines in the

context of XRAM [5]. As shown in Fig. 5, an XRAM-based system

scales better than a conventional system when voltage/frequency are

lowered, and SIMD lanes are widened to maintain iso-throughput.

The optimal SIMD width was found to be 64, employing a 128×128

XRAM to shuffle two operands, and this design was fabricated in

65nm CMOS. The register files (Fig. 6) are equipped with LFSRs and

the processing units use signature analyzers to independently test the

XRAM. The processor was verified by running a 64-point FFT.

Shuffle patterns for the butterfly stages were programmed once into

the XRAM and no further programming was needed during runtime.

 Fig. 7 shows measured results for XRAM, which can achieve a

bandwidth of 1.07 Tbit/s at 1.1V while consuming 227 mW. At higher

voltage, the input delay (max of input data and control) and output

delay (discharge + sense amp) are matched. In this case a 12% speed

improvement is achieved when the input delay is optimized by

launching XRAM control signals early. At lower voltages, the output

delay dominates and input delay optimization results in no significant

speed improvement. Measured results showing the impact of transi-

tion encoding are shown in Fig. 8. With transition encoding disabled

the XRAM power increases linearly with the fraction of 1’s in the

input data. The minima at either extreme are due to zero switching

activity in the input/output buses. The power breakdown in Fig. 9

reveals that output lines dominate XRAM power at low voltage,

making transition encoding more effective than at higher voltage.

Table 1 compares XRAM to a relevant prior design [3]. Measured

results for a 64-lane SIMD (64 multipliers) processor using a

128×128 XRAM and a 16-lane SIMD (16 multipliers) processor

using a conventional 32×32 crossbar at iso-throughput are summa-

rized in Fig. 10 including die micrographs. Energy savings of 29.5%

and 46.8% are demonstrated for FFT-like (light load) and matrix

inversion (heavy load) applications, respectively.

trev
Typewritten Text
IEEE Symposium on VLSI Circuits. June, 2010. Honolulu, Hawaii. pp. 81-82.

 References
[1] Y. Lin et al, IEEE MICRO, pp. 114-123, 2007.

[2] K.Lee et al, ISSCC 2004

[3] M. Borgatti et al, ISSCC, 2003

[4] K. Chang et al, Symposium on VLSI Circuits, 1999

[5] M.Woh et al, ICASSP 2008, pp. 5388-5391

49%

35%

Metric XRAM Ref [3]

I/O Ports 128+128 8+8

Total Bits 2048 512

Configs 6 8

Storage SRAM FPT*

Tech. 65nm 180nm

Area(mm2) 0.87 1.38

Freq.(MHz) 523 100

Latency(ns) 1.89 8.0/22.0**

Supply(v) 1.1 1.6/2.0***

*Flash Programmable Pass Transistor

**worst case

***Programming voltage

33% saving @ 1.1v

44% saving @ 0.7v

12% faster

4X

XRAM

Conv
37% faster

Conv

XRAM

With XRAM

Min energy

With Mux-based Crossbar

Figure 1. Top level diagram of XRAM showing output buses

being used to program SRAM bit cells at cross points
Figure 2. Cross point circuitry. Out0<0> is used to program the cross point

Figure 3. Thyristor based sense amp with timing diagram
Figure 4. Comparison of XRAM and conventional (conv) crossbar

across different sizes (16 bit buses) based on simulation

Figure 5. Simulation results showing XRAM equipped SIMD consumes 48%

less energy than conventional SIMD at iso-throughput (6.4 GOPs per second) Figure 6. 64 wide SIMD data path with 128×128 XRAM

Figure 7. Measured a) performance and b) power for 128×128 XRAM
Figure 8. Measured power for 128×128 XRAM with

and without transition encoding

Figure 10. Measured data for 16 lane and 64 lane SIMD processors at iso-throughput

and die micrographs. 46.8% power is saved for computation intensive work loads

Table 1. Comparison with ref[3]

Figure 9. Measured XRAM

power breakdown

Bandwidth: 1.07 Tbit/s @ 227 mW, 1.1 v

 1.23 Tbit/s @ 311 mW, 1.2 v

Switching Activity = 0.2

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

Bank of

Multipliers

Bank of

Register files

shuffles
2 operands

FFT

Shuffle patterns

With 16 bit wide bus

a) b)

a) b)

 XRAM

128×128

METRIC
Light Load Heavy Load

16 Lane

SIMD

64 Lane

SIMD

16 Lane

SIMD

64 Lane

SIMD

Power

(mW)

Ex 13.20 7.20 50.60 20.16

Reg. File 27.50 12.96 40.70 18.72

Xbar 11.00 18.00 47.30 33.84

Control 5.50 2.16 13.20 8.64

Total 57.20 40.32 151.80 81.36

Frequency(MHz) 400 100 400 100

Supply (V) 1.10 0.72 1.10 0.72

16 Lane SIMD:

1.2 x 1.8 mm
2

64 Lane SIMD: 2.7 x 2.1 mm
2

Inputs

Outputs

SRAM used to hold

configuration

in0

in1

Out0<0>

Out1

in15

Out15

Out0<15>

Out0

Word_line

Clk

Discharge

SE

Conditionally Discharge
bit line

Fire Sense Amp

Bit line

Node A

Discharge_b

SE

SE_b

Out

SE

SE

SE_b

SE_b

Discharge Discharge_b

Bit_line A

 Conv Xbar

 32×32

Config_5_b

Config_5

Discharge

in0<0>

Word_Line

6T SRAM + Configuration
Selection Logic

Conditional Discharge Logic

Config_5

Config_5_b
Config_0_b

Config_0

Config_0_b

Config_0

in0<15>

out0<15>out0<0>

out0<0>

Isolates output from input during
precharge

Reduces leakage
while output line

discharges

