
EXtreme Virtual Pipelining (XVP): Moving Towards Scalable Multithreaded
Processors

Korey Sewell*, Trevor Mudge*, Steven K. Reinhardt*†

*University of Michigan – Ann Arbor †Advanced Micro Devices (AMD)
{ksewell, tnm}@eecs.umich.edu steve.reinhardt@amd.com

1. INTRODUCTION
The impact of simultaneous multithreading (SMT) on

small-scale designs (2-4 threads) has been successfully
demonstrated in both academia and industry, but large-scale
SMT (16-32 threads) is still impractical due to the adverse
side-effects that both increasing and sharing common
resources would present on such architectures. Achieving
efficient, large-scale SMT processors would not only enable
higher-throughput multicore chips, but also open up new
research angles into parallel architectures and their
applications (e.g. speculative multithreading, fine-grained
synchronization and communication, virtual machines, etc.).

A major scalability issue in conventional SMTs is the
requirement to replicate per-thread structures and to increase
the size of shared resources as the number of threads increase.
These SMT stipulations are costly because large, critical path
components directly affect processor clock rate.

The ability to efficiently share resources amongst
hardware threads is also a significant issue for SMT
scalability. Current resource distribution techniques alter CPU
behavior based on monitoring and reacting to CPU
performance counters (e.g. per-thread resource usage). While
these methods can be effective on a small-scale, the task of
finding optimal resource distributions for threads of various
workload behaviors dramatically increases in complexity
when considered for a large-scale SMT machine.

Instead of architecting a large-scale SMT through
extensive increases in CPU resources and distributing those
resources via complex analysis of workload behavior, we
propose a solution called eXtreme Virtual Pipelining (XVP)
which seeks to virtualize all stalling processor resources. At
each stage in the pipeline, XVP provides each concurrent
thread the illusion that it has all the processor resources to
itself. XVP’s virtualization also gives resources the
opportunity to configure themselves on-demand rather than
attempt to achieve optimal sharing through indirect
mechanisms. Since XVP essentially provides a CPU with
larger processor components than normal, we also theorize
that XVP can facilitate speedup in single-thread processors.

2. EXTREME VIRTUAL PIPELINING
In eXtreme Virtual Pipelining (XVP), resources that can

stall a pipeline when full are virtualized by memory-mapping
their entries into a thread’s address space similar to Oehmke’s
logical register virtualization in VCA [1]. If a CPU has 64
instruction queue (IQ) entries then XVP would map space for
64 IQ entries in each thread’s address space. This presents the
virtualized view of a full allotment of pipeline resources for
each hardware thread and allows threads to withstand
“resource full” conditions that would stall a traditional SMT.
Figure 1 shows a simplified view of how resources will be
virtualized. XVP proposes to virtualize the fetch buffer (FB),
IQ, load/store queue (LSQ), register file (RF) and reorder
buffer (ROB).

Each “stallable” component in a XVP pipeline stage is
matched with a Fill-Spill-Unit (FSU) responsible for
inserting and removing entries on an on-demand basis.
Heavily contended resource buffers will now serve as a
“cache” of a larger resource space giving us the important
benefit of resources that dynamically partition themselves
for arbitrary workload mixes. For example, instructions
dependent on a load miss will be spilled out of the IQ and
filled only after the miss is resolved. We can also keep only
the most recently used logical registers in the physical
register file, while rarely used registers can be spilled to
memory. Alternative designs for XVP might also leverage
some type of prediction engine or add extra pipeline stages
to facilitate fill-spill functionality.

Figure 1 – XVP Virtualizes Pipeline Resources to Memory

Because XVP effectively extends the notion of a
hardware context to include pipeline resources, XVP adds a
separate “Context” L1 Cache (C-Cache) for context data.
Consequently, XVP avoids Data(D)-Cache thrashing by
recognizing that context data will have different temporal
locality then instruction data. Since register data is spilled
to the D-Cache in conventional designs, the C-Cache’s
decoupling of context data from instruction data has the
potential to reduce memory footprint size and the
subsequent amount of space needed in the D-Cache.

EXtreme Virtual Pipelining (XVP) takes a step toward
scalable, multithreaded processors by avoiding the pitfalls
constraining conventional designs. Instead of increasing the
size of critical path resources and attempting to learn
optimal allocations, XVP chooses to virtualize pipeline
resources, to provide mechanisms for those resources to
dynamically partition themselves, and to add a 3rd L1-
Cache for storage of those resources. Future versions of
XVP could virtualize other non-critical path shared
resources like branch predictors, branch target buffers or
load-wait tables. Additionally, XVP’s virtualization
methods can be used to optimize single-threaded processors
by providing the illusion of more pipeline resources than is
traditionally available on a single-threaded processor.

3. REFERENCES
[1] Oehmke, D. W., Binkert, N. L., Mudge, T., and Reinhardt, S. K.

2005. How to Fake 1000 Registers. Proceedings of the 38th Annual
IEEE/ACM international Symposium on Microarchitecture , 2005.

trev
Typewritten Text

trev
Typewritten Text
Wild and Crazy Ideas held in conjunction with 16th International Conference on Architectural Support for Programming Languages and Operating Systems. March, 2009. Washington DC.

