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Abstract-Many embedded DSP systems can be characterized
as streaming applications. Imperative programming languages
are ill suited for describing the concurrency within these DSP
systems. SPEX is a language extension designed to let the
programmers describe the inherent parallelism within DSP
systems. In this paper, we highlight SPEX's language features
for describing the streaming computation and communication
patterns of DSP systems, and allowing the compiler to generate
efficient code for embedded DSP architectures. This language
extension is based on the parameterized dataflow computation
model, with modifications to better describe DSP systems' com
plex streaming patterns. SPEX is applied as an extension onto
the C++ programming language. It consists of a set of language
constructs for describing the semantics of parameterized dataflow
computations, and a set of language restrictions for helping
the embedded compilation process. In this paper, the W-CDMA
wireless protocol is used as our case study.

I. INTRODUCTION

Within the past twenty years, engineers have designed
increasingly complex multimedia DSP systems in order to
satisfy our growing appetite for faster and more sophisticated
multimedia content. These increasing computational require
ments have motivated the design of embedded SoC DSP
architectures. Software development for uniprocessor DSPs is
hard, and SoC DSP architectures make this hard problem even
harder. There is a clear need for better language support to help
manage the complexity of mapping DSP systems onto DSP
hardware. SPEX (Signal Processing EXtension) is a language
extension designed to address these problems for embedded
streaming DSP systems. It has two design objectives: allow
ing programmers to express the inherent parallelism within
streaming DSP systems, and providing an efficient interface
for the compiler to generate code for embedded DSP hardware.
It is designed to support all aspects of embedded DSP compu
tations. This includes vector arithmetic operations to describe
DSP computations, dataflow constructs to describe streaming
computations, and real-time constructs to describe real-time
operations and deadlines. A summary of SPEX's language
features can be found in [12]. This paper is focused on SPEX's
dataflow extension for supporting streaming computations and
communications.

Parameterized Dataflow Computation Model. Dataflow
computation models have been proposed to describe streaming
computations. However, many streaming DSP systems also
have critical control flow operations. In between long episodes
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of streaming computation, DSP systems intermittently re
configure their streaming patterns to account for changes
from the users and the environments. SPEX is based on the
parameterized dataflow (PDF) computation model, where the
dataflow is described with a set of parameters. Each parameter
is a variable with a finite set of possible values, describing a set
of possible dataflow configurations. We propose a three-stage
run-time execution model to provide efficient computation on
embedded multi-core hardware. During the first stage, a static
dataflow is initialized by assigning a constant value to each
parameter variable. The second stage is the stream compu
tation using a compiler-generated static synchronous dataflow
schedule. The third stage finalizes the stream computation with
updates to the dataflow variables and states.

Streaming Communication Model. Although parameter
ized dataflow model is good for describing reconfigurable
streaming computation, its First-In First-Out (FIFO) commu
nication pattern is inadequate for describing DSP system's
complex streaming communication patterns. Therefore, we
propose a modified pseudo-dataflow computation model where
data can be shared among dataflow actors. Complex streaming
patterns can be constructed using these actors as basic building
blocks.

SPEX Language Extension. Parameterized computation
models have been proposed before for modeling DSP sys
tems [1]. However, given the popularity of existing languages
such as C and C++, it is challenging for programmers to
adopt a completely new concurrent programming paradigm.
SPEX aims to reduce this challenge by implementing the
parameterized dataflow model as a language extension to
the familiar C++ language syntax. To provide efficient code
generation for embedded DSP architectures, we also find that
some of C++'s language features cannot be supported or
must adopt different semantic meanings consequently. Even
though SPEX is applied to C++ in this study, it is general
enough to be applied to any programming language. The
dataflow extension consists of two parts: a set of language
primitives and constructs for describing the parameterized
dataflow model and a set of language restrictions to limit the
expressiveness of the host language.

The remainder of this paper is organized as follows. Sec
tion II provides our analysis of the operation characteristics
of DSP systems, our rationale for using the parameterized
dataflow computation model, and our modifications to the
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II. MODELING DSP SYSTEMS

Parameterized Dataflow Computation Models. The con
current dataflow model has been used to describe streaming
computations. A dataflow graph consists of a set of actors
(or nodes) interconnected together with edges. Each edge
contains both input and output stream rates for the source and
destination actors. An actor's stream rates correspond to the
amount of data consumed and produced per invocation. In par
ticular, synchronous dataflow (SDF) has received considerable
attention as the computation model for compilation onto multi
core architectures [6]. SDF is a type of dataflow model where
the dataflow properties are defined statically. This allows
the run-time execution schedule to be generated statically
during compile-time [10]. Embedded systems usually have
tight performance constraints and limited run-time scheduling
support. Many of these embedded systems also use scratchpad
memories instead of cache, where memory management is
a software problem. Compiler-generated execution schedules
are favorable because they require less run-time scheduling
and memory management overhead. However, because of its
statically defined dataflow properties, SDF is too restrictive
to describe the run-time reconfigurations of complex DSP
systems. An ideal computation model for embedded systems
should have the run-time efficiency of the SDF, while also
providing enough flexibility to describe run-time reconfigura
tions.

SPEX is based on a more dynamic dataflow, namely the
parameterized dataflow (PDF) computation model [1]. In PDF,
dataflow attributes are described with parameters instead of
constants. A parameter is a variable with a finite set of
discrete values. Our choice of using the PDF is motivated
by the fact that most DSP systems only have a finite set of
discrete operating modes. These configurations in the dataflow
can be adequately captured by a set of parameters with
discrete values. We find that the following set of four dataflow
properties should be parameterized to describe DSP systems'
streaming computation.

• Variable Dataflow Rates: The input and output stream
rates of dataflow actors may take on a range of values.

• Conditional Dataflow: Conditional dataflow is supported
by using parameters to describe the branching conditions.

• Number of Dataflow Actors: Parameters can be used
to fire a subset of the actors in a dataflow graph during
run-time.

• Streaming Size: The number of data elements streamed
per invocation should also be defined with parameters.

Run-time Execution Model and Compilation Support.
Dataflow graphs are executed on hardware through run-time
schedules. The schedule may be statically determined by a
compiler or dynamically generated by a run-time scheduler.
As mentioned before, SDF is good for embedded architectures
because compiler-generated execution schedules require less
run-time resources. With SPEX's PDF computation model, we
propose a three stage run-time execution model: 1) dataflow
initialization, 2) dataflow execution, and 3) dataflow finaliza
tion, as shown in Figure 2. These three stages are executed for
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A. Modeling Streaming Computation

Streaming Computation in DSP systems. In streaming
applications, functions are organized in pipeline-like compu
tation chains, and data is streamed through the pipeline in
a sequential order. In between long episodes of streaming
computation, DSP systems intermittently reconfigure their
streaming patterns to account for changes from the users,
the environment, and received inputs. Most DSP systems
support multiple operation modes that are optimized for dif
ferent services. These include changes in streaming rates,
dataflow configurations, and algorithm kernels. For example,
W-CDMA supports multiple data transmission rates ranging
from 15Kbps to 2Mbps. The lower data rates are used for voice
communications, and the 2Mbps is used for high-speed data
communications. These different data communication rates
also require different DSP algorithms and different stream
configurations. Figure 1b describes this periodic reconfigura
tion in the streaming computation. During run-time streaming
computation, the receiver may use different numbers of rake
fingers (denoted in the figures by the Rand P nodes) and
different channel decoding algorithms (denoted in the figure
by the T and V nodes).

Fig. 1. Part a: W-CDMA System Level Diagram. W-CDMA is used as the on
going example for SPEX in this study. Part b: DSP system run-time streaming
computation pattern. The receiver may use different number of rake fingers
(denoted by the Rand P nodes) and different channel decoding algorithms
(denoted by the T and V nodes). Shaded B nodes are memory buffers.

dataflow model for supporting streaming communication pat
terns. Section III describes SPEX, a language extension based
on our modified parameterized dataflow computation model.

In this section, we first describe our rationale for using
the parameterized dataflow model for streaming computation.
We then describe our rationale for modifying the dataflow
model for streaming communication. We illustrate the features
of SPEX through the W-CDMA wireless protocol's physical
layer processing [8]. Figure la shows the system-level diagram
of W-CDMA. The receiver consists of a FIR filter, rake
receiver, interleaver, and channel decoder. These algorithm
kernels are connected in a feed-forward pipeline.
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SPEX Parameterized Dataflow Run-time Execution Model

I
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Stage 3: Dataflow Finalization

Fig. 2. PDF execution model consists of three steps. Step l, the parameterized dataflow graph is constrained into a synchronous dataflow graph. Step 2, the
dataflow is executed following a static compile-time schedule. Step 3, PDF graph's data and states are updated with the most recent computed values.

every PDF graph invocation. During the initialization stage, the
parameters are set to constant values, effectively constraining
a PDF graph into a SOF graph. The dataflow execution stage
follows a compiler-generated schedule for this SOF graph.
The finalization stage updates the dataflow variables and states
with the results of the dataflow computation. This three stage
PDF execution model provides the best of both worlds; it still
maintains the efficiency of SOF execution schedules, while
also provides the flexibility to reconfigure the dataflow through
initialization and finalization stages.

The POF compilation process can be divided into three
steps: identifying SDP configurations, scheduling each SDF
configuration, and generating run-time control code to se
lect one of the SDF schedules. Because PDF graphs are
parameterized, the compiler can identify all possible run-time
synchronous dataflow configurations by iterating through the
parameters. Each of these synchronous dataflow configura
tion can be compiled and scheduled using existing dataflow
scheduling algorithms. Finally, control code is generated
within POF graphs' initialization and finalization stages to
select the appropriate synchronous dataflow schedule during
run-time.

B. Modeling Streaming Communication

Even though the parameterized dataflow model is good at
describing streaming computation, many DSP systems have
complex streaming communication patterns that cannot be ac
curately described with the dataflow graph's one-dimensional
FIFO communication edges. The following is a list of com
munication patterns that are needed.

• Multi-dimensional Streaming Patterns: Many OSP sys
tems operate on vectors and matrices, which require
memory buffers with multi-dimensional streaming pat
terns. For example, a vector FIFO buffer may have
two different streaming attributes: the streaming pattern
within each vector element and the streaming pattern
among the buffer vector elements.

• Non-sequential Streaming Patterns: Many DSP algo
rithms do not follow strict FIFO streaming order. For
example, a complex filter may access the real or the
imaginary components of an array of complex numbers
in strided sequential order. An interleaver may access an
array in pre-computed random order.

12

Decoupled Streaming: Many DSP systems consist of
multiple decoupled dataflow computations. These de
coupled dataflow computations may still be connected
through buffers, but they may operate asynchronously
from each other. For example, in a W-CDMA receiver,
the front-end filter must operate under the periodic real
time deadline. The data gets down-converted into a lower
data rate ranging from 15Kbps for voice communication
up to 2Mbps for data communication. The output is
then run through a backend error decoder that does not
have strict real-time deadline requirements. Many decoder
implementations do not operate in sync with the front-end
filter.

• Shared Memory Buffers: DSP systems have memory
buffers that are shared between multiple readers and
writers. Oataflow edges are FIFO queues that support
queue push and pop. Push and pop couple two sepa
rate operations for each data element: memory alloca
tionldeallocation and memory read/write. Shared memory
buffers requires decoupled operations for memory alloca
tionldeallocation and memory read/write.

Previous works have attempted to address these different
streaming patterns by proposing different dataflow compu
tation models. For example, multi-dimensional dataflow was
proposed for supporting streaming vectors and matrices [13].
Cyclo-static dataflow can be used to model strided streaming
patterns [15]. However, these are point solutions that only ad
dress a specific streaming pattern. In SPEX, we propose a dif
ferent design approach: relax the dataflow computation model
to let the programmers construct the appropriate streaming
patterns. Instead of attempting to describe a streaming pattern
with one dataflow actor or edge, SPEX allows the programmer
to use a set of dataflow actors and non-dataflow functions.
This set of actors and functions are not explicitly connected,
but are allowed to share the same data. The dataflow actors
are used to describe dataflow streaming patterns, non-dataflow
functions are used for infrequent variable updates. In SPEX,
these special dataflow actors are called memory actors, and
these non-dataflow functions are called memory functions.
This is different from a traditional dataflow model where actors
cannot share data. By sharing data, each memory actor or
function can be used as a building block to model one aspect
of the streaming pattern. The combination of a set of actors can
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With SPEX memory actor

Fig. 3. Example of a vector stream buffer with 1 writer and 2 readers.
This buffer's communication pattern has all four streaming properties. This
is a vector buffer, which requires multi-dimensional streaming patterns. Its
has non-sequential streaming patterns because its readers must periodically
reconfigure their streaming addresses. The writer and readers are decoupled
because they have different real-time deadlines. This is also a shared memory
buffer because the readers share the same data, but have different streaming
patterns.

be used to model complex stream patterns. The disadvantage
for our approach is the data consistency problem. Traditional
dataflow computation models do not have to deal with this
problem because there is no shared data between the actors.
In our PDF model, programmers must use locking mechanisms
to access shared data. However, because our execution model
enforces static SDF run-time execution schedules, the compiler
has complete knowledge of the data access pattern for all
actors and functions. Implementing locking mechanisms for a
static schedule is more deterministic than for a multi-threading
run-time environment.

The four streaming patterns listed previously can all be
described using multiple memory actors and functions. A W
CDMA vector stream buffer is shown in Figure 3 with 2
readers and 1 writer. This buffer requires all four streaming
patterns. 1) This is a vector buffer, which requires multi
dimensional streaming pattern. Read and write operations
access scalar data elements within a vector element. Push
and pop operations manage the vector queue by accessing
across vector elements. 2) This buffer has a non-sequential
streaming pattern because its readers' streaming address must
be periodically reconfigured. This is implemented with a
memory function that sets up the reading address during the
PDF initialization stage. 3) The writer and reader of this buffer
are decoupled because they operate with different real-time
deadlines. 4) This is also a shared buffer because there are two
readers with different streaming patterns. The buffer is allowed
to pop the data only after the data is read by both readers. Pop
can be implemented as a memory function that runs during the
PDF finalization stage. In comparison. a traditional dataflow
actor can only define this complex streaming communication
with vector push and pop.

III. SPEX OVERVIEW

SPEX is a concurrent language extension that can be applied
to any programming language. In our study, it is applied onto
the C++ programming language due to its popularity and

large user base. The SPEX dataflow extension consists of two
parts: a set of language constructs for describing the modified
PDF computation model and a set of language restrictions for
supporting embedded multi-core compilation. The rest of this
section is organized as follows: Section III-A describes a set
of new language primitives that are added to describe a PDF
graph. Section 111-B describes the semantics of constructing a
PDF actor in SPEX. Section III-C describes the semantics of
constructing a PDF graph in SPEX. In each of the sections,
we first discuss the language constructs, and then the language
restrictions.

A. SPEX Primitives

Parameters. A parameter, denoted by the keyword param,
is a variable that may only take on a finite set of discrete
values specified by the programmer. Parameters are used to
describe various dataflow properties of a PDF graph. One may
declare a variable of parameter subtype with the following
syntax: param<base_type> var_name. Currently, only
integer-based parameter subtypes are supported in SPEX.
The range of a parameter variable can be defined using the
following two functions: void param<T>: : range (T
min, T max) and void param<T>: :values(int
num_vals, T vall, ... ). The two functions are used
to declare either a range of values or a set of discrete values
for each parameter. Arithmetic and comparison operations are
supported for parameter variables.

Channels. SPEX channels, denoted by the keyword
channel, are FIFO queues that are used to model dataflow
edges. One may declare a variable of channel subtype with the
following syntax: channel <base_type> chan_name.
Both integer and floating-point channel subtypes are sup
ported. In PDF, a dataflow edge may have parameterized
input and output rates. The rates are specified through channel
access functions. There are two types of functions supported
for accessing channel variables: push and pop. Reader stalls
on reading from an empty channel, and writer stalls on writing
to a full channel. The size of the channel variables cannot be
specified by the programmer. SPEX requires the compiler to
determine the optimal sizing for each channel variable during
compile-time.

PDF Functions. SPEX PDF functions are used to con
struct parameterized dataflow graphs. There are two types
of PDF functions: pdf_node for describing a PDF ac
tor, and pdf_graph for describing a PDF graph. PDF
function arguments are communication channels. Each chan
nel is either an input edge or an output edge. Therefore,
each PDF function argument is either read-only or write
only. Read-only function arguments follow the pass-by-value
syntax in C++: func (arg_type arg_val). Write-only
function arguments follow the pass-by-reference syntax in
C++: func (arg_type & arg_val). pdf_node func
tions only allow channel and parameter variables as function
arguments. pdf_graph functions also allow memory actors
as function arguments. PDF function calls also take on a differ
ent language semantic than in traditional imperative languages:

13
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Fig. 4. DSP kernel object example - FIR filter. The keyword spex_kernel
is on line 2 to indicate that this is a kernel class object.

}

out. push (sum) ;

Read-only input
channel

~

z[O] = in.pop();
for (i = 0; i < TAPS; i++)

sum += Z [ i ] * co e f f [ i] ;

pdf_node (read) (channel<int>& out) {
outyort port1 = out.src_port;
int reader_id = get_port_id(port1.id);
T dat = array[read_addr[reader_id]];

out.push(dat); \
buf lock.lock();
read_addr[reader_id]++;

buf_lock. unlock ( ) ; There are two copies of

this memory actor for
the two readers. Using

each reader's unique
port 10 to distinguish
between the readers

01 temp1ate<class T>
02 class Buffer: spex_memory
03 private:
04 T array[1000];
05 spex mutex buf lock. ~ Use mutex t~ preserve

- -' data consistency
06 int read_addr[2];
07
08 public:

09 inyor t wr it e r ; ... One writer and two
10 out_port reader[2]; readers for this buffer

11
12
13
14
15
16
17
18
19
20
21 };
22 void main() {
23 Buffer<int> buf;
24 channel<int/ chan1;
25 channel<int> chan2;
26 chan1.src_bind(buf.reader[0]);
27 chan2.src_bind(buf.reader[1]);
28

Write-only output
channel

~

.-- Creating a PDF actor

channel<T>& out)

.-- FIR's dataflow
{ input

.-- FIR's dataflow
output

public:
FIR () { }
~FIR () { }
pdf_node (run) (channel<T> in,

01 template<class T, TAPS>
02 class FIR: spex_kernel {
03 private:
04 T coeff[TAPS];
05 T z[TAPS];
06
07
08
09
10
11
12
13
14
15
16
17
18 }
19 };
20
21 void main() {
22 FIR<int, 64> fir;
23 fir.run(in_chan, out chan);
24 };

each PDF function call creates an explicit PDF object. Multiple
function calls to the same pdf_node function create multiple
copies of the same PDF actor.

SPEX Language Restrictions. All variables and functions
must be statically declared. This means that C++'s dynamic
language features, such as late-binding virtual functions and
run-time memory allocations, are not supported. Because the
dynamism in DSP systems is described through parameters,
dynamic language features do not add any benefits in describ
ing these systems. Static variable and function declarations
also produce more efficient code because they require less
run-time management.

B. SPEX PDF Actors

PDF actors are described as C++ classes inherited from
spex_kernel and spex_memory. spex_kernel is used
to describe DSP algorithms, and spex_memory is used to
describe streaming communication patterns. These are the only
classes in SPEX that are allowed to declare and use PDF
functions. Although PDF functions are sufficient for describing
the dataflow computation, an object-oriented description has
numerous advantages. Besides the dataflow computation, DSP
algorithms also require initialization operations, infrequent
coefficient updates, and other miscellaneous functionalities.
Object-oriented programming groups gather together a DSP
algorithm's related functions under one class. Not only does
this provide a clearer conceptual programming interface, it also
helps the compiler to determine the code placement for these
functions on an embedded DSP architecture.

SPEX Kernel Class. SPEX kernel class is designed to
describe DSP algorithm kernels as dataflow actors. Because
dataflow actors do not share states, SPEX does not allow
declaration of public variables in a kernel class. PDF functions
can be declared as public member functions inside a kernel
class. Non-PDF functions can also be declared in a kernel class
following C++'s sequential execution model. Figure 4 shows

Fig. 5. A vector stream buffer with 2 readers and I writer. Data objects
are declared with the keyword spex_rnernory (on line 2). This example
implements the same buffer shown in Figure 3

an implementation of FIR filter as a SPEX kernel class. In this
example, a PDF actor is declared on line 10. It has one input
channel and one output channel. The filter's internal states are
declared as private variables on lines 4 and 5.

SPEX Kernel Class Language Restrictions. Because
dataflow computation model does not allow shared variables
among actors, each kernel class may only declare one PDF
function as its member function. Because PDF functions
describe dataflow actors, a PDF function can call a non-PDF
function within its function body, but a non-PDF member func
tion may not call a PDF function. The input and output data
rates of a PDF actor are derived from its channel variables'
push and pop operations. Therefore, push and pop operations
may only be called once within a PDF function. They may
not be called within loop bodies or conditional branches, and
they must only push/pop a constant or parameterized number
of data elements.

SPEX Memory Class. Memory class, declared with key
word spex_memory, is used to describe a set of memory
actors and functions that share the same data and states.
A vector stream buffer is shown in Figure 3, its SPEX
implementation is shown in Figure 5. Memory actors are
defined as PDF node functions, and memory functions are
defined as normal C++ member functions. This buffer is shared
between two readers, which means that there are two callers
to the Buffer: : read function. The PDF function must be
able to distinguish between the two callers. This is done by
defining two output ports using the out_port keyword, as
shown on line 10. Each read port explicitly binds to a reader
channel, as shown on lines 26 and 27. Because each port has
an unique ID. the two readers are distinguished through their
ports.
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Traditional dataflow computation models do not have the
data consistency problem because data cannot be shared
among actors. Because PDF's memory actors and functions are
allowed to share the same data, there is no inherent guarantee
for their data consistency. It is up to the programmers to
implement memory consistency through locks. Conceptually,
the PDF actors are similar to threads in POSIX. Mutex
variables are provided to enforce memory consistency between
the PDF functions. An example is shown in Figure 5 on line
5 as a variable is declared of type spex_mutex.

SPEX Memory Class Language Restrictions. SPEX
memory class may include only PDF actor functions, not
PDF graph functions. Because memory actors can share data,
multiple PDF actor functions can be declared within the class
body. In addition, a set of input and output ports must be
declared. These ports represent the number of writers and
readers that may connect to the class' memory actors. The
input ports are declared with keyword in_port. The output
ports are declared with keyword out_port, as shown on
line 9 and 10 in Figure 5. As mentioned previously, SPEX
is a static programming language. Therefore, the number of
readers and writers for each memory object must be statically
defined, and each port must also explicitly bind to either a
writing or reading channel.

a) Rake receiver PDF diagram

01 class Rake: spex_kernel {
02 private:
03 channel<int> chan1 [MAX_FINGERS];

04 channel<int> chan2 [MAX_FINGERS];
05 channel<int> chan3 [MAX_FINGERS];
06 channel<int> chan4;
07 Despreader<int> de spreaders [MAX_FINGERS] ;
08 Descrambler<-int> descramblers [MAX_FINGERS];
09 Combiner<int> combiner;
10 param<int> stream_size;
11

1::: public:
13 Ra ke () { s t ream_ s i z e . val u e s (2 , 1000, 2000); }
14
15 pdf_graph (run) (Buffer inb, Buffer& outb,
16 param<int> r, param<int> fingers) {
17 pdf {

1 8 for (in t j = 0; j < s t ream_ s i z e; j ++ ) {
19 ll_for(int i = 0; i " fingers; i++) {
20 inb. read (chan1 [i ] ) ;
21 despreader [i ] . run (chan1 [i J, chan2 [i] ) ;
2::: descrambler[i] .run(chan:::[i], chan3[i]);
23
24 combiner. run (chan3, chan4);
25 outb.write(chan4);
26

b) Rake receiver SPEX implementation

}

pdf_graph_final (run) (Buffer inb, Buffer& outb,
param<-inL> r, param<int> fingers) {

if (r == 4) inb.pop(1000);
else if (r == 8) inb.pop(2000);
outb.push (250);

}

pdf_graph_init (run) (Buffer inb, Buffer& outb,

param<int> r, param<int> fingers) {
if (r == 4) stream_size = 1000;
else if (r == 8) stream_size = 2000;
inb.num_readers (fingers);
combiner. num_ rake_ fingers (f ingers) ;
for (int i = 0; i < fingers; i++)

inb.reader_start_addr(i, peak[i]);
outb.write_alloc (250);

27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44 }
45 };

lines 29 and line 38. Lines 31 and 32 set the parameter
variable s t re am_s i z e to a constant value based on the input
spreading factor. The input stream buffer is initialized for each
finger by setting the starting memory read address for each
finger on line 35 and 36. To setup the streaming write buffer,
we allocate memory space for the output on line 37.

The purpose of the PDF finalization stage is to update the
PDF graph's internal states with the computed dataflow results.
It is also used to perfonn memory management operations for
the input and output buffers, as shown in Figure 6 on lines 41,
42, and 43. After the data is read out of the input buffer by
all of the rake fingers, its memory is deallocated. The output
buffer performs a push operation to make the written output

Fig. 6. Rake receiver implemented with PDF graph functions:
pdf_graph_ini t, pdf_graph, and pdf_graph_f inal. These three
PDF functions are used to describe the three stages in a PDF's run-time
execution. pdf_graph_ini t is used to describe the PDF graph initial
ization; pdf_graph is used to describe the PDF graph execution; and
pdf_graph_final is used to describe the PDF graph finalization.

c. SPEX PDF Graphs

As mentioned in Section II-A, we propose a three
stage PDF run-time execution model. In SPEX, these three
stages are described as three separate PDF graph functions.
pdf_graph_ini t is used to describe the PDF initialization
stage; pdf_graph is used to describe the PDF computation
stage; and pdf_graph_final is used to describe the PDF
finalization stage. For a given PDF graph, these three functions
must have the same name and arguments. Figure 6 shows
the W-CDMA rake receiver implemented as a PDF graph.
These PDF graph functions are defined on lines 15, 29, and
39. Rake receiver is composed of three DSP algorithms:
despreader, descrambler, and combiner. Each despreader and
descrambler pair is called a rake finger. There are three run
time reconfigurations modeled in this simplified version of the
rake receiver: 1) the number of rake fingers ~ 2) the number of
elements streamed per function invocation; 3) the streaming
read address for each rake finger. Because the number of
rake fingers and the number of streaming elements both affect
the dataflow configuration, they are described with parameter
variables fingers and stream_size. The streaming read
address is detennined by initializing the input stream buffer
during the PDF initialization stage, shown on line 36.

PDF Initialization & Finalization. The purpose of the PDF
initialization stage is to setup the PDF graph for execution.
Because the dataflow computation must use a synchronous
dataflow schedule, the initialization stage is responsible for
setting all of the parameter variables to constant values. Setting
up the stream communication patterns is also done in this
step. In the rake receive example shown in Figure 6, the
initialization function for the rake receiver is shown between
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a} W-CDMA receiver PDF diagram

}

b) W-CDMA receiver C implementation

~nt ~elay_buf [Slot_~iZe];} Must allocate large
lnt l tlv_buf [slot_ slze] ; buffers for the entire
int eC_buf [slot_size]; stream

Nested PDF graph
description with

implicit initialization
and finalization

fingers);

i++) {for (i = 0; i < slot size;
AtoD.read(chanl);
fir.run(chanl, chan2);
delay_buf.write(chan2);

I~~i~it J AtoD.pop (slot_size);
finalizatio~ delay_buf .push (slot_size);

}

sync.run(delay_buf, fingers);
rake.run(delay_buf, itlv_buf, rate,
Interleaver.run(itlv_buf, ec_buf);
if (mode == voice)

viterbi.run(ec_buf, mac);
else

turbo.run(ec_buf, mac);

public:
pdf_qraph(run) (Buffer AtoD, Buffer& mac) {

pdf {
for (j = 0; j < 15; j++) {

pdf {

{

AtoD.read addr(O);
I~i~it delay_buf~push_alloc(slot_size);

initialization chanl . src_bind (AtoD. reader) ;
chan~.dst_bind(delay_buf.writer);

pdf_qraph_init(run) (Buffer AtoD, Buffer& mac) { }
pdf_qraph_final(run) (Buffer AtoD, Buffer& mac) { }

};

c) W-CDMA receiver SPEX implementation

01 class WCDMA Receiver: spex_kernel
02 private:
03 FIR<int> fir;
04 Rake rake;
05 II ... other DSP kernel declarations
06
07
08

09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39

Imperative
computation
descriptions

}

fingers = sync run (delay buf);
rake run (delay-buf, itlv-buf, fingers);
inte~leaver_ru~(itlv_buf~ec_buf);
if (mode == voice)

viterbi_run(ec_buf, mac);
else if (mode == data)

turbo_run (ec_buf, mac);

for (int i=O; i<15; i++) {
addr = 0;
for (int j=O; j<slot_size; j++) (

int data = AtoD[addr];
data = fir_run(data);
delay_buf[addr++] = data;

01 void WCDMA_Receiver(int* AtoD, int* mac)
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

Fig. 8. W-CDMA receiver implementation. The example shows both C and SPEX implementations of the receiver.

SPEX concurrent language constructs Explanations
pdf { A PDF graph construct. It must contain only

... II code for PDF initialization one for-loop construct for describing the
for ( ... ) { ... } II PDF dataflow
... II code for PDF finalization dataflow. While and do-while loops are not

} allowed in pdf construct.

II_for (ini t; cond; incr) Parallel for-loop construct. The different
{ iterations of the loop body are executed in

. .. II loop body parallel. There can not be data dependencies
} across loop iterations.

Fig. 7. SPEX language constructs for describing dataflow operations.

visible to other PDF actors that are reading or writing to this
buffer.

Figure 7 lists the set of parallel language constructs that
are supported in SPEX for describing a concurrent dataflow
graph. pdf construct is used to describe a PDF graph. SPEX
requires each dataflow to be described as a for-loop construct.
Therefore, each PDF construct must contain one for-loop. The
initialization and finalization stages can either be explicitly
defined through PDF functions as shown in Figure 6b, or
implicitly defined as shown in Figure 8c from lines 11 to
25. Parallel operations can be described using the ll_for
construct. An example of this construct is shown in Figure 6
from lines 20 to 24.

SPEX PDF Graph Language Restrictions. The following
set of language restrictions are defined to enforce synchronous
dataflow computation during run-time. All of the PDF actors,

channels, and memory buffers that are used in a PDF graph
must be declared as private variables within the PDF graph
class. Array of objects can be created using the same syntax as
C++, but must be declared statically. Parameter variables must
also be declared as private variables. They are not allowed
to be declared as local variables within a PDF function.
The value of parameter variables must be defined in the
pdf_graph_ini t function or before the for-loop construct
in pdf. And they are not allowed to be redefined in the pdf
for-loop body.

W-CDMA Receiver Implementation. Figure 8 shows a
simplified W-CDMA receiver implementation, in both C and
SPEX. SPEX implementation requires larger code size than
the C implementation. The stream computation itself requires
26 lines of SPEX code and 15 lines of C code. However, all of
the streaming characteristics are lost in the C implementation.
Because the algorithms are executed in sequential order, large
buffers are allocated to pass entire streams of intermediate
results. It is possible to reduce the buffer size by manually
rewriting the C code. However, because optimal buffer sizes
are dependent on the size of hardware's physical memory,
programmers are forced to write machine-dependent code.
In SPEX, because the streaming patterns are exposed in the
language, the compiler can automatically pick the optimal
buffer size. Programmers do not have to be aware of the
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underlying hardware.
The W-CDMA standard divides the receiving data into TTl

(Transmission Time Interval) blocks. Each TTl block contains
a maximum of 5 W-CDMA frames, and each frame is further
divided into 15 W-CDMA slots. Dataflow reconfigurations
occur at multiple data block granularity. Because each recon
figuration requires its own PDF initialization and finalization
stages, the W-CDMA receiver is implemented with nested
PDF graphs, as shown in Figure 8c from line 11 to 25.

IV. RELATED WORK

Dataflow Computation Models. There has been consider
able work in reconfigurable dataflow models. These include
less restrictive dataflow models, hybrid SDF with finite-state
machines(FSMs) [16], and parameterized SDF (PSDF) [1].
Examples of less restrictive dataflow models include the
cyclo-static dataflow model (CSDF) [15], Boolean dataflow
model (BDF) [3], and Synchronous piggybacked dataflow
(SPDF) [14]. CSDF supports cyclic dataflow rates. BDF
includes conditional split and merge actors on top of the
SDF. SPDF supports reconfigurations by coupling infrequent
control updates with the synchronous dataflow. In the hybrid
SDF+FSM models, the different dataflow configurations are
expressed as the different states of the FSM. SPEX's PDF
model is very similar to the PSDF model. One noticeable
difference is that our model supports memory actors that
share data. Hierarchical dataflow models have also been
proposed before to model multi-rate DSP applications with
constraints [4].

Dataflow Languages. There have been many dataflow
languages proposed for modeling DSP systems. Some of
these are frameworks that are designed for a wide range of
application by supporting multiple dataflow models, such as
the Ptolemy project [11], the DIF format [9], and the PeaCE
design flow [7]. There also have been languages that are
designed explicitly for a processor architecture. Streamlt [17]
was proposed for mapping streaming computations onto tiled
processor architectures. The original Streamlt was designed
based on the SDF computation model. Recent updates have
also introduced parameterized variables, allowing the descrip
tion of variable rate dataflow. StreamIt supports stream re
configurations and updates through teleporting messages [18],
which has similar functionality to the SPDF model.

Other Streaming Languages. There are also other stream
ing languages that are not based on dataflow computation
models, such as Brook [2] and Sequoia [5]. Both are imper
ative languages with explicit constructs for streaming array
structures. Sequoia is also designed to expose an application's
memory hierarchy to the programmers.

V. CONCLUSION & ACKNOWLEDGMENTS

In this paper, we describe SPEX's language features for
supporting streaming DSP computations and communications.
SPEX's streaming semantics are based on a parameterized
dataflow computation model. We have modified this dataflow
model to introduce special dataflow actors that are allowed
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to share data. This allows complex streaming communication
patterns to be described with a set of dataflow actors. SPEX
is applied onto the C++ programming language. It consists of
a set of language constructs for describing the semantics of
parameterized dataflow computations, and a set of language
restrictions for helping the embedded compilation process.
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